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Abstract
In Network Data Envelopment Analysis models, by considering the internal structure of
production units rather than a simple black-box, more inefficiency sources are identified.
The objective of this paper is to assess and improve the performance of Decision Making
Units with a two-stage network using cross-efficiency approach. The main contributions of
this study include; first, a new benevolent method in cross-efficiency evaluation of two-stage
network is proposed. Second, we propose a method for setting inputs and outputs target to
improve the cross-evaluations by changing inputs of the first stage and outputs of the second
stage, simultaneously. A case study validates the discussions.

Keywords Network data envelopment analysis (NDEA) · Two-stage DEA ·
Cross-efficiency · Ranking

1 Introduction

Data envelopment analysis (DEA) is a nonparametric technique for analyzing the relative
efficiency of homogeneousDecisionMakingUnits (DMUs)withmultiple inputs andmultiple
outputs. The relative efficiency is the ratio of theweighted sum of outputs to theweighted sum
of inputs. DEA was presented by Charnes et al. (1978). DEA scores unity to efficient DMUs.
Therefore, DEA may not discriminate between efficient DMUs. Several ranking approaches
have been proposed to break the tie. One of the popular ranking approaches is cross-efficiency
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assessment. Sexton et al. (1986) discussed the cross-efficiency based on the constant returns-
to-scale (CRS) assumption. Lim and Zhu (2015) used the cross-efficiency evaluation in
variable returns-to-scale (VRS) production technology. Cross-efficiency evaluation has been
employed in many settings (e.g., Cui & Li, 2015; Lim et al., 2014; Wu et al., 2009). On the
other hand, one of the most important issues is the existence of alternative optimal solutions
in the results of cross-efficiency scores. To address this issue, the concept of secondary
goals was presented by Sexton et al. (1986) and Doyle and Green (1994). The secondary
goals concern the benevolent and aggressive formulas. The benevolent (aggressive) model
determines the optimum weights to retain the efficiency score of DMU under evaluation
and increases (decreases) the efficiencies of other DMUs. Some researchers also suggested
a neutral perspective based on specific criteria for determining the unique cross-efficiency
scores (e.g.,Wang&Chin, 2010; Lam, 2010;Wang et al., 2012; Cook&Zhu, 2014;Maddahi
et al., 2014; Nasseri and Kiaei, 2019).

Classical cross-efficiency studies are based on black box models and do not care about
the internal structure of production processes. For this purpose, network DEA (NDEA)
was proposed. The NDEA can determine the efficiency scores of the entire system and
its components. Most of the NDEA models assume that the production systems have two
stages. In the first stage, some inputs are converted into the intermediate products and some
are converted to the outputs. Färe and Grosskopf (2000) developed an NDEAmodel to assess
health systems. Kao and Hwang (2008) proposed a two-stage DEA model to measure the
efficiency of insurance companies. There is a considerable amount of research in this field;
see Liu and Lu (2012), Kazemi Matin and Azizi (2015), Guo et al. (2017), Ahranjani et al.
(2018), Zhu et al. (2018), An et al. (2018), Tavana et al., (2018a, 2018b), Golshani et al. (2019)
Kiaei and Kazemi Matin (2020, 2021), Nemati et al. (2020), Kiaei et al. (2020), Lozano and
Khezri (2021), Shahbazifar et al. (2021) and Chu and Zhu (2021) among others.

More recently, some researchers have started studying and applying the cross-efficiency
method with network structure. Zadmirzaei et al. (2015) used NDEA and cross-efficiency
to rank wood and paper companies. Also, Moslemi and Mirzazadeh (2017) suggested an
NDEA model for measuring the efficiency of four-stage serial networks in the presence of
feedback. To rank the DMUs, they employed the cross-efficiency method. However, they
did not determine unique weights. Also, no method was proposed to set inputs and outputs
targets to enhance cross-efficiency in NDEA. The target unit can inform the Decision Maker
(DM) of the amount (%) by which an inefficient DMU should decrease its inputs and/or
increase its outputs to become efficient (Ebrahimnejad & Tavana, 2014). Kao and Liu (2019)
used the cross-efficiency method to evaluate the performance of DMUs with a serial and
parallel two-stage network. They defined a cross-efficiency score as the geometrical average
of the cross-efficiencies in a multi-stage DEA and showed that there is a multiplication rela-
tion between the overall cross-efficiency and stages. Örkcü et al. (2019) introduced a neutral
cross-efficiency model in NDEA to rank DMUs and sub-DMUs. Meng and Xiong (2021)
extended the cross-efficiency to a general two-stage system and applied the leader–follower
method for the decomposition of the system’s efficiency. Lin and Tu (2021) developed cross-
efficiency evaluation in series and parallel structures for use with the directional distance
function (DDF). Shao and Wang (2021) proposed the prospect values of DMUs and aggres-
sive, benevolent, and neutral prospect basic two-stage cross-efficiency evaluation models.
Wang et al. (2021) suggested a two-stage NDEA with game cross-efficiency to evaluate
performance of industrial water resource utilization systems.

The proposed models in the evaluation of cross-efficiency scores in two-stage NDEA
consider stages and overall cross-efficiencies’ relations (see Kao & Liu, 2019; Örkcü et al.,
2019). In other words, by defining cross-efficiency score as a product of cross-efficiencies,

123



Annals of Operations Research (2023) 321:281–309 283

they establish a multiplication relationship between the stages and overall cross-efficiency
scores. However, by this definition, they neglect the amount of efficiency they attribute to
the units because if the values of cross-efficiency are lower, the product of them will also be
very low and almost close to zero. As a result, such a definition of stages and overall cross-
efficiencies scores cannot evaluate and rank all units and subunits. Also, so far, no research
has reported setting targets for the inputs and outputs to improve cross-efficiency in two-stage
NDEA except for Rödder and Reucher (2011) who improved DEA cross-efficiency scores by
providing two models based on radial decrease or change in inputs. They have taken weights
or virtual prices of a peer DMU into account to improve the efficiencies of all remaining
units.

The present paper generalizes Doyle and Green’s (1994) study and provides definitions of
the stages and overall cross-efficiency scores in two-stage NDEA. This index is expressed as
the arithmetic mean of cross-efficiency in series mode. By this definition, the problem faced
in ranking all units and subunits is avoided. To improve the efficiency of units and subunits in
two-stage NDEA based on Rödder and Reucher (2011) paper, two approaches are proposed:
(a) Radial reduction of the first stage inputs and radial increase of the final outputs (without
changing the intermediate productions). (b) Changing the inputs of the first stage and the final
outputs without changing the intermediate productions (not necessarily reducing the inputs
and increasing the outputs). For the sake of clarity, a real example is presented to show the
superiority of the proposed method.

To the best of our knowledge, there is no paper to evaluate the NDEA cross-efficiency
and its improvement. The main purpose of this paper is to evaluate cross-efficiency based
on the benevolent method using an index to rank all the units and subunits in a two-stage
NDEA and to set targets for the inputs and outputs of inefficient units and subunits based
on the mentioned two methods to reduce their inefficiency and improve their efficiency. The
contributions of this paper are as follows:

• Using the cross-efficiency and assumingCRS, a new benevolent NDEAmodel is proposed.
• The definition of cross-efficiency proposed by Doyle and Green (1994) is generalized.
• Target setting of inputs and outputs for improving the cross-efficiency scores.
• A case study is presented.

The rest of the paper is as follows: In Sect. 2, preliminary is given. The proposed model
is presented in Sect. 3. In Sect. 4, a case study is given. Section 5 discusses the results of
sensitivity analysis. Finally, the Secti. 6 concludes the paper.

2 Preliminary

2.1 Cross-efficiency and the way to improve the cross-efficiency of black-box DMUs

Table 1 depicts the used notations in this paper.
Suppose that we have n. DMUs, DMU j ( j � 1, . . . , n) and each DMU j employsm. semi-

positive inputs x j � (
x1 j , . . . , xmj

)
to produce s semi-positive outputs y j � (

y1 j , . . . , ys j
)
.

