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Abstract
We analyze the problem of constructing multiple buy-and-hold mean-variance portfolios
over increasing investment horizons in continuous-time arbitrage-free stochastic interest rate
markets. The orthogonal approach to the one-period mean-variance optimization of Hansen
and Richard (Econometrica 55(3):587–613, 1987) requires the replication of a risky payoff
for each investment horizon.Whenmanymaturities are considered, a large number of payoffs
must be replicated, with an impact on transaction costs. In this paper, we orthogonally decom-
pose thewhole processes defined by asset returns to obtain amean-variance frontier generated
by the same two securities across a multiplicity of horizons. Our risk-adjusted mean-variance
frontier rests on themartingale property of the returns discounted by the log-optimal portfolio
and features a horizon consistency property. The outcome is that the replication of a single
risky payoff is required to implement such frontier at any investment horizon. As a result,
when transaction costs are taken into account, our risk-adjusted mean-variance frontier may
outperform the traditional mean-variance optimal strategies in terms of Sharpe ratio. Real-
istic numerical examples show the improvements of our approach in medium- or long-term
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cashflow management, when a sequence of target returns at increasing investment horizons
is considered.

Keywords Return decomposition · Multiple horizons · Horizon consistency ·
Mean-variance frontier · Martingale pricing · Stochastic interest rates

JEL Classification G11 · G12

1 Motivations andmain results

The mean-variance approach to portfolio optimization first formalized by the seminal work
of Markowitz (1952) is a cornerstone in finance theory. In the standard formulation of the
problem, an investor at time zero has to build a buy-and-hold portfolio to be liquidated at a
given fixed investment horizon. When setting up this portfolio, the investor sets the desired
portfolio’s expected return and tries to minimize its variance. For any possible expected
return, the optimal minimum variance portfolio lies on the so-called mean-variance frontier.
However, if the investor at time zero needs to set up many optimal (in this mean-variance
sense) buy-and-hold portfolios to be liquidated at different investment horizons, the standard
one-period approach is of no help and the investor should solve many separate problems
dealing with one investment horizon per time. Working on this limitation, in this paper
we propose a novel approach to multi-horizon mean-variance portfolio allocation. More
precisely, we formally describe a new way to solve a static multi-horizon portfolio allocation
problem as a whole, rather than as a set of separate problems. Despite our approach turns out
to be slightly suboptimal in a frictionless financial market, it does prove to be competitive
when realistic trading and replication costs are accounted for.

This multi-horizon portfolio allocation problem is of utmost importance for insurance
companies, pension funds and any financial intermediary managing long-termmultiple cash-
flows, such as annuities. For example, consider an investor who wants to meet N expected
return targets at N subsequent horizons by investing in N buy-and-hold portfolios.1 These
portfolios have to attain the targets while displaying the minimum possible variance each (the
proper formalization of such an example is in Sect. 5). According to the standard one-period
mean-variance approach, the investor should solve N different problems that would lead to
N optimal portfolios. In general, the components of these N optimal portfolios are going to
be completely different. On the contrary, following our approach, the investor will still need
to build N different buy-and-hold portfolios, but the components of all of these portfolios
will be always the same. When transaction costs (and, in particular, replication ones) are
taken into account, our solution leads to substantial savings.

Our approach is based on two fundamental building blocks of modern finance theory:
the orthogonal characterization of the mean-variance frontier, as first derived by Hansen and
Richard (1987), and the properties of the log-optimal portfolio when used as a numéraire,
as derived by Long (1990). In their celebrated paper, Hansen and Richard (1987) solve the
standard one-period mean-variance allocation problem providing an orthogonal decompo-
sition of the set of all attainable portfolio returns. Using this decomposition, they describe
the returns of the portfolios on the mean-variance frontier as linear combinations of only

1 In a multi-horizon portfolio allocation problem, the restriction to buy-and-hold portfolios only might seem
too strict. However, when transaction costs are take into account, rebalancing strategies might become quite
expensive and possibly suboptimal, like in the case of replication of a simple derivative in Soner et al. (1995).
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two fundamental ones: the return associated to the only traded stochastic discount factor
and the one associated with the risk-free security. However, when taking a multi-horizon
perspective, this approach suffers from the same limitation described above: returns that lie
on the mean-variance frontier at T generally do not exhibit this desirable property at any
intermediate date t before T . As a consequence, frontiers at different horizons are generated
by different portfolios.

To tackle this issue, we propose an orthogonal decomposition of returns expressed in units
of the log-optimal portfolio. This portfolio,which is the one thatmaximizes the expected value
of the terminal wealth of a log-utility investor, was first introduced by Kelly (1956), while
its properties if used as a numéraire were formalized by Long (1990). Using this portfolio
as a numéraire, we obtain a new mean-variance frontier, that we call risk-adjusted frontier,
which is spanned by the same two securities (a risky one and a riskless one) irrespective
of the time horizon. Considering again the multi-horizon problem above, according to our
risk-adjusted approach, the investor has to replicate only one fundamental security as all the
N optimal portfolios involve different units of the same assets. As a result, after incorporating
transaction costs in the analysis, risk-adjusted mean-variance portfolios can display a higher
Sharpe ratio than classical mean-variance portfolios. Numerical examples of the magnitude
of these savings are given in Sect. 5, in the contexts of fixed-incomemarkets and life annuities.

To give a snapshot of our construction, we consider a continuous-time arbitrage-free mar-
ketwith finite horizon T , stochastic interest rates and a bunch of risky securities. Pure discount
bonds with any expiry are traded, too, as well as the log-optimal portfolio (details in Sect.
2.1). All the results are presented in a conditional setting, where we take into consideration
two sources of randomness: prices of primary assets and instantaneous rates.

In order to decompose asset returns, in Sect. 2.2 we construct the space H T
s of conditional

martingales obtained by discounting asset returns by the value of the log-optimal portfolio.
Specifically, H T

s is endowed with an inner product based on the conditional expectation of
martingale terminal values. The overall structure is termedHilbertmodule byCerreia-Vioglio
et al. (2017). Interestingly, no-arbitrage prices feature an inner product representation in H T

s ,
in agreement with the literature since Harrison and Kreps (1979). After decomposing the
module H T

s , in Corollary 2 we show that a return process {uτ (s)}τ∈[s,T ], where each uτ (s)
is the ratio of no-arbitrage prices πτ /πs , satisfies the orthogonal decomposition

uτ (s) = gτ (s) + ωseτ (s) + nτ (s) ∀τ ∈ [s, T ]
in the spirit of Hansen and Richard (1987). Here g(s) is the so-called log-optimal return,
namely the return of the log-optimal portfolio; e(s) is the mean excess return, namely the dif-
ference between the zero-coupon T -bond return and the log-optimal one; n(s) is an additional
zero-price return that represents idiosyncratic risk and ωs is a random weight measurable at
time s. All returns in the decomposition are (conditionally) orthogonal, with an orthogonality
condition implied by the structure of H T

s . In addition, the associated risk-adjusted mean-
variance frontier in the period [s, T ] is made up of asset returns with null n(s) (see Theorem
3). As risk-adjusted mean variance returns can be represented as linear combinations of just
two out of three components of the orthogonal decomposition derived above, a Two-fund
Separation Theorem holds (Theorem 5) and so the frontier turns out to be spanned by g(s)
and the return f (s) associated with a pure discount T -bond. Importantly, it is possible to
decompose returns also in any subperiod [s, t] with t ≤ T in an analogous way and the
resulting risk-adjusted mean variance frontier at t is always spanned by the same returns g(s)
and f (s), namely the returns on the very same portfolios (the log-optimal portfolio and the
pure discount T -bond). Note that the use of the log-optimal portfolio and the risk-neutral
variance of asset returns shares some similarities with Martin and Wagner (2019).
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The main advantage of our decompositions is horizon consistency. Since we decompose
the process that defines returns over the longest horizon, restrictions on closer horizons
naturally obtain. Moreover, the orthogonality relations at different horizons ensure that a
horizon consistency property holds for ourmean-variance returns: returns on the risk-adjusted
mean-variance frontier at horizon T are risk-adjusted mean-variance returns at horizon t , too
(Proposition 4). For example, a buy-and-hold one-year horizon risk-adjusted mean-variance
portfolio turns out to lie on the risk-adjusted mean-variance frontier also at the six-month
horizon. In fact, our risk-adjusted mean-variance frontiers are spanned by the same two
assets across a continuum of horizons, a crucial property for the practitioners. This feature is
absent in the classical treatment of mean-variance portfolio selection, where secondmoments
computed with respect to different information structures are usually incomparable.

Similarly to Cochrane (2014), we provide in Sect. 6 a microeconomic foundation of our
risk-adjusted mean-variance frontier by showing that our mean-variance returns are optimal
for a specific quadratic utility agent that solves a consumption-investment problem. In agree-
ment with our theory, the arising optimal portfolio turns out to be horizon-consistent. Finally,
the Appendix contains some complements of the theory and additional simulations.

1.1 Additional related literature

As it is well-known, one-period mean-variance portfolio analysis has its roots in the seminal
works by Markowitz (1952), Tobin (1958) and Sharpe (1964) and the abstract formalization
is provided by Hansen and Richard (1987). The development in the last decades has been
huge and its summary goes beyond our scope. Interestingly, multi-period dynamic extensions
of mean-variance optimization have been proposed in the literature. Remarkable examples
are given by Li and Ng (2000), Zhou and Li (2000) and Leippold et al. (2004) among the
others. However, differently from our multi-horizon approach, intermediate dates are only
useful for rebalancing purposes, and no intermediate target is considered.

Our risk-adjusted mean-variance frontier features a horizon consistency property that
allows to generate optimal returns via the same two securities across a sequence of matu-
rities. The literature mainly concentrates on time consistency of portfolio or consumption
choices, which is an old issue of economic theory. A first distinction between precommitment
and consistent planning can be retrieved in the seminal work by Strotz (1955). In addition,
Mossin (1968) highlights the inconsistency of multiperiod mean-variance analysis because
the quadratic utility does not satisfy the Bellman principle of optimality. These important
issues are also discussed inBasak andChabakauri (2010) andCzichowsky (2013).VanStaden
et al. (2018) provide a detailed summary of the two literature streams – one related to precom-
mitment, the other to time consistency. Themean-variance theory proposed here is peculiar in
this respect. Indeed, it shares some aspects of both streams: the horizon consistency transfers
the logic of time consistency to the investment horizon and our application to multi-horizon
portfolio allocation lies within the precommitment paradigm (the problem is solved ex ante
and the investor never changes the plan). The addressed problem is, in fact, peculiar and dif-
ferent from the ones treated in the literature because we are considering multiple investment
targets at increasing maturities.

As we already mentioned, our mean-variance theory is designed in a conditional frame-
work. For a comparison between conditional and unconditional mean-variance optimization,
one can refer to Ferson and Siegel (2001), where mean-variance optimization problems
in the presence of conditioning information are discussed. It is also worth mentioning the
parallel literature stream about the use of conditional information for the mean-variance
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frontier of stochastic discount factors. Starting from the celebrated dual result of Hansen and
Jagannathan (1991), conditional variance bounds on pricing kernels have been illustrated
by Bekaert and Liu (2004), Ferson and Siegel (2003) and Gallant et al. (1990), among the
others. See, e.g. the review in Favero et al. (2020).

