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Abstract
A two-commodity queueing-inventory systemwith phase-type service times and exponential
lead times is considered. There are two types of customers; Type 1 and Type 2. Demands
from each customer type occur independently according to a Poisson process with different
rates whereas the service times follow a phase-type distribution. Type 1 customers have a
non-preemptive priority over Type 2 customers. We assume a finite waiting space for Type
1 customers whereas there is no limit on the waiting room for Type 2 customers. Type i
customers demand only commodity i , i = 1, 2. For the i th commodity, Si and si represent,
respectively, the maximum inventory level and the reorder level. Whenever the inventory
level of i th commodity drops to si , an order is placed from retailer-i to make the inventory
level Si . The lead times of the commodities are exponentially distributed with different
parameters. When there is a Type i customer waiting in the queue, if the inventory level of
i th commodity is zero (or reaches zero), a decision of immediate purchase is made so as not
to lose the waiting customer. The queueing-inventory model in the steady-state is analyzed
using thematrix-geometric method. The system performance is examined for different values
of parameters. Besides, an optimization study is performed for some system parameters.

Keywords Queueing-inventory · Two-commodity · Two types of customers · Lead time ·
Matrix geometric method · Phase-type distribution

Mathematics Subject Classification 60K25 · 90B05 · 90B22

1 Introduction

Multi-commodity inventory systems are commonly encountered in many real-life situations
and are complex systems due to the multitude of items stocked and their coordinated actions.
Themain problem is the interaction of the reorder points and reorder times for each individual
item. The individual ordering policy and the joint ordering policy are commonly used in the
inventory systems depending on whether the items share the same storage space and also
the same transportation facilities. We refer to the papers in Balintfy (1964), Federgruen et
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al. (1984), Kalpakam and Arivarignan (1993) and Silver (1974) for the multi-item inventory
systems and the ordering policies.

A two-commodity inventory system is discussed by Krishnamoorthy et al. (1994). The
shortage is not allowed in the system with zero lead time. Demand occurs either one unit of
commodity-1 with probability p1 or one unit of commodity-2 with probability p2 or one unit
each of commodities 1 and 2 with probability p12. The inventory problem is formulated by
using the semi-Markov process. Krishnamoorthy and Varghese (1994) examines the problem
in Krishnamoorthy et al. (1994) with Markov-shift in demand for the type of commodity.
They use Markov renewal theory for the analysis and perform an optimization study. Using
the results from the Markov renewal theory, Sivasamy and Pandiyan (1998) examines the
problem defined by Krishnamoorthy and Varghese (1994) with the application of the filtering
technique. The similar three-type-of-demand for the two commodities is considered also by
Yadavalli et al. (2010). They investigate the inventory system with perishable items where
the lead times are phase-type distributed. All three types of demands occur according to a
Markovian arrival process. The lifetime of each commodity has an exponential distribution
with different parameters. The system is characterized by a continuous-time Markov chain
and a steady-state analysis is presented. Anbazhagan and Arivarignan (2000) analyzes a
two-commodity inventory system where demands for each commodity occur according to
independent Poisson processes with parameters λ1 and λ2. They consider a coordinated
ordering policy in which the reorder level is fixed as si (i = 1, 2) for the commodity-i and an
order is placed for Qi (= Si − si ) items for the commodity-i when both inventory levels are
less than or equal to their respective reorder levels. A two-commodity inventory system with
the same demand process is examined by Anbazhagan and Arivarignan (2001). They propose
a joint replenishment policy in which an order is placed for both the commodities when the
total net available inventory is equal to s and the ordering quantity occurs Qi (= Si −s) items
for the commodity-i . In Anbazhagan and Kumaresan (2012) and Yadavalli et al. (2004), it is
also considered a two-commodity inventory system with fixed individual and joint reorder
levels. A combination of individual and joint ordering policies is examined by Sivakumar et
al. (2007) where demands occur according to the renewal process.

In Anbazhagan and Vigneshwaran (2010), Anbazhagan et al. (2012) and Anbazhagan et
al. (2015), it is considered that commodities are substitutable. That is, if the inventory level of
one commodity reaches zero, then any demand for this commoditywill be satisfied by the item
of the other commodity. Yadavalli et al. (2006) discusses a two-commodity inventory system
where demands occur according to Poisson processes with different parameters. However, it
is assumed that the demand for the first commodity requires one unit of the second commodity
in addition to the first commodity, with probability p1. Similarly, the demand for the second
commodity requires one unit of the first commodity in addition to the second commodity
with probability p2. Sivakumar (2008) and Anbazhagan and Jeganathan (2013) analyze two-
commodity retrial inventory systems with different ordering policies in which demands for
each commodity occur to independent Poisson processes with different parameters. In both
studies, the constant retrial policy is considered. When there are i demands in the orbit,
a signal is sent out according to an exponential distribution which does not depend on the
number of the orbit. Sivakumar (2008) consider that two commodities are substitutable. That
is, at the time of zero stock of any one commodity, the other one is used to meet the demand.
If the inventory level of both commodities is zero then any primary demand arrival enters
into the orbit of infinite size. Anbazhagan and Jeganathan (2013) assumes that if the demand
occurs for the first commodity, then one unit of the second commodity is supplied as a gift
to the customer who ordered a unit of the first commodity. However, the opposite case is not
valid; that is no first commodity is supplied as a gift for ordering a second commodity. If the
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inventory level of the first commodity is zero, thereafter any arriving primary demand for the
first commodity enters into the orbit of finite size. In Sivakumar et al. (2006), it is investigated
a two-commodity perishable inventory systemwith the Poisson demand process. The lifetime
of each commodity is exponentially distributed with different parameters. Jeganathan (2014)
examines a perishable inventory system with postponed demand with two different items;
a major item (first commodity) and a gift item (second commodity). A two-commodity
substitutable inventory system with postponed demand is also studied by Jeganathan et al.
(2018). When the inventory level is zero, a customer takes in the offer of postponement with
an independent Bernoulli trial.

The inventory problems have different types of customers are also of great importance.
The following studies examine inventory systems with a single commodity and two-type of
customers. Sapna Isotupa (2006) considers an inventory system with two types of customers;
prioritized andordinary.Demands fromeach typeof customer arrive according to independent
Poisson processes with different parameters. When inventory level is below s, demand for
ordinary customers is not satisfied and lost. Also, when inventory levels are zero, demands
due to both types of customers are assumed to be lost. The inventory system is analyzed by
a continuous-time Markov chain. Liu et al. (2014) introduces a priority parameter distinctly
from the study in Sapna Isotupa (2006). When the ordinary customers arrive, the system
decides whether or not to offer service whereas when the prioritized customers arrive, they
get service immediately. That is if 0 < p < 1,when on-hand inventory drops to the predefined
safety level, the ordinary customers will receive service with probability p. In Sapna Isotupa
(2011) and Sapna Isotupa and Samanta (2013), there is a high priority customer class. When
the inventory level is below a threshold level, the demands from high-priority customers are
only satisfied and low priority demands are not met. An inventory system with two types
of customers, high priority customers and low priority customers, is also studied by Sapna
Isotupa (2015).A threshold rationing policy is employed, that is, if the on-hand inventory level
is less than or equal to a critical level, k, and a demand occurs by a low priority customer,
the demand is not met and results in a lost sale. The lost of a demand by a high priority
customer is only occurs when inventory level is zero. They prove that there is an optimal
policy where differentiating between customers and using a threshold rationing policy yields
lower costs for the supplier and provides better service levels to both classes of customers
when compared to the case of not differentiating between customers.

