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Abstract
How to improve the efficiency of operating rooms (ORs) has always been a challenging prob-
lem in the context of healthcare operationsmanagement. This paper focuses on the research of
operating room scheduling under non-operating room anesthesia (NORA)mechanism, in the
presence of the uncertainty of emergency arrivals. In particular, we examine the advantages
of the NORA mechanism in comparison with traditional surgical anesthesia practice under
different operating room settings. Operationally, the process is comprised of two stages: (1)
initial scheduling and (2) rescheduling. In the first stage, the initial schedule for elective
surgeries under NORA is first performed through our developed model. With experiments, it
is shown that for different operating room settings, the NORA mechanism can significantly
improve the operating room utilization in comparison with the traditional OR anesthesia pro-
cess. In the second stage of rescheduling, our experiment results show that the rescheduling
model can effectively address the disruptions caused by the random arrival of emergency
patients.

Keywords Operating room scheduling · Non-operating room anesthesia · Emergency
patients · Heuristic algorithm

1 Introduction

The utilization of operating rooms (ORs) plays a critical role in the operations of hospitals.
To wit, optimizing the utilization of ORs is essential to lower the cost of operations, to
ease the patient congestion and shorten the waiting time of surgical patients, and to increase
the admission rate of patients (Roshanaei et al., 2017). In practice, the service capacity of
ORs cannot often meet the needs of patients demand due to the low utilization of ORs.
In particular, some hospitals still face the situation that ORs have not been fully utilized
which is radically caused by unreasonable or inefficient scheduling (Bandi & Gupta, 2020).
Based on the prevailing practice and the related data analyses in some hospitals in China and
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the United States, this paper will unveil that one main reason for a low ORs utilization is
inefficient scheduling and non-operating occupation (e.g., anesthesia works) in ORs.

Typically, surgery process mainly includes three stages: preoperative, perioperative, and
postoperative stages (Batun et al., 2011). Anesthesia, an essential process of surgery, is
usually carried out in ORs by anesthesiologists, nurses, or anesthesia-related equipment,
during which it makes the scarce resources such as surgeons and surgical equipment being
idle (Hopp & Lovejoy, 2013). To address the issue, some hospitals have tried to improve
the traditional surgery management process by process reengineering, i.e., setting up an
independent anesthesia room to carry out centralized anesthesia for patients (e.g., NORA
strategy) (Nagrebetsky et al., 2017). In this setting, the resources involved in the anesthesia
process, such as anesthesiologists and nurses, are separated from ORs so that the anesthesia
work will no longer occupy costly OR resources. Currently, most studies focus on surgery
scheduling under the traditional surgery process (Hamid et al., 2019; Shehadeh & Padman,
2022; Shylo et al., 2013). Hence, existing theoretical research cannot be applied readily to the
NORA setting. Furthermore, research on scheduling under non-operating room anesthesia
(NORA) strategies is of scarcity. The joint scheduling problem between ORs and anesthesia
rooms ismore challenging comparedwith the problemunder the traditional operating process.

Emergency arrivals add more wrinkles to surgical scheduling. One big obstacle is how to
deal with the disruptions to the already-planned elective patient surgery schedule caused by
emergency patient arrivals. This is critical as elective surgery is the main source of revenue to
most hospitals. There are twomain strategies to address emergency patients. One is to reserve
a dedicated OR for emergency patients, and the other is to share ORs between emergency
patients and elective patients, i.e., arrived emergency patients will be added and allocated
to the upfront of the elective surgery queue. For the former strategy, some literature has
mentioned that it is inefficient in the context of low emergency surgery arrival rates, resulting
in an undesirable waste of OR resources (Batun et al., 2011; Hallah & Visintin, 2019; Jung
et al., 2019). For the latter strategy, some studies set some constraints to make sure that
emergency patients can get access to ORs timely within a limited waiting time (Freeman
et al., 2016; Miao & Wang, 2021; van Essen et al., 2012). Different from the traditional
surgery process, the scheduling of emergency patients under NORA setting needs to consider
the occupation of anesthesia rooms and ORs simultaneously. In addition, random emergency
arrivals often affect the implementation of the initial scheduling scheme of elective surgery,
resulting in surgery delay or cancellation. Thesemay reduce the efficiency of ORs and further
cause considerable costs (Samudra et al., 2016). However, the existing OR scheduling studies
considering the arrival of emergency patients mainly focus on how to effectively deal with
emergency patients, but lack attention on their impact on the existing surgical scheduling
scheme (Zhu et al., 2019). Undoubtedly, adding arrived emergency patients to the existing
scheduling scheme will introduce additional costs, caused by the reallocation of resources
and transfer of equipment. In this case, it is necessary to take a close consideration on the
impact of emergency patient arrival on the implementation of elective surgery. Readers are
referred to the literature of Dai et al. (2022), Li et al. (2021, 2022), Wang et al. (2021a,
2021b).

In this paper, a surgical schedulingmodel is formulated for the surgical scheduling problem
under the NORA setting.Meanwhile, for the devisedmodel, we propose a heuristic algorithm
to solve the problem with efficiency. Besides, a rescheduling model is further proposed
to alleviate the impact of uncertain emergency patients on elective patients. The specific
process is mainly divided into two stages: initial scheduling and rescheduling. In the initial
scheduling stage, the initial scheme under the NORA strategy is first curated through the
model. Experiments show that the NORA strategy can significantly improve the utilization
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of the ORs compared with the traditional anesthesia process. In the rescheduling stage, the
experimental results show that the reschedulingmodel can effectively address the disruptions
of the random arrival of emergency patients to the initial scheduling scheme.