The CRS input-oriented model, when DMUk∈{1,...,n} is the DMU under evaluation, is as
follows:

E∗
kk � max

uk , νk
ukyk

s.t . νkxk � 1,
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Table 1 The notations

Notations Descriptions Notations Descriptions

DMUk DMU under evaluation θ
∗(1)
k j Stage-1 cross-efficiency of DMUj

computed by DMUk

X Matrix of inputs θ
∗(2)
k j Stage-2 cross-efficiency of DMUj

computed by DMUk

Z Matrix of intermediates θ∗
j Overall cross-efficiency of DMUj

computed by arithmetic mean

Y Matrix of outputs θ
∗(1)
j Stage-1 cross-efficiency of DMUj

computed by arithmetic mean

x j Vector of input of DMUj θ
∗(2)
j Stage-2 cross-efficiency of DMUj

computed by arithmetic mean

z j Vector of intermediates of DMUj E∗
j Overall cross-efficiency of DMUj

computed by geometric mean

y j Vector of output of DMUj E∗(1)
j Stage-1 cross-efficiency of DMUj

computed by geometric mean

xi Vector of the ith input of DMUs E∗(2)
j Stage-2 cross-efficiency of DMUj

computed by geometric mean

zg Vector of the gth intermediate of DMUs s1j Vector of slack of stage-1 of DMUj

yr Vector of the rth output of DMUs s2j Vector of slack of stage-2 of DMUj

xi j The ith input of DMUj pl Reducing variable of inputs of
stage-1 of DMUl

zg j The gth intermediate of DMUj ql Outputs’ increasing variable of
stage-2 of DMUl

yr j The rth output of DMUj pcl Inputs’ reducing variable of stage-1
of inefficient DMUl

νk Vector of input weight of DMUk qcl Outputs’ increasing variable of
stage-2 of inefficient DMUl

wk Vector of intermediate weight of
DMUk

λ Vector intensity variable of stage-1

uk Vector of output weight of DMUk μ Vector intensity variable of stage-2

0m Vector of zero with m entries x′
l Vector of changed inputs of DMUl

E∗
kk Efficiency score of black-box DMUk x ′

il The ith changed input of DMUl

E∗
k j Cross-efficiency of DMUj computed

by black-box DMUk

y′
l Vector of changed outputs of DMUl

e j Cross-efficiency of black-box DMUj y′
rl The rth changed output of DMUl

θ∗
kk Overall efficiency of DMUk xdl Vector of reduced inputs for

inefficient DMUl

θ
∗(1)
kk Stage-1 efficiency of DMUk yil Vector of increased outputs for

inefficient DMUl

θ
∗(2)
kk Stage-2 efficiency of DMUk x′d

k Vector of changed inputs for
inefficient DMUl

θ∗
k j Overall cross-efficiency of DMUj

computed by DMUk

y′i
k Vector of changed outputs for

inefficient DMUl

123



Annals of Operations Research (2023) 321:281–309 285

uky j − νkx j ≤ 0, j � 1, . . . , n,

uk ≥ 0s,

νk ≥ 0m . (1)

Let (v∗, u∗). are the optimal solution of Model (1). Then, the optimal objective function
E∗
kk . refers to Charnes-Cooper-Rhodes (CCR) efficiency score of DMUk . Such evaluation

is known as self-evaluation because the DMU is evaluated in favor of the optimal weights
of its inputs and outputs. In contrast, the peer-evaluation E∗

k j � ∑s
r�1 u

∗
rk yr j

/∑m
i�1 v∗

ik xi j
indicates the cross-efficiency derived from peer evaluation of DMUj by DMUk . The model
of each DMU is solved. As a result, n sets of weights of inputs and outputs are obtained for
n DMUs. Each DMU (n − 1) iassigned a cross-efficiency score along with a CCR efficiency
score. These efficiencies imply that Ekj are the elements located in the kth row and jth column
of the matrix. In this case, the matrix is called the cross-efficiency matrix.

Dle and Green (1994) defined the cross-efficiency score of DMUj as the average cross-
efficiencies with optimal weights of the other DMUs:

e j � 1

n

n∑

k�1

E∗
k j � 1

n

n∑

k�1

∑s
r�1 u

∗
rk yr j∑s

r�1 v∗
ik xi j

(2)

If the DMU under evaluation is CCR-efficient, then the optimal solution of Model (1) is
not unique. To address the alternative optimal solutions’ issue, the benevolent and aggressive
goals were introduced by Sexton et al. (1986). Rödder and Reucher (2011) presented a
benevolent model to select a unique optimal solution. Their first model improves the cross-
efficiency of DMUj from the viewpoint of DMUk by reducing inputs with respect to the
production possibility set (PPS). Their second model may increase the inputs. Although the
improved cross-efficiencies of the two methods dominate the cross-efficiencies, the second
model improves the cross-efficiencies more than the first model because inputs change are
free and feasible. Therefore, the input change can better improve the cross-efficiencies of all
DMUs.

2.2 Efficiency evaluation and PPS in two-stage network

Here, we focus on a two-stage structure in which the inputs of the first stage are consumed
to produce intermediate products for the second stage to get final outputs. Figure 1 shows
the two-stage structure. The first stage consumes all the external inputs xi , i � 1, ...,m, to
produce the intermediate products zg, g � 1, ..., h, which are used in the second stage. The
second stage produces the final outputs yr , r � 1, ..., s.

1 2 

Fig. 1 Two-stage structure
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Note that the aggregate outputs should be less than or equal to the aggregate inputs in the
operations of the stages, whichmeans the consumption of inputs in the second stage should be
less than or equal to the production of outputs in the first stage. Assume that the DMU under
evaluation is (xk, zk, yk). Also, suppose that at least one component of inputs, one component
of intermediate products, and one component of outputs are positive. Assuming CRS, Kao
and Hwang (2008) proposed an input-oriented multiplier model, which is as follows:

θ∗
kk � max

uk , νk ,wk
ukyk

s.t . νkxk � 1,

uky j − νkx j ≤ 0, j � 1, . . . , n,

wkz j − νkx j ≤ 0, j � 1, . . . , n,

uky j − wkz j ≤ 0, j � 1, . . . , n,

uk ≥ 0s,

νk ≥ 0m,

wk ≥ 0h . (3)

where the weight wg corresponds to the intermediate measure zg . Note that the second set of
constraints is redundant as it is obtained from the third and fourth set of constraints. Thus, it
can be removed. The efficiency of the whole system and its stages can be calculated based
on the optimal solution of model (3):

θ∗
kk � u∗

kyk
ν∗
kxk

, j � 1, ..., n,

θ
∗(1)
kk � w∗

kzk
ν∗
kxk

, j � 1, ..., n,

θ
∗(2)
kk � u∗

kyk
w∗
kzk

, j � 1, ..., n. (4)

Note that the efficiency of whole system is expressed as multiplication of efficiencies of
two stages:

θ
∗(1)
kk × θ

∗(2)
kk � w∗

kzk
ν∗
kxk

× u∗
kyk

w∗
kzk

� u∗
kyk

ν∗
kxk

� θ∗
kk (5)

where (w∗T
k , u∗T

k , ν∗T
k ) is the optimum solution of model (3), where DMUk is the DMU

under evaluation.
A PPS in a two-stage network is introduced. PPS is defined as a set of inputs and outputs

in a technology that the non-negative inputs can generate non-negative outputs. PPS in a
two-stage network is presented as follows:

TT S−NDE A � {(x, y)| (x, z) ∈ P1, (z, y) ∈ P2 } (6)

where P1 and P2 are the PPS of the first and the second stage of a two-stage network. In fact,
x can produce z in the first stage and z, in turn, can produce y in the second stage. To get
a better understanding of the role of intermediate inputs and outputs in PPS of a two-stage
network, the z is decomposed into intermediate outputs zout in the first stage and intermediate
inputs zint in the second stage. TT S−NDE A can be represented as follows:

TT S−NDE A � {(x, zout , zint , y)| (x, zout ) ∈ P1, (zint , y) ∈ P2 , zint ≤ zout } (7)

123



Annals of Operations Research (2023) 321:281–309 287

In a two-stage network, zint has to be less than or equal to zout . This is indicated in
Expression (7) by the constraint zint ≤ zout .

3 Proposedmodel

3.1 Decomposition of cross-efficiency in a two-stage network

Note that the cross-efficiency method has two phases in the back-box approach. In the first
phase, a unique optimum solution is obtained by the traditional DEA models. In the second
phase, the cross-efficiency score is calculated by Expression (2). Similarly, these phases are
used to calculate the cross-efficiency scores in a two-stage network. Kao and Liu (2019)
defined a geometric mean of cross-efficiencies as a cross-efficiency score in a two-stage
network. They presented a multiplicative relationship between the overall and stage cross-
efficiency scores by defining the geometric mean. However, their definition faces problem
if cross-efficiencies are small. To tackle the problem, we extend Doyle and Green’s (1994)
definition of cross-efficiency in a two-stage network.