In most of the inventory models considered in the literature, demanded items are directly
delivered from stock (if available). Demand occurred during stock-out periods either results
in lost sales or is satisfied only after the arrival of the replenishments. Moreover, in classical
inventory problems, the amount of time required for service is negligible. In contrast, in
most real-life situations, a positive amount of time to serve the inventory is needed. Up to
now, we have mentioned the two-commodity (or multi-commodity) inventory systems under
different assumptions, but without queueing aspect. In queueing analysis, if the server is idle
at the time of arrival, the customer is served immediately and leaves the system after the
service. On the other hand, queueing-inventory systems deal with both an inventory problem
and a queueing problem. If there is not enough inventory at the time of arrival, even the
server is idle, the customer may leave the system without being served or may have to wait
in the queue. These systems must take into account the inventory problems in the queueing
concept. Queuing-inventory systems can be handled according to many features such as
arrival/service processes, inventory policy implemented, shortage or lost sale assumption, if
there is queue capacity or not, service interruption or vacation assumption, or perishability
of items in inventory. We can put forward some important studies as follows. Schwarz et
al. (2006) analyze the model with exponentially distributed service time and lead time and
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Poisson input of customers. The authors suggest the product form solution for the system
state distribution under the assumption that customers do not join when the inventory level
is zero. In their model, customers are provided an item from the inventory on completion of
service. On the other hand, it can be some situations where the customer may not be served
the item on completion of service. The situation is modelled by Krishnamoorthy et al. (2015).
That is, the item is served with probability γ at the end of a service and with probability
1 − γ the item is not delivered to the customer. The model reduces to Schwarz et al. (2006)
when γ = 1. A queueing-inventory system with two parallel service facilities is examined in
Deepak et al. (2008). Customers arrive to the system according to two independent Poisson
processes and demand exactly one item from the inventory. There are two service counters
manned by one server each. Server at counter i serves according to exponentially distributed
time with different parameter. At both counters the same (s, S)-inventory policy is adopted
and the lead time at counter i is exponentially distributed with different parameter. When
the difference between the number of customers in the two queues reaches the quantity L , a
batch of K customers transferred from the longer to the shorter queue. Simultaneously with
the transfer of customers the authors also transfer inventoried items subject to its availability.
Krishnamoorthy et al. (2016) suggest the aqueueing-inventory systemapplicatiable in railway
and airline reservation systems. An arrival customer is immediately taken for service or he
joins the buffer with capacity S (also S is themaximum inventory level) depending on number
of items in the inventory. If there is no item in the inventory, the arriving customer first queue
up in a finite waiting space. When it overflows an arrival goes to an orbit of infinite capacity
with probability p or is lost forever with probability 1− p. Cancellation of sold items before
its expiry is permitted. Inventory gets added through cancellation of purchased items, until
the expiry time. Melikov et al. (2017) is one of the significant studies from the ordering
policy point of view. The policy they propose enables variable order size, different from the
classical (s, S) policy. They suppose that order size is variable and depends on the available
inventory level. One customer class is assumed and joint distribution of inventory level and
queue length is derived. For queueing-inventory systems we refer to the some interesting
studies in Amirthakodi et al. (2015), Chakravarthy et al. (2017), Manuel et al. (2007) and
Nair et al. (2015). Also, one can examine the brief review articles in Karthikeyan and Sudhesh
(2016), Krishnamoorthy et al. (2011) and Krishnamoorthy et al. (2020).

Sivakumar et al. (2005) investigates a two-commodity perishable inventory system at a
service facility and with a finite waiting room. The commodities are assumed both perishable
and substitutable. The arrival of customers is considered to constitute a Poisson process with
parameter λ. At the starting time of service, the arriving customer requires a single item
of the first commodity with probability p1 or a single item of the second commodity with
probability p2. The service times of both commodities are independent and exponentially
distributed with parametersμi (i = 1, 2). The reorder level for the commodity-i is fixed as si
and an order is placed for both commodities when both inventory levels are less than or equal
to their respective reorder levels. The ordering quantity for the commodity-i is Qi (= Si −si )
items. The lead time is assumed to be exponentially distributed. A two-commodity inventory
system with a service facility and a finite waiting room is also examined by Gomathi et al.
(2012). The arrivals occur according to a Poisson process with a parameter λ. An arrival
may be an ordinary customer with probability p or a negative customer with probability of
q (= 1 − p). The demands occur either one unit from the first commodity or one unit from
the second commodity or one unit from each commodity. The service time and the lead time
are assumed to be exponentially distributed. Benny et al. (2018) considers a two-commodity
queueing inventory system in which the customers arrive according to a Poisson process,
the service times and the lead times are exponentially distributed. Customers may require
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either one of the commodities or both commodities with some pre-determined probabilities.
If the item demanded is not available, the customer leaves the system forever. If both items are
demandedwhen only one of them is available, the available item is served to the customer. The
queueing-inventory problem is modeled as a continuous-timeMarkov chain of theGI/M/1-
type.Amulti-commodity queueing inventory systemwith one essential and a set ofm optional
item(s) is introduced byShajin et al. (2021).Once the service of an essential item is completed,
the customer either departs from the system with probability p or goes for optional item(s)
with probability (1 − p).

Considering that there are two types of customers, queueing-inventory systems are exam-
ined in the literature are include the assumption of a single commodity. Sivakumar and
Arivarignan (2008) discusses a system in which the Type-1 customers are willing to wait for
the delivery of their demanded items but the Type-2 customers are not. When the stock level
is above s, the customers are not distinguished according to their type and their demanded
items are delivered immediately. Once the inventory level drops to s, an order for Q (= S−s)
items is placed, and only Type-2 customer demands are satisfied. Type-1 customers are asked
to wait until the ordered items are received and their demand is satisfied immediately when
the ordered items are received. Themaximum number of Type-1 customers allowed to wait is
fixed. Once the number of customers of Type-1 reaches a prefixed level, all Type-1 customers
who are arriving thereafter are lost. Karthick et al. (2015) generalizes the system examined
by Sivakumar and Arivarignan (2008). Once the inventory level drops to s, an order for
Q (= S − s) items is placed, and only Type-2 customer demands are satisfied. Type-1 cus-
tomers are sent to an orbit of infinite size. Zhao and Lian (2011) introduces an optimal service
rule. When two classes of customers are present in the queue, the server needs to make a
decision on who to serve first. Each customer requires exactly one item in the inventory for
service and the service time follows an exponential distribution with parameterμi (i = 1, 2).

To the best of our knowledge, the existing studies in the literature related to two-commodity
queueing-inventory systems include only one type of customer. Moreover, only single com-
modity is assumed in the existing studies that examine the queueing-inventory systems with
two types of customers. So far no study is encountered about the queueing-inventory sys-
tems including both two-commodity and two types of customers except Ozkar and Uzunoglu
Kocer (2021). They analyze a two-commodity queueing-inventory system with two types of
customers where Type-1 is a priority customer and Type-2 is the ordinary customer. Cus-
tomers arrive according to a Poisson process with different parameters. The service times
are exponentially distributed. The lead times are ignored, namely, the orders are immediately
supplied. They adopt (si , Si ), i = 1, 2, type replenishment policy for each commodity type,
individually. That is, when the inventory level of Type-i customers drops to si , the order is
given and the inventory level becomes Si . The inventory levels in the system never becomes
less than si . In other words, the shortage is not allowed in the system with zero lead time.
The matrix geometric method is employed to analyze the system.