2 Literature review

Our study is mainly related to two streams of literature. The first stream is about how to
improve the utilization rate of ORs, and the second one is about how to deal with the arrival
of emergency patients.

OR scheduling (also known as surgery scheduling) typically involves multiple stages,
multiple resources, and multiple participants, and a variety of uncertainties. Some research
classifications can be seen in the literature review (Zhu et al., 2019). Among those rele-
vant reference, most studies mainly focus on how to improve the utilization rate of the OR
through scheduling models and algorithms (Atighehchian et al., 2020; Rachuba & Werners,
2017; Vancroonenburg et al., 2016). In an effort to improve the efficiency of ORs, some
hospitals have isolated and built independent anesthesia rooms to prevent the occupation of
non-operating anesthesia in ORs (Nagrebetsky et al., 2017). However, such NORA practice
has brought up with new challenges to the traditional scheduling method. Specifically, the
separation of the anesthesia unit and the surgical unit requires coordination and compactness
between these two units as the surgery must be performed immediately after anesthesia.
However, the relevant literature on scheduling pertaining to the NORA mechanism is rather
scarce. This study aims to bridge the gap.

In viewof the comparison as detailed inTable 1,Tsai et al. (2017) attempted to utilization of
anesthesia resources without considering the operating room.Wang et al. (2021a, 2021b) and
Liang (2022) only focused on elective surgery without considering the impact on emergency
patients. However, the influence of emergency patients’ arrival on the utilization of ORs
cannot be ignored (Freeman et al., 2016), as it may preempt medical resources and further
interfere with elective surgery. Our contribution by this study is to propose a model and
algorithm to address the uncertainty of the arrival of emergency patients.

Emergency patients are different from elective patients. Their surgery type, surgery dura-
tion, arrival time, and other information cannot be perceived in advance. Accordingly, the
scheduling of emergency patients often involves the uncertainty of arrival time, surgery time,
and resource demand. How to effectively manage the arrivals of emergency patients is one of
the difficulties in OR scheduling (Breuer et al., 2020). To solve this problem, researchers have

Table 1 Comparison of research studies on NORA strategies

Emergency
arrivals

Anesthesia
room

Operating
room

Offline/online
schedule

Contributions

Tsai et al. (2017)
√

Offline Policy

Wang et al.
(2021a, 2021b)

√ √
Offline Robust model

Liang (2022)
√ √

Offline MIP model

This paper
√ √ √

Online MIP model +
heuristic
algorithm
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proposed some strategies such as (1) reserving a separate OR (Wang et al., 2022), (2) leaving
a time gap between adjacent surgery processes, or (3) postponing elective surgery (Moosavi
& Ebrahimnejad, 2020; Xie et al., 2021; Zhu et al., 2019). The first one belongs to the OR
management strategy, while the rest two are of surgery scheduling strategies. In general,
there are three common OR management policies for emergency patients: dedicated policy,
flexible (or shared) policy, and hybrid policy (Bovim et al., 2020; Breuer et al., 2020). This
paper mainly studies the surgery scheduling problem under the shared OR strategy, namely,
all ORs can be allocated to emergency patients and elective patients. For this setting, Essen
et al. (2012) proposed the concept of break-in-moments (BIMS) tominimize the waiting time
of emergency patients by evenly distributing the elective surgery completion time as much
as possible. In this paper, we also control the overlapping time between surgery in multiple
ORs so as to cope with the random arrivals of emergency patients. In addition, Kroer et al.
(2018) considered the arrival of emergency patients and established a model to minimize
overtime cost and the number of open ORs. Most of the existing literature focuses on how to
effectively deal with emergency patients but barely considers the negative impact pertaining
to the insertion of emergency patients (Miao & Wang, 2021). However, in practice, these
negative effects may impose the initial elective surgery strategy no longer applicable. To
address the issue, this paper aims to consider the impact of emergency patients on the initial
scheduling scheme via rescheduling. Rachuba and Werners (2014) considered the objec-
tives from multiple perspectives, including patients, doctors and management objectives.
However, they mainly considered the uncertain needs of emergency patients and proposed a
preventive scheduling scheme with robustness. In contrast, not only does this paper consider
the preventive scheduling scheme for emergency patients, but also the rescheduling scheme
after emergency patients are inserted. Concerning that the devised rescheduling model per
se requires potential computational time for a solution, we propose a heuristic algorithm
accordingly, and show that the algorithm can greatly reduce the solution time of the model
(Lu et al., 2020; Wu et al., 2022).

3 Model formulation

This paper studies theOR scheduling problem under the sharedOR strategywith independent
anesthesia rooms. Typically, elective patients have low uncertainty. In this case, the elective
surgery duration canbepredicted according to the statistical analysis of hospital historical data
or machine learning models (Al-Refaie et al., 2018; Devi et al., 2012; Schneider et al., 2020).
Hence, without loss of generality, we simply assume that the elective surgery duration of
patients can be determined in advance. Referring to Samudra et al. (2016), emergency patients
with a tolerantwaiting time are regarded as semi-emergency patients and can be treatedwithin
that time interval after arrival. Considering the urgency and health risk of emergency patients,
we assume that the anesthesia work of all emergency patients can only be carried out in ORs.
In contrast, elective patients are treated via following the NORA process. Under the NORA
strategy, elective patients need to be anesthetized separately right prior to the surgery in an
independent anesthesia room. The independent anesthesia room generally includes multiple
anesthesia beds, anesthesiologists, anesthesia nurses, and anesthesia equipment (Nagrebetsky
et al., 2017), which can carry out anesthesia for multiple patients at the same time.