2 Framework and essentials

We describe the asset pricing framework and the essential tools for the intertemporal decom-
position of returns. We simultaneously introduce the notation of the paper.

2.1 Arbitrage-freemarket and numéraire changes

Fix T > 0 and consider a filtered probability space (�,F,F, P), where P is the physical
measure and the filtration F = {Ft }t∈[0,T ] satisfies the usual conditions.

The adapted process Y = {Yt }t∈[0,T ] represents the stochastic instantaneous rate. The

money market account has value Bt = e
∫ t
0 Yτ dτ at any time t . Pure discount bonds with any

possible maturity and face value equal to 1 are traded. Let {πt (1T )}t∈[0,T ] denote the price of
a pure discount T -bond at time t . The yield tomaturity at time t is r T

t = − logπt (1T )/(T −t)
and r T

T denotes the a.s. (finite) limit of r T
t when t approaches T .

Additional risky securities, with adapted price processes, can be traded in the market.
While completeness of the financial market is not required here, we assume that the log-
optimal portfolio (or growth optimal portfolio or numéraire portfolio) is traded in the market.
This self-financing portfolio, first introduced by Kelly (1956), is the one that maximizes the
expected utility on the terminal wealth of a log-utility investor with initial wealth equal to
1 (see also Chap. 20 of Björk (2009), for the formal definition and the properties of this
portfolio in a continuous time framework). Let N = {Nt }t∈[0,T ] be the price process of the
log-optimal portfolio at any t . This portfolio has a very important property: prices of traded
securities expressed in units of the log-optimal portfolio are martingales under P (see Long
(1990), and Sect. 26.9 in Björk (2009)). Under this assumption, the market is free of arbitrage
opportunities. We refer to Sect. 2.1.1 for the explicit construction of the log-optimal portfolio
via self-financing trading in a generic financial market.

Along with the log-optimal portfolio, another standard choice for the numéraire is the
money market account B. Using this as numéraire, we obtain a risk-neutral measure, under
which prices of traded securities denominated in units of the money market account B are
martingales. Notice that, since we are not assuming market completeness, there could be
infinitely many risk-neutral measures.

There is yet another standard way to denominate prices. As a third different numéraire,
we consider the pure discount T -bond, with price πt (1T ). Using this as numéraire, we obtain
the forward measure with horizon T (or T -forward measure). See Geman et al. (1995).

It is now important to identify one precise risk-neutral (and T -forward) measure and link it
to the original physical measure. As a consequence of the first order conditions of the optimal
investment problem underlying the log-optimal portfolio, the inverse of its value process is
a stochastic discount factor for the market. We denote this stochastic discount factor by
M = {Mt }t∈[0,T ] and we set Mt,T = MT /Mt . By construction, clearly M0,t = N−1

t .
Among the possibly infinitely many risk-neutral measures, we label by Q the only one
whose Radon-Nikodym derivative w.r.t. P on FT , LT = d Q/d P , satisfies Lt = Bt/Nt , or,
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Table 1 Summary of the numéraires and the related Equivalent Martingale Measures involved in the paper

Numéraire Symbol Equivalent Radon-Nikodym Equivalent
Martingale derivative expression
Measure w.r.t. P on Ft for Mt

Log-optimal portfolio Nt P – –

Money market account Bt Q Lt e− ∫ t
0 Yτ dτ Lt

T -zero coupon bond πt (1T ) F Gt er T
t (T −t)−r T

0 T Gt

equivalently, Mt = e− ∫ t
0 Yτ dτ Lt , with Lt = Et [LT ].2 As in Harrison and Kreps (1979), we

assume that e− ∫ t
0 Yτ dτ Lt belongs to L2(Ft ) for all t . Moreover, we define Lt,T = LT /Lt at

any time t ∈ [0, T ].
We also select in the same way a precise T -forward measure. In particular, we label by
F the only forward measure whose Radon-Nikodym derivative with respect to P on FT ,
GT = d F/d P , satisfies Gt = er T

0 T −r T
t (T −t)/Nt , or, equivalently, Mt = er T

t (T −t)−r T
0 T Gt ,

with Gt = Et [GT ]. Notice that, since e− ∫ T
0 Yτ dτ LT belongs to L2(FT ), GT belongs to

L2(FT ). We also set Gt,T = GT /Gt . Further details on these changes of measure are
provided in App. A.

As this precise forward measure F will play a key role in the paper, we point out that,
under F , the pricing kernel in any interval [s, t] with s ≤ t ≤ T becomes

Ms,t = er T
t (T −t)−r T

s (T −s)Gs,t . (1)

Finally, any attainable FT -measurable payoff hT with finite EF [|hT |] has the no-arbitrage
price at time t

πt (hT ) = Et
[
Mt,T hT

] = e−r T
t (T −t)

E
F
t [hT ] . (2)

We find it useful to summarize the different numéraires and the related probability measures
we introduced so far in Table 1.

2.1.1 The log-optimal portfolio construction

Here we provide the recipe to construct the self-financing strategy whose value is the log-
optimal portfolio Nt = M−1

0,t in a rather general setting.3 We assume that the pricing kernel
M0,t is the continuous Itô semimartingale with dynamics

d M0,t

M0,t
= −Yt dt − νt

′dWP
t ,

where ν = {νt }t∈[0,T ] is ad-dimensional adaptedprocesswith entriesν(i) = {ν(i)
t }t∈[0,T ] such

that
∫ T
0 E[(ν(i)

t )2]dt < +∞ for i = 1, . . . , d , and WP = {WP
t }t∈[0,T ] is a d-dimensional

independent Wiener process. The vector ν represents, as usual, the market price of risk.

2 Here, Et denotes the conditional expectation with respect to Ft under the measure P .
3 We point out that, here and throughout the paper, we adopt the somehow generic notation Mt for the only
stochastic discount factor whose value process equals the inverse of the value process of the log-optimal
portfolio.
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By applying the multidimensional Itô’s formula (Theorem 4.16 in Björk (2009)) to the
function ϕ(t, M0,t ) = M−1

0,t = Nt , we get

d Nt

Nt
= [

Yt + νt
′νt
]

dt + νt
′dWP

t . (3)

To construct the log-optimal portfolio one needs to rewrite the previous expression in terms
of the infinitesimal price increments of the traded securities. For instance, from the money
market account dynamics d Bt = Yt Bt dt , it is immediate to retrieve dt = d Bt/(Yt Bt ). If d
risky securities with values X = {Xt }t∈[0,T ] are traded, we can find the adapted processes
θ B = {

θ B
t

}
t∈[0,T ] and (the d-dimensional) θ = {θt}t∈[0,T ] such that

d Nt = θ B
t d Bt + θt

′dXt .

This equation represents the dynamics of the self-financing portfolio that provides the log-
optimal portfolio by investing in θ B

t units of the money market account and in θt units of the
risky assets. An example with explicit formulas can be found at the end of Sect. 5.1.

2.2 The Hilbert modules Ht
s and linear pricing functionals

In the filtered probability space (�,F,F, P) we fix an instant s ∈ [0, T ] and develop some
tools to deal with conditioning information in Fs . We start with considering at any time
t ∈ [s, T ] the conditional L1-space L1

s (Ft ) = { f ∈ L0(Ft ) : Es[| f |] ∈ L0(Fs)}. Cerreia-
Vioglio et al. (2016) show that L1

s (Ft ) is an L0-modulewith themultiplicative decomposition
L1

s (Ft ) = L0(Fs)L1(Ft ).4

In our construction, we consider adapted processes that take values in L1
s (Ft ). An impor-

tant role will be played by conditional (or generalized) martingales. We use this terminology
for processes ẑ defined in the time interval [s, t] with all the properties of martingales except
for integrability, which is replaced by the weaker condition Es[|ẑ(τ )|] ∈ L0(Fs) for all
τ ∈ [s, t]. See, e.g., Chap. VII, Sect. 1 of Shiryaev (1996). For any t ∈ [s, T ] we define the
space

Ht
s =

{
conditional martingale ẑ : [s, t] → L1

s (Ft ) , Es

[
ẑ2t
]

∈ L0 (Fs)
}

,

Ht
s contains the price processes discounted by the log-optimal portfolio with the appropriate

square-integrability condition.5 For our construction the relation between Ht1
s and Ht2

s with
t1 ≤ t2 is crucial: if ẑ belongs to Ht2

s , then its restriction on [s, t1] belongs to Ht1
s .6

Fixed t ∈ [s, T ], Ht
s is a pre-Hilbert module on the algebra L0(Fs) when we define the

outer product · : L0(Fs) × Ht
s → Ht

s and the L0-valued inner product 〈 , 〉t
s : Ht

s × Ht
s →

L0(Fs) respectively by

as · ẑ = as ẑ,
〈
ẑ, v̂

〉t
s = Es

[
ẑt v̂t

]
.

4 Clearly, L1
s (Ft ) contains all functions f in L1(Ft ): in this case Es [| f |] ∈ L1(Fs ). In general, however, the

conditional expectation is defined for random variables that are merely in L0(Ft ) as discussed, for instance,
in Chap. II, Sect. 7 of Shiryaev (1996).
5 Ht

s can be characterized in differential terms: see Proposition 2.4 in Marinacci and Severino (2018) about
weak time-derivatives and Subsection 2.4 in Severino (2021).
6 Indeed, the conditional expectationof ẑ2t1 is always defined as an extended real randomvariable andEs [ẑ2t1 ] ≤
Es [ẑ2t2 ].
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The inner product homogeneity with respect to Fs-measurable variables, i.e.
〈
as · ẑ, v̂

〉t
s =

as
〈
ẑ, v̂

〉t
s for any ẑ, v̂ in Ht

s and as in L0(Fs), is relevant for financial applications because
it allows for contingent strategies in portfolio management. Moreover, the inner product
structure delivers a natural notion of orthogonality: two processes ẑ, v̂ in Ht

s are orthogonal
when

〈
ẑ, v̂

〉t
s = Es

[
ẑt v̂t

] = 0. Our inner product mimics the structure of Hansen and Richard
(1987) and Gallant et al. (1990), who define a conditional asset pricing framework under P .
Here, we will apply such an approach to the martingale processes induced by discounted
prices in a risk neutral framework.

Importantly, Ht
s is a selfdual pre-Hilbert module or, more simply, a Hilbert module (see

Proposition 9 in App. B). The selfduality property allows for an inner product representation
of any L0-linear and bounded functional on Ht

s (see Definition 2 in Cerreia-Vioglio et al.,
2017). This is true, in particular, for linear pricing functionals, consistently with the asset
pricing literature: see, e.g. Harrison and Kreps (1979), Ross (1978) and Hansen and Richard
(1987).