Definition 1 (peer evaluation in two-stageNDEA) To calculate the cross-efficiency of DMUj

from the viewpoint of DMUk , the following expression is used:

θ
∗(1)
k j �w∗

kz j
ν∗
kx j

, j � 1, ..., n,

θ
∗(2)
k j � u∗

ky j

w∗
kz j

, j � 1, ..., n,

θ∗
k j � u∗

ky j

ν∗
kx j

, j � 1, ..., n. (8)

Definition 2 (cross-efficiency scores by the arithmetic mean in two-stage NDEA) Consider
the overall and stage cross-efficiency scores of DMUj in a two-stage network:

θ∗
j � 1

n

n∑

k�1

θ∗
k j , j � 1, ..., n,

θ
∗(1)
j � 1

n

n∑

k�1

θ
∗(1)
k j , j � 1, ..., n,

θ
∗(2)
j � 1

n

n∑

k�1

θ
∗(2)
k j , j � 1, ..., n. (9)

The overall and stage cross-efficiencies matrix in a two-stage network are represented in
Figs. 2, 3, and 4.

Note that the main diagonal elements in the matrix of overall and stage cross-efficiencies
are the overall and stage efficiency scores.

Corollary 1

a. The cross-efficiency of the DMUj from the viewpoint of the DMUk is the multiplication
of the stage cross-efficiencies:

θ
∗(1)
k j × θ

∗(2)
k j � θ∗

k j , j � 1, ..., n. (10)
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Fig. 2 Cross-efficiency matrix of stage 1

Fig. 3 Cross-efficiency matrix of stage 2

Fig. 4 The overall cross-efficiency matrix
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b. The multiplicative relationship between the overall and stage cross-efficiency scores by
Expression (9) in a two-stage network does not necessarily hold.

c. Only the multiplicative relationship between the overall and stage cross-efficiency scores
by Expression (9) in a two-stage network holds if one of the stage cross-efficiency scores
equals 1.

Proof

a. θ
∗(1)
k j × θ

∗(2)
k j � u∗

ky j

w∗
k z j

× w∗
k z j

ν∗
kx j

� u∗
ky j

ν∗
kx j

� θ∗
k j , j � 1, ..., n.

b.

θ
∗(1)
j × θ

∗(2)
j � 1

n

n∑

k�1

θ
∗(1)
k j × 1

n

n∑

k�1

θ
∗(2)
k j � 1

n2

n∑

k�1

n∑

l�1

θ
∗(1)
k j × θ

∗(2)
l j

��1

n

n∑

k�1

θ
∗(1)
k j × θ

∗(2)
k j � 1

n

n∑

k�1

θ∗
k j � θ∗

j ,

⇒θ
∗(1)
j × θ

∗(2)
j �� θ∗

j , j � 1, ..., n.

c. Assume that the stage cross-efficiency of the second stage is 1; i.e.,

θ
∗(2)
j � 1

n

n∑

k�1
θ

∗(2)
k j � 1. Therefore, for each k, θ∗(2)

k j � 1. Thus, we have θ
∗(1)
j × θ

∗(2)
j �

1
n

∑n
k�1 θ

∗(1)
k j × 1 � 1

n

∑n
k�1 θ

∗(1)
k j � 1

n

∑n
k�1 θ

∗(1)
k j × θ

∗(2)
k j � 1

n

∑n
k�1 θ∗

k j � θ∗
j . Hence,

θ
∗(1)
j × θ

∗(2)
j � θ∗

j , j � 1, ..., n.

Likewise, if the cross-efficiency score of the first stage is 1, the same outcome is achieved.
As mentioned in the second part of corollary 1 and given Definition 2, there is no multi-

plicative relationship between the overall and stage cross-efficiency scores. To address this
issue, the definition of Kao and Liu (2019) is used. They show that if the arithmetic mean is
replaced by the geometric mean, the overall cross-efficiency score can be decomposed to the
multiplication of the stage cross-efficiency scores.

Definition 3 (cross-efficiency scores by geometric mean in a two-stage network). Consider
the overall and stage cross-efficiency scores of the DMUj in a two-stage DEA model as
follows:

E∗
j � n

√√√√
n∏

k�1

θ∗
k j , j � 1, ..., n,

E∗(1)
j � n

√√√√
n∏

k�1

θ
∗(1)
k j , j � 1, ..., n,

E∗(2)
j � n

√√√√
n∏

k�1

θ
∗(2)
k j , j � 1, ..., n. (11)

Theorem 1 If the overall and stage cross-efficiency scores are derived from Expression (11),
then there is a multiplicative relationship between the overall and stage cross-efficiency
scores such that:

E∗(1)
j × E∗(2)

j � E∗
j , j � 1, ..., n. (12)
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Proof Suppose that the scores of the overall and stage cross-efficiency are obtained from
Expression (11). Thus, we have.

E∗(1)
j × E∗(2)

j � n

√√
√
√

n∏

k�1

θ
∗(1)
k j × n

√√
√
√

n∏

k�1

θ
∗(2)
k j � n

√√
√
√

n∏

k�1

θ
∗(1)
k j ×

n∏

k�1

θ
∗(2)
k j � n

√√
√
√

n∏

k�1

(θ∗(1)
k j × θ

∗(2)
k j )

Hence,

⇒ E∗(1)
j × E∗(2)

j � n

√
n∏

k�1
(θ∗(1)

k j × θ
∗(2)
k j ).

On the other hand, according to Expression (10), we have.

E∗(1)
j × E∗(2)

j � n

√
n∏

k�1
(θ∗(1)

k j × θ
∗(2)
k j ) � n

√
n∏

k�1
θ∗
k j � E∗

j . As a result, E∗(1)
j × E∗(2)

j �
E∗

j , j � 1, ..., n.

Therefore, the proof is completed. �

Theorem 1 shows that the overall cross-efficiency scores can be decomposed as product of
the stage cross-efficiency scores. Due to the existence of multiple optimal solutions of model
(3) in relations (10) and (12), the decompositions for cross-efficiency scores are not unique.
To tackle this problem, we use secondary goals such as benevolent or aggressive approach.

Remark 1 The index which defines the cross-efficiency score should be well defined in
ranking all units. Equation (11), defined by Kao and Liu (2019), fails to evaluate all units
because if the cross-efficiencies θ

∗(1)
k j and θ

∗(2)
k j take small values. Then due to the existence of

a multiplication relation between them, the values of E∗(1)
j , E∗(2)

j and E∗
j will be numerically

insignificant such that in computational programs it is assumed to be 0. Therefore, Eq. (11)
cannot be a good indicator to determine the amount of cross-efficiency scores. To address
this issue, it is obvious that Eq. (9) offers a good definition to measure the stages and the
overall efficiency scores as it prevents a zero cross-efficiency score.

Since in model (3), it is possible to have alternative optimal solutions, the cross-efficiency
cannot be readily obtained for a two-stage network. To overcome this issue, we introduce a
new benevolent approach based on the idea of Rödder and Reucher (2011). To this end, the
following model is proposed for the first stage.

min
uk , νk ,wk ,s1j , s

2
j

∑

j
s1j +

∑

j
s2j

s.t . νkxk � 1,
ukyk � θ∗

kk,wkzk � θ
∗(1)
kk , θ

∗(2)
kk wkzk − ukyk � 0,

wkz j − νkx j + s1j ≥ 0, j � 1, . . . , n,

uky j − wkz j + s2j ≥ 0, j � 1, . . . , n,

wkz j − νkx j ≤ 0, j � 1, . . . , n,

uky j − wkz j ≤ 0, j � 1, . . . , n,

uk ≥ 0s, νk ≥ 0m,wk ≥ 0h,
s1j , s

2
j ≥ 0, j � 1, . . . , n.

(13)

In model (13), the first constraint normalizes the input weights. The second constraint
ensures that the overall and the stage efficiency of the DMU under evaluation do not change.
In the third and fourth constraints, by adding and minimizing the slacks corresponding to
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the first and the second stages, the cross-efficiency score of the units approximates to one as
closely as possible. Unequal constraints are used to guarantee feasible weights in the first and
the second stages. In other words, we reduce the slack as much as possible, which implies
that the weights are benevolent to the units under evaluation. The fifth and sixth constraints
prevent the cross-efficiency of the first and second stages to be more than one. Model (13)
selects a solution out of the alternative optimal solutions to maximize the cross-efficiencies
of the first and the second stages. Therefore, the overall and the stage cross-efficiency of the
jth DMU from the perspective of the kth DMU, based on the benevolent approach, can be
calculated by Expression (8), where (w∗T

k , u∗T
k , ν∗T

k ) is the vector of the unique optimum
solution of model (13) when DMUk is under evaluation. In the second phase, the overall and
the stage cross-efficiency scores of the j th DMU, based on the benevolent approach, can be
computed by Expression (9).

Remark 2 The existing models calculate the cross-efficiency scores using the secondary goal
as Model (3) has often multiple optimal solutions. Hence, secondary goals are developed to
choose a solution among multiple optimal solutions.