Referring to the extant literature and the prevailing practice in hospitals, we make the
following assumptions.
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(1) The surgery that has started cannot be interrupted or canceled, and all surgeries must be
completed on surgery day (Hopp & Lovejoy, 2013);

(2) In order to ensure the safety of patients and improve the utilization of the ORs, patients
after anesthesia need to be transferred to an OR for surgery immediately (Macario,
2010);

(3) The whole surgery process of emergency patients is carried out in an OR (Hopp &
Lovejoy, 2013);

(4) The opening time of the anesthesia room is earlier than that of ORs to ensure that patients
can be conducted anesthesia before ORs open (Hopp & Lovejoy, 2013);

(5) Each emergency patient has a certain waiting time threshold (Samudra et al., 2016).

In this paper, the surgery scheduling is divided into the initial scheduling stage P0 and the
rescheduling stage P1, upon the arrival of emergency patients. In the P0 stage, the starting
time and schedule of elective surgeries in the anesthesia rooms and ORs are determined with
the objective of maximizing the efficiency of ORs. To ensure that the actual waiting time
of emergency patients does not exceed their threshold, our model includes BIM constraints.
Since any insertion of emergency patients disrupts the initial scheduling scheme made in P0

stage, it is necessary to adjust the initial scheduling scheme in P1 stage with the objective of
maximizing OR utilization and minimizing surgical changes.

Before establishing the model, the main variables are summarized in Table 2 based on the
above assumptions.

3.1 Initial schedulingmodel under NORA

At stage P0, the main objective is to maximize the efficiency of ORs while the random
arrival of potential emergency patients is considered by some preventive BIM constraints.
We characterize the OR utilization rate through three types of cost (including overtime, idle
and operating costs); cf. Jung et al. (2019). Decision variables include the OR assignment, the
surgery starting time, the anesthesia room assignment, and the start time of the anesthesia for
elective patients.Under theNORAsetting, amixed-integer programmingmodel is formulated
to generate an initial schedule to improve the efficiency of ORs to treat the potential arrival
of emergency patients as follows:

Min Z �
N∑

i�1

M∑

j�1

T∑

t�1

cr xi j t +
M∑

j�1

T∑

t�1

cl

(
1 −

N∑

i�1

xi j t

)
+

N∑

i�1

M∑

j�1

T+L∑

t�T

co xi j t , (1)

T+L∑

t�1

M∑

j�1

yi j t � 1, i � 1, 2, . . . , N , (2)

N∑

i�1

xi j t ≤ 1, j � 1, 2, . . . , M, t � 1, 2, . . . , T + L, (3)

min(t+pi −1,T+L)∑

r�t

xi jr ≥ pi yi j t , i � 1, 2, . . . , N , j � 1, 2, . . . , M, t � 1, 2, . . . , T + L,

(4)

N∑

i�1

M∑

j�1

xi j t � Ot , t � 1, 2, . . . , T + L, (5)
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Table 2 Notions of parameters and variables

Indexes

i � 1, 2, ..., N : Surgical patients i , N is the total number of surgical patients on surgery day
j � 1, 2, ..., M : OR j , M is the number of ORs
f � 1, 2, ..., F : Anesthesia room f , F is the number of anesthesia rooms
t � 1, 2, ..., T + L: time t , T is the normal opening time of ORs and L is the maximum overtime of each
OR

Parameter

pi : Surgery duration of surgical patient i , i � 1, 2, ..., N
si : Duration of anesthesia for surgical patients i , i � 1, 2, ..., N
cr : Operating cost per time unit to keep an OR open for elective surgery during regular time T
cl : Unit idle cost of an OR during normal opening time T
co: Unit overtime cost of an OR exceeding normal opening time T
ct : The change-related cost in rescheduling
cp : The balance cost in rescheduling
u: The duration of overlap in all ORs cannot exceed u time units
Z : Total cost, including overtime, idle and operating costs
Beds: The number of staffed beds in the anesthesia room, i.e., the maximum number of patients who can
obtain anesthesia at the same time

H : Index set of time, H � {1, 2, . . . , T + L}
Decision variables

xi j t : 0–1 variable, if the operating patient i is using the OR j at time t , the value is 1; otherwise, 0

yi j t : 0–1 variable, if the operating patient i starts the surgery in the OR j at time t , the value is 1;
otherwise, 0
y′

i j t : 0–1 binary variable, if the operating patient i starts the surgery in the OR j at time t before
emergency patients arrive in rescheduling model, the value is 1; otherwise, 0
ai f t : 0–1 variable, if the surgical patient i starts anesthesia in the anesthesia room f at time t , the value is
1; Otherwise, 0
Ot : Integer variable, the number of ORs occupied at time t ,Ot ∈ [0, M]

k+u∑

t�k

Ot −
N∑

i�1

k+u∑

t�k+1

M∑

j�1

yi j t ≤ (u + 1)M − 1, k � 1, 2, . . . , T , (6)

T+L∑

t�1

Ot �
N∑

i�1

pi , (7)

F∑

f �1

T+L∑

t�1

ai f t ≤ 1, i � 1, 2, . . . , N , (8)

N∑

i�1

ai f t ≤ Beds, f � 1, 2, . . . , F, t � 1, 2, . . . , T + L, (9)

T+L∑

t�si+1

M∑

j�1

Ht · yi j t − si

T+L∑

t�si+1

M∑

j�1

yi j t � (Ht − si )

T+L∑

t�si+1

F∑

f �1

ai f t , i � 1, 2, . . . , N , (10)

xi j t , yi j t , ai f t ∈ {0, 1},
i � 1, 2, . . . , N , j � 1, 2, . . . , M, t � 1, 2, . . . , T + L,

f � 1, 2, . . . ,F, (11)
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Ot ∈ {0, 1, . . . , M}, t � 1, 2, . . . , T + L. (12)