To elucidate this point, consider an Ft -measurable payoff ht with Es[M2
s,t h

2
t ] in L0(Fs).

Consider, then, the process of prices discounted by the log-optimal portfolio ĥ = {ĥτ }τ∈[s,t]
defined by ĥτ = Ms,τ πτ (ht ). Such process belongs to Ht

s and ĥs = πs(ht ) = Es[Ms,t ht ].
Hence, the no-arbitrage price of Eq. (2) induces the L0-valued functional	s : Ht

s → L0(Fs)

such that

	s : ĥ 
→ ĥs .

	s is a positive, L0-linear bounded functional and, in line with the selfduality of Ht
s , it is

represented by the L0-valued inner product

	s

(
ĥ
)

=
〈
ĝt

(s), ĥ
〉t

s
with ĝt

τ (s) = 1 ∀τ ∈ [s, t] (4)

for any ĥ ∈ Ht
s . The constant conditionalmartingale ĝt

(s) clearly belongs to Ht
s . This process

plays a fundamental role in our return decomposition and its financial meaning is related to
the log-optimal portfolio (see Sect. 3.2).

3 Return decomposition

In this section we build the relation between asset returns and conditional martingales in
Ht

s with t ∈ [s, T ]. We orthogonally decompose any Ht
s by exploiting the L0-valued inner

product 〈 , 〉t
s and, as a consequence, we retrieve a decomposition of returns. As illustrated

in Sect. 3.3 of Cerreia-Vioglio et al. (2019), the decomposition of a Hilbert module needs
topological conditions in order to be well-defined. Nevertheless, in case H is a selfdual
L0-module and M is a finitely generated submodule, the decomposition H = M ⊕ M⊥ is
well-posed (here M⊥ denotes the orthogonal complement of M in H ). This is the case of our
interest, because we deal with submodules generated by single return processes, specifically
g(s) and e(s) that we define in Sects. 3.2 and 3.3. Once the decomposition of modules is
established in Theorem 1, we determine in Corollary 2 a decomposition of asset returns.
Our result parallels Hansen and Richard (1987) decomposition but it exploits a different
orthogonality condition inspired by the martingale processes induced by asset returns.
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3.1 Return definition

Consider the time τ between s and T . In our theory, a return of a traded asset at time τ is an
Fτ -measurable random variable uτ (s) satisfying

Es
[
Ms,τ uτ (s)

] = 1 ∀τ ∈ [s, T ] and Es[M2
s,T u2

T ] ∈ L0(Fs). (5)

The related return process is the adapted process u(s) = {uτ (s)}τ∈[s,T ]. To be precise, when
dealing with t ∈ [s, T ], we will call return process in [s, t] the restriction of u(s) on the time
interval [s, t].

As an example, we can consider an attainable payoff hT at time T such thatEs[M2
s,T h2

T ] ∈
L0(Fs). At each τ ∈ [s, T ], the return is the ratio of no-arbitrage prices uτ (s) =
πτ (hT )/πs(hT ) and the relations in (5) are fulfilled.

Importantly, by discounting returns by the values of the log-optimal portfolio, we obtain a
conditional martingale, that we denote by ûT

(s), which belongs to H T
s . In particular, ûT

(s)
satisfies

ûT
τ (s) = Ms,τ uτ (s) ∀τ ∈ [s, T ] and ûT

s (s) = 1. (6)

Hence, asset returns are mapped into conditional martingales in H T
s . Moreover, return pro-

cesses define conditional martingales also in any time subinterval [s, t] with t ≤ T . Indeed,
we define ût

(s) in Ht
s as the restriction of ûT

(s) on [s, t]:
ût

τ (s) = Ms,τ uτ (s) ∀τ ∈ [s, t] and ût
s(s) = 1. (7)

Example 1 Consider a zero-coupon bond with expiry T . In this case, the return process and
the associated conditional martingale in H T

s are

fτ (s) = πτ (1T )

πs(1T )
, f̂

T
τ (s) = Gs,τ ∀τ ∈ [s, T ], (8)

where Gs,τ is defined in Sect. 2.1. Indeed, by using the relation in (6) and the expression of
the pricing kernel in Eq. (1), for any τ in [s, T ] we find

f̂
T
τ (s) = Ms,τ

πτ (1T )

πs(1T )
= er T

τ (T −τ)−r T
s (T −s)Gs,τ

πτ (1T )

πs(1T )
= Gs,τ .

Example 2 Suppose thatEs[G4
T ] belongs to L0(Fs) and consider a payoff at T that coincides

with the pricing kernel Ms,T . This payoff is fundamental in themean-variance decomposition
of Hansen and Richard (1987). By the previous relations, the related return process and the
conditional martingale in H T

s are given by

uτ (s) = Eτ

[
G2

T

]

Ms,τEs
[
G2

T

] , ûT
τ (s) = Eτ

[
G2

T

]

Es
[
G2

T

] ∀τ ∈ [s, T ].

Indeed, the no-arbitrage price at time τ associated with Ms,T is πτ (Ms,T ) = Eτ [Mτ,T Ms,T ],
while the price at time s is πs(Ms,T ) = Es[M2

s,T ]. By taking the ratio of no-arbitrage prices
and by using Eq. (1), we find the return

uτ (s) = Eτ

[
Mτ,T Ms,T

]

Es

[
M2

s,T

] = e−r T
τ (T −τ)e−r T

s (T −s)
Eτ

[
G2

T

]

Gτ Gs

G2
s

e−2r T
s (T −s)Es

[
G2

T

]

= e−r T
τ (T −τ)

Eτ

[
G2

T

]

Gτ

Gs

e−r T
s (T −s)Es

[
G2

T

] = Eτ

[
G2

T

]

Ms,τEs
[
G2

T

] .
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The conditional martingale ûT
(s) associated with this return comes from the relation in (6).

3.2 The log-optimal return g(s)

Fix t ∈ [s, T ]. We define the submodule of Ht
s associated with zero-price payoffs (or excess

returns)

◦
Ht

s = {
ι̂
t
(s) ∈ Ht

s : Es
[
Ms,t ιt (s)

] = 0
}

= {
ι̂
t
(s) ∈ Ht

s : Es
[
ι̂
t
t (s)

] = ι̂
t
s(s) = 0

}

=
{
ι̂
t
(s) ∈ Ht

s : 〈
ĝt

(s), ι̂t (s)
〉t
s = 0

}
,

where ι(s) and ι̂
t
(s) are linked by the relation in (7) and ĝt

(s) is defined in Eq. (4). Precisely,
the process ĝt

(s) in Ht
s and the associated return process g(s) are respectively defined by

ĝt
τ (s) = 1, gτ (s) = 1

Ms,τ
∀τ ∈ [s, t].

As expected, the process ĝt
(s) is the one that permits the inner product representation of

pricing functionals described at the end of Sect. 2.2. Moreover, g(s) is the return process of
the log-optimal portfolio. Hence, we refer to g(s) as the log-optimal return.

In addition, the module Ht
s orthogonally decomposes as

Ht
s = spanL0

{
ĝt

(s)
} ⊕ ◦

Ht
s .

3.3 Themean excess return e(s)

Fix again t ∈ [s, T ]. From the definition of f̂
T
(s) in Eq. (8), we consider the conditional mar-

tingale f̂
t
(s) associated with the pure discount T -bond and we define êt

(s) as the orthogonal

projection of f̂
t
(s) on the submodule

◦
Ht

s , namely

êt
(s) = proj ◦

Ht
s

f̂
t
(s),

meaning that êt
s(s) = 0 and Es[( f̂

t
t (s) − êt

t (s))ι̂
t
t (s)] = 0 for all ι̂

t
(s) in

◦
Ht

s . Since the

orthogonal projection of f̂
t
(s) on spanL0{ĝt

(s)} is ĝt
(s), we have f̂

t
(s) = êt

(s) + ĝt
(s) so

that êt
τ (s) = Gs,τ − 1 for all τ ∈ [s, t]. Moreover,

◦
Ht

s decomposes as

◦
Ht

s = spanL0

{
êt

(s)
} ⊕

{
n̂t

(s) ∈ ◦
Ht

s : Es
[
êt

t (s)n̂
t
t (s)

] = 0
}

= spanL0

{
êt

(s)
} ⊕

{
n̂t

(s) ∈ ◦
Ht

s : Es
[
Gs,t n̂

t
t (s)

] = E
F
s

[
n̂t

t (s)
] = 0

}

from the definition of êt
(s). Similarly to before, from the relation in (7), we define e(s) by

eτ (s) = fτ (s) − gτ (s) ∀τ ∈ [s, t]. (9)

Hence, e(s) embodies the meaning ofmean excess return because it is the difference between
the zero-coupon T -bond return and the log-optimal return.
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3.4 Orthogonal decompositions of returns

The orthogonality in Ht
s implies an orthogonal decomposition of conditionalmartingales and,

in turns, of asset returns. To achieve this goal, we start from the decomposition of conditional
martingales.

Theorem 1 (Martingale decomposition) Given t ∈ [s, T ], ût
(s) belongs to Ht

s and ût
s(s) = 1

if and only if there exist ωs ∈ L0(Fs) and n̂t
(s) ∈ ◦

Ht
s such that

Es
[
ĝt

t (s)n̂
t
t (s)

] = Es
[
êt

t (s)n̂
t
t (s)

] = E
F
s

[
n̂t

t (s)
] = 0

and

ût
(s) = ĝt

(s) + ωs êt
(s) + n̂t

(s).

Proof of Theorem 1 We first show that

Es

[(
êt

t (s)
)2] = Es

[
Gs,t ê

t
t (s)

] = vars
(
Gs,t

)
. (10)

Indeed, since êt
(s) = proj ◦

Ht
s

f̂
t
(s), for any ι̂

t
(s) ∈ ◦

Ht
s , we have E[( f̂

t
t (s)− êt

t (s))ι̂
t
(s)] = 0.

Then, the first equality follows when ι̂
t
(s) = êt

(s). As for the second one,

Es
[
Gs,t ê

t
t (s)

] = Es
[
G2

s,t − Gs,t
] = Es

[
G2

s,t

] − 1

= Es
[
G2

t

]

G2
s

−
(
Es [Gt ]

Gs

)2

= vars (Gt )

G2
s

.

Now, let ût
(s) be defined by the relation ût

(s) = ĝt
(s)+ωs êt

(s)+n̂t
(s)withωs ∈ L0(Fs)

and n̂t
(s) ∈ ◦

Ht
s . The process ût

(s) ∈ Ht
s because it is a linear combination of three processes

in Ht
s . Moreover, ût

s(s) = ĝt
s(s) + ωs êt

s(s) + n̂t
s(s) = 1 + 0 + 0 = 1 since êt

(s) and n̂t
(s)

belong to
◦

Ht
s .