This study improves the paper in Ozkar and Uzunoglu Kocer (2021) as follows. (i) the
service times follow a phase-type distribution; (ii) the lead times of the commodities are expo-
nentially distributed with possibly different parameters; (iii) If an arriving Type-i customer
in the idle system finds that the inventory level of the i th commodity is zero, the customer
becomes lost. On the other hand, the Type-i customer joins in the queue even though his
inventory level is zero when the server is busy with any customer; (iv) If the inventory of the
customer to be taken into service is zero at time of the service completion, one purchase is
made in order not to lose the customer waiting in the queue.

Chakravarthy (2020) considers queueing-inventorymodels with exponential service times
where batchdemands followaPoissonprocess. The twomodels are discussed inChakravarthy
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(2020). In Model 1, if any arriving customer finds the inventory level to be zero, he is be
lost. In Model 2, the loss of customers is performed in the two ways. First, if an arriving
customer in the idle system finds the inventory level to be zero, the customer is be lost,
and secondly, the customers present at time of a service completion with zero inventory are
all be lost. Chakravarthy and Rumyantsev (2020) analyzes the two models in Chakravarthy
(2020) by considering MAP demands in batches and phase type service times. In sense of
the loss of customers we pay attention to the Model 2 mentioned in Chakravarthy (2020) and
Chakravarthy and Rumyantsev (2020). That is, whereas the first way keep in the item (iii),
we change the second way by considering a local purchase to not lose the waiting customer
in the item (iv).

We believe that the model described and the analysis provided in this study will be use-
ful for various industrial companies since two types of customers, as well as two types of
commodities, and also phase-type service times can be frequently observed in practice. Let
us assume that a company will earn more from Type-1 customers compared to Type-2 cus-
tomers. On the other hand, it will be more expensive to have items in the warehouse for these
customers. So, it is important for the company to control the two types of commodities sep-
arately in the warehouse. Also, considering a service policy such that “the Type-1 customer
who wants the commodity-1 has service priority over the Type-2 customer who wants the
commodity-2” will not wrong. Since different type of customers pay different prices for the
requested product, the management has an incentive to meet the demand of the customer
who pays a higher price. The management’s objective is to meet the service requirements of
the different customer classes while keeping costs low (maximizing profits).

• Customers can be considered in two classes as follows: Companies that make special
production (Type-1) and companies that make ordinary production (Type-2). Type-1
customers can request new technology products (top quality, special product) from the
warehouse, while Type-2 customers can request outdated products (medium quality,
ordinary product).

• A firm that produces furniture may produce in two different types. Specially designed
products (commodity-1) in line with customer demand and ordinary products for general
buyers (commodity-2)

• Afirmmayproduce items in two types of quality for sending to domestic and international
companies. Therefore, international markets (export departments) can be considered as
Type-1 customers and domestic markets (distribution company) as Type-2 customers.

The rest of the paper is organized as follows. In Sect. 2 the model description is presented.
The steady-state analysis of the model is performed and some key system performance
measures are derived in Sect. 3. Illustrative numerical examples, including an optimization
problem, are discussed in Sect. 5. Finally, some concluding remarks are given in Sect. 6.

2 Model description

In this study, we analyze a queueing-inventory system with two-commodity and two classes
of customers. Figure 1 describes the structure of the system.

The assumptions of the queueing-inventory system under study are as follows.

• The queueing-inventory system includes two classes of customers; Type-1 customers are
priority ones and Type-2 customers are ordinary ones.

• Type-1 customers have a non-preemptive priority over Type-2 customers. Upon comple-
tion of a service, the empty server offers service to a Type-1 customer; however, when

123



Annals of Operations Research (2023) 331:711–737 717

Fig. 1 A two-commodity queueing-inventory system with two classes of customers

there are no Type-1 customers waiting, the server serves a Type-2 customer if there is
one present in the queue.

• There is a single server in the system and the customers are served on the basis of the
first come first served (FCFS) without ignoring the priority relationship among the types
of customers.

• There are two different inventory levels for each commodity class. Each customer in
the queue requires one item for service from the related inventory. A served customer
leaves the system and the inventory level decreases by one unit. It should be noted that
the items in the inventory for Type-1 customers (commodity-1) are more expensive than
those for Type-2 customers (commodity-2). Hence, setting priority to Type-1 customers
will increase the earning.

• Demands from each customer class arrive independently according to a Poisson process
with rates λ1 and λ2.

• Customers are not allowed to join the system when the inventory level of the demanded
commodity is zero and the server is idle. However, customers join the system when the
server is busy even though no excess inventory is available on hand. The reason is that
during the service time of the customer even though the stock level reaches zero, there
is a probability that the replenishments may arrive until the next customer is served.

• There is a local purchase option in order not to lose the customer waiting in the queue.
That is if the inventory level reaches zero upon service is completed (or if the inventory
level is zero), a local purchase is made for the next customer waiting in line. It is also
assumed that replenishment of orders is made instantaneously and the order size is one
when a local purchase is made.

• It is assumed a finite waiting space for Type-1 customers whereas the waiting space for
Type-2 customers is infinite. Thus, it is possible for a Type-1 customer to be lost at the
time of arrival due to the buffer being full. The buffer size is N .

• Service times follow a phase-type distribution with representation (β, T ) of order n. The
service rate is given by μ = [β(−T )−1e]−1.

• The inventory policy (si , Si ) is adopted for the commodity-i , i = 1, 2, where Si and si
represent, respectively, the maximum inventory level and the reorder level, si < Si . Once
the inventory level for commodity-1 (commodity-2) drops to s1 (s2), an order is placed
from the retailer-1 (the retailer-2), to make the inventory level reach its maximum level
S1 (S2). This policy is also referred to as order up to S in Krishnamoorthy et al. (2015).

• The lead times follow an exponential distribution with parameters η1 and η2 for
commodity-1 and commodity-2, respectively.
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3 The steady-state analysis

The steady-state analysis of the queueing-inventory model described in Sect. 2 is performed
in this section. Let N2(t), N1(t), I2(t), I1(t), J (t) and K (t) denote, respectively, the number
of Type-2 customers in the queue, the number of Type-1 customers in the queue, the inventory
level of commodity-2, the inventory level of commodity-1, the state of the server and the
phase of the service (if any), at time t . The state of the server is given by

J (t) =
⎧
⎨

⎩

0 , if the server is idle,
1 , if the server is busy with Type-1 customer,
2 , if the server is busy with Type-2 customer.

The process {(N2(t), N1(t), I2(t), I1(t), J (t)), K (t), t ≥ 0} is a continuous-time
Markov chain with state space given by

� = {(0, 0, i2, i1, 0) : 0 ≤ i2 ≤ S2, 0 ≤ i1 ≤ S1}
∪ {(n2, n1, i2, i1, 1, k) : n2 ≥ 0, 0 ≤ n1 ≤ N , 0 ≤ i2 ≤ S2, 1 ≤ i1 ≤ S1, 1 ≤ k ≤ n}
∪ {(n2, n1, i2, i1, 2, k) : n2 ≥ 0, 0 ≤ n1 ≤ N , 1 ≤ i2 ≤ S2, 0 ≤ i1 ≤ S1, 1 ≤ k ≤ n}.
The level (0, 0, i2, i1, 0), of dimension (S1 + 1)(S2 + 1), corresponds to the case when

the server is idle, there is no waiting customer in the queue and the inventory level of the
commodity-2 is i2 whereas the inventory level of the commodity-1 is i1.