In the above model, the objective given in Eq. (1) is to minimize the total cost of overtime,
idleness and the operating cost of ORs. The fixed cost of ORs and other costs that are not
related to OR efficiency are not considered, as the hospital’s main purpose is to increase
the utilization rate of ORs. Constraint (2) indicates that each surgery can only be started
once. Constraint (3) ensures that at most one surgery can be performed at any moment in
each OR. Constraint (4) indicates that the ongoing surgery cannot be interrupted. Constraint
(5) represents the number of all ORs occupied at a certain time. Constraint (6) indicates
that the overlap duration of all surgery in ORs cannot exceed a certain threshold. Referring
to the concept BIMs (van Essen et al., 2012), emergency patients can get timely access to
ORs by controlling the start and end time of elective surgeries. Therefore, there may be
short idleness between adjacent operations in the initial scheduling plan. This can ensure
that emergency patients arriving at any time can be timely inserted into an OR within the
threshold time. Constraint (7) indicates the relationship between the occupancy of ORs and
the surgery duration. Constraint (8) indicates that the patient is anesthetized only once.
Constraint (9) indicates that the number of patients getting anesthesia simultaneously cannot
exceed the maximum number of beds. Constraint (10) means that the patient must enter the
OR for surgery after anesthesia without waiting. Constraints (10) and (11) limit the range of
decision variables.

3.2 Reschedulingmodel considering emergency patient arrivals under NORA

In the rescheduling model, three types of costs are mainly considered: overtime cost, change-
related cost and balance cost. In order to clarify the concept and relationship of the objective,
we give a brief examplewith threeORs, as depicted in Fig. 1. The upper subfigure is the initial
scheduling and the lower subfigure is the rescheduling under the same condition, where S is
the elective surgery, E is the emergency surgery, the arrival time and surgery duration of the
emergency are 7 and 5 respectively, and the normal opening time of the OR is 16. Comparing
the rescheduling plan with the initial scheduling plan, it can be seen that the total overtime
of the OR is 4, the changed surgeries are S2 and S3, and the overtime of the three ORs are
0, 0, and 4 respectively. Then the balance time is [(4 − 0) + (4 − 0) + (0 − 0)] as shown in
Fig. 2. Therefore, the balance cost is [(4 − 0) + (4 − 0) + (0 − 0)] ∗ cp , and the total cost is
expressed as Z ′ � 4co + 2ct + 8cp .

As depicted Fig. 1, E-1 to E-6 indicate the insertion time for emergency patients because
the elective surgeries that have already started cannot be stopped. The term "overlapping
duration" refers to the time range in which all ORs are occupied, during which urgent
patients had to wait. Emergency patients have a certain waiting time threshold u (Jung
et al., 2019). Therefore, it wouldn’t influence emergency patients’ health as long as the
overlapping duration ≤ u. Note that the overlapping duration is determined by the
scheduling model, while u is given by hospitals. For example, if an emergency patient arrives
at time 6, the earliest time he can start surgery is between E-1 and E-3. If the time is E-3
(i.e.,7), then the waiting time is 1. In this case, S2 must be postponed, resulting in OR2
overtime. Further, it may also lead to overlapping duration ≥ u, which means the next
emergency patient may wait for more than u. H1 mainly aims to solve the aforementioned
problems.

Rescheduling is required after each emergency patient arrives. The time of the emergency
patient’s arrival and duration of the emergency patient are input. The overlap between ORs
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Fig. 1 An example of rescheduling schedule (E1: emergency surgery)

Fig. 2 An example of calculating
balance time

4 0 0

4-0

0-04-0

needs to be considered in order to meet the subsequent insertion of emergency patients.
When adjusting the initial scheduling plan, we try to minimize the adjustment between ORs
as much as possible, which is consistent with the rescheduling objective. At the same time,
we also consider the unstarted surgery in the OR with overtime. The limit of OR overtime
may be determined according to different actual needs.

At the rescheduling stage, changing ORs may cost a lot due to the inconvenience for the
implementation of the rescheduling plan, because preoperative preparations, equipment, and
other resourcesmayneed to be adjusted immediately.Besides, theORwith toomuchovertime
will also incur additional costs (Bandi & Gupta, 2020), and this situation is undesirable. In
view of the above analyses, we propose the following rescheduling model:

Min Z ′ �
N+1∑

i�1

M∑

j�1

T+L∑

t�T

coxi j t + ct N ′ + cp S, (13)
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N ′ �
N∑

i�1

(
1 −

T+L∑

t�1

yi j ′t

)
, j ′ �

M∑

j�1

T+L∑

t�1

j y′
i j t , i � 1, 2, . . . , N , (14)

S �
M∑

j�1

M∑

j ′� j

[∣∣∣∣∣

N+1∑

i�1

T+L∑

t�T+1

(
xi j t − xi j ′ t

)∣∣∣∣∣

]
(15)

T+L∑

t�1

M∑

j�1

yi j t � 1, i � 1, 2, . . . , N + 1, (16)

N+1∑

i�1

xi j t ≤ 1, j � 1, 2, . . . , M, t � 1, 2, . . . , T + L, (17)

min(t+pi −1,T+L)∑

r �t

xi jr ≥ pi yi j t , i � 1, 2, . . . , N + 1, j � 1, 2, . . . , M, t � 1, 2, . . . , T + L,

(18)

N+1∑

i�1

M∑

j�1

xi j t � Ot , t � 1, 2, . . . , T + L, (19)

k+u∑

t�k

Ot −
N∑

i�1

k+u∑

t�k+1

M∑

j�1

yi j t ≤ (u + 1)M − 1, k � D + 1, . . . , T + L, (20)