Conversely, consider any process ût
(s) in Ht

s with ût
s(s) = 1. Note that ût

(s) − ĝt
(s)

belongs to Ht
s and, in particular, to

◦
Ht

s because Es[ût
t (s) − ĝt

t (s)] = 1 − 1 = 0. Define the
projection coefficient ωs ∈ L0(Fs) by

ωs = Es
[(

ût
t (s) − ĝt

t (s)
)

êt
t (s)

]

Es

[(
êt

t (s)
)2] = Es

[
Gs,t û

t
t (s)

] − 1

Es
[
Gs,t ê

t
t (s)

] = Es
[
Gs,t û

t
t (s)

] − 1

vars
(
Gs,t

) ,

where last equalities are due to the definition of êt
(s) and its properties. Define also the

process n̂t
(s) = ût

(s) − ĝt
(s) − ωs êt

(s), which belongs to
◦

H T
s because both ût

(s) − ĝt
(s)

and êt
(s) are in

◦
H T

s . In addition,

Es
[
ĝt

t (s)n̂
t
t (s)

] = Es
[
ĝt

t (s)û
t
t (s)

] − Es

[(
ĝt

t (s)
)2] − ωsEs

[
ĝt

t (s)ê
t
t (s)

] = 1 − 1 − 0 = 0

because ĝt
(s) and êt

(s) belong to orthogonal submodules. Furthermore,

Es
[
êt

t (s)n̂
t
t (s)

] = Es
[
êt

t (s)
(
ût

t (s) − ĝt
t (s)

)] − ωsEs

[(
êt

t (s)
)2] = 0

by the expression of ωs . By the definition of êt , Es[êt
t (s)n̂

t
t (s)] = Es[Gs,t n̂

t
t (s)] = 0. ��

A straightforward application of Theorem 1 delivers an orthogonal decomposition of asset
returns in the time window [s, t].
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Corollary 2 (Return decomposition) Let t ∈ [s, T ]. If u(s) is a return process in [s, t], there
exist ωs ∈ L0(Fs) and n̂t

(s) ∈ ◦
Ht

s such that

Es
[
M2

s,t gt (s)nt (s)
] = Es

[
M2

s,t et (s)nt (s)
] = E

F
s

[
Ms,t nt (s)

] = Es
[
Ms,t nt (s)

] = 0

with nτ (s) = n̂t
τ (s)/Ms,τ for all τ ∈ [s, t] and

u(s) = g(s) + ωse(s) + n(s).

Proof of Corollary 2 The return process u(s) in [s, t] can be associated with the conditional
martingale ût

(s) ∈ Ht
s by the relation in (7). Then, the result follows directly fromTheorem1.

In addition, Es
[
Ms,t nt (s)

] = 0 because n̂t
(s) belongs to

◦
Ht

s . ��

The proof of Theorem 1 exploits the definition of the projection coefficient ωs in L0(Fs),
that turns out to be

ωs = E
F
s

[
Ms,t ut (s)

] − 1

vars
(
Gs,t

) . (11)

Hence, ωs depends on the expected return discounted by the log-optimal portfolio under the
T -forward measure.

4 Risk-adjustedmean-variance returns

Let’s now go back to the original one-periodmean variance allocation problem. If the investor
fixes the expected return on the desired portfolio (under the physical measure) and looks for
the portfolio displaying the lowest possible variance (again, under the physical measure),
the solution to the problem is unique. However, as we already pointed out in Sect. 1, this
approach is of little help in a multi-horizon framework.

The solution we propose instead starts from the very same required portfolio expected
return (under the physical measure), but aims at reducing as much as possible the variance
(under the physical measure) of the portfolio returns denominated in units of the log-optimal
portfolio. Despite this alternative solution being suboptimal, we will show in this section
how our solution enjoys a desirable horizon-consistency property that allows for substantial
savings when transactions costs are accounted for.

From the point of view of the formal derivation, however, our solution requires an inter-
mediate step. Indeed, it is not possible to directly characterize the set of returns with a given
expected value (under P) that also display the lowest possible variance when denominated in
units of the log-optimal portfolio (again, under P). Therefore, we must first set up a solvable
parallel mean-variance allocation problem, where the constraint on the expected return is
expressed under the T -forward measure. Then we will map back the solution to this parallel
problem to the original framework.

This parallel problem starts from the definition of risk-adjusted mean-variance returns.
Then, we show how to decompose the whole processes of returns discounted by the log-
optimal portfolio to obtain the horizon consistency property that we describe in Sect. 4.1.
Afterwards, we illustrate a useful Two-fund Separation Theorem.

Definition 1 Fixed t ∈ [s, T ], we say that a return process u(s) is on the risk-adjusted mean-
variance frontier (or it is a risk-adjusted mean-variance return) in [s, t] when it minimizes
vars(Ms,t ut (s)) for some given E

F
s [Ms,t ut (s)] in L0(Fs). In that case, we say that the
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conditional martingale in Ht
s associated to u(s) via the relation in (7) is a conditional mean-

variance martingale in [s, t]. Such conditional martingale minimizes vars(û
t
t (s)) for the

given E
F
s [ût

t (s)].
The expected returns of Definition 1 can also be written under the physical measure:

E
F
s [Ms,t ut (s)] = Es[Gs,t Ms,t ut (s)] and E

F
s [ût

t (s)] = Es[Gs,t û
t
t (s)], and this is how we

link this parallel risk-adjusted problem to the original one. However, in order to be able to
prove the following theorem, we cannot provide Definition 1 neither using the same measure
(either P or F) nor using the same random variable (either Ms,t ut (s) or Gs,t Ms,t ut (s))
as, in either way, we would not be able to derive an orthogonal decomposition of returns.
Therefore, we state Definition 1 in terms of risk-adjusted expected values to move closer to
the expression of portfolio weights in Eq. (11). Nevertheless, once the risk-adjusted mean-
variance frontiers are built, the investor can map risk-adjusted expect returns to physical
ones and select portfolios starting from their expected returns under P . See Eq. (14) and the
comments below, as well as the applications in Sect. 5.

Theorem 3 (Risk-adjusted mean-variance returns) Let t ∈ [s, T ]. Consider return processes
u(s) in [s, t] such that EF

s [Ms,t ut (s)] = ks for some ks ∈ L0(Fs). Among them, the return
process that minimizes vars(Ms,t ut (s)) is

u(s) = g(s) + ωse(s) wi th ωs = ks − 1

vars
(
Gs,t

) .

Conversely, if u(s) is a return process in [s, t] such that u(s) = g(s) + ωse(s) for some
ωs ∈ L0(Fs), then u(s) is a risk-adjusted mean-variance return in [s, t].
Proof of Theorem 3 The proof relies on the fact that return processes u(s) in [s, t] can be
associated with conditional martingales in ût

(s) ∈ Ht
s via the relation in (7). We also have

that EF
s [ût

t (s)] = E
F
s [Ms,t ut (s)] and vars(û

t
t (s)) = vars(Ms,t ut (s)).

Given the return processes u(s) in [s, t] such that EF
s [Ms,t ut (s)] = ks for some ks ∈

L0(Fs), we consider the conditional martingales ût
(s) ∈ Ht

s with ût
s(s) = 1 such that

E
F
s [ût

t (s)] = ks and we show that, among them, the conditional martingale that minimizes
vars(û

t
t (s)) is

ût
(s) = ĝt

(s) + ωs êt
(s) wi th ωs = ks − 1

vars
(
Gs,t

) . (12)

This immediately implies that the required return process that minimizes vars(Ms,t ut (s)) is
u(s) = g(s) + ωse(s) with the same weight ωs , as in the theorem statement.

Each conditional martingale ût
(s) ∈ Ht

s with ût
s(s) = 1 and EF

s [ût
t (s)] = ks satisfies the

decomposition provided by Theorem 1:

ût
(s) = ĝt

(s) + ωs êt
(s) + n̂t

(s), ωs = ks − 1

vars
(
Gs,t

) .

Moreover, vars(û
t
t (s)) = Es[(ût

t (s))
2] − (Es[ût

t (s)])2 = Es[(ût
t (s))

2] − 1. We note that

Es

[(
ût

t (s)
)2] = Es

[(
ĝt

t (s) + ωs êt
t (s) + n̂t

t (s)
)2]

= Es

[(
ĝt

t (s) + ωs êt
t (s)

)2] + Es

[(
n̂t

t (s)
)2]

+ 2Es
[(

ĝt
t (s) + ωs êt

t (s)
)

n̂t
t (s)

]
.
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By Theorem 1, Es
[(

ĝt
t (s) + ωs êt

t (s)
)

n̂t
t (s)

] = 0 and so

Es

[(
ût

t (s)
)2] = Es

[(
ĝt

t (s) + ωs êt
t (s)

)2] + Es

[(
n̂t

t (s)
)2]

≥ Es

[(
ĝt

t (s) + ωs êt
t (s)

)2]
. (13)

Therefore, vars(û
t
t (s)) is minimized by the conditional martingale with n̂t

(s) = 0. This
proves the required result in (12).

Conversely, suppose that u(s) is a return process in [s, t] such that u(s) = g(s) + ωse(s)
for some ωs ∈ L0(Fs) and consider the conditional martingale ût

(s) ∈ Ht
s defined by

ût
(s) = ĝt

(s) + ωs êt
(s). Then, ût

s(s) = ĝt
s(s) + ωs êt

s(s) = 1+ 0 = 1 and, by the definition
of ĝt

(s) and Eq. (10),

E
F
s

[
ût

t (s)
] = E

F
s

[
ĝt

t (s)
] + ωsE

F
s

[
êt

t (s)
]

= Es
[
Gs,t

] + ωsEs
[
Gs,t ê

t
t (s)

]

= 1 + ωsvars
(
Gs,t

)
.

By Theorem 1, any other conditional martingale v̂
t
(s) ∈ Ht

s with v̂
t
s(s) = 1 andEF

s [v̂t
t (s)] =

1 + ωsvars(Gs,t ) satisfies

v̂
t
(s) = ĝt

(s) + ω̄s êt
(s) + n̂t

(s), ω̄s = 1 + ωsvars
(
Gs,t

) − 1

vars
(
Gs,t

) = ωs

for some n̂t
(s) ∈ ◦

Ht
s . Hence, v̂

t
(s) = ût

(s) + n̂t
(s) and, as noted in the relation (13),

Es

[(
v̂

t
t (s)

)2] = Es

[(
ût

t (s)
)2] + Es

[(
n̂t

t (s)
)2] ≥ Es

[(
ût

t (s)
)2]

.