3.2 Setting targets to improve cross-efficiency in a two-stage network

Wepropose twomethods for setting inputs and outputs targets to improve the cross-efficiency
score in PPS in a two-stage network. First, to improve the cross-efficiency score in a two-
stage network, the outputs of the second stage should be increased and the inputs of the first
stage should be reduced. The intermediate measures are unchanged.

Suppose thatDMUk is an inefficientDMU,wherew∗
k , u

∗
k , ν

∗
k are optimalweights ofmodel

(13). From the kth DMU aspect, suppose that the cross-efficiency of DMUl concerning the
first and second stages is less than 1. Then, we have w∗

kzl − ν∗
kxl < 0 and u∗

kyl − w∗
kzl < 0.

To improve the cross-efficiency of the lthDMU from the kthDMUperspective, the inputs and

outputs are reduced and increased as follows: x′
l � xl

w∗
k zl

ν∗
kxl

and y′
l � yl

w∗
k zl

u∗
kyl

, respectively.

Therefore, if the inputs of the first stage are decreased and the outputs of the second stage are
increased (intermediate measures remain unchanged), the cross-efficiency of the inefficient

stage is given by
w∗
k zl

ν∗
kx

′
l

� 1 and
u∗
ky

′
l

w∗
k zl

� 1. However, such a reduction and increase in the

inputs and outputs are not necessarily within the PPS. Thus, the overall and stage cross-
efficiency scores do not always become one. To improve the cross-efficiency of the stages in
the PPS, the following model is presented:

r∗
l � min

pl , ql , λ, μ
pl − ql

s.t . w∗
kzl − ν∗

k plxl ≤ 0,
plxl − Xλ ≥ 0m,

zl − Zλ ≤ 0h,
u∗
kqlyl − w∗

kzl ≤ 0,
qlyl − Yμ ≤ 0s,
zl − Zμ ≥ 0h,
pl ≤ 1, ql ≥ 1, λ,μ ≥ 0n .

(14)

Where
(
w∗
k , u

∗
k , ν

∗
k

)
is the optimal weights of model (13) when DMUk is under evaluation.

Here, pl . and ql are the reducing variables from the first stage of the inputs and the increasing
variables from the second stage of the outputs of DMUl , respectively. The first constraint
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seeks to enhance the cross-efficiency score of the DMUl from the viewpoint of DMUk . Given
the objective function of model (14), this is done by reducing the inputs of the first stage of
DMUl . The second and third constraints guarantee that the inputs of the first stage of the lth
DMU are decreased within the PPS of the first stage. The fourth constraint seekso enhance
the cross-efficiency of DMUl from the DMUk perspective in the second stage by increasing
the output of DMUl . The last two constraints seek to enhance the second stage’s outputs of
the lth DMU within the PPS of the second stage.

In Model (14), our goal is to reduce the radial inputs and increase the radial outputs to
improve the overall and the stages cross-efficiencies. The radial decrease of the inputs is done
by the contraction coefficient pl and the radial increase of the outputs is carried out by the
expansion coefficient ql such that the weights and activities are feasible. In fact, model (14)
is a combination of multiplier and envelopment models.

Remark 3 Assuming pl � ql � 1, λ � μ � (01, 02, ..., 1l , ..., 0n), solution (pl , ql ,λ,μ)
is satisfied in the constraints of model (14). Therefore, model (14) is feasible. According to
model (14), we have pl ≤ 1, ql ≥ 1 and r∗

l � min pl − ql . Hence, r∗
l ≤ 0. Also, it is

bounded because 0 ≤ pl ≤ 1. According to the fourth constraint of model (14), we have

ql ≤ w∗
k zl

u∗
kyl

. Therefore, −w∗
k zl

u∗
kyl

≤ pl − ql . As a result, model (14) is bounded.

Suppose p∗
j and q∗

j are the optimal solutions of model (14). By augmenting the outputs
and reducing the inputs at the same time, the cross-efficiency of the stages and the overall
cross-efficiency are improved as follows:

θ
∗(1)
k j � w∗

kz j
ν∗
k p

∗
jx j

, j � 1, ..., n,

θ
∗(2)
k j � u∗

kq
∗
j y j

w∗
kz j

, j � 1, ..., n,

θ∗
k j � u∗

kq
∗
j y j

ν∗
k p

∗
jx j

, j � 1, ..., n. (15)

If, in model (3), DMUk is overall inefficient, then it can improve its performance. In
Theorem 2, we show that the efficiency of the remaining DMUs and their stage are not
worsened. To this end, see the following model:

rc∗l � min
pcl , q

c
l , λ,μ

pcl − qcl

s.t . w∗
kzl − ν∗

k p
c
l x

d
l ≤ 0,

pcl x
d
l − Xλ ≥ 0m,

zl − Zλ ≤ 0h,
u∗
kq

c
l y

i
l − w∗

kzl ≤ 0,
qcl y

i
l − Yμ ≤ 0s,

zl − Zμ ≥ 0h,
pcl ≤ 1, qcl ≥ 1, λ,μ ≥ 0n .

(16)

First, solve model (13) for peer k and determine the optimal solution (w∗
k , u

∗
k , ν

∗
k ). Now,

put xdk � θ
∗(1)
kk xk , yik � yk

θ
∗(2)
kk

, and consider xdj � x j , yij � y j for j �� k and solve model

(16). This concludes the following theorem.
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Theorem 2 Suppose that rc∗l and r∗
l are the optimal objective functions of models (16) and

(14), respectively. We have rc∗l ≤ r∗
l .As a result, the cross-efficiency of DMUjwith respect to

the DMUkwill not become worse.

Proof Note that a feasible solution of model (14) is also feasible for model (16), when
xdk � θ

∗(1)
kk xk , yik � yk

θ
∗(2)
kk

, xdj � x j , yij � y j , j �� k. Therefore, the feasible region of model

(14) is a subset of feasible region of model (16). As a result, in the objective function, we
have rc∗l ≤ r∗

l ≤ 0. Thus,
pc∗l ≤ p∗

l , q
c∗
l ≥ q∗

l , pc∗l ν∗
kx

d
l ≤ p∗

l ν
∗
kxl , q

c∗
l u∗

ky
i
l ≥ q∗

l u
∗
kyl . At the end:

w∗
kzl

pc∗l ν∗
kx

d
l

≥ w∗
kzl

p∗
l ν

∗
kxl

,

qc∗l u∗
ky

i
l

w∗
kzl

≥ q∗
l u

∗
kyl

w∗
kzl

,

qc∗l u∗
ky

i
l

pc∗l ν∗
kx

d
l

≥ q∗
l u

∗
kyl

p∗
l ν

∗
kxl

.

The proof is complete. �

Theorem 2 implies that the overall and stage cross-efficiency improvement of DMUl in
the weight system of peer k do not suffer from k’s radial input reduction and k’s radial output
increase. In the second method, instead of reducing and increasing the inputs and outputs at
the same time, the inputs and outputs are simultaneously changed within the PPS. This leads
to improved cross-efficiency of stages and overall cross-efficiency. The model is expressed
as follows:

t∗l � min
x′
l , y′

l ,λ, μ
ν∗
k x

′
l − u∗

k y
′
l

s.t . w∗
kzl − ν∗

k x
′
l ≤ 0,

x′
l − Xλ ≥ 0m,

zl − Zλ ≤ 0h,
u∗
k y

′
l − w∗

kzl ≤ 0,
y′
l − Yμ ≤ 0s,

zl − Zμ ≥ 0h,
λ,μ ≥ 0n .

(17)

In model (17), by changing the inputs of the first stage, the first constraint ensures that
the cross-efficiency of the first stage of DMUl is improved from the DMUk perspective. The
second and the third constraints indicate that the change in the inputs of the first stage should
lie within the PPS of the first stage. The fourth constraint, by changing the outputs of the
second stage, aims to enhance the cross-efficiency of DMUl in the second stage from DMUk

perspective. The fifth and sixth constraints ensure that the outputs of the second stage are
changed within the PPS of the second stage.

Model (17) seeks to increase the cross-efficiency using a non-radial approach to change
the inputs and outputs. By maintaining the weights and feasible activities, this model does
not necessarily reduce or increase all the input and output components, respectively, but
its strategy is a trade-off between the input and output components to reduce the weighted
inputs and increase the weighted outputs. Thus, the cross-efficiency scores of the first and the
second stages, and the overall cross-efficiency are increased. Meanwhile, model (17), like
model (14), is a combination of multiplier and envelopment models.
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In model (17), x′
l , y

′
l are vectors of the inputs and outputs, respectively. They imply the

amount of decrease in the inputs of the first stage and the amount of increase in the outputs
of the second stage of DMUl from DMUk perspective, respectively. Note that in both models
(14) and (17), the unit participation weight, λ and μ, correspond to the first stage and the
second stage, respectively.