T+L∑

t�1

Ot �
N+1∑

i�1

pi , (21)

F∑

f �1

T+L∑

t�1

ai f t ≤ 1, i � 1, 2, . . . , N + 1, (22)

N+1∑

i�1

ai f t ≤ Beds, f � 1, 2, . . . , F, t � 1, 2, . . . , T + L, (23)

T+L∑

t�si+1

M∑

j�1

Ht · yi j t − si

T+L∑

t�si+1

M∑

j�1

yi j t � (Ht − si )

T+L∑

t�si+1

F∑

f �1

ai f t , i � 1, 2, . . . , N + 1,

(24)

xi j t , yi j t , ai f t ∈ {0, 1}, i � 1, 2, . . . , N + 1, j � 1, 2, . . . , M, t � 1, 2, . . . , T + L,

f � 1, 2, . . . , F, (25)

Ot�{0, 1, . . . , M}, t � 1, 2, . . . , T + L, (26)

y′
i j t : given, i � 1, 2, . . . , N + 1, j � 1, 2, . . . , M, t � 1, 2, . . . , tu, (27)

Some of the constraints in the rescheduling model are similar to the initial scheduling
model, and we will explain the meaning of new constraints. Constraint (13) indicates that
the model’s objective is composed of three parts, where co, ct , and cp are respectively the
overtime, change and balance cost per unit time. The overtime cost is the same as the initial
scheduling model. The change-related cost is the cost of an elective surgery switching from
one OR to another. In order to prevent a certain OR from being overloaded, the balanced
cost is set as the penalty caused by the excessive overtime of the surgery. Constraint (14)
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is the number of swaps of elective patients compared with the initial scheduling plan after
emergencypatients arrive.Constraint (15) represents thebalance timeof allORs. In constraint
(20), D is the minimum value of the emergency patient’s surgery start time tr and the earliest
completion time of the currently undergoing elective surgery. This constraint ensures that
future emergency patients can also get timely treatment after inserting one emergency patient.
In constraint (27), tu is the actual arrival time of the emergency patient. This constraint means
thatwe take the solution of the initial schedulingmodel as the input of our reschedulingmodel.

The surgical scheduling problem with random arrivals of emergency patients is NP-hard
when the size of the ORs exceeds 2 (Lamiri et al., 2008). For the initial scheduling model,
when the size of the OR exceeds 20, the traditional solution method cannot obtain optimal
solutions in a reasonable time, and the rescheduling model is more difficult to solve. In order
to solve the problem effectively in a short time, it is reasonable to develop approximate algo-
rithms. In what follows, we designed a heuristic algorithm to solve the large-scale problem
and verified the performance of the algorithm in numerical experiments.

4 Solutionmethodologies

Twoheuristic algorithms are proposed for the initial scheduling problem P0 and the reschedul-
ing problem P1. The purpose of developing this heuristic is to provide a simple, effective and
easy-to-implement method that does not rely on complex software. The algorithm is based
on the rule of L PT − S PT proposed by Jung et al. (2019). In the two heuristic algorithms,
the subset of surgeries is fixed, and the number of ORs M ≥ 2.

First of all, the heuristic algorithm H0 is leveraged to solve the initial scheduling problem.
The algorithm is delineated as follows.

In the heuristic algorithm H0, we take the duration of elective surgery, the number of ORs
and the number of anesthesia rooms as input, and the output is an initial scheduling plan. We
schedule all surgeries with shorter duration in the same OR. These surgeries can be started
and ended quickly. In other ORs surgeries with longer duration are scheduled to deal with
the random arrival of emergency patients.

The cost of theORovertime cost and idle cost is theminimal (i.e., the schedule is optimal) if
either of following two conditions is satisfied. (1) If in schedule S, τ j ≤ T , j � 1, 2, . . . , M .
(2) If in schedule S, τ j ≥ T , j � 1, 2, . . . , M and only surgeries with surgery duration less
than two hours are assigned to O R1.
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Remark For (1), the fact that no ORs have overtime means that all surgeries have been
scheduled. At this point, Schedule S∗ is optimal as the sum of OR idle cost and surgery
operating cost is the minimum. For (2), only the surgeries with surgery duration less than
two hours are assigned to O R1; it means that O R1 has enough insert points to deal with the
emergency patients. O R j , j � 2, 3, . . . , M can be scheduled closely, with no idle cost and
the lowest overtime cost. For other conditions, to ensure BIM constraint, in Step 4, we adjust
the starting time of surgery from ti to ti + u, which helps ease the delay of the starting time
obtained in Step 3.

Next, the heuristic algorithm H1 for rescheduling is introduced. The steps are shown as
follows.
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5 Computational studies and experiments

5.1 Experiment setup

In order to verify and analyze the effectiveness of theOR schedulingmodel under the indepen-
dent anesthesia room and the algorithm,we designed three sets of experiments. Experiment 1,
Experiment 2, and Experiment 3 respectively verify the effectiveness of the NORA strategy,
the effectiveness of the proposed algorithm, and the performance of rescheduling.