The level (n2, n1, i2, i1, 1, k), of dimension S1(S2 + 1)(N + 1)n, corresponds to the
following case: there is a Type-1 customer in the servicing, there are n2 Type-2 customers
and n1 Type-1 customers waiting in the queue, the inventory levels for the commodity-2 and
the commodity-1 are i2 and i1, respectively, and the service is in one of n phases.

Similarly, the level (n2, n1, i2, i1, 2, k), of dimension S2(S1 + 1)(N + 1)n, corresponds
to the case that a Type-2 customer is being served, there are n2 Type-2 customers and n1
Type-1 customers waiting in the queue, the inventory levels for the commodity-2 and the
commodity-1 are i2 and i1, respectively, and the service is in one of n phases.

The transitions rates are listed as following:

(1) Transitions due to the arrival of Type-1 customers.

(a) (0, 0, i2, i1, 0) → (0, 0, i2, i1, 1) with rate λ1β for 0 ≤ i2 ≤ S2, 1 ≤ i1 ≤ S1.
(b) (n2, n1, i2, i1, 1) → (n2, n1+1, i2, i1, 1)with rate λ1 In for n2 ≥ 0, 0 ≤ n1 ≤ N−1,

0 ≤ i2 ≤ S2, 1 ≤ i1 ≤ S1.
(c) (n2, n1, i2, i1, 2) → (n2, n1+1, i2, i1, 2)with rate λ1 In for n2 ≥ 0, 0 ≤ n1 ≤ N−1,

1 ≤ i2 ≤ S2, 0 ≤ i1 ≤ S1.

(2) Transitions due to the arrival of Type-2 customers.

(a) (0, 0, i2, i1, 0) → (0, 0, i2, i1, 2) with rate λ2β for 1 ≤ i2 ≤ S2, 0 ≤ i1 ≤ S1.
(b) (n2, n1, i2, i1, 1) → (n2 + 1, n1, i2, i1, 1) with rate λ2 In for n2 ≥ 0, 0 ≤ n1 ≤ N ,

0 ≤ i2 ≤ S2, 1 ≤ i1 ≤ S1.
(c) (n2, n1, i2, i1, 2) → (n2 + 1, n1, i2, i1, 2) with rate λ2 In for n2 ≥ 0, 0 ≤ n1 ≤ N ,

1 ≤ i2 ≤ S2, 0 ≤ i1 ≤ S1.

(3) Transitions due to the service of Type-1 customers.

(a) (0, 0, i2, i1, 1) → (0, 0, i2, i1 − 1, 0) with rate T 0 for 0 ≤ i2 ≤ S2, 1 ≤ i1 ≤ S1.
(b) (n2, 0, i2, i1, 1) → (n2 − 1, 0, i2, i1 − 1, 2) with rate T 0β for n2 ≥ 1, 1 ≤ i2 ≤ S2,

1 ≤ i1 ≤ S1.
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(c) (n2, n1, i2, i1, 1) → (n2, n1−1, i2, i1−1, 1)with rate T 0β for n2 ≥ 0, 1 ≤ n1 ≤ N ,
0 ≤ i2 ≤ S2, 2 ≤ i1 ≤ S1.

(4) Transitions due to the service of Type-2 customers.

(a) (0, 0, i2, i1, 2) → (0, 0, i2 − 1, i1, 0) with rate T 0 for 1 ≤ i2 ≤ S2, 0 ≤ i1 ≤ S1.
(b) (n2, 0, i2, i1, 2) → (n2 − 1, 0, i2 − 1, i1, 2) with rate T 0β for n2 ≥ 1, 2 ≤ i2 ≤ S2,

0 ≤ i1 ≤ S1.
(c) (n2, n1, i2, i1, 2) → (n2, n1−1, i2−1, i1, 1)with rate T 0β for n2 ≥ 0, 1 ≤ n1 ≤ N ,

1 ≤ i2 ≤ S2, 1 ≤ i1 ≤ S1.

(5) Transitions due to the purchase for Type-1 customer.

(a) (n2, n1, i2, 1, 1) → (n2, n1 − 1, i2, 1, 1) with rate T 0β for n2 ≥ 0, 1 ≤ n1 ≤ N ,
0 ≤ i2 ≤ S2.

(b) (n2, n1, i2, 0, 2) → (n2, n1 −1, i2 −1, 1, 1)with rate T 0β for n2 ≥ 0, 1 ≤ n1 ≤ N ,
1 ≤ i2 ≤ S2.

(6) Transitions due to the purchase for Type-2 customer.

(a) (n2, 0, 0, i1, 1) → (n2 − 1, 0, 1, i1 − 1, 2) with rate T 0β for n2 ≥ 1, 1 ≤ i1 ≤ S1.
(b) (n2, 0, 1, i1, 2) → (n2 − 1, 0, 1, i1, 2) with rate T 0β for n2 ≥ 1, 0 ≤ i1 ≤ S1.

(7) Transitions due to replenishments of Commodity-1

(a) (0, 0, i2, i1, 0) → (0, 0, i2, S1, 0) with rate η1 for 0 ≤ i2 ≤ S2, 0 ≤ i1 ≤ s1.
(b) (n2, n1, i2, i1, 1) → (n2, n1, i2, S1, 1) with rate η1 In for n2 ≥ 0, 0 ≤ n1 ≤ N ,

0 ≤ i2 ≤ S2, 1 ≤ i1 ≤ s1.
(c) (n2, n1, i2, i1, 2) → (n2, n1, i2, S1, 2) with rate η1 In for n2 ≥ 0, 0 ≤ n1 ≤ N ,

1 ≤ i2 ≤ S2, 0 ≤ i1 ≤ s1.

(8) Transitions due to replenishments of Commodity-2

(a) (0, 0, i2, i1, 0) → (0, 0, S2, i1, 0) with rate η2 for 0 ≤ i2 ≤ s2, 0 ≤ i1 ≤ S1.
(b) (n2, n1, i2, i1, 1) → (n2, n1, S2, i1, 1) with rate η2 In for n2 ≥ 0, 0 ≤ n1 ≤ N ,

0 ≤ i2 ≤ s2, 1 ≤ i1 ≤ S1.
(c) (n2, n1, i2, i1, 2) → (n2, n1, S2, i1, 2) with rate η2 In for n2 ≥ 0, 0 ≤ n1 ≤ N ,

1 ≤ i2 ≤ s2, 0 ≤ i1 ≤ S1.

The infinitesimal generator matrix of the Markov chain governing the system has a block-
tridiagonal matrix structure and is given by

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

B0 A0

C0 B A
C B A

C B A
. . .

. . .
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (1)

In the sequel, we need the following notations. d1 = (S1 + 1)(S2 + 1), d2 = S1(S2 + 1)n,
d3 = d2(N + 1), d4 = S2(S1 + 1)n, d5 = d4(N + 1) and d = d3 + d5 are the scalars which
will be used to define the dimensions of the sub-matrices in the matrix Q; ei is a unit column
vector with 1 in the i th position and 0 elsewhere; e( j) shows that a unit column vector is of
dimension j ; Ik is an identity matrix of order k and the symbol ⊗ represents the Kronecker
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product of two matrices.

A0 =
(
A01 0 0 0 0
0 (I S2 ⊗ A01) 0 (I S2 ⊗ A02) 0

)

d1×d
,

with

A01 =
(

0
I S1 ⊗ λ1β

)

(S1+1)×nS1

and A02 = (
I S1+1 ⊗ λ2β

)

(S1+1)×n(S1+1) .