As a result, ût
(s) is a conditionalmean-variancemartingale. Therefore, u(s) is a risk-adjusted

mean-variance return in [s, t]. ��
As an example, consider the zero-coupon T -bond return process f (s) in [s, T ]. By

Eq. (9), such return process satisfies f (s) = g(s) + e(s) and so, by Theorem 3, f (s) mini-
mizes the conditional variance of any Ms,T uT (s) with E

F
s [Ms,T uT (s)] = πs(1T )E[G2

s,T ].
Finally, note that at any risk-adjustedmean-variance return in [s, t] can be easily identified

by its expectation under the physical measure. Indeed, if we fix Es [ut (s)] = h̃s , then the
weight ωs is univocally determined by

ωs = h̃s − Es [gt (s)]

Es [et (s)]
= h̃s − Es [gt (s)]

Es [ ft (s)] − Es [gt (s)]
. (14)

As far as concrete applications are concerned, the actual implementation of a portfolio
with a given expected return under the physical measure and that minimizes the variance in
units of the log-optimal portfolio requires a two-step procedure. First, the investors need to
derive the risk-adjusted mean variance frontier, as done in Theorem 3. This delivers a set of
optimal (in the sense of Definition 1) risk-adjusted expected returns and variances. Then, the
investors need to find the risk-adjusted expected return that matches the expected return they
are interested in under the physical measure. Once this physical expected return is mapped
into a risk-adjusted one, the first step of the procedure delivers the desired optimal allocation.
By construction, the variance under P of this portfolio will be larger than the one derived
following the standard mean-variance approach. However, we now show that our optimal
risk-adjusted portfolios enjoy a horizon-consistency property that helps in saving transaction
costs.
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4.1 Horizon consistency

A fundamental property of our approach to mean-variance portfolio analysis is horizon con-
sistency. Indeed, if a return process belongs to the risk-adjusted mean-variance frontier in
[s, T ], then it is also on the risk-adjusted mean-variance frontier in [s, t] for any t ≤ T .
This feature is ultimately due to the fact that the decomposition of Corollary 2 involves the
whole return processes in the time range [s, T ] and so there is a mechanical overlap with the
decompositions built at shorter horizons.

From Theorem 3, the risk-adjusted mean-variance frontiers with different horizons (e.g. t
and T ) are generated by the same two return processes g(s) and e(s). However, it is important
to note that such frontiers are generally different because the returns gt (s) and gT (s) usually
havedifferent first and secondmoments. The same is true for et (s) and eT (s).Hence, a security
or a buy-and-hold portfolio can belong to all the risk-adjusted mean-variance frontiers while
featuring variable expected return and variance depending on the considered horizon.

To establish the horizon consistency of risk-adjustedmean-variance returns, for simplicity,
we express the result by using the time indices t and T , but the result clearly holds for any
t1, t2 ∈ [s, T ] with t1 ≤ t2.

Proposition 4 (Risk-adjusted mean-variance returns horizon consistency) Let t ∈ [s, T ]. A
risk-adjusted mean-variance return in [s, T ] is also a risk-adjusted mean-variance return in
[s, t].
Proof of Proposition 4 Let u(s) be a risk-adjusted mean-variance return in [s, T ]. By Theo-
rem 3, u(s) = g(s)+ωse(s) for someωs ∈ L0(Fs). Such decomposition holds algebraically
at any time in [s, t]. By Theorem 3 again, u(s) is a risk-adjusted mean-variance return in
[s, t], too.

��
From the standpoint of interpretation, we can set s as today and consider portfolios with

maturity T of one year. Moreover, t may identify a six-month horizon from now. We build
at the same time our six-month and one-year horizon risk-adjusted mean-variance frontiers,
based on the information available today. Proposition 4 ensures that risk-adjusted mean-
variance returns on the yearly frontier lie also on the six-month one. This feature is absent
in classical mean-variance analysis. In fact, the standard construction does not provide any
relation between the decompositions of returns at different horizons. On the contrary, the
methodology that we propose relies on the decomposition of the underlying martingale
processes and so return representations at different dates are interrelated. The practical benefit
of our approach is that optimal risk-adjusted mean-variance returns are generated always by
the same two return processes g(s) and e(s), regardless the horizon. This means that, when
standing at time zero and building two different risk-adjusted mean-variance buy-and-hold
portfolios (one with a six-months maturity, one with a one-year maturity), we just need to
invest in two return processes, g(s) and e(s), for both portfolios. As pointed out before, we
can select the two risk-adjusted mean-variance portfolios in such a way that their returns
match our target expected returns under the physical measure, which is the starting point of
all the applications of our technique in Sect. 5.

However, the mean excess return e(s) is defined in Sect. 3.3 from purely theoretical
reasons. To build the risk-adjusted mean-variance frontiers, one must assess whether e(s) is
the return of a traded security (or a portfolio) in the market. Luckily, this question can be
easily answered by observing that e(s) is the difference between the zero-coupon T -bond
return and the log-optimal return (see Eq. (9)). Such returns are attainable in the market (see
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Sect. 2.1.1 for the log-optimal portfolio) and so the risk-adjusted mean-variance frontiers
can be implemented by using a traded security and a feasible portfolio. This logic leads to
a Two-fund Separation Theorem (Theorem 5 below), where the risk-adjusted frontiers are
expressed in terms of g(s) and f (s). Theorem 5 establishes in our setting the celebrated
result by Merton (1972), making the implementation of our frontiers immediate.

Theorem 5 (Two-fund Separation) Given t ∈ [s, T ], u(s) is a risk-adjusted mean-variance
return in [s, t] if and only if

u(s) = αs g(s) + (1 − αs) f (s)

where αs ∈ L0(Fs), αs = 1 − ωs and ωs is obtained from Theorem 3.

Proof of Theorem 5 Suppose that u(s) is a risk-adjusted mean-variance return in [s, t]. Then,
Theorem 3 guarantees that u(s) = g(s) + ωse(s) for some ωs ∈ L0 (Fs). By Eq. (9),
e(s) = f (s) − g(s) and the desired result obtains.

��

In words, g(s) and f (s) span the risk-adjusted mean-variance frontiers of asset returns at
any horizon under consideration.

5 Simulations: multi-horizonmean-variance optimization

To ease the notation and for the sake of interpretability, in this section we fix s = 0, we omit
the s subscript whenever possible and we denote return processes by u instead of u(s).

As sketched in Sect. 1, we consider a multi-horizon mean-variance portfolio problem
in the time interval [0, T ], where only buy-and-hold investment strategies set at time 0 are
allowed. Our investor may be thought as a manager or a company that aims at building
portfolios with target expected returns across a sequence of maturities t1, t2 . . . , tN with
0 < t1 < t2 < · · · < tN = T . Each of these portfolios must be optimal in terms of the mean-
variance criterion in its specific time horizon. The need to design such a term structure of
portfolios may come from multi-horizon hedging reasons due, e.g. to cashflow management
or medium-term production plans. The asset allocation across multiple horizons is decided
ex ante because of costly, or even forbidden, rebalancing. A detailed example in the context
of life annuities is provided in Sect. 5.3.

Specifically, the investor builds a portfolio with return process

N∑

i=1

λ(i)u(i),

where each λ(i) ∈ R is the weight of the sub-portfolio i , i.e. the one with return process u(i),
in the overall portfolio. Each u(i) is properly a return process in [0, ti ] and the position of the
sub-portfolio i is liquidated at time ti . Moreover, each u(i) solves

min var
(

u(i)
ti

)
sub E

[
u(i)

ti

]
= h(i)

with h(i) ∈ R given, for i = 1, . . . , N . By construction, the weights λ(i) are positive, they
sum up to 1 and, in case the overall portfolio is equally-weighted, λ(i) = 1/N for all i .
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The unique solution to this optimization problem is achieved by sub-portfolios on the
classical mean-variance frontier of Hansen and Richard (1987):7 at each date ti

u(i)
ti = M0,ti

E

[
M2

0,ti

] + w̃(i)

⎛

⎝1 − e−r
ti
0 (ti −0) M0,ti

E

[
M2

0,ti

]

⎞

⎠ , w̃(i) ∈ R.

By employing the return of zero-coupon bonds with expiry ti , the Two-fund Separation
Theorem permits to rewrite the classical mean-variance frontier in [0, ti ] as

u(i)
ti = α̃(i) M0,ti

E

[
M2

0,ti

] +
(
1 − α̃(i)

)
fti

with α̃(i) = 1 − π0(1ti )w̃
(i).8

For each horizon ti , the initial implementation of the sub-portfolio delivering the return
process u(i) in [0, ti ] requires the replication, by self-financing portfolio strategies, of the
payoff at ti that coincides with the pricing kernel M0,ti . Considering the whole sequence of
maturities in the problem, N payoffs need to be replicated in order to implement the mean-
variance optimal asset allocation. Depending on the severity of market incompleteness, the
optimal solution may require costly approximations.

Hereby, we propose an alternative strategy by exploiting our risk-adjusted mean-variance
frontier. Although theoretically suboptimal, our frontier requires the replication of a single
payoff at T (the log-optimal portfolio), for any number N of horizons involved. When asset
replication is costly or difficult, this feature constitutes a sizable advantage, that may com-
pensate the loss of mean-variance optimality with respect to the classical solution. From
Theorem 3, for any i = 1, . . . , N , we consider a sub-portfolio with return process

v(i) = g + ω(i)e,

where ω(i) is chosen so that the expectation of v
(i)
ti meets the target h(i) as in Eq. (14). By

Theorem 5, we build our sub-portfolios by exploiting the return process g of the log-optimal
portfolio and the return process f of the zero-coupon T -bond. These twofinancial instruments
are employed for any intermediate maturity ti , as a consequence of horizon consistency. We
finally compare the performance of the two families of sub-portfolios with returns u(i) and
v(i), respectively, by considering the transaction costs and their impact on the Sharpe ratios.

Specifically, we assume that transaction costs are present in the market and, similarly to
Irle and Sass (2006), they are composed of trading and replication costs.

Trading costs are constant for every asset unit and apply to both short and long positions.
Their total amount is proportional to traded volumes. In our simulations, the implementation
of each classicalmean-variance sub-portfolio i generates the trading costs c(|̃α(i)|+|1−α̃(i)|)
with c > 0. The analogous expression with α(i) = 1 − ω(i) delivers the trading costs of the
risk-adjusted mean-variance return v(i).

7 It is useful to remember that, in the notation of Hansen and Richard (1987), r∗ = M0,ti /E[M2
0,ti

] and
z∗ = 1 − e−r

ti
0 (ti −0)M0,ti /E[M2

0,ti
].

8 Indeed, such pure discount bonds belong to the frontier because

fti = M0,ti

E

[
M2
0,ti

] + 1

πs
(
1ti

)

⎛

⎝1 − e−r
ti
0 (ti −0) M0,ti

E

[
M2
0,ti

]

⎞

⎠ .
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As for the replication costs, we assume that the design of the replication strategies for gT

and M0,ti /E[M2
0,ti

] at any horizon ti entails a positive fixed cost C for any (possibly linearly

independent) security.9 Therefore, the implementation of each classical mean-variance sub-
portfolio i requires the additional expenditure of C . On the contrary, if we proportionally
spread the replication cost of gT across the maturities t1, . . . , tN , each horizon-consistent
sub-portfolio i needs to bear the cost λ(i)C . As a result, each mean-variance optimal sub-
portfolio i and each risk-adjusted mean-variance sub-portfolio i have implementation costs,
respectively,

C + c
(∣∣
∣̃α(i)

∣
∣
∣ +

∣
∣
∣1 − α̃(i)

∣
∣
∣
)

and λ(i)C + c
(∣∣
∣α(i)

∣
∣
∣ +

∣
∣
∣1 − α(i)

∣
∣
∣
)

. (15)

Accordingly, the overall implementation costs of the two portfolios are:

C N + c
N∑

i=1

λ(i)
(∣∣
∣̃α(i)

∣
∣
∣ +

∣
∣
∣1 − α̃(i)

∣
∣
∣
)

and C + c
N∑

i=1

λ(i)
(∣∣
∣α(i)

∣
∣
∣ +

∣
∣
∣1 − α(i)

∣
∣
∣
)

.