We set experimental parameters by referring to literature, discussing with some practi-
tioners, and analyzing some data as reported in Table 3. The parameter setting is as follows:
the normal working time of the OR is generally no more than 8 hours (h) per day, and the
maximum overtime is no more than 4 h. In the numerical experiment, we set half an hour
as one time unit. The normal opening time of all ORs is set to T � 16, which is 8 h. The
maximumOR overtime is L � 8 or 4 h. The surgery duration is between 1.5–4 h. The surgery
duration follows the uniform distribution from the interval pi ∈ [3, 8] and must be an integer.
In order to simplify the experiment, the duration of anesthesia for the surgery is 0.5 h, that is,
si � 1. The number of patients that the anesthesia room can serve at the same time is 4. The
maximum time that emergency patients can tolerate is 4. Referring to Zhang et al. (2014),
the unit open cost cr , overtime cost cl and idle cost co of the initial scheduling model are
set to 1/unit time, 1.5/unit time and 2/unit time. At the same time, the change-related cost,
overtime cost and balance cost of the rescheduling model are set to 4/unit time, 2/unit time
and 0.5/unit time.
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Table 3 Parameters setting

Experimental parameters Values Support

The normal working time of the OR 8 h Practitioners

The maximum overtime 4 h Practitioners

Time unit 0.5 h Jung et al. (2019)

The surgery duration 1.5–4 h Data

The duration of anesthesia 0.5 h Data

The maximum time that emergency patients can tolerate u � 2 hours Zhang et al. (2014)

Unit operating cost cr , overtime cost cl and idle cost co cr � 1/unit time,
cl � 1.5/unit time,
co � 2/unit time

Jung et al. (2019)

The change-related cost, overtime cost and balance cost ct � 4/unit time,
co � 2/unit time,
cp � 0.5/unit time

Practitioners

We conduct experiments under different OR scales, and each group of experiments gen-
erates surgery duration pi based on the total surgery duration P of N surgery, P � ∑N

i�1 pi .
The P can be used to describe a utilization situation of ORs. All codes and numerical exper-
iments are conducted in Matlab R2014a with Gurobi 8.1.0.

5.2 Performance comparison: operating room anesthesia (ORA) versus NORA

Experiment 1 was conducted for the initial scheduling stage P0. Under the premise of consid-
ering emergency patients, we compared the non-OR anesthesia strategy with the traditional
OR anesthesia strategy and verified the advantages of the NORA strategy under different
OR scales. All solutions in Experiment 1 are obtained by Gurobi. The detailed experimental
results are reported in Table 4 as below.

In view of Table 4, the objective value of the NORA strategy is better than the traditional
operating room anesthesia (ORA) strategy in which a long overtime is incurred. The NORA
strategy improves the turnover rate of ORs which saves a lot of resources. With the increase
in the number of ORs and surgeries, NORA strategies can save more OR resources and
allocate more surgery. In addition, according to related literature (Marjamaa et al., 2009), the
open cost of an anesthesia room unit is far less than that of an OR resource. In addition, the
NORA strategy can help reasonably allocate related resources such as anesthesiologists and
anesthesia nurses, enabling a medical team to serve multiple anesthetized patients, which
effectively improves resource efficiency and reduces OR opening costs.

5.3 Performance analysis of proposed heuristic algorithm

For the initial scheduling stage, we verified the effectiveness of the proposed heuristic algo-
rithm H0. In this part, the scale of the OR is set to be small, medium and large, and there are 3
experimental examples under each scale. In order to show the effectiveness of the algorithm,
we compared the H0 with the solver and genetic algorithm (GA), which has been successfully
applied to the surgical scheduling model; cf. Guo et al. (2016).

The experimental results are summarized in Table 5. In a small-scale case, the solver can
obtain the optimal solution in a short time. At a medium scale, the solver can also get the
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Table 4 Experimental comparison of ORA and NORA strategy (OB: objective value; OT: OR overtime; IT:
OR idle time.)

Parameters Total
surgery
duration
P

NORA ORA OB(ORA)-OB(NORA)

OB OT IT OB OT IT

N=8, M=3,
F=1

48 50.5 1 1 66.5 9 1 16

46 49 0 2 60 6 0 11

52 56 4 0 74.5 13 1 18.5

N=10, M=4,
F=1

62 65 0 2 80 8 0 15

64 64 0 0 86.5 11 1 22.5

59 66.5 0 5 74 5 0 7.5

N=14, M=5,
F=2

81 82 1 0 110 15 0 28

78 81 0 2 104 12 0 23

80 82.5 1 1 110.5 15 1 28

N=17, M=6,
F=2

84 102 0 12 108.5 6 1 6.5

85 101.5 0 11 110.5 7 1 9

87 100.5 0 9 114.5 9 1 14

Table 5 Experimental comparison between the proposed algorithm and genetic algorithm

Scale Instances Parameters Solver GA H0

OB Time/s OB Time/s OB Time/s

Small 1 N=8, M=3, F=1 50.50 12.17 50.5 370.30 55.50 < 0.01

2 N=10, M=4, F=1 65.00 14.57 67 388.09 67.50 < 0.01

3 N=14, M=5, F=2 82.00 28.23 86 383.72 89.50 < 0.01

Medium 4 N=17, M=6, F=2 97.50 35.98 103 405.34 105.00 < 0.01

5 N=20, M=7, F=2 118.50 111.91 126 399.23 128.50 < 0.01

6 N=23, M=8, F=2 129.00 71.64 147 407.41 141.50 < 0.01

Large 7 N=26, M=9, F=3 146.50 174.79 163.5 406.34 161.50 < 0.01

8 N=29,M=10,F=3 – – 188 596.43 181.50 < 0.01

9 N=35,M=12,F=3 – – 228 414.21 210.50 < 0.01

“–” indicates that the optimal solution cannot be obtained within 8 h. Small scale: the number of surgeries is
from 0 to 16; Medium scale: the number of surgeries is from 17 to 25; Large scale: the number of surgeries is
from 26 to 35

optimal solution in about 2 min. But when the problem scale increases, the optimal solution
cannot be obtained within 8 h. In comparison, the GA algorithm is faster, but as the problem
scale increases, it still takes about 5 min in order to solve the problem. This means that all
patients who have not yet started surgery need to wait for several minutes to be rescheduled,
which will result in a waste of time in ORs. In contrast, we found that the proposed heuristic
algorithm has a very short computational time, less than 0.01 s on average, which is better
than the GA algorithm. This shows that H0 is effective to solve the proposed model.
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To further verify the effectiveness of the algorithm, we use a common evaluation indicator
defined as follows:

G AP � (Z − Zbest )

Zbest
× 100

where Z represents the objective value obtained by the current algorithm, and Zbest represents
the optimal value of the problem.