B0 =
⎛

⎝
B01 0 e′

S2−s2
(S2 − s2) ⊗ B04

0 I s2 ⊗ B02 e′
S2−s2

(S2 − s2) ⊗ [e(s2) ⊗ B04]
0 0 I S2−s2 ⊗ B03

⎞

⎠

d1×d1

,

with

B01 =
⎛

⎝
−(η1 + η2) 0 e′

S1−s1
(S1 − s1)η1

0 −(λ1 + η1 + η2)I s1 e′
S1−s1

(S1 − s1) ⊗ e(s1)η1
0 0 −(λ1 + η2)I S1−s1

⎞

⎠ ,

B02 = B01 − λ2 I (S1+1), B03 = B02 + η2 I (S1+1) and B04 = η2 I (S1+1).

C0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

(I S2 ⊗ C01) 0
0 C01

0 0
(I S2 ⊗ C02) 0

0 0
0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

d×d1

,

with

C01 = (
(I S1 ⊗ T0) 0

)

nS1×(S1+1) and C02 = (
I S1+1 ⊗ T0

)

n(S1+1)×(S1+1) .

A =
(

λ2 Id3 0
0 λ2 Id5

)

d×d
.

C =

⎛

⎜
⎜
⎝

0 0 C1 0
0 0 0 0
0 0 C2 0
0 0 0 0

⎞

⎟
⎟
⎠

d×d

,

with

C1 =
(
e′
1(S2) ⊗ C11

I S2 ⊗ C11

)

, C11 = (
(I S1 ⊗ T0β) 0

)

nS1×n(S1+1) and

C2 =
(
e′
1(S2) ⊗ C21

I S2 ⊗ C21

)

, C21 = (
I (S1+1) ⊗ T0β

)

n(S1+1)×n(S1+1) .
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B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

B1 B2

B3 B1 B2
. . .

. . .
. . .

B3 B1 B2

B3 (B1 + λ1 Id2)
0 B4 B5
B6 B4 B5

. . .
. . .

. . .

B6 B4 B5
B6 0 (B4 + λ1 Id4)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

d×d

,

where

B1 =
(
I (s2+1) ⊗ B̂1 e′

S2−s2
(S2 − s2) ⊗ [e(s2 + 1) ⊗ (I S1 ⊗ η2 In)]

0 I S2−s2 ⊗ [B̂1 + (I S1 ⊗ η2 In)]

)

d2×d2

with

B̂1 =
(
I s1 ⊗ [T − (λ1 + λ2 + η1 + η2)In] e′

S1−s1
(S1 − s1) ⊗ [e(s1) ⊗ η1 In]

0 I S1−s1 ⊗ [T − (λ1 + λ2 + η2)In]
)

nS1×nS1

,

B4 =
(
I s2 ⊗ B̂4 e′

S2−s2
(S2 − s2) ⊗ [e(s2) ⊗ (I (S1+1) ⊗ η2 In)]

0 I S2−s2 ⊗ [B̂4 + (I (S1+1) ⊗ η2 In)]

)

d4×d4

with

B̂4 =
(
I s1+1 ⊗ [T − (λ1 + λ2 + η1 + η2)In] e′

S1−s1
(S1 − s1) ⊗ [e(s1 + 1) ⊗ η1 In]

0 I S1−s1 ⊗ [T − (λ1 + λ2 + η2)In]
)

,

B2 = (
λ1 Id2

)
, B5 = (

λ1 Id4
)
,

B3 = (
I S2+1 ⊗ B̂3

)

d2×d2
with B̂3 =

(
e′
1(S1 − 1) ⊗ T0β 0
I S1−1 ⊗ T0β 0

)

nS1×nS1

,

B6 = (
I S2 ⊗ B̂6 0

)

d4×d4
with B̂6 =

(
e′
1(S1) ⊗ T0β

I S1 ⊗ T0β

)

n(S1+1)×nS1

.

3.1 Stability condition

Let π be the steady-state probability vector of the finite generator matrix D = A + B + C.
That is, π satisfies

π D = 0 and πe = 1. (2)

Let π = (π1,π2) with π1 = (π01,π11, . . . ,πN1) and π2 = (π02,π12, . . . ,πN2). The
steady-state equations in (2) can be rewritten as

π01[e ⊗ (T − λ1 In)] + π11(e ⊗ T0β) + π12(e ⊗ T0β) = 0
π i−1,1(e ⊗ λ1 In) + π i1[e ⊗ (T − λ1 In)] + π i+1,1(e ⊗ T0β)

+π i+1,2(e ⊗ T0β) = 0 , 1 ≤ i ≤ N − 1
πN−1,1(e ⊗ λ1 In) + πN1(e ⊗ T ) = 0

π01(e ⊗ T0β) + π02[e ⊗ (T − λ1 In + T0β)] = 0
π i−1,2(e ⊗ λ1 In) + π i2[e ⊗ (T − λ1 In)] = 0 , 1 ≤ i ≤ N − 1

πN−1,2(e ⊗ λ1 In) + πN2(e ⊗ T ) = 0

(3)
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with the normalizing condition

N∑

i=0

π i1e +
N∑

i=0

π i2e = 1. (4)

Lemma 1 We have

N∑

i=0

π i1(e ⊗ In) +
N∑

i=0

π i2(e ⊗ In) = μβ(−T )−1. (5)

Proof Adding the equations in (3) we obtain
[

N∑

i=0

π i1(e ⊗ In) +
N∑

i=0

π i2(e ⊗ In)

]

(T0β + T ) = 0. (6)

Now from the uniqueness of the steady-state vector of the generator (T + T0β) and the
normalizing condition in (4), it can be obtained the result in Lemma 1. �	
Lemma 2 We have

N∑

i=1

π i1(e ⊗ T0) +
N∑

i=1

π i2(e ⊗ T0) = λ1(1 − πN1e − πN2e). (7)

Proof Post-multiplying the equations in (3) by e and then adding iteratively we obtain

π i1(e ⊗ T0) = π i−1,1(e ⊗ λ1e) +
N∑

j=i+1

π j,2(e ⊗ T0), 1 ≤ i ≤ N − 1

πN1(e ⊗ T0) = πN−1,1(e ⊗ λ1e)
π02(e ⊗ λ1e) = π01(e ⊗ T0)

π i2(e ⊗ λ1e) =
N∑

j=i+1

π j,2(e ⊗ T0), 0 ≤ i ≤ N − 1

(8)

Adding the equations given in (8) and using the normalizing condition in (4) we get the result
in Lemma 2. �	

The two-commodity queueing-inventory system under study has the QBD-type generator
in (1) and so it is stable if and only if π Ae < πCe (see, e.g., Neuts (1981)). That is, the
stability condition becomes

π Ae = λ2 < πCe = π01(e ⊗ T0) + π02(e ⊗ T0). (9)

From Lemma 1, it can be seen that
∑N

i=0 π i1(e⊗ T0) + ∑N
i=0 π i2(e⊗ T0) = μ. Using the

fact and the result in Lemma 2, the following theorem is established.

Theorem 3 The defined queuing-inventory system is stable if and only if the following con-
dition is satisfied:

λ2 < μ − λ1(1 − πN1e − πN2e). (10)
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3.2 The steady-state probability vector of Q

Let x = (x∗, x(0), x(1), · · · ) denote the steady-state probability vector of the generator
matrix Q in (1). That is, x satisfies

x Q = 0 and x e = 1. (11)

The vector x∗ = x0(0, 0, i2, i1), of dimension d1 = (S1 + 1)(S2 + 1), gives the steady-
state probability that the server is idle and no customer in the queue. i2, 0 ≤ i2 ≤ S2, and
i1, 0 ≤ i1 ≤ S1, are the inventory levels of commodities for Type-2 customers and Type-1
customers, respectively.