In terms of risk/return trade-off, at any horizon ti we consider amodified Sharpe ratio given
by the difference of the Sharpe ratio and the ratio between transaction costs (as percentage
of the initial capital) and standard deviation. In this way, the expected return of each sub-
portfolio i is reduced by the proper implementation costs of Eq. (15):

modified Sharpe ratio = Sharpe ratio − transaction costs

standard deviation
.

The modified Sharpe ratio can be negative even if the Sharpe ratio is positive. Interestingly,
the modified Sharpe ratios can reverse the relations between the Sharpe ratios of the classical
and the risk-adjusted mean-variance optimal strategies, making the risk-adjusted approach
valuable. This happens in the simulations of Sects. 5.2 and 5.3. Section 5.1 describes the
market in which we set such simulations.

5.1 Referencemarket

As in App. B of Brigo and Mercurio (2006), we assume that short-term rates move as in
Vasicek (1977) model in the time interval [0, T ] with positive parameters k, θ, σ . Then, we
consider a stock price X that follows a geometric Brownian motion with volatility η > 0,
correlated with interest rates shocks. The instantaneous correlation between the two under-
lying Wiener processes is φ. We orthogonalize the two sources of randomness and consider,
without loss of generality, the dynamics

{
d Xt = Xt Yt dt + ηXt

[
φdW Q

t + √
1 − φ2d Z Q

t

]

dYt = k (θ − Yt ) dt + σdW Q
t ,

where W Q and Z Q are independentWiener processes. Amoneymarket account with dynam-
ics d Bt = Yt Bt dt is also present. A more general model with two risky stocks is illustrated
in App. C.

9 To keep the terminology parsimonious, we use the terms replication costs even when we have the explicit
formulas to build the portfolio under consideration, as it is for the log-optimal portfolio (Sects. 2.1.1 and 5.1).
In this case, we face construction or approximations costs.
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Yields to maturity are affine, i.e. r T
t (T − t) = −A(t, T ) + B(t, T )Yt , with

A(t, T ) =
(

θ − σ 2

2k2

)

(B(t, T ) − T + t) − σ 2

4k
B2(t, T )

and B(t, T ) = (1 − e−k(T −t))/k. The pure discount T -bond price at time t is function of t
and Yt , obtained from Itô’s formula. Hence, beyond the money market account, the assets
that generate the market are

{
d Xt = Xt Yt dt + ηXt

[
φdW Q

t + √
1 − φ2d Z Q

t

]

dπt (1T ) = πt (1T ) Yt dt − πt (1T ) B(t, T )σdW Q
t .

(16)

At the same time, under the physical measure,
{

d Xt = Xtμ
X
t dt + ηXt

[
φdW P

t + √
1 − φ2d Z P

t

]

dπt (1T ) = πt (1T ) μP
t dt − πt (1T ) B(t, T )σdW P

t ,
(17)

where μX and μπ are adapted processes. They are related to the drifts under Q via the
bivariate process of market price of risk [νW , νZ ]′ such that

[
dW Q

t

d Z Q
t

]

=
[
νW

t
νZ

t

]

dt +
[

dW P
t

d Z P
t

]

.

Specifically,
[

ηφ η
√
1 − φ2

−B(t, T )σ 0

] [
νW

t
νZ

t

]

=
[
μX

t − Yt

μπ
t − Yt

]

(18)

so that

νW
t = − μπ

t − Yt

B(t, T )σ
, νZ

t = μX
t − Yt − ηφνW

t

η
√
1 − φ2

. (19)

At any t ∈ [0, T ], the Radon-Nikodym derivative of Q with respect to P on Ft is

Lt = e
− 1

2

∫ t
0

[(
νW
τ

)2+(
νZ
τ

)2]
dτ−∫ t

0 νW
τ dW P

τ −∫ t
0 νZ

τ d Z P
τ

and we assume that the Novikov condition is satisfied, that isE[e 1
2

∫ T
0 [(νW

t )2+(νZ
t )2]dt ] is finite.

Moreover, we postulate that μπ
t = (1 − ξ B(t, T )σ ) Yt for some ξ > 0 so that νW

t = ξYt , in
line with the usual approach of Vasicek short-term rates. Finally, the dynamics of the pricing
kernel are given by

d M0,t

M0,t
= −Yt dt − νW

t dW P
t − νZ

t d Z P
t . (20)

The parameters that we use in the simulations of the interest rate process are k = 1,
θ = 0.05 and σ = 0.01 with initial value Y0 = 0.02, on a monthly time grid. Moreover, we
set η = 0.1 and φ = 0.1, and we assume that the drift of the stock price under the physical
measure is μX

t = Yt + 0.05.
As we described in Sect. 2.1.1, the log-optimal portfolio can be constructed via a self-

financing strategy whose dynamics can be derived from the application of Itô’s formula to

123



816 Annals of Operations Research (2024) 336:797–828

Eq. (20). Indeed, the price process of the log-optimal portfolio satisfies Nt = M−1
0,t at any

time t . Similarly to Eq. (3), we find

d Nt

Nt
=
[

Yt +
(
νW

t

)2 +
(
νZ

t

)2]

dt + νW
t dW P

t + νZ
t d Z P

t .

The latter equation can be expressed in terms of the infinitesimal price variations of the traded
securities by recalling that dt = d Bt/(Yt Bt ) and by inverting the linear system in (17):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d Z P
t = 1

ηXt

√
1−φ2

d Xt + φ

πt (1T )B(t,T )σ
√

1−φ2
dπt (1T )

−
(
μX

t + ηφμπ
t

B(t,T )σ

)
1

η
√

1−φ2Yt Bt
d Bt

dW P
t = − 1

πt (1T )B(t,T )σ
dπt (1T ) + μπ

t
Yt Bt B(t,T )σ

d Bt .

We obtain

d Nt = θ B
t d Bt + θπ

t dπt (1T ) + θ X
t d Xt ,

where θ B
t , θπ

t and θ X
t are the units of assets in the self-financing strategy with values Nt .

Specifically,

θ B
t = 1

Bt

(
Nt − θπ

t πt (1T ) − θ X
t Xt

)

θπ
t = 1

πt (1T )B(t,T )σ

(

−νW
t + νZ

t φ√
1−φ2

)

Nt

θ X
t = νZ

t

ηXt

√
1−φ2

Nt .

One can also observe that the asset units θπ
t and θ X

t are the solutions of the linear system
[
θ X

t Xt , θπ
t πt (1T )

] = [
μX

t − Yt , μπ
t − Yt

] (
��′)−1

Nt ,

where � denotes the matrix in (18). This property is in line with the traditional approach for
the log-optimal portfolio construction illustrated in Chapter 15 of Luenberger (1997) and in
Chap. 20 of Björk (2009) with constant interest rates.

5.2 A six-horizonmean-variance optimization

In this set of simulations, we consider an equally-weighted portfolio over six horizons: N = 6
and λ(i) = 1/N for all i = 1, . . . , 6. We employ a monthly time grid and horizons t1, . . . , t6
associated with six subsequent semesters. We set the target means equal to h(i) = 1.06 for
i = 1, . . . , 6. In other words, we are assuming that the investor wants to obtain a 6% flat
return at the end of each of six subsequent semesters by investing in 6 equally weighted buy-
and-hold sub-portfolios built at time 0. The cashflows obtained at the end of each semester
from the liquidation of the related sub-portfolio are not re-invested.

We simulate both the classical and the risk-adjusted multi-period portfolios described
above. We, then, repeat the exercise by employing, in total, 30 different seeds for the initial
Gaussian random sampling to obtain a sample of averages and standard deviations of each
sub-portfolio i with return process u(i) or v(i) and horizon ti , for i = 1, . . . , 6. Sharpe ratios
are computed by using as reference risk-free securities pure discount bonds at increasing
maturities. Results are summarized in Fig. 1, where standard deviations, Sharpe ratios and
modified Sharpe ratios are scaled by the weights λ(i). Every simulated sub-portfolio matches
perfectly the target means h(i) at the proper horizon for i = 1, . . . , 6. As predicted by the
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theory, classical mean-variance sub-portfolios display lower standard deviations than our
risk-adjusted strategies, whose advantage relies on a parsimonious implementation.

In our simulations the loadings of the risk-adjusted sub-portfolios are smaller than the ones
of the classical mean-variance strategies, requiring to buy or sell fewer assets. We visualize
this fact in the medium panels of Fig. 1, where we plot the absolute values of α(i) and α̃(i) at
each horizon ti . The graphs depict the units of risky assets - i.e. the ones associated with gT

and M0,ti /E[M2
0,ti

] respectively - contained in each sub-portfolio. The exposure to the risky
securities is higher at horizons near in time. However, at any horizon, the loadings in the risk-
adjusted sub-portfolios are lower than the ones in the classical sub-portfolios (with slightly
lower dispersion). Consequently, the implementation of the portfolio with return processes
v(i) involves narrower long (or short) positions, both in g and in f , a valuable feature in case
of short-selling constraints.

The medium panels of Fig. 1 give also an idea of the magnitude of the transaction costs
of both portfolios that we summarize in the top-right panel by setting c = $0.005 and
C = $0.015. Under this assumption, by considering an initial investment of $100, total
transaction costs roughly amount to $10 if the investor builds the portfolios according to the
standard mean-variance frontier, and to $2 if the investor exploits our risk-adjusted mean-
variance frontier.

The reduction of the implementation costs of the risk-adjusted approach impacts the
risk/return trade-off between the two strategies, as we can see in the bottom panels of Fig. 1.
Indeed, after including the transaction costs, the modified Sharpe ratio indicates that the risk-
adjusted solution is the best performing. The excess standard deviation of the risk-adjusted
portfolio is fully compensated by its reduced transaction costs (in particular, replication
costs), as captured by the modified Sharpe ratio.

5.3 A life annuity application

Still in the market of Sect. 5.1, we compare the risk-adjusted and the classical mean-variance
approaches in the context of a life annuity.

Consider a life annuity payed with a lump sum at date 0 by a cohort of subscribers (see e.g.
Chap. 5 in Bower et al. Bower et al. (1997)). The annuity provides yearly payments to each
subscriber until the subscriber dies. The insurance company invests the received capital in N
sub-portfolios with increasing horizons that allow to meet the future payments. For example,
we can assume that each sub-portfolio has target return h(i) = 1.05 for i = 1, . . . , N with
N = 20 years.