Assume that x′∗
l , y

′∗
l are the optimal solutions of model (17). As a result, by changing the

outputs and inputs at the same time, the overall and stage cross-efficiencies are improved as
follows:

θ
∗(1)
kl � w∗

kzl
ν∗
kx

′∗
l

, l � 1, ..., n,

θ
∗(2)
kl �u∗

ky
′∗
l

w∗
kzl

, l � 1, ..., n,

θ∗
kl �u∗

ky
′∗
l

ν∗
kx

′∗
l

, l � 1, ..., n. (18)

The model simultaneously improves the overall and stage cross-efficiencies by reducing
the first stage’s inputs and increasing the second stage’s outputs. Note that, when calculating
the improved cross-efficiency, the internal inputs and outputs do not change.

Remark 4 Model (17) similar to model (14) is feasible and bounded because if x′
l � xl ,

y′
l � yl , λ � μ � (01, 02, ..., 1l , ..., 0n), then it is feasible. It is also bounded. Due to the

first and the fourth constraints of model (17), we have u∗
k y

′
l ≤ w∗

kzl , w
∗
kzl ≤ ν∗

k x
′
l . As

a result, u∗
k y

′
l ≤ ν∗

k x
′
l . Therefore, t∗l ≥ 0. Since the objective function is minimization,

model (17) is bounded.
Here, we re-examine the effect of inefficient DMU on the efficiency improvement of other

DMUs when we use model (17). In other words, if we just decrease the input of inefficient
DMUk and increase its output at the same time, the efficiency of other DMUs and stages
does not decrease. Consider the following model:

tc∗l � min
x′d
l , y′i

l , λ,μ

ν∗
k x

′d
l − u∗

k y
′i
l

s.t . w∗
kzl − ν∗

k x
′
l ≤ 0,

x′d
l − Xλ ≥ 0m,

zl − Zλ ≤ 0h,
u∗
k y

′i
l − w∗

kzl ≤ 0,
y′
l − Yμ ≤ 0s,
zl − Zμ ≥ 0h,
λ,μ ≥ 0n .

(19)

where x′d
k � θ

∗(1)
kk .x′

k , y′i
k � y′

k

θ
∗(2)
kk

, x′d
j � x′

j , y′i
j � y′

j , j �� k and DMUk is inefficient.

Theorem 3 Suppose (x′∗d
l , y′∗i

l ) and (x′∗
l , y

′∗
l ) are the optimal solutions of models (19) and

(17), respectively. Thus, the cross-efficiency of the rest of DMUs and stages from the per-
spective of DMUk does not decrease.

Proof If x′d
k � θ

∗(1)
kk .x′

k , y′i
k � y′

k

θ
∗(2)
kk

, x′d
j � x′

j , y′i
j � y′

j , j �� k, then each feasible solution

of model (17) is also feasible for model (19). Therefore, 0 ≤ tc∗l ≤ tcl , ν∗
kx

′∗d
l ≤ ν∗

kx
′∗
l ,

123



Annals of Operations Research (2023) 321:281–309 295

u∗
ky

′∗i
l ≥ u∗

ky
′∗
l . Because of the constant w

∗
kzl , we have.

w∗
kzl

ν∗
kx

′∗d
l

≥ w∗
kzl

ν∗
kx

′∗
l

,

u∗
ky

′∗i
l

w∗
kzl

≥ u∗
ky

′∗
ll

w∗
kzl

,

u∗
ky

′∗i
l

ν∗
kx

′∗d
l

≥ u∗
ky

′∗
l

ν∗
kx

′∗
ll

.

The proof is complete. �

4 Case study

Performance appraisal is an important issue at universities and higher education institutions.
DEA has been used extensively for educational purposes, considering departments, colleges,
universities, and institutions of higher education as DMUs. NDEA models were also used
to evaluate the performance of higher education institutions from different perspectives.
For instance, Yadolladi and Matin (2021) evaluated university units by introducing resource
allocation models focused on two-stage network systems. Likewise, Hosseini et al. (2019)
evaluated the productivity of university units by suggesting a public network model with
stochastic data. Ding et al. (2021) also proposed a collective model with a two-stage network
structure that evaluated the faculties of some universities in China. Most studies in the perfor-
mance appraisal literature on the domain of education or research are examined fromdifferent
perspectives. Twenty branches of the Islamic Azad University for higher education in Iran
are examined and their performance is evaluated based on cross-efficiency with a two-stage
structure using a new method. The dataset dates back to 2018 and 2019 and was obtained
from the Statistics and Information System of Islamic Azad University (www.stat.iau.ir/).
Campus branches are made up of different departments. Two offices in campus management
are education and research. These parts cooperate in the form of a two-stage network system,
which are shown in Fig. 5.

The inputs, intermediate measures, and outputs are defined in Table 2. Table 3 depicts the
dataset.

Table 4 reports the overall and stage cross-efficiencies derived from models (3) and (13)
and Expression (9). As is seen, DMU15 has the best efficiency score of 0.1034 and is ranked
first by model (13). However, DMU15 has the overall cross-efficiency score of 0.2193 and
the third rank by model (3). As a result, the cross-efficiency in a two-stage network can
provide different discrimination between DMUs. Also, in the first stage, DMUs 8, 12, 13,

Stage 1: 
Education

Stage 2:
Research

Fig. 5 The structure of higher education institutes
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Table 2 Inputs, intermediate measures, and outputs of higher education institutes

Inputs Intermediate measures Outputs

Number of employees (x1 j )
(Flegg et al., 2004), education
environment (square meter)
(x2 j ) (Leitner et al., 2007),
number of students (x3 j )
(Agasisti and Dal Bianco,
2009; Tavana et al., 2018a,
2018b), and number of faculty
members (x4 j ) (Kao & Hung,
2008)

Number of graduates (z1 j ) and
tuition fees (billion Rials) (z2 j )
(Yadolladi & Kazemi Matin,
2021)

Total university income (billion
Rials) (y1 j ) (Caroline et al.,
2007) and number of research
products (y2 j ) (Daraio et al.,
2015)

Table 3 The dataset

Higher education institutes
(DMUs)

x1 j x2 j x3 j x4 j z1 j z2 j y1 j y2 j

1 258 4954 18,709 233 9208 700.2 1480 2420

2 178 1762 12,277 174 9327 701.9 770.7 4879

3 43 870 4962 164 6734 258.8 296.1 2520

4 101 4706 9845 118 7661 252.7 367.5 2802

5 83 2119 8238 34 424 207.8 585.1 2934

6 73 2004 1800 262 1487 5.07 7.14 3682

7 91 773 16,615 90 3033 21.7 34 24

8 228 1349 16,664 112 6450 65.6 84.1 4435

9 52 498 17,747 288 8560 105.8 171.8 3830

10 164 4342 2018 197 2579 28.8 41.5 431

11 250 4954 18,692 235 9190 7560.5 1536.3 2408

12 170 1762 12,259 171 9310 7577.6 826.5 4868

13 35 870 4945 164 6716 3146.3 351.8 2509

14 93 4706 9828 118 7643 3085.2 423.3 2791

15 75 2119 8221 34 407 2636.2 640.9 2923

16 65 2004 1783 262 1469 66.9 8.7 3670

17 83 986 16,598 120 3016 233.7 35.6 12

18 220 1349 16,646 165 6433 672.3 139.9 4423

19 44 1498 17,730 288 8543 1616.2 227.6 3819

20 156 4342 2001 177 2561 304.5 43.1 420

and 14 have the same efficiency score of 1. Therefore, such DMUs cannot be ranked, while
these DMUs have the cross-efficiency scores (rank) of 0.5578(8), 0.9353(1), 0.9137(2), and
0.7072(3), respectively. In the second stage, DMUs 5 and 6 have an efficiency score of 1,
while these DMUs have the cross-efficiency scores (rank) of 1(1) and 0.5457(2), respectively.
Therefore, cross-efficiency has better discrimination power. Note that the overall and stage
cross-efficiencies are lower than the overall and stage efficiencies in all DMUs. In addition,
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Table 4 The results obtained from Models (3), (13), and Expression (9)

DMUj Efficiency Cross-efficiency

Stage 1 Stage 2 Overall Stage 1 Stage 2 Overall

1 0.6682 (11) 0.1176 (8) 0.0786 (9) 0.3903 (12) 0.0791 (11) 0.0308 (16)

2 0.9887 (5) 0.0758 (12) 0.0749 (11) 0.6266 (5) 0.1124 (7) 0.0562 (6)