Considering that the optimal objective value may not be obtained in large-scale cases,
referring to Jung et al. (2019), we replace Zbest with the optimal lower bound L B of the
solution. L B is the optimal objective value that can be reached under a certain scale in the
ideal state where some constraints are ignored.

L B � cr · min
(
P, M · T

)
+ co · max

(
P − M · T , 0

)
+ cl max

(
M · T − P, 0

)
;

P �
N∑

i�1

pi ,

where M and T indicate the number of open ORs and the normal open time of ORs, respec-
tively.

The experimental results are reported in Fig. 3. Compared with H0, GA algorithm has a
compelling advantage in solving accuracy at a small scale. However, that advantage dimin-
ishes as the scale gets bigger. On the other hand, compared with GA algorithm, H0 shows
more obvious advantage in terms of the solving speed. Especially for large-scale problems,
the algorithm still leads to a short solution time. It implies that scheduling decisions can
be obtained faster in response to emergent emergency patients, which is more applicable in
practice. Undoubtedly, the combination of H0 andGAwill produce a better solution accuracy
without increasing the algorithm time.

Fig. 3 Comparison between the proposed heuristic algorithm and intelligent algorithm (H0: objective func-
tion values/running time of proposed heuristic algorithm; GA: objective function values /running time of GA
algorithm; GA-H: objective function values/running time of Hybrid algorithm based on GA algorithm and H0)
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5.4 Performance analysis for emergency patient arrival

In the experiment for the rescheduling stage, considering the different needs of emergency
patients, we generate emergency patient arrival time and surgery durationwhen the number of
emergency patients is 1, 2, and 3 respectively.We set a traditional complete rescheduling (CR)
strategy for comparison, which is a commonly-used rescheduling scheme whose objective is
to minimize the overtime cost. The proposed rescheduling is incomplete rescheduling (ICR)
whose objective is to minimize changes in ORs. In the experiment, we analyze the results of
the MIP model and the heuristic algorithm H1.

The specific experimental results are reported in Tables 6, 7 and 8 under different settings,
where tu is the arrival time of emergency patients, and pe is the surgery duration of emergency
patients. For example, tu � [2, 5], pe � [7, 4] indicate that the arrival time of the first
emergency patient and the second emergency patient are 2 and 5 respectively, and the surgery
duration of the two patients are 7 and 4 respectively. In the third experiment, the main
performance indicators considered are the total cost of ORs, overtime cost, change-related
cost, and the actual start time of emergency patient surgery.

It can be observed from Table 6 that under the same cases, the objective value obtained
by solver is better than the result of the heuristic algorithm H1, but when the size of the ORs
and the number of patients become larger, the solver can no longer effectively cope with the
decision making in a reasonable time. In addition, under the NORA strategy, the total cost
of the solver and the heuristic algorithm is better than that under the CR strategy.

Table 6 Performance of the reschedule models and algorithm with tu � 7, pe � 5

Scale Total surgery
duration

ICR CR

Solver H1 H1

tr Z ′ co ct tr Z ′ co ct tr Z ′ co ct

N � 17

M � 6

F � 2

94 8 18 8 0 8 20 12 0 8 30.5 6 20

96 8 26 12 0 8 28 16 4 8 48 12 24

98 9 30.5 14 0 8 32.5 18 4 9 44 14 20

N � 23

M � 8

F � 2

126 8 27.5 10 0 8 32 16 4 8 49.5 10 24

128 8 27.5 10 0 8 29 14 0 8 57.5 10 36

130 8 36.5 14 0 8 38 20 4 8 53 14 32

N � 29

M � 10

F � 3

158 8 22.5 6 4 8 35 16 4 8 70 6 52

160 – – – – 8 37 18 4 8 74 10 52

162 – – – – 8 44.5 22 4 8 86 14 56

tr is insert time for emergency patient; Z
′
is the total cost; co is overtime cost; ct is variable cost; “–” indicates

that no result has been calculated in 3600 s
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5.5 Sensitivity analysis

Given that the unit operating cost, OR overtime cost and idle cost of the initial schedul-
ing model, and the emergency patient arrival time, the changed-related cost, overtime cost
and balance cost of the rescheduling phase may affect the effectiveness of the model and
algorithm, we conduct a sensitivity analysis.

As shown in Tables 9, 10 and 11, we first tested the impact of different unit costs on
the effectiveness of the model and heuristic algorithm. It can be found that within a certain
parameter value range, the change of unit cost only affects the value of the objective function,
and has no effect on the utilization rate of ORs. This also shows that the initial scheduling
model has good robustness. At the same time, experiments on heuristic algorithms also show

Table 9 Performance of the initial scheduling model at different unit cost levels

