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Abstract
Crude oil is the most important energy source in the world, and fluctuations in oil prices can
significantly influence investors, companies, and governments. However, crude oil prices
have numerous characteristics, including randomness, sudden structural changes, intrinsic
nonlinearity, volatility, and chaotic nature. This makes the accurate forecasting of crude oil
prices a difficult and challenging task. In this paper, a hybrid prediction model for crude
oil futures prices is proposed, the accuracy and robustness of which are demonstrated via
controlled experiments and sensitivity analysis. This study uses a new data denoising method
for data processing to improve the accuracy and stability of the predictions of crude oil
prices. Furthermore, the chaotic time-series prediction method, shallow neural networks,
linear model prediction methods, and deep learning methods are adopted as submodels. The
results of interval forecasts with narrow widths and high prediction accuracies are derived
by introducing a confidence interval adjustment coefficient. The results of the simulation
experiments indicate that the proposed hybrid prediction model exhibits higher accuracy and
efficiency, as well as better robustness of the forecasting than the control models. In summary,
the proposed forecasting framework can derive accurate point and interval forecasts and
provide a valuable reference for the price forecasting of crude oil futures.
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1 Introduction

As themost important global energy source, crude oil has become a pivotal strategic resource.
Owing to the COVID-19 pandemic (Li et al., 2021), the demand for crude oil saw an unprece-
dented decline of 9.3% (a decrease of 9.1 million barrels per day) in 2020. Nevertheless,
according to the 2021 BP Statistical Review of World Energy (BP China, 2021), crude oil
still accounts for the largest share (31.2%) of global primary energy consumption in 2020.
The crude oil price is closely related to socioeconomic factors, international politics, and
national security (Sun et al., 2020). For example, the three oil crises (in 1973, 1978, and
1990, respectively) caused by surges in crude oil prices led to a reduction in production and a
significant slowdown in economic growth in industrialized countries worldwide (Qin, 2020).
Therefore, the prediction of crude oil prices (COP) is crucial for investors, companies, and
governments. The forecasting of the COP is also a challenging task because the COP can be
influenced by multiple factors, including inflation, exchange rates, supply and demand, inter-
national politics, wars, and pandemics (Chai et al., 2018; You et al., 2021). COP time series
have many characteristics, including intrinsic nonlinearity, randomness, sudden structural
changes, volatility, and a chaotic nature (Cerqueti and Fanelli, 2021; Zhao et al., 2021). With
the continuous development of machine learning (ML) models and optimization algorithms,
the prediction of COP has become increasingly accurate. Because the international crude
oil futures prices (COFP) are generally regarded as the reference prices for the international
COP (Zhang et al., 2021), an increasing number of researchers have engaged themselves in
the prediction of the COFP.

Based on a review of existing studies, forecasting methods applied to the COFP can be
divided into two categories, i.e., single and hybrid models.

The single models used for COFP can be divided intoML and traditional time-series anal-
ysismodels. Traditional time-series analysismethods such as the vector autoregressionmodel
(VAR) (Mirmirani and Li, 2004), generalized autoregressive conditional heteroskedasticity
(GARCH) model (Agnolucci, 2009), and autoregressive integrated moving average model
(ARIMA) (He et al., 2010) are widely used for COP forecasting. Although these models are
effective in capturing the linear information in a time series, they fail to capture its nonlinear
information to a certain extent (Abdollahi and Ebrahimi, 2020). Therefore, these models are
not very effective when predicting the COFP owing to the nonlinear characteristics of COFP
(Sun et al., 2018). Furthermore, these models have many strict assumptions (Li et al., 2019),
but these assumptions are often difficult to practically satisfy. To compensate for the short-
comings of traditional time-series analysis models, an increasing number of ML methods
have been used to forecast the COFP. ML models are not only free of strict assumptions,
but they can also capture nonlinear information in a time series (Abedin, Chi, et al., 2021;
Abedin, Moon, et al., 2021). Initially, a multilayer perceptron (MLP) (Guotai et al., 2017a),
support vector machine (SVM) (Abedin et al., 2019; Abedin et al., 2019; Guo et al., 2012; Li,
Chen, et al., 2020; Li, Wen, et al., 2020), back propagation neural network (BPNN) (Ming-
ming and Jinliang, 2012), and extreme learning machine (ELM) (Wang, Athanasopoulos,
et al., 2018) were used to improve the accuracy of COFP forecasts. In recent years, deep
learning methods have attracted extensive attention owing to their excellent performance in
terms of prediction accuracy and stability (Abedin, Chi, et al., 2021; Abedin, Moon, et al.,
2021; Lv et al., 2022; Wang et al., 2022; Wang, Athanasopoulos, et al., 2018; Wang, Du,
et al., 2018). Long short-term memory (LSTM) networks (Zhang et al., 2020), deep belief
networks (DBN) (Zhang and Ci, 2020), and bidirectional long short-term memory networks
(BiLSTM) (Abedin, Moon, et al., 2021) are gradually used in COFP predictions. However,
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there are still certain drawbacks in using ML models to predict the COFP, such as their poor
generalization ability and local optimum problems (Wang et al., 2020).