The random variable time-until-death captures the difference between the insured’s age at
death and the age at subscription. It gives an idea of the potential length of the life annuity.We
suppose that the cumulative distribution of time-until-death is P(ti ) = 1− e−γ t3i defined on
the years ti = i for i = 1, 2, ..., 20. This specification ensures a unimodal distribution with a
peak at around ten years if we set γ = 0.001. Importantly, the weight of each sub-portfolio
i depends on the proportion of survivors at the horizon-year ti , i.e.

λ(i) = 1 − P (ti )
∑20

i=1 (1 − P (ti ))
.

If the company aims at reducing the risk of each sub-portfolio, it can consider a (classical or
risk-adjusted) mean-variance approach for each return process u(i) satisfying E[u(i)

ti ] = 1.05
for i = 1, . . . , 20.
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Fig. 1 Red (resp. blue) lines, bars and boxes refer to the classical (resp. risk-adjusted) mean-variance solution
for the problem of Sect. 5.2. Standard deviations, Sharpe ratios and modified Sharpe ratios are scaled by the
weights λ(i) for all i = 1, . . . , 6. 90% confidence intervals for these variables are represented. The top-right
panel represents the transaction costs of the risk-adjusted portfolio (blue for replication costs, light blue for
trading costs) and of the classical mean-variance portfolio (red for replication costs, light red for trading costs).
Medium panels contain the box-and-whisker plot at 25th and 75th percentiles and the bar plot of loadings
|α(i)| and |̃α(i)| at all horizons

Similarly to Sect. 5.2, we scale standard deviations, Sharpe ratios and modified Sharpe
ratios in the two approaches by the weights λ(i) for i = 1, . . . , 20. In so doing, we account
for the amount of surviving subscribers at each horizon. As to transaction costs, we set
c = $0.003 and C = $0.006. Results are summarized in Fig. 2.

In the top-left panel of the figure, the excess standard deviation of risk-adjusted sub-
portfolios is more evident at intermediate horizons and vanishes when maturities approach
20 years, in agreement with the scaling induced by the time-until-death. The top-right panel
highlights the difference in transaction costs between the two frontiers. The convenience
of the risk-adjusted approach comes from the replication of one risky payoff instead of the
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Fig. 2 Red (resp. blue) lines, bars and boxes refer to the classical (resp. risk-adjusted) mean-variance solution
for the life-annuity problem. Standard deviations, Sharpe ratios and modified Sharpe ratios are scaled by the
weights λ(i) for all i = 1, . . . , 20. 90% confidence intervals for these variables are represented. The top-right
panel represents the transaction costs of the risk-adjusted portfolio (blue for replication costs, light blue for
trading costs) and of the classical mean-variance portfolio (red for replication costs, light red for trading costs)

N = 20 payoffs required by the classical mean-variance optimal strategies. The reduction
in the implementation costs affects the portfolio performance, as we can note from the
Sharpe ratios and the modified Sharpe ratios in the bottom panels. Without considering the
transaction costs, the standardmean-variance approach outperforms the optimal risk-adjusted
strategy. Nevertheless, the introduction of the implementation costs reverses the conclusion:
the classical mean-variance optimal portfolio turns out to have a lower (and sometimes
negative) modified Sharpe ratio. This effect is mostly due to the number of payments in the
life annuity contract, which requires the replication of many risky securities.

6 Mean-variance frontier and optimal consumption-investment

We provide a microeconomic foundation of the risk-adjusted mean-variance frontier of
returns described by Theorem 3. Similarly to Cochrane (2014), we show that optimal invest-
ments from date s to date T produce return processes that lie on our mean-variance frontier.
In particular, such returns turn out to be a linear combination of the return processes g(s)
and f (s) in agreement with Theorem 5. Moreover, an analogue of horizon consistency of
risk-adjusted mean-variance returns can be retrieved in optimal investment policies.

In order to simplify the statement of the problem and reduce technicalities, on top of the
assumptions made in Sect. 2.1, we assume here that markets are complete. Therefore, Mt , the
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stochastic discount factor associated to the inverse of the log-optimal portfolio value process,
is now the only stochastic discount factor in the market.

6.1 Optimal consumption-investment problem

We consider the optimization problem of an agent that decides a consumption policy c =
{cτ }τ∈[s,T ]. The agent is endowed with a positive initial wealth ws in L0(Fs) and receives an
exogenous income stream i = {iτ }τ∈[s,T ]. The agent invests the initial wealth by selecting a
payoff stream (or wealth profile) with value w = {wτ }τ∈[s,T ] and, at any instant τ , the agent
consumes cτ = iτ + wτ . All processes are adapted. To make the investment affordable, ws

is required to satisfy the budget constraint

ws = Es

[∫ T

s
Ms,τwτ dτ

]

.

The agent has an instantaneous quadratic utility

U (cτ ) = −1

2

(
bτ − Ms,τ cτ

)2
,

where the process b = {bτ }τ∈[s,T ] defines a time-varying adapted bliss point. Moreover,
the investor deflates the consumption cτ by exploiting the pricing kernel Ms,τ . This attitude
reflects the use of returns discounted by the log-optimal portfolio in Sects. 3 and 4 . The
intertemporal consumption-investment optimization problem to solve is

max
c

Es

[∫ T

s
U (cτ ) dτ

]

sub ws = Es

[∫ T

s
Ms,τwτ dτ

]

, cτ = iτ + wτ .

The related reduced form is

max
w

Es

[∫ T

s
U (iτ + wτ ) dτ

]

sub ws = Es

[∫ T

s
Ms,τwτ dτ

]

. (21)

Proposition 6 If in Problem (21) the income stream is null and the bliss point is

bτ = βsπτ (1T )

T − s
Ms,τ ∀τ ∈ [s, T ]

with βs ∈ L0(Fs), then the optimal payoff stream w∗ defines the risk-adjusted mean-variance
return in [s, T ] given by

(T − s)w∗

ws
= βsπs (1T )

ws
f (s) +

(

1 − βsπs (1T )

ws

)

g(s).

Proof of Proposition 6 The Lagrangian function is

L = Es

[∫ T

s

(
U (iτ + wτ ) − λs Ms,τwτ

)
dτ

]

+ λsws

with ws ∈ L0(Fs). Note that L is a function of λs and wτ (ω) for all times τ ∈ [s, T ]
and states ω ∈ �. The first-order condition implies that (at any time and in any state)
U ′ (iτ + wτ ) − λs Ms,τ = 0. Therefore,

wτ = (
U ′)−1 (

λs Ms,τ
) − iτ = bτ

Ms,τ
− λs

Ms,τ
− iτ = bτ

Ms,τ
− λs gτ (s) − iτ ,
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thanks to the quadratic utility. The constraint over ws delivers

ws = Es

[∫ T

s
Ms,τ

(
bτ

Ms,τ
− iτ

)

dτ

]

− λsEs

[∫ T

s
Ms,τ gτ (s)dτ

]

= Es

[∫ T

s
Ms,τ

(
bτ

Ms,τ
− iτ

)

dτ

]

− λs(T − s)

and so

λs = 1

T − s
Es

[∫ T

s
Ms,τ

(
bτ

Ms,τ
− iτ

)

dτ

]

− ws

T − s
.

As a result,

wτ = bτ

Ms,τ
− iτ −

(
1

T − s
Es

[∫ T

s
Ms,τ

(
bτ

Ms,τ
− iτ

)

dτ

]

− ws

T − s

)

gτ (s)

and we denote it by w∗
τ . Under the assumptions about income and bliss points,

w∗
τ = βsπτ (1T )

T − s
−
(

1

(T − s)2
Es

[∫ T

s
e−r T

τ (T −τ)Ms,τ βsdτ

]

− ws

T − s

)

gτ (s)

= βsπs (1T )

T − s

πτ (1T )

πs (1T )
−
(

βs

(T − s)2
πs (1T )Es

[∫ T

s
Gs,τ dτ

]

− ws

T − s

)

gτ (s)

= βsπs (1T )

T − s
fτ (s) −

(
βsπs (1T )

T − s
− ws

T − s

)

gτ (s).

Consequently, the optimal payoff stream w∗ is associated with the return process defined,
for all τ ∈ [s, T ], by

(T − s)w∗
τ

ws
= βsπs (1T )

ws
fτ (s) −

(
βsπs (1T )

ws
− 1

)

gτ (s),

which lies on the risk-adjusted mean-variance frontier in [s, T ] by Theorem 5. ��

6.2 Horizon consistency of optimal cashflows

Inspired by the horizon consistency of the risk-adjusted mean-variance frontier shown in
Proposition 4, we investigate whether a similar feature is kept in the optimal consumption-
investment problem. Specifically, once Problem (21) is solved by a payoff stream w∗ =
{w∗

τ }τ∈[s,T ] on the time interval [s, T ], we assess whether the restriction ofw∗ is also optimal
on the subperiod [s, t] with t ≤ T . In particular, we consider the problem

max
w

Es

[∫ t

s
U (iτ + wτ ) dτ

]

sub w̃s = Es

[∫ t

s
Ms,τwτ dτ

]

, (22)

where w̃s is a given initial wealth in L0(Fs).

Proposition 7 Under the assumptions of Proposition 6, if w∗ solves Problem (21) with initial
wealth ws , then it also solves Problem (22) with initial wealth

w̃s = t − s

T − s
ws .
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Proof of Proposition 7 Following the same steps as in the proof of Proposition 6, the Lagrange
multiplier is

λs = 1

t − s
Es

[∫ t

s
Ms,τ

(
bτ

Ms,τ
− iτ

)

dτ

]

− w̃s

t − s
.

Therefore, for any τ ∈ [s, t], the optimal payoff stream is

w∗
τ = βsπτ (1T )

T − s
−
(

1

(T − s)(t − s)
Es

[∫ T

s
e−r T

τ (T −τ)Ms,τ βsdτ

]

− w̃s

t − s

)

gτ (s)

= βsπs (1T )

T − s

πτ (1T )

πs (1T )
−
(

βs

(T − s)(t − s)
πs (1T )Es

[∫ T

s
Gs,τ dτ

]

− w̃s

t − s

)

gτ (s)

= βsπs (1T )

T − s
fτ (s) −

(
βsπs (1T )

T − s
− ws

T − s

)

gτ (s).

and it coincides with the one prescribed by Proposition 6. ��

The risk-adjustedmean-variance return which is optimal on the investment period [s, T ] is
still optimal on the subperiod [s, t] for the same investorwith a smaller initial endowment. The
intuition behind the lower initial wealth is that the fraction (t − s)/(T − s) ofws is employed
to obtain the cashflow w∗ on [s, t]. The remaining portion, namely (T − t)/(T − s), is
left for the last subinterval [t, T ]. The nonlinear dependence of the optimal return from the
initial endowment is actually a well-known issue for quadratic investment problems. See, for
instance, Mossin (1968).

An analogous reasoning to Proposition 7 shows that w∗ is optimal also on the terminal
subperiod [t, T ], according to

max
w

Es

[∫ T

t
U (iτ + wτ ) dτ

]

sub ŵs = Es

[∫ T

t
Ms,τwτ dτ

]

, (23)

where w̃s belongs to L0(Fs). Indeed, the following result holds.