3 0.4170 (16) 0.1338 (6) 0.0558 (14) 0.6352 (4) 0.0836 (10) 0.0447 (9)

4 0.8306 (7) 0.0663 (14) 0.0551 (16) 0.5580 (7) 0.0837 (9) 0.0348 (13)

5 0.2002 (20) 1.0000 (1) 0.2002 (4) 0.0988 (20) 1.0000 (1) 0.0988 (2)

6 0.2240 (19) 1.0000 (1) 0.2240 (2) 0.1143 (19) 0.5457 (2) 0.0670 (4)

7 0.6653 (12) 0.0082 (20) 0.0055 (19) 0.3704 (13) 0.0039 (19) 0.0016 (19)

8 1.0000 (1) 0.1022 (10) 0.1022 (6) 0.5578 (8) 0.1510 (5) 0.0480 (7)

9 0.8713 (6) 0.1700 (5) 0.1481 (5) 0.5218 (9) 0.0999 (8) 0.0425 (10)

10 0.3565 (17) 0.0656 (15) 0.0234 (17) 0.1892 (17) 0.0391 (17) 0.0075 (18)

11 0.6738 (10) 0.1202 (7) 0.0810 (7) 0.5709 (6) 0.0522 (15) 0.0313 (15)

12 1.0000 (1) 0.0754 (13) 0.0754 (10) 0.9353 (1) 0.0614 (13) 0.0580 (5)

13 1.0000 (1) 0.0556 (17) 0.0556 (15) 0.9137 (2) 0.0507 (16) 0.0467 (8)

14 1.0000 (1) 0.0565 (16) 0.0565 (13) 0.7072 (3) 0.0528 (14) 0.0363 (12)

15 0.7038 (9) 0.3116 (4) 0.2193 (3) 0.3299 (14) 0.4886 (4) 0.1034 (1)

16 0.2582 (18) 0.8733 (3) 0.2254 (1) 0.1227 (18) 0.4945 (3) 0.0676 (3)

17 0.5075 (14) 0.0086 (19) 0.0044 (20) 0.3037 (15) 0.0030 (20) 0.0011 (20)

18 0.7976 (8) 0.0996 (11) 0.0794 (8) 0.4595 (11) 0.1239 (6) 0.0411 (11)

19 0.6280 (13) 0.1071 (9) 0.0673 (12) 0.5027 (10) 0.0724 (12) 0.0330 (14)

20 0.4949 (15) 0.0465 (18) 0.0230 (18) 0.2314 (16) 0.0310 (18) 0.0076 (17)

more inefficiencies are identified in evaluating DMUs. Also, as is seen in Table 4, the mul-
tiplicative relationship between the overall and stage cross-efficiencies does not necessarily
hold. For instance, the product of the cross-efficiency of the first and the second stage of
DMU3 is 0.6352(0.0836) � 0.0531; whereas the overall cross-efficiency score is 0.0447.

Table 5 compares the overall and stage cross-efficiencies derived from model (13) and
Expressions (9) and (11). The overall and stage cross-efficiencies obtained from Expression
(11) are smaller than the overall and stage cross-efficiencies derived from Expression (9).
Also, using Expression (11), there is a multiplicative relationship between the overall and
stage cross-efficiencies. For example, the product of the cross-efficiency scores of the first
and second stages of DMU3 equals 0.592335× 0.072089 � 0.042701; and its overall cross-
efficiency score is 0.042701. However, DMUs 7, 17, and 20 cannot be ranked by Expression
(11) as the cross-efficiency scores of the first and the second stages are very small.

Tables 6 and 7 present the improved overall and stage cross-efficiencies and the measure
of changes in inputs and outputs, which are derived from models (14) and (17). As is seen,
the improved overall and stage cross-efficiencies obtained from model (17) are higher than
models (14) and (13). Also, model (17) increases the overall and stage cross-efficiencies
more than model (14). Figures 6, 7, and 8 show the results.

Now, using model (14), assume that we want to improve the overall and stage cross-
efficiency of DMU2 from the perspective of DMU1. We only need to reduce the first to the
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Table 5 The results obtained from model (13) by expressions (9) and (11)

DMUj Cross-efficiency

Expression (9) Expression (11)

Stage 1 Stage 2 Overall Stage 1 Stage 2 Overall

1 0.3903 (12) 0.0791 (11) 0.0308 (16) 0.319927 (12) 0.072620 (9) 0.023233 (14)

2 0.6266 (5) 0.1124 (7) 0.0562 (6) 0.526978 (6) 0.103150 (5) 0.054358 (4)

3 0.6352 (4) 0.0836 (10) 0.0447 (9) 0.592335 (4) 0.072089 (10) 0.042701 (6)

4 0.5580 (7) 0.0837 (9) 0.0348 (13) 0.432596 (8) 0.073000 (8) 0.031579 (10)

5 0.0988 (20) 1.0000 (1) 0.0988 (2) 0.077596 (20) 1.000000 (1) 0.077596 (2)

6 0.1143 (19) 0.5457 (2) 0.0670 (4) 0.097672 (19) 0.180386 (3) 0.017619 (16)

7 0.3704 (13) 0.0039 (19) 0.0016 (19) 0.254308 (13) 0.000000 (18) 0.000000 (18)

8 0.5578 (8) 0.1510 (5) 0.0480 (7) 0.385574 (10) 0.087626 (6) 0.033786 (7)

9 0.5218 (9) 0.0999 (8) 0.0425 (10) 0.429499 (9) 0.070470 (11) 0.030267 (11)

10 0.1892 (17) 0.0391 (17) 0.0075 (18) 0.150453 (17) 0.031920 (17) 0.004802 (17)

11 0.5709 (6) 0.0522 (15) 0.0313 (15) 0.552802 (5) 0.042299 (16) 0.023383 (13)

12 0.9353 (1) 0.0614 (13) 0.0580 (5) 0.920560 (1) 0.060873 (12) 0.056037 (3)

13 0.9137 (2) 0.0507 (16) 0.0467 (8) 0.902178 (2) 0.050134 (15) 0.045230 (5)

14 0.7072 (3) 0.0528 (14) 0.0363 (12) 0.630880 (3) 0.052241 (14) 0.032958 (8)

15 0.3299 (14) 0.4886 (4) 0.1034 (1) 0.251653 (14) 0.319873 (2) 0.080497 (1)

16 0.1227 (18) 0.4945 (3) 0.0676 (3) 0.104071 (18) 0.179541 (4) 0.018685 (15)

17 0.3037 (15) 0.0030 (20) 0.0011 (20) 0.235788 (15) 0.000000 (19) 0.000000 (19)

18 0.4595 (11) 0.1239 (6) 0.0411 (11) 0.370435 (11) 0.087415 (7) 0.032382 (9)

19 0.5027 (10) 0.0724 (12) 0.0330 (14) 0.464576 (7) 0.060652 (13) 0.028178 (12)

20 0.2314 (16) 0.0310 (18) 0.0076 (17) 0.182483 (16) 0.000000 (20) 0.000000 (20)

fourth inputs from 178, 1762, 12,277, and 174 to 176.79, 1750.07, 12193.88, and 172.82,
respectively. Also, the first and the second outputs are enhanced from 770.7 and 4879 to
1971.25 and 12479.24, respectively. This leads to increased scores for overall and stage
cross-efficiency from 0.6266(5), 0.1124(7), and 0.0562(6) to 0.6308(6), 0.2876(13), and
0.1448(9), respectively. Using model (17), assume that we want to improve the overall and
stage cross-efficiencies of DMU2 from the perspective of DMU1. It is enough to change the
first, the second, the third, and the fourth inputs to 316.79, 1935.7, 23140.15, and 162.71,
and change the first and second outputs to 1976.33 and 9910.37, respectively. This leads
to increased overall and stage cross-efficiencies 0.7895(11), 0.6192(11), and 0.4264(11).
Therefore, model (17) suggests more improvements than model (14). Changes in the inputs
and outputs of DMU2 from the perspective of DMU6 are presented in Table 8.