To address these issues, many hybrid models have been proposed for COFP forecasting. A
hybrid model is a combination of several single models through an optimization algorithm. It
can inherit the advantages of every single model, thereby improving the prediction accuracy
and stability (Guotai et al., 2017b; Hu et al., 2021; Jiang et al., 2020; Khalilpourazari and
Doulabi, 2021). In existing studies, the most commonly used optimization algorithms are
the genetic algorithm (GA) (Yang et al., 2019), particle swarm optimization (PSO) (Ribeiro
et al., 2021), ant lion optimization algorithm (ALO) (P. et al., 2018), frog-leaping algorithm
(FLA) (He et al., 2021), and whale optimization algorithm (WOA) (Lin and Zhang, 2021).
Only one optimization objective can be set when these optimization algorithms are used to
build hybrid models. To simultaneously consider more optimization objectives, researchers
have proposed many multiobjective optimization algorithms, such as the multiobjective ant
lion optimization algorithm (MOALO) (Wang, Du, et al., 2018) and multiobjective whale
optimization algorithm (MOWOA) (Wang et al., 2017). Due to the fact hybrid models con-
structed using multiobjective optimization algorithms can improve forecasting stability and
accuracy, an increasing number of researchers are applying suchmodels to COFP forecasting
(Abdollahi and Ebrahimi, 2020; Chai et al., 2018; Zhao et al., 2021). The COFP time series
has chaotic characteristics (Wang et al., 2020). In the present study, the Lyapunov exponents
of the Brent crude oil futures price (BCOFP) and the West Texas Intermediate crude oil
futures price (WCOFP) are also calculated, the results of which (i.e., 0.0376 and 0.0036,
respectively, both of which are greater than zero) indicate the chaotic characteristics of these
time series. However, existing studies cannot sufficiently extract chaotic information from a
time series to improve the COFP prediction accuracy. The characteristics and representative
studies of the COFP forecasting models are listed in Table 1.

In this paper, a hybrid prediction model applying time varying filtering for empirical
mode decomposition (TVF_EMD) and a multiobjective slime mold algorithm (MOSMA),
calledTVF_EMD_MOSMA, is proposed forCOFP forecasting.Based on this framework, the
results of the point forecast (PF) and interval forecast (IF) are derived. First, we decompose the
COFP time series using TVF_EMD and eliminate redundant noise series. Second, we obtain
the PF results of COFP based on TVF_EMD_MOSMA. Finally, we apply the maximum
likelihood estimate (MLE) to estimate the probability density function of the COFP residuals
based on the fitting errors. Thereafter, we applyMOSMA to determine the confidence interval
adjustment coefficient (CIAC). Subsequently, we obtain the IF results of COFP through the
PF results, CIAC, and optimal distribution. The contributions of this study are as follows:

(1) A new hybrid prediction model (TVF_EMD_MOSMA) for COFP is presented. The
results of comparative experiments show that TVF_EMD_MOSMA exhibits high
accuracy and stability of PF and IF for COFP. The predictive performance of
TVF_EMD_MOSMA is efficient and robust.