The probability vector x(n2), of dimension d = d3 + d5, is partitioned as x(n2) =
[x1(n2), x2(n2)], n2 ≥ 0. The subvector x1(n2), of dimension d3 = d2(N + 1), is further
partitioned into the vectors represented as x1(n2) = [x1(n2, 0), x1(n2, 1), · · · , x1(n2, N )]
and the dimension of the each vector is d2 = S1(S2 + 1)n. The vector x1(n2, n1), n1 =
0, 1, . . . , N , gives the steady-state probability that there is a Type-1 customer in the server,
there are n2 Type-2 customers and n1 Type-1 customers waiting in the queue, the inventory
levels of the commodities for Type-2 customers and Type-1 customers are i2, 0 ≤ i2 ≤
S2, and i1, 1 ≤ i1 ≤ S1, respectively, and the service is in one of n phases. Similarly,
the subvector x2(n2), of dimension d5 = d4(N + 1), is further partitioned into vectors
as x2(n2) = [x2(n2, 0), x2(n2, 1), · · · , x2(n2, N )] and the dimension of the each vector is
d4 = S2(S1+1)n. The vector x2(n2, n1), n1 = 0, 1, . . . , N , gives the steady-state probability
of a Type-2 customer is being served, there are n2 Type-2 customers and n1 Type-1 customers
waiting in the queue, the inventory levels of commodities for Type-2 customers and Type-1
customers are i2, 1 ≤ i2 ≤ S2, and i1, 0 ≤ i1 ≤ S1, respectively, and the service is in one
of n phases.
Under the stability condition given in (10) the steady-state probability vector x is obtained
(see Neuts (1981)) as

x(i) = x(0)Ri , i ≥ 1, (12)

where the matrix R is the minimal nonnegative solution to the following matrix quadratic
equation

R2C + RB + A = 0, (13)

and the vectors, x∗ and x(0) are obtained by solving

x∗B0 + x(0)C0 = 0,
x∗A0 + x(0)[B + RC] = 0,

(14)

subject to the normalizing condition

x∗e + x(0)(I − R)−1e = 1. (15)

For the computation of the matrix R in (13) it can be carried out using logarithmic reduction
algorithm given in Latouche and Ramaswami (1999) or successive substitution method that
is used in this study.
Successive substitution method for R:

Step 0 : R ← 0 and Rb ← [A(−B)−1 + R2C(−B)−1].
Step 1 : R ← Rb,

Rb ← [A(−B)−1 + R2C(−B)−1]
Continue Step 1 until ‖Rb − R‖∞ < ε.
Step 2 : R = Rb.
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3.3 Performancemeasures

Some performance measures are computed representing the system and summarized below.
The probability that there is no customer in the system

Pidle = x∗ed1 .

The probability that an arriving Type-1 customer is lost because of the finite capacity

Plost =
∞∑

n2=0

x1(n2, N )ed2 +
∞∑

n2=0

x2(n2, N )ed4 .

The probability that an arriving Type-1 customer is lost because of no inventory

Plost1 =
S2∑

i2=0

x0(0, 0, i2, 0).

The probability that an arriving Type-2 customer is lost because of no inventory

Plost2 =
S1∑

i1=0

x0(0, 0, 0, i1).

Mean number of Type-1 customers in the queue

ENQ1 =
∞∑

n2=0

N∑

n1=1

n1 x1(n2, n1)ed2 +
∞∑

n2=0

N∑

n1=1

n1 x2(n2, n1)ed4 .

Mean number of Type-2 customers in the queue

ENQ2 = x(0)R(I − R)−2ed .

Mean number of commodities in the inventory for Type-1 customers

ENI1 =
S2∑

i2=0

S1∑

i1=1

i1 x0(0, 0, i2, i1)

+
∞∑

n2=0

N∑

n1=0

⎡

⎣

⎛

⎝
S2∑

i2=0

S1∑

i1=1

i1 x1(n2, n1, i2, i1)en

⎞

⎠ +
⎛

⎝
S2∑

i2=1

S1∑

i1=1

i1 x2(n2, n1, i2, i1)en

⎞

⎠

⎤

⎦ .

Mean number of commodities in the inventory for Type-2 customers

ENI2 =
S2∑

i2=1

i2

S1∑

i1=0

x0(0, 0, i2, i1)

+
∞∑

n2=0

N∑

n1=0

⎡

⎣

⎛

⎝
S2∑

i2=1

i2

S1∑

i1=1

x1(n2, n1, i2, i1)en

⎞

⎠ +
⎛

⎝
S2∑

i2=1

i2

S1∑

i1=0

x2(n2, n1, i2, i1)en

⎞

⎠

⎤

⎦ .

Mean replenishment rate for commodity-1

ER1 = η1

S2∑

i2=0

s1∑

i1=0

x0(0, 0, i2, i1)
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+η1

∞∑

n2=0

N∑

n1=0

⎡

⎣

⎛

⎝
S2∑

i2=0

s1∑

i1=1

x1(n2, n1, i2, i1)en

⎞

⎠ +
⎛

⎝
S2∑

i2=1

s1∑

i1=0

x2(n2, n1, i2, i1)en

⎞

⎠

⎤

⎦ .

Mean replenishment rate for commodity-2

ER2 = η2

s2∑

i2=0

S1∑

i1=0

x0(0, 0, i2, i1)

+η2

∞∑

n2=0

N∑

n1=0

⎡

⎣

⎛

⎝
s2∑

i2=0

S1∑

i1=1

x1(n2, n1, i2, i1)en

⎞

⎠ +
⎛

⎝
s2∑

i2=1

S1∑

i1=0

x2(n2, n1, i2, i1)en

⎞

⎠

⎤

⎦ .

Mean purchase rate for commodity-1

EP1 = μ

∞∑

n2=0

N∑

n1=1

[ S2∑

i2=0

x1(n2, n1, i2, 1)en +
S2∑

i2=1

x2(n2, n1, i2, 0)en

]

.

Mean purchase rate for commodity-2

EP2 = μ

∞∑

n2=1

⎡

⎣
S1∑

i1=1

x1(n2, 0, 0, i1)en +
S1∑

i1=0

x2(n2, 0, 1, i1)en

⎤

⎦ .

4 Stationary waiting time distribution of an admitted Type-1 customer

We discuss that the stationary waiting time distribution in the queue of an admitted Type-1
customer at an arrival epoch follows a phase type distribution. For this purpose, we define
the row vector a of order d = [S1(S2 + 1) + S2(S1 + 1)](N + 1)n in partitioned form as

a = [
â0, â1..., âN , ã0, ã1..., ãN

]
, where a = x(0)(I − R)−1.

Theorem 4 Suppose X denotes the waiting time in the queue of an admitted Type-1 customer
in steady-state. Then X follows a phase-type distribution with representation (α, S) of order
Nn, where

α = (α1,α2, . . . ,αN ), S =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

T
T0β T

T0β T
. . .

. . .

T0β T

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (16)

where

αk = 1

(1 − Plost − Plost1)

[
âk−1(eS1(S2+1) ⊗ In) + ãk−1(eS2(S1+1) ⊗ In)

]
, 1 ≤ k ≤ N .