Now, the question is how much the cross-efficiency scores of the DMUs change if they
are evaluated by black box DEA? As we know, the efficiency scores of the two-stage DEA
are lower than the efficiency scores of black box DEA as it considers DMUs with the internal
structure. In other words, more inefficient sources are identified in NDEA. Table 9 shows the
efficiency scores and cross-efficiency scores obtained from the two-stage DEA and the black
box DEA. As is seen, using black-box DEA, DMU3, DMU5, DMU6, DMU8, DMU9,
DMU11, DMU12, DMU13, DMU15, DMU16, and DMU19 are efficient and cannot be
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Table 8 Changes in the inputs and outputs of DMUs from the perspective of DMU6 derived from Model (17)

DMUj x ′
1 j x ′

2 j x ′
3 j x ′

4 j y′
1 j y′

2 j

1 47.99 1192.82 6779.86 224.85 28 906.71 28 906.71

2 48.61 1208.23 6867.48 227.76 29 213.18 29 213.18

3 35.09 872.33 4958.25 164.44 18 827.58 18 827.58

4 39.92 992.42 5640.80 187.08 21 038.39 21 038.39

5 2.31 57.46 326.60 10.83 2934.00 2934.00

6 7.75 192.63 1094.88 36.31 3682.00 3682.00

7 15.81 392.90 2233.20 74.06 7613.80 7613.80

8 33.61 835.54 4749.14 157.50 16 369.18 16 369.18

9 44.61 1108.87 6302.74 209.03 21 895.17 21 895.17

10 13.44 334.09 1898.92 62.98 6568.60 6568.60

11 84.1 2090.59 1882.74 394.09 63 726.83 63 726.83

12 84.29 2095.32 1909.62 394.98 64 555.38 64 555.38

13 35.00 870.00 4945.00 164.00 45 147.94 45 147.94

14 39.83 990.08 5627.55 186.64 46 856.58 46 856.58

15 29.33 728.95 4143.28 137.41 2923.00 2923.00

16 7.66 190.30 1081.63 35.87 4202.53 4202.53

17 15.72 390.70 2220.68 73.65 9507.91 9507.91

18 33.53 833.34 4736.63 157.09 21 867.10 21 867.10

19 44.52 1106.67 6290.22 208.61 35 644.34 35 644.34

20 13.35 331.76 1885.67 62.54 9041.88 9041.88

ranked. Based on the cross-efficiency evaluation, these DMUs received the scores (rank)
of 0.9111(5), 0.8935(6), 0.7665(8), 0.6621(9), 0.4747(14), 0.9449(2), 0.9743(1), 0.9344(3),
0.7789(7), and 0.5808(12), respectively. The overall efficiency scores (rank) of these DMUs
in the two-stage network are as follows: 0.0558(14), 0.2002(4), 0.2240(2), 0.1481(5),
0.0810(7), 0.0754(10), 0.0556(15), 0.2193(3), 0.2254(1), and 0.0673(12), respectively. The
overall cross-efficiency scores (rank) of these DMUs are 0.0447(9), 0.0988(2), 0.0670(4),
0.0425(10), 0.0313(15), 0.0580(5), 0.0467(8), 0.1034(1), 0.0676(3) and 0.0330(14), respec-
tively. Note that, using the cross-efficiency of basic two-stage DEA, the rank of DMU19 is
14, while its rank is first in the black-box CCR method. This is due to the internal structure
and the evaluation based on viewpoints of all DMUs. As a result, the cross-efficiency in
a two-stage network identifies more inefficient DMUs and provides better discrimination
among DMUs. Using the two-stage cross-efficiency model, the cross-efficiency of DMU15
drops to 0.1034. The worst DMU in terms of all methods is DMU17.

4.1 Managerial implications

Mathematical models provide important information for decision-makers. This paper offers
interesting tools for goal setting. The current study helpsmanagers to evaluateDMUs and sub-
DMUs irrespective of the influence of the weights. Also, the proposed method recommends
improving the performance of DMUs and sub-DMUs by determining the goals for inputs and
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Table 9 The efficiency and cross-efficiency scores obtained from two-stage DEA and black box DEA

DMUj DEA NDEA

Efficiency Cross-efficiency Efficiency Cross-efficiency

Model (1) Model (2) Model (3) Model (13)

1 0.9637 (13) 0.4634 (16) 0.0786 (9) 0.0308 (16)

2 0.9999 (12) 0.9162 (4) 0.0749 (11) 0.0562 (6)

3 1.0000 (1) 0.9111 (5) 0.0558 (14) 0.0447 (9)

4 0.6472 (16) 0.4658 (15) 0.0551 (16) 0.0348 (13)

5 1.0000 (1) 0.8935 (6) 0.2002 (4) 0.0988 (2)

6 1.0000 (1) 0.7665 (8) 0.2240 (2) 0.0670 (4)

7 0.0938 (19) 0.0195 (19) 0.0055 (19) 0.0016 (19)

8 1.0000 (1) 0.6008 (10) 0.1022 (6) 0.0480 (7)

9 1.0000 (1) 0.6621 (9) 0.1481 (5) 0.0425 (10)

10 0.3189 (18) 0.0998 (18) 0.0234 (17) 0.0075 (18)

11 1.0000 (1) 0.4747 (14) 0.0810 (7) 0.0313 (15)

12 1.0000 (1) 0.9449 (2) 0.0754 (10) 0.0580 (5)

13 1.0000 (1) 0.9743 (1) 0.0556 (15) 0.0467 (8)

14 0.6768 (15) 0.4882 (13) 0.0565 (13) 0.0363 (12)

15 1.0000 (1) 0.9344 (3) 0.2193 (3) 0.1034 (1)

16 1.0000 (1) 0.7789 (7) 0.2254 (1) 0.0676 (3)

17 0.0794 (20) 0.0162 (20) 0.0044 (20) 0.0011 (20)

18 0.9539 (14) 0.5860 (11) 0.0794 (8) 0.0411 (11)

19 1.0000 (1) 0.5808 (12) 0.0673 (12) 0.0330 (14)

20 0.3277 (17) 0.1020 (17) 0.0230 (18) 0.0076 (17)

outputs. In the case study, two approaches are suggested to improve the efficiency of DMUs
and sub-DMUs, including (1) decreasing inputs and increasing outputs, simultaneously; (2)
Changing the inputs and outputs, simultaneously. If managers wish to further improve the
efficiency of DMUs and sub-DMUs, simultaneous change of inputs and outputs produces
better results. Our method can evaluate the DMUs that cannot be assessed by Kao and Liu
(2019). In addition, in the proposed method, perfect discrimination exists among sub-DMUs.

The cross-efficiency scores of Table 10 are greater or equal to Table 9 (column 2). Also,
the changed inputs from the perspective of DMU1 and the improved scores of the cross-
efficiency obtained from Rödder and Reucher (2011) are presented in Tables 11. Similarly,
all the cross-efficiency scores of Table 11 are higher than Table 9 (column 2). As is seen, the
improved cross-efficiency of some DMUs in a two-stage network is bigger than the classic
DEA model. For instance, the improved cross-efficiency of DMU5, based on model (17), is
0.9960(1), while it is 0.9777(9) based on Rödder and Reucher (2011). This can be explained
by the simultaneous variation of inputs and outputs of a two-stage network. In contrast, in the
classical DEA, only the inputs are changed to increase the cross-efficiency scores. In some
DMUs, the improved cross-efficiency score of the two-stage network is lower than classical
DEA. For instance, using model (17), the improved two-stage cross-efficiency of DMU13,
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Table 10 Decrease of inputs, improved cross-efficiency scores, and ranks derived from Rödder and Reucher
(2011)

DMUj Decreased inputs Improved cross-efficiency

p∗
j x1 j p∗

j x2 j p∗
j x3 j p∗

j x4 j First model

1 248.63 4774.17 18 029.86 224.54 0.4808 (15)

2 177.98 1761.83 12 275.82 173.98 0.9163 (4)

3 43.00 870.00 4962.00 164.00 0.9111 (5)

4 65.36 3045.52 6371.27 76.36 0.7198 (10)

5 83.00 2119.00 8238.00 34.00 0.8935 (6)

6 73.00 2004.00 1800.00 262.00 0.7665 (8)

7 8.53 72.48 1557.98 8.44 0.2076 (19)

8 228.00 1349.00 16 664.00 112.00 0.6008 (13)

9 52.00 498.00 17 747.00 288.00 0.6621 (11)

10 52.31 1384.84 643.62 62.83 0.3130 (17)

11 250.00 4954.00 18 692.00 235.00 0.4747 (16)

12 170.00 1762.00 12 259.00 171.00 0.9449 (2)

13 35.00 870.00 4945.00 164.00 0.9743 (1)

14 62.95 3185.17 6651.91 79.87 0.7213 (9)

15 75.00 2119.00 8221.00 34.00 0.9344 (3)

16 65.00 2004.00 1783.00 262.00 0.7789 (7)

17 6.59 78.26 1317.33 9.52 0.2038 (20)

18 209.85 1286.75 15 877.93 157.39 0.6143 (12)

19 44.00 1498.00 17 730.00 288.00 0.5808 (14)

20 51.12 1422.86 655.72 58.00 0.3114 (18)

is 0.9814(2) (Table 7), while in the classic DEA it is 0.9987(4). This can be attributed to the
presence of intermediate measure, although internal measure remains unchanged.