(2) A novel data denoising method (TVF_EMD) is used for COFP data processing. Based
on the idea of “decomposition and combination,” the COFP time series is reconstructed
after removing the high-frequency noise using TVF_EMD, thus improving the accuracy
of the prediction model.

(3) The proposed MOSMA is applied for COFP prediction for the first time. MOSMA
applies an archive component to store all non-dominated Pareto solutions and imple-
ments multiobjective optimization based on non-dominated sorting and the crowding
distance mechanism. Experimental results show that MOSMA can effectively enhance
the prediction accuracy and stability of the hybrid model for COFP prediction.
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Table 1 Summary of available studies

Type Subtype Model References Advantages Disadvantages

Single
model

Linear
prediction
model

VAR Mirmirani and
Cheng Li (2004)

These models
have low
complexity, fast
computational
speed, and
effective linear
time series
prediction
ability

The nonlinear
time series
prediction
ability of these
models is poor

ARIMA He et al. (2010)

GARCH Agnolucci (2009)

Shallow
neural
networks

MLP Guotai et al.
(2017a, 2017b)

These models
have an
excellent
performance to
fit simple
functions and
fast running
speed

The ability of
these models to
fit complex
functions is
limited

BPNN Mingming and
Jinliang (2012)

SVM Guo et al. (2012)

ELM Wang, Du, et al.
(2018), Wang,
Athanasopoulos,
et al. (2018)

Deep
learning
models

DBN Zhang and Ci
(2020)

Deep learning
can
approximate
complex
functions and is
highly adaptive

These models
require a lot of
computation
and a
long-running
time

LSTM Zhang et al. (2020)

BiLSTM Li et al. (2021)

Hybrid
model

Single
objective

GA Yang et al. (2019) Fast convergence
and global
optimization
search

Only one
objective can
be achieved at
a time

PSO Ribeiro et al.
(2021)

ALO Reddy et al. (2018)

FLA He et al. (2021)

WOA Lin and Zhang
(2021)
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Table 1 (continued)

Type Subtype Model References Advantages Disadvantages

Multiple
objectives

MOALO Wang, Du, et al.
(2018)); Wang,
Athanasopoulos,
et al. (2018))

Multiple
objectives can
be achieved
simultaneously

A good balance
of convergence
and diversity
has not yet
been achieved

MOWOA Wang et al. (2017)

MOSMA Li, Chen, et al.
(2020)

(4) To obtain an IF with a narrower width and higher prediction accuracy, the CIAC deter-
mined using MOSMA is added. The contradiction between the interval prediction
accuracy and prediction interval width was balanced, significantly improving the IF
performance.

The remainder of this paper is organized as follows. Section 2 introduces the proposed
hybrid prediction model and its submodels. Section 3 describes the performance evaluation
metrics and data used in the study. Section 4 presents the experimental results. Section 5
further discusses TVF_EMD_MOSMA and describes the results of the sensitivity analy-
sis, the accuracy and stability improvement ratio, and forecasting effect analysis. Section 6
discusses the practical applications, limitations, and scope of future research work. Finally,
Sect. 7 presents the conclusions of this study.

2 Researchmethod

In this section, the basic models, interval estimation theory, and proposed hybrid prediction
model are introduced.

2.1 Time varying filter empirical mode decomposition

Empirical mode decomposition (EMD) can decompose a COFP time series into a finite
number of intrinsic mode function (IMF) signals based on the time-scale characteristics
of the COFP time series (Wang, Athanasopoulos, et al., 2018; Wang, Du, et al., 2018).
Since the decomposed time series facilitates the extraction of time-series features, EMD
is extensively used in time-series forecasting (Wang and Wang, 2020). However, EMD is
plagued by marginal effects and pattern confusion which leads to reduced accuracy in a time-
series decomposition. Recursive empirical mode decomposition (REMD) has been proposed
to alleviate the problems of marginal effects and pattern confusion in EMD (Wang andWang,
2020). Recently, TVF_EMD was proposed to simultaneously solve the modal separation
and intermittent operation problems. Simultaneously, the physical meaning of the model
parameters in TVF_EMD is clear, which facilitates parameter selection (Wang, Niu, et al.,
2021). The detailed calculation process of TVF_EMD is shown below.
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Step 1: The frequency f ′(p) and instantaneous amplitude ψ(p) of the COFP time series
o(p) are calculated using the Hilbert transform.