Proof There is no need to keep track of the type of customer in service due to the nature of
(identical) services for Type 1 and Type 2 customers. The j th component of the n dimen-
sional vector αk gives the probability that an admitted Type-1 customer finds (k − 1) Type-1
customers waiting in the queue and the current service phase is in j . Since Type-1 customers
have non-preemptive priority over Type-2 customers, there is no need to keep track of the
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number of Type-2 customers in the queue as well as any future arrivals. The result follows
immediately from the law of total probability. The probability that the waiting time in the
queue is zero is given by (1 − αe). �	

The mean waiting time in the queue of an admitted Type-1 customer can be calculated
by using EWQ1 = α(−S)−1. By using the Little’s law, one can calculate ENQ1 = λ1(1 −
Plost − Plost1)EWQ1 as an accuracy check.

5 Numerical examples

In this section, illustrative numerical examples are performed to see the effects of various
parameters on the system performance measures. Also, we discuss some optimization prob-
lems about inventory policies, service rate and buffer size by using a constructed profit
function.

For the service times, we consider three phase-type distributions with parameter (β, T ).
The distributions are normalized at a desired value for the service rate μ.
Erlang distribution (ERLS):

β = (
1, 0

)
, T =

(−1 1
0 −1

)

.

Exponential distribution (EXPS):

β = (
1
)
, T = (−1

)
.

Hyperexponential distribution (HEXS):

β = (
0.9, 0.1

)
, T =

(−10 0
0 −1

)

.

Example 1 The purpose of this example is to examine how some of the performancemeasures
such as Pidle, Plost , Plost1, Plost2, ENQ1 and ENQ2, are affected by the increasing values
of arrival rates. The changes in the performance measures are illustrated in Fig. 2 and Fig. 3
for the increasing values of λ1 and λ2, respectively.

When the computations are performed, the inventory policy is assumed (s1, S1) =
(s2, S2) = (3, 5); the lead time rates are assumed η1 = η2 = 0.2; the buffer size of Type-1
customers is assumed N = 3 and the service rate is assumed μ = 3. Also, we specified
λ2 = 1.2 for the increasing values of λ1 in Fig. 2 and λ1 = 1.2 for the increasing values of
λ2 in Fig. 3.

As the arrival rate λ1 increases, there is an increase in the expected number of both types
of customers in the queue denoted by ENQ1 and ENQ2. Also, the loss probability of an
arriving Type-1 customer (Plost ) increases as well since the waiting space has a finite capacity
in Fig.2. It can be seen from Fig.3 that a similar increment occurs for the increasing values
of λ2. Moreover, the probability that the system is idle, Pidle, decreases as the arrival rates
increase for both levels of the arrival rate. These are expected consequences of the increase in
the arrival rates. At this point, we should note that HEXS services are significantly separated
from the other service time distributions, especially for the systems where the traffic intensity
is high.

As an interesting observation, there is an increase in the loss probability of Type-1 cus-
tomers, Plost1, in the idle system because there is no inventory on hand. With the increasing
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Fig. 2 Some performance measures for the increasing values of λ1

values of λ1, this probability tends to decrease in Fig. 2. The reason is the buffer capacity of
Type-1 customers. A similar conclusion can be made for the change of the probability Plost2
with respect to the arrival rate in Fig. 3.

Example 2 The effect of service rate on the performance measures is examined in this exam-
ple. It can be noted that variation in the service time distributions has a great effect on some
performance measures, depending on lead time rate. This effect can be seen from Fig. 4.
Computations are performed with the lead time rates η1 = η2 = 0.2 and in Fig. 5 addi-
tionally is considered with the lead time rates η1 = η2 = 0.7 while the inventory levels
are fixed and taken as (s1, S1) = (s2, S2) = (3, 5); the buffer size of Type-1 customers is
assumed N = 3; the arrival rates are λ1 = 1.2 and λ2 = 1 for Type-1 and Type-2 customers,
respectively.

The probability Pidle increases with the increasing service rate μ whereas the other per-
formance measures in Fig. 4 decrease, as expected. For ENQ2, we conclude that the variation
in the service time distribution is effective when the system traffic intensity is high.

An increase in service rate results in a decrease in the expected number of items in the
inventory, besides an increase in the probability Pidle. So, Plost1 increases normally but the
increment is dramatic when the replenishment rates are relatively low (equal to 0.2) in Fig. 5.
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Fig. 3 Some performance measures for the increasing values of λ2

Example 3 This example studies the change in performancemeasureswith respect to different
arrival rates, for the increasing values of lead time rates. These are illustrated in Figs. 6 and
7. In these figures, the assumed inventory policies are (s1, S1) = (s2, S2) = (3, 5); the buffer
size of Type-1 customers is taken as N = 3 and the service rate is assumed μ = 3. Figure 6
presents the effect of the increasing values of η1 on the performance measures for fixed
λ2 = 1.2, and for the two arrival rates, λ1 = 1, 1.2. Similarly, the effect of the increasing
values of η2 on the performance measures is indicated in Fig. 7 by using fixed λ1 = 1.2 and
for the arrival rates λ2 = 1, 1.2.

As the lead time rate of the commodity-1 items, η1, increases, the mean arrival time of the
orders will decrease, hence a decrease is observed for the values of the performancemeasures
given in Fig. 6. This is an expected result. When the mean arrival rate increases, the system
traffic intensity will increase (for λ1 = 1.2). For the high-intensity traffic case, HEXS service
time distribution results in different values of the performance measures with respect to the
ones with the ERLS and EXPS service times.

Figure 7 illustrates the effect of the variation in service timedistribution on the performance
measures, for the increasing values of η2. When Figs. 6 and 7 are compared, we would like
to draw attention to the expected purchase rates for commodity-i , EPi . In the figures when
the service time is hyper-exponential (HEXS), EP1 has lower values than ones in ERLS and
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Fig. 4 Some performance measures for the increasing values of μ

EXPS service time. On the other hand, EP2 in the HEXS service time has higher values than
the others in Fig. 7.

5.1 Optimization

For the described system, the expected total profit per unit of time, ET P , is constructed
and an optimization discussion is provided for some specific parameters. The profit function
includes the terms related to the revenue earned by precessing the customers and the cost
terms related to the customer loss, waiting, inventory holding, replenishment, and instant
local purchase.

ET P = r1λ1(1 − Plost − Plost1) + r2λ2(1 − Plost2) − clostλ1Plost

− cL1λ1Plost1 − cL2λ2Plost2 − cw1EWQ1 − cw2EWQ2

− ch1ENI1 − ch2ENI2 − cr1ER1 − cr2ER2 − cp1EP1 − cp2EP2

where

ri : Revenue per Type i customer processed per unit of time, i = 1, 2
clost : Cost incured due to the loss of Type 1 customer, i = 1, 2
cLi : Cost incured due to the loss of customer because of no inventory, i = 1, 2
cwi : Waiting cost of a Type i customer in the queue, per unit time, i = 1, 2
chi : Inventory holding cost per commodity i , per unit time, i = 1, 2
cri : Replenishment cost for commodity i , per unit time, i = 1, 2
cpi : Local purchase cost for commodity i , i = 1, 2.
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Fig. 5 Some performance measures under different lead time for the increasing values of μ

Towards finding the optimum values, we fixed the unit values for the revenues and costs as
follows: r1 = 250, r2 = 50, clost = 50, cL1 = 10, cL2 = 5, cw1 = 100, cw2 = 50, ch1 = 10,
ch2 = 2, cr1 = 15, cr2 = 8, cp1 = 9 and cp2 = 4.