5 Discussion and sensitivity analysis

In evaluating the performance of university units, the optimal weights of all units were
obtained from different perspectives. In Tables 4, 6, and 7, the overall and stages cross-
efficiency scores, their improvements, and their targets for the inputs and final outputs were
reported using models (14) and (17). Compared with Tables 3, 6 showed that the radial
decrease of inputs and radial increase of final outputs resulted in improvement of the overall
and stages cross-efficiency. Furthermore, changing both the inputs and final outputs led to the
highest level of improvement in cross-efficiency scores. In a two-stage NDEA, we should not
only improve the cross-efficiency, but also the amount of change in the inputs and outputs is
important. Target setting of the inputs and outputs should be cost-effective. Although model
(17) increases cross-efficiency more than model (14), the change of inputs and outputs is
more than model (14). However, dramatic changes of inputs and outputs are so tough for
managers. In this paper, targets are set for the inputs and outputs to improve the overall and
stages cross-efficiencies ofDMUs.According tomodel (17), by changing the optimalweights
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Table 11 Change of inputs, improved cross-efficiency scores, and the ranks derived from Rödder and Reucher
(2011)

DMUj Changed inputs Improved cross-efficiency

x ′
1 j x ′

2 j x ′
3 j x ′

4 j Second model

1 239.70 4758.91 18 041.04 232.03 0.5499 (17)

2 80.89 2106.08 10 537.98 260.05 0.9995 (2)

3 36.72 956.58 4349.98 167.22 0.9905 (6)

4 39.78 1008.30 5249.01 184.26 0.9956 (5)

5 66.66 1848.46 7632.14 73.70 0.9777 (9)

6 65.21 2010.55 1788.83 262.86 0.8736 (16)

7 5.53 109.64 413.67 5.20 0.4150 (19)

8 76.54 2315.34 2947.45 313.40 0.9060 (14)

9 63.39 1856.10 3613.81 266.31 0.9469 (12)

10 6.53 176.82 645.49 29.00 0.9812 (8)

11 250.00 4954.00 18 692.00 235.00 0.5403 (18)

12 93.89 2182.59 11 268.97 327.51 1.0000 (1)

13 35.00 870.00 4945.00 164.00 0.9987 (4)

14 43.67 1120.69 5841.07 160.71 0.9992 (3)

15 75.00 2119.00 8221.00 34.00 0.9662 (10)

16 65.00 2004.00 1783.00 262.00 0.8755 (15)

17 5.79 114.80 433.14 5.45 0.3613 (20)

18 74.81 2228.07 3543.09 310.10 0.9268 (13)

19 61.68 1769.38 4209.91 263.08 0.9592 (11)

20 6.29 168.47 657.66 28.14 0.9842 (7)

from one unit to another, cross-efficiency is improved. The sensitivity analysis of targets for
the inputs and outputs can give better insight for managers. To find the least changes of
the inputs and outputs and to increase the cross-efficiency from the perspective of optimal
weights of DMUs, the following expression is presented:

aki j � xki j
xi j

, k, j � 1, ..., n, i � 1, ...,m,

bkr j � ykr j
yi j

, k, j � 1, ..., n, r � 1, ..., s.

(20)

In Expression (20), the higher ratio, the more cross-efficiency with fewer changes in
inputs and outputs. Therefore, to determine the cost-effectiveness of changes in the inputs
and outputs, Expression (20) can be calculated for all DMUs from the perspective of optimal
weights of other DMUs. For example, Table 12 shows aki j and bkr j for DMU1 given the
optimal weights of all DMUs.

As is seen in Table 12, the values of aki j and bkr j for DMU1 are the same in terms
of the optimal weights of units 1, 8, and 11, and the values are closer to one. Therefore,
changing the inputs and final outputs of DMU1 from (258, 4954, 18709, 233, 1480, 2420)
to (312.6, 1910.82, 22833.48, 160.65, 1971.54, 9886.37) is better than improving the
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Table 12 Relative changes of inputs and outputs for DMU1 from the perspective of all DMUs derived from
Model (17)

DMUk a1 j a2 j a3 j a4 j b1 j b2 j

1 1.21 0.39 1.22 0.69 1.33 4.09

2 0.22 0.24 0.36 0.96 1.31 11.94

3 0.21 0.13 0.93 1.28 1.31 11.94

4 0.47 1.14 0.63 0.61 1.31 11.94

5 0.47 1.14 0.63 0.61 1.31 11.94

6 0.19 0.24 0.36 0.97 1.31 11.94

7 0.22 0.24 0.36 0.96 1.31 4.09

8 1.21 0.39 1.22 0.69 1.33 11.94

9 0.21 0.13 0.93 1.28 1.31 11.94

10 0.19 0.24 0.36 0.97 1.31 11.94

11 1.21 0.39 1.22 0.69 1.33 4.09

12 0.43 1.14 0.63 0.61 1.31 11.94

13 0.19 0.24 0.36 0.97 1.31 11.94

14 0.43 1.14 0.63 0.61 1.31 11.94

15 0.47 1.14 0.63 0.61 1.31 4.09

16 0.19 0.24 0.36 0.97 1.31 11.94

17 0.22 0.24 0.36 0.96 1.31 4.09

18 0.22 0.24 0.36 0.96 1.31 11.94

19 0.18 0.33 1.02 1.33 1.31 11.94

20 0.19 0.24 0.36 0.97 1.31 11.94

overall and stages cross-efficiency scores by the optimal weights of units, 8, and
11. Also, as is seen in Table 4, the inputs of DMU1. are decreased by fac-
tor p∗

1 � 0.68 and the final output is increased by factor q∗
1 � 1.33.

In other words, to improve the overall and stages cross-efficiencies, the inputs
and outputs of DMU1 are changed from (258, 4954, 18709, 233, 1480, 2420) to
(174.39, 3348.9, 12645.75, 157.49, 1971.54, 3223.74). Although Model (17), compared to
Model (14), takes into account more changes in the inputs and final outputs, the effect of this
change can be partially adjusted by a suitable choice of the optimal weights of other DMUs.
At this stage, the decision-maker can adopt the necessary strategy to improve the overall and
stages cross-efficiency given the goals of the DMUs.

6 Conclusions

The use of cross-efficiency is considered as a form of weight control to avoid unreal weights.
This method ranks all DMUs. In many traditional DEA models, the interior structure of
DMUs is ignored, and DMUs are treated as black boxes. In this paper, we employed a new
benevolent approach in a two-stage cross-efficiency network. It was observed that the overall
cross-efficiency scores in a two-stage network are lower than black-box cross-efficiency
scores. Also, there was better discrimination among DMUs. In other words, the evaluation of
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cross-efficiency by considering the internal structure ofDMUs has led to further identification
of sources of inefficiency of DMUs. At the same time, this helped us to avoid the selection
of unrealistic weights in evaluating DMUs with network structures.

By defining the overall and stage cross-efficiency scores based on the geometric mean
of overall and stage cross-efficiency of Kao and Liu (2019), we proved that the overall
cross-efficiency scores can be decomposed as a multiplicative relationship between the stage
cross-efficiency scores. However, Kao and Liu’s (2019) definition is not appropriate because
some of the overall and stage cross-efficiencies become zero. Therefore, in the two-stage
DEA, we proposed a new definition of overall and stage cross-efficiencies.

To improve the overall and stage cross-efficiencies in a two-stage network, two approaches
were proposed. Compared with a simultaneous decrease in inputs and increase in outputs,
the results showed that the overall and stage cross-efficiencies were improved significantly.
Also, it was shown that to improve the cross-efficiency of DMUs, simultaneous output/input
change in two-stage network leads to more improvements in cross-efficiency scores of all
DMUs. To increase the overall and stage cross-efficiencies, models (14) and (17) do not
adopt the same approach. Model (14) follows a radial approach, while model (17) adopts a
non-radial and component by component approach to improve cross-efficiency. Each of the
models can be used given the real-world situation.

In this paper, the stage and overall cross-efficiency scores were evaluated based on
the benevolent method. Including aggressive and neutral approaches can be an interesting
research topic. Also, in this study, we assumed that the intermediate measures are fixed. It
seems an interesting study to examine the conditions in which the stages efficiency can be
improved by changing the intermediate measures. Furthermore, the provided decomposition
of overall cross-efficiency score based on the stage scores is straightforward and easy to
interpret. The idea of decomposing based on a weighted sum of the stage efficiencies is also
another option, which can be considered as an alternative approach. Besides, in this research,
assuming CRS, we developed a two-stage cross-efficiency DEA model. Developing a new
two-stage cross-efficiency DEAmodel with VRS assumption will be an interesting topic that
can be addressed in future works.
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