Unit cost Objective values OR overtime OR idle time

cr � 1.5 cl � 1.5 co � 2 174 3 1

cr � 1.3 cl � 1.5 co � 2 151.8 3 1

cr � 0.9 cl � 1.5 co � 2 107.4 3 1

cr � 0.5 cl � 1.5 co � 2 63 3 1

cr � 1 cl � 2 co � 2 119 3 1

cr � 1 cl � 1.8 co � 2 118.8 3 1

cr � 1 cl � 1.4 co � 2 118.4 3 1

cr � 1 cl � 1.0 co � 2 118 3 1

cr � 1 cl � 1.5 co � 4 124.5 3 1

cr � 1 cl � 1.5 co � 3.5 123 3 1

cr � 1 cl � 1.5 co � 2.5 120 3 1

cr � 1 cl � 1.5 co � 1.5 117 3 1

Table 10 Performance of the algorithm at different unit cost levels

Unit cost Objective values OR overtime OR idle time

cr � 1.5 cl � 1.5 co � 2 182 7 5

cr � 1.3 cl � 1.5 co � 2 160.6 7 5

cr � 0.9 cl � 1.5 co � 2 117.8 7 5

cr � 0.5 cl � 1.5 co � 2 75 7 5

cr � 1 cl � 2 co � 2 131 7 5

cr � 1 cl � 1.8 co � 2 130 7 5

cr � 1 cl � 1.4 co � 2 128 7 5

cr � 1 cl � 1.0 co � 2 126 7 5

cr � 1 cl � 1.5 co � 4 142.5 7 5

cr � 1 cl � 1.5 co � 3.5 139 7 5

cr � 1 cl � 1.5 co � 2.5 132 7 5

cr � 1 cl � 1.5 co � 1.5 125 7 5
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Table 11 Performance of rescheduling model at different unit cost levels

Unit cost Objective values OR overtime Changes of surgery OR balance

co � 8 ct � 4 cp � 0.5 38 2 4 12

co � 4 ct � 4 cp � 0.5 30 2 4 12

co � 2 ct � 4 cp � 0.5 26 2 4 12

co � 1 ct � 4 cp � 0.5 24 3 3 18

co � 2 ct � 8 cp � 0.5 39 5 2 26

co � 2 ct � 4 cp � 0.5 26 2 4 12

co � 2 ct � 2 cp � 0.5 18 2 4 12

co � 2 ct � 1 cp � 0.5 14 2 4 12

co � 2 ct � 4 cp � 4 40 14 3 0

co � 2 ct � 4 cp � 3 40 14 3 0

co � 2 ct � 4 cp � 2 40 14 3 0

co � 2 ct � 4 cp � 1 32 2 4 12

that the algorithm has better robustness. Table 11 shows the experimental results of the impact
of different unit cost parameters on the rescheduling model. It can be found that within a
certain range, different unit costs have little impact on the rescheduling model. But if some
parameter values are set to be large enough, it will certainly have an impact on the model. For
example, when the unit balance cost is much greater than the unit overtime cost, the model
will try to ensure the balance of the ORs, resulting in a longer OR overtime. Nevertheless,
these situations are rare because they do notmeet the requirements of the hospitals. Therefore,
in most cases, the rescheduling model is also relatively robust.

As depicted in Fig. 4, PS indicates that the arrival of emergency patients follows a Poisson
process, and NH follows a non-homogeneous process. It can be observed that at different

Fig. 4 Comparison between the Poisson (PS) process and the non-homogeneous (NH) process
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scales, the total cost shows no significant difference in the arrival time between PS and NH,
which indicates that the model can cope with the emergency patient arrivals that follow
different processes as aforementioned.

6 Concluding remarks

Given the low utilization rate of operating room resources, we examine the advantages of
NORA strategy and explore how to improve operating room efficiency with the implemen-
tation of NORA strategy. Then, we further consider the impact of emergency patients on
elective surgeries. The research is divided into two stages. First, an initial elective surgery
scheduling model under the NORA strategy is established, while a prescheduling plan for
emergency patients is generated based on the BIM constraints. Then, the rescheduling model
is proposed to adjust the initial scheduling plan after emergency patient arrives. In this stage,
the objective is to minimize the surgical changes of the elective patients and maximize the
efficiency of the operating rooms. Considering the complexity of the model, we designed
two heuristic algorithms to solve the initial scheduling and rescheduling models respectively.
Numerical results show that the NORA strategy can save operating room resources so that
more patients can be scheduled, which becomes more obvious as the size of the operating
room increases. In addition, compared to the traditional procedure for surgical scheduling,
the NORA strategy greatly reduces surgery-related costs. In terms of algorithms, although
the optimal solution can be obtained by applying commercial solvers, the solution time is
not desirable in large-scale instances. In contrast, the proposed heuristic algorithm requires
less solution time on the premise of obtaining a satisfactory solution, so that the hospital
administrator can respond more quickly. The comparative analysis demonstrates that the
rescheduling model, taking into account the efficiency of the operating rooms and different
costs, can provide a more realistic scheduling plan.

This article verifies the advantages of the NORA strategy and enriches the research of
operating room scheduling under the NORA strategy. In addition, in response to the problem
of random arrival of emergency patients, a more effective rescheduling plan is proposed,
which provides a decision reference for hospital managers to improve the scheduling effi-
ciency of the ORs. In practice, hospitals must make a prompt respond to their random arrival
of emergency patients for surgery. To this end, hospitals usually reserve several ORs for the
sake of emergency patients. However, these ORs are often idle when emergency patients do
not arrive, which is an obvious waste of OR resources. To reduce the waste, we propose a
model that can both cope with the uncertainty of emergency patient arrivals and improve
operating room utilization.

We shall acknowledge that further studies can be done by considering more uncertainty
and the availability of downstream resources: First of all, the surgery duration of elective
patients may not be able to be accurately estimated. In addition, other downstream resources
may also affect the surgical process. These resources may also become a bottleneck that
blocks the efficient operations of operating rooms. Readers are referred to the following
references for additional details, Chang et al. (2019, 2021, 2022), Tian et al. (2022), Shi et al.
(2014), Gao et al. (2020), Katehakis et al. (2015, 2016), among many others.
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