Corollary 8 Under the assumptions of Proposition 6, if w∗ solves Problem (21) with initial
wealth ws , then it also solves Problem (23) with

ŵs = T − t

T − s
ws .

Although Problem (23) involves the time window [t, T ], the conditional expectation in
the objective function and in the budget constraint is taken at the previous date s. The pricing
kernel is based on s as well. Accordingly, ŵs is Fs-measurable and it represents the portion
of initial wealth assigned to the final subperiod. The horizon consistency of w∗ that we show
requires, in fact, the same information set. This approach is in line with precommitment in
the language of Strotz (1955).

In general, if the decision were contingent at time t , a more profitable optimal investment
would arise in the final time period. Hence, our construction is consistent with a rational
inattention approach, as described in Sims (2003) or Abel et al. (2013). Indeed, one can
assume that our investor makes a decision at time s for the whole period [s, T ] because of
a limited ability to process the incoming information at time t . In other words, observing
the portfolio value at t may be costly and transaction costs may discourage changes in the
investment policy.
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7 Conclusions

We obtain a conditional orthogonal decomposition of asset return processes in the spirit of
Hansen and Richard (1987) by employing the series of returns discounted by the log-optimal
portfolio. The associated risk-adjusted mean-variance frontier features an important horizon
consistency property, with practical advantages for multi-horizon portfolio optimization in
terms of replication costs. The whole construction lies within the linear pricing paradigm and
it is consistent with the consumption-investment plan of an agent that maximizes a quadratic
utility.

Introducing further specific dynamics of interest rates, beyond Vasicek model, may con-
stitute an interesting avenue for future research. Such dynamics may convey special shapes of
the mean-variance frontier that could improve the applicability of our construction in specific
contexts.
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Appendix A Forwardmeasure and numéraire changes

The T -forwardmeasure F is constructed by employing as numéraire the no-arbitrage price of
a zero-coupon T -bond. F is equivalent to the risk-neutral measure Q and its Radon-Nikodym
derivative with respect to Q on FT is

JT = d F

d Q
= e− ∫ T

0 Yτ dτ

E

[
LT e− ∫ T

0 Yτ dτ
] = er T

0 T −∫ T
0 Yτ dτ .

See Theorem 1 and Example 2 in Geman et al. (1995). Moreover,

Jt = Et
[
Lt,T JT

] = er T
0 T −r T

t (T −t)−∫ t
0 Yτ dτ ∀t ∈ [0, T ]

and we set Jt,T = JT /Jt . The Radon-Nikodym derivative of F with respect to P on FT is
GT = d F/d P = JT LT , which belongs to L2(FT ). From Jt = Et [Lt,T JT ], we have

Gt = Et [GT ] = Et [LT JT ] = Lt Jt ∀t ∈ [0, T ]
and we define Gt,T = GT /Gt .
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Appendix B The Hilbert modules Ht
s

Proposition 9 Ht
s is a selfdual pre-Hilbert module on L0(Fs).

Proof of Proposition 9 The algebra L0(Fs) is endowed with the pointwise sum and product
between randomvariables. The outer product · : L0(Fs)×Ht

s → Ht
s is well-defined because,

for any as ∈ L0(Fs) and ẑ ∈ Ht
s , as ẑ belongs to Ht

s too.
Moreover, for each as, bs ∈ L0(Fs) and ẑ, v̂ ∈ Ht

s the following properties hold.

(1) as · (ẑ + v̂) = as · ẑ + as · v̂.
(2) (as + bs) · ẑ = as · ẑ + bs · ẑ.
(3) as · (bs · ẑ) = (asbs) · ẑ.
(4) If es denotes the Fs-measurable random variable equal to one, es · ẑ = ẑ.

These features make Ht
s a module over L0(Fs).

Now consider the inner product 〈 , 〉t
s : Ht

s × Ht
s → L0(Fs). For all ẑ ∈ Ht

s , Es[ẑ2t ] ∈
L0

s (Fs). Therefore, by Footnote 3 in Hansen and Richard (1987), 〈ẑ, v̂〉t
s = Es[ẑt v̂t ] belongs

to L0(Fs).
In addition, for each as ∈ L0(Fs) and ẑ, v̂, ŵ ∈ Ht

s the following properties are satisfied.

(5) 〈ẑ, ẑ〉t
s = Es[ẑ2t ] ≥ 0 with equality if and only if ẑt = 0. This implies that, for any

τ ∈ [s, t], Eτ [ẑt ] = ẑτ = 0. As a result, ẑ = 0.
(6) 〈ẑ, v̂〉t

s = 〈v̂, ẑ〉t
s .

(7) 〈ẑ + v̂, ŵ〉t
s = 〈ẑ, ŵ〉t

s + 〈v̂, ŵ〉t
s .

(8) 〈as · ẑ, v̂〉t
s = asEs[ẑt v̂t ] = as〈ẑ, v̂〉t

s .

As a result, Ht
s is a pre-Hilbert module.

We now prove that Ht
s is selfdual. First, note that L0(Fs) is endowed with the Lévy metric

d( f , g) = E[min{| f − g|, 1}] for all f , g ∈ L0(Fs). As described in Cerreia-Vioglio et al.
(2017), in a pre-Hilbert L0-module a metric, denoted by dH , is given by the composition of
d with the L0-valued norm induced by the L0-valued inner product. Hence, the dH distance
between two processes u, v in Hs is

dH (ẑ, v̂) = d

(√〈
ẑ − v̂, ẑ − v̂

〉t
s, 0

)

= E

[

min

{√

Es

[(
ẑt − v̂t

)2]
, 1

}]

.

Since the selfduality of a pre-Hilbert L0-module is equivalent to the dH -completeness (see
Theorem 5 in Cerreia-Vioglio et al., 2017), we establish this property in Ht

s . In addition, we
observe that the metric dH actually involves just terminal values ẑt and v̂t and so dH (ẑ, v̂)

actually coincides with the distance between random variables ẑt , v̂t belonging to the L0-
module L2

s (Ft ) = { f ∈ L0(Ft ) : Es[ f 2] ∈ L0(Fs)}, which is complete: see Theorem 7 in
Cerreia-Vioglio et al. (2016). This fact makes dH -completeness of Ht

s straightforward.
Therefore, consider a Cauchy sequence {ẑ(n)}n∈N ⊂ Ht

s : for all ε > 0 there is Nε ∈ N

such that, for all n, m > Nε,

dH

(
ẑ(n)

, ẑ(m)
)

= E

[

min

{√

Es

[(
ẑ(n)

t − ẑ(m)
t

)2]

, 1

}]

< ε.

Thus, we obtain a Cauchy sequence {ẑ(n)
t }n∈N ⊂ L2

s (Ft ), which is complete. As a result, this
sequence has limit ẑt ∈ L2

s (Ft ). From ẑt we define the process ẑ = {ẑτ }τ∈[s,t] by setting
ẑτ = E[ẑt ]. This process is a conditional martingale and belongs to Ht

s . To assess this fact,
we check that Es[|ẑτ |] ∈ L0(Fs) for all τ .
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Since any |ẑτ | is non-negative, its conditional expectation is always defined as an extended
real randomvariable.Moreover, the conditional Cauchy-Schwartz’ inequality guarantees that
(Es[|ẑτ |])2 ≤ (Es[|ẑt |])2 ≤ Es[ẑ2t ], where the last quantity belongs to L0(Fs). Consequently,
Es[|ẑτ |] ∈ L0(Fs) for all τ ∈ [s, t]. We, then, determined a process ẑ ∈ Ht

s such that

dH

(
ẑ(n)

, ẑ
)

= E

[

min

{√

Es

[(
ẑ(n)

t − ẑt

)2]

, 1

}]

is arbitrarily small. Since ẑ(n) goes to ẑ in dH , Ht
s is dH -complete and so selfdual. ��

Appendix C Additional simulations: referencemarket with two stocks

We provide a generalization of the reference market of Sect. 5.1 by allowing for two risky
stocks. We, then, repeat the simulations of Sect. 5.2 with 6 horizons. Generalizations with a
higher number of assets can be developed in a similar way.

In the system of Eq. (16) under the measure Q, we consider an additional Wiener process
V Q , independent of W Q and Z Q and a novel stock price St with volatility κ > 0. The
parameter ψ provides the instantaneous correlation between the new stock and the zero-
coupon T -bond, while χ gives the instantaneous correlation with the old stock:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d St = St Yt dt + κSt

[

ψdW Q
t + χ−φψ√

1−φ2
d Z Q

t +
√
1 − ψ2 − (χ−φψ)2

1−ψ2 dV Q
t

]

d Xt = Xt Yt dt + ηXt

[
φdW Q

t + √
1 − φ2d Z Q

t

]

dπt (1T ) = πt (1T ) Yt dt − πt (1T ) B(t, T )σdW Q
t .

The orthogonal shocks dW Q
t , d Z Q

t and dV Q
t come from the Cholesky factorization of the

3 × 3 correlation matrix of the original Brownian motions.
The market price of risk is the multivariate process [νW , νZ , νV ]′ with the first two entries

as in Eq. (19) and

νV
t =

μS
t − Yt − κψνW

t − χ−φψ√
1−φ2

κνZ
t

κ

√
φ2−2φψχ+ψ2+χ2−1

φ2−1

,

where μS is the adapted drift process of d St/St under the physical measure. The Radon-
Nikodym derivative of Q with respect to P , the Novikov condition and the pricing kernel
dynamics are modified to accommodate the extra component in the market price of risk.
The other assumptions and the parameter choices of Sect. 5.1 are kept. In addition, we set
κ = 0.15, ψ = 0.1, χ = −0.3 and μS

t = Yt + 0.08.
We, then, repeat the six-semester mean-variance optimization of Sect. 5.2 with the con-

stants c = $0.002 for trading costs andC = $0.02 for replication costs. Results are displayed
in Fig. 3, where we represent (scaled) standard deviations, (scaled) Sharpe ratios and (scaled)
modified Sharpe ratios across horizons, transaction costs and units of risky assets in each
sub-portfolio, where risky assets coincide with the log-optimal portfolio (in the risk-adjusted
approach) and the portfolio replicating the pricing kernel (in the classical frontier). As the
modified Sharpe ratio shows, in this simulation the risk-adjusted approach outperforms
the standard mean-variance optimization when replication and trading costs are taken into
account.
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Fig. 3 Red (resp. blue) lines, bars and boxes refer to the classical (resp. risk-adjusted) mean-variance solution
for the problem of App. C. Standard deviations, Sharpe ratios and modified Sharpe ratios are scaled by the
weights λ(i) for all i = 1, . . . , 6. 90% confidence intervals for these variables are represented. The top-right
panel represents the transaction costs of the risk-adjusted portfolio (blue for replication costs, light blue for
trading costs) and of the classical mean-variance portfolio (red for replication costs, light red for trading costs).
Medium panels contain the box-and-whisker plot at 25th and 75th percentiles and the bar plot of loadings
|α(i)| and |̃α(i)| at all horizons
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