Example 4 Optimum inventory policy (s∗
1 , S

∗
1 ) for Type-1 customers is presented in Table 1.

The values for Type-2 customer are assumed to be λ2 = 1, and (s2, S2) = (3, 5). Optimum
policy for Type-1 customer is searched with respect to two arrival and two service rates, i.e.
λ1 = 2.5, 3.5, μ = 4.4, 5.4. Similarly, the optimum inventory policy (s∗

2 , S
∗
2 ) for Type-2

customers are given in Table 2 by using the values λ1 = 1, (s1, S1) = (3, 5), λ2 = 1.3, 2.1,
μ = 3.8, 4.6. Note that we fix η1 = 0.8, η2 = 0.4 and N = 3 for the two tables.

Comparing the tables, it is clearly seen that the value of expected profit, ET P , is affected
by the variation in service time distribution. That is, the lowest expected profit is obtained
when the service times are hyper-exponential (HEXS) in both tables. In other words, as the

123



Annals of Operations Research (2023) 331:711–737 731

Fig. 6 Some performance measures for the increasing values of η1

Table 1 Optimum values of s∗1 and S∗
1

λ1 PH μ = 4.4 μ = 5.4

ρ ET P s∗1 S∗
1 ρ ET P s∗1 S∗

1

2.5 ERLS 0.490 472.034 5 8 0.336 514.548 6 9

EXPS 0.471 441.338 5 8 0.329 495.028 6 9

HEXS 0.392 319.447 5 8 0.291 396.404 6 9

3.5 ERLS 0.743 467.533 4 7 0.460 666.794 7 11

EXPS 0.666 464.216 5 8 0.433 628.697 7 11

HEXS 0.481 359.071 6 9 0.344 487.186 8 11
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Fig. 7 Some performance measures for the increasing values of η2

Table 2 Optimum values of s∗2 and S∗
2

λ2 PH μ = 3.8 μ = 4.6

ρ ET P s∗2 S∗
2 ρ ET P s∗2 S∗

2

1.3 ERLS 0.463 212.854 5 8 0.361 225.815 5 9

EXPS 0.462 199.898 5 8 0.360 218.197 5 9

HEXS 0.446 117.508 4 8 0.352 164.179 5 8

2.1 ERLS 0.748 208.600 6 11 0.583 247.641 8 12

EXPS 0.746 181.872 6 11 0.582 234.945 8 12

HEXS 0.720 24.736 6 11 0.569 147.098 7 12
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Table 3 Optimum values of μ∗

λ1 λ2 ρ ET P μ∗ ρ ET P μ∗ ρ ET P μ∗
N = 3 ERLS EXPS HEXS

3.5 1.5 0.49 655.979 6.4 0.42 622.058 6.8 0.10 548.941 18.8

2 0.65 688.213 6.4 0.56 651.546 6.8 0.15 560.574 16.8

2.5 0.72 717.862 6.8 0.64 680.105 7.2 0.21 570.649 15.2

3 0.78 745.129 7.2 0.70 707.302 7.6 0.30 580.686 13.2

4.5 1.5 0.56 800.261 6.8 0.47 745.867 7.2 0.12 621.088 16.8

2 0.66 842.437 7.2 0.57 785.180 7.6 0.18 635.913 14.8

2.5 0.74 880.091 7.6 0.71 821.804 7.6 0.27 649.766 13.2

3 0.80 913.944 8 0.77 856.018 8 0.36 664.582 12

N = 4

3.5 1.5 0.50 672.700 6.4 0.49 641.904 6.4 0.13 555.517 14.4

2 0.67 703.653 6.4 0.58 672.284 6.8 0.20 569.312 13.2

2.5 0.74 731.458 6.8 0.66 700.017 7.2 0.28 582.129 12

3 0.72 757.131 7.6 0.72 726.205 7.6 0.37 595.445 11.2

4.5 1.5 0.60 832.283 6.8 0.50 783.998 7.2 0.18 636.107 12.4

2 0.70 871.646 7.2 0.60 822.997 7.6 0.26 655.180 11.6

2.5 0.77 905.316 7.6 0.67 858.416 8 0.36 673.970 10.8

3 0.75 935.643 8.4 0.74 891.526 8.4 0.46 693.828 10.4

variation in the service time distribution is increased, the profit decreases under the examined
cases in Tables 1 and 2.

Example 5 Optimum service rates, μ∗, are examined with respect to other parameters and
results are summarized in Table 3. For this purpose, the following parameter values are used:
η1 = 0.8, η2 = 0.4, (s1, S1) = (2, 5), (s2, S2) = (3, 5). Optimal service rate is found for
two different arrival rate values for both customer type; λ1 = 3.5, 4.5, λ2 = 1.5, 2, 2.5, 3.
Also two different buffer values are used; N = 3, 4.

Table 3 gives the optimum service rates that maximize the expected profit function. The
more variation in service time distribution results in lower profit.

When the arrival rate λ1 is increased from 3.5 to 4.5, it is necessary to use higher service
rates for ERLS and EXPS service time distribution. On the other hand, for the HEXS service
time distribution, the increment in λ1 causes decrement in service rate.

Example 6 Optimum buffer sizes, N∗, are given for different phase type service times in
Table 4. The following values of the parameters are used: η1 = 0.8, η2 = 0.4, (s1, S1) =
(2, 5), (s2, S2) = (2, 5), λ2 = 2, λ1 = 1.6, 2 and μ = 4.5, 5, 6.

Table 4 shows that when the traffic intensity is low, more Type-1 customers are allowed to
wait in the queue. It is also seen from Table 4 that the variation in the service time distribution
is more effective when the traffic intensity is low. In other words, the HEXS service times
clearly depart from the other two service times when the traffic intensity is low.
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Table 4 Optimum values of N∗

λ1 PH μ = 4.5 μ = 5 μ = 6

ρ ET P N∗ ρ ET P N∗ ρ ET P N∗

1.6 ERLS 0.689 343.288 5 0.588 359.177 7 0.455 363.923 12

EXPS 0.686 317.772 4 0.588 342.665 7 0.455 355.125 11

HEXS 0.606 194.264 2 0.550 238.928 3 0.450 291.682 6

2 ERLS 0.782 383.153 3 0.666 428.889 6 0.500 439.201 12

EXPS 0.730 348.248 2 0.664 403.466 5 0.500 427.060 11

HEXS 0.648 214.136 2 0.593 272.071 3 0.492 343.013 7

6 Conclusion

Wehave discussed a two-commodity queueing-inventory systemwith two types of customers.
Type-1 customers have the waiting room with capacity whereas Type-2 customers have the
onewith no capacity. Each type of customer demand occurs related to one type of commodity.
So, two inventory policies have been separately considered for the two commodities.

The quasi birth-and-death structure of the studied model has been constructed and the
steady-state analysis has been performed by using the matrix geometric method. The sensi-
tivity analysis of the parameters has been provided, besides optimization studies have been
performed, as well. Bymaximizing the structured profit function, the optimum inventory pol-
icy has been obtained for each commodity. Also, the optimum buffer size and the optimum
service rate are, separately, examined with respect to the different values of parameters. The
optimum values obtained are affected by the variation in the service time distribution.

For future works, the model studied can be extended by considering arrivals according
to the Markovian arrival process or/and more types of customers or/and more types of com-
modities. Also, one possible extention of this study is the analysis of time-related quantities
by adding the distribution of the waiting time in the queue for Type-2 customers. We refer
to studies in Razumchik and Telek (2016) and Chakravarthy and Dudin (2017) for related
analysis.
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