f ′
1(p) = ς1(p)

2m2
1(p) − 2m1(p)m2(p)

+ ς2(p)

2m2
1(p) + 2m1(p)m2(p)

(1)

f ′
2(p) = ς1(p)

2m2
2(p) − 2m1(p)m2(p)

+ ς2(p)

2m2
2(p) + 2m1(p)m2(p)

(2)

In Eqs. (1) and (2), ς1(p) and ς2(p) are obtained by interpolating f ′({pmax })ψ2({pmax })
and f ′({pmin})ψ2({pmin}). In addition, ψ({pmin}) and ψ({pmax}) are the local mini-
mum and maximum of ψ(p), respectively; m1(p) = (μ1(p) + μ2(p))

/
2 and m2(p) =

(μ2(p) − μ1(p))
/
2 represent the instantaneous mean value and instantaneous envelope;

μ1(p) and μ2(p) are obtained by interpolating ψ({pmax}) and ψ({pmin}).

f ′
bis(p) = f ′

1(p) + f ′
2(p)

2
= μ2(p) − μ1(p)

4m1(p)m2(p)
(3)

In Eq. (3), f ′
bis(p) represents the local cut-off probability. Arrange f ′

bis(p) to solve the
intermission problem: Define a signal as k(p) = cos

[∫
f ′
bis(p) dp

]
and use the extreme point

of k(p) as the node. By approximating the COFP time series through a B-spline interpolation,
the approximate result z(p) is obtained.

Step 2: Determine the cut-off condition, δ(p). If δ(p) ≤ ξ , o(p) is considered an IMF.
Otherwise, set o1(p) = o(p) − z(p) and repeat Steps 1 and 2.

Step 3: Using these above steps, decompose the COFP time series into multiple IMFs.

2.2 Volterra adaptive filter based on phase space reconstruction

To extract the chaotic information in the COFP time series, the Volterra adaptive filter is used.
The following introduces the principle of the phase space reconstruction, the calculation of
the optimal embedding dimension and delay time, and the principle of the Volterra adaptive
filter.

2.2.1 Phase space reconstruction

Takens theorem states that a single variable chaotic time series can be reconstructed into a
multidimensional phase space, and this space can contain the chaotic features of the original
time series. Thus, the laws and properties of a chaotic time series can be accurately captured
(Lin and Zhang, 2021).

Suppose that the COFP time series is {o(p), p = 1, 2, ..., N } and that
an m-dimensional vector is formed through the delay time:O(p) =
[o(p), o(p + τ), ..., o(p + (m − 1)τ ), p = 1, 2, ..., M], where m is the optimal embedding
dimension, τ is the predicted delay time, O(p) is the phase point in m-dimensional
phase space, and M is the number of phase points,M = N − (m − 1)τ . In
addition,{O(p), p = 1, 2, ..., M} describe the evolutionary trajectory of a dynamical
system in the phase space, and thus, the chaotic behavior of a dynamical system can be
studied in reconstructed m-dimensional phase space.
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2.2.2 Determination of delay time

In this study, the mutual information (MI) method is used to determine the delay time
of the COFP time series. The probability of occurrence of o(k) in the time series
{o(p), p = 1, 2, ..., N } is defined as P(o(k)); the probability of the occurrence of O(k)
in time series {O(p), p = 1, 2, ..., N } is defined as P(O(k + τ)); and the joint probability
of occurrence of P(o(k)) and P(O(k + τ)) in the two series is defined as P(o(k), O(k + τ)),
where P(o(k)) and P(O(k + τ)) can be solved based on the probability of occurrence in
their respective time series. The joint probability P(o(k), O(k + τ)) can then be obtained
by counting the lattice on the plane (o(p), O(p + τ)). The MI function is as follows.

I (τ ) =
N∑

i=1

P(o(k), O(k + τ)) · log2
P(o(k), O(k + τ))

P(o(k)) · P(O(k + τ))
(4)

We apply the τ when the MI function I (τ ) takes the first minimal value point as the delay
time.

2.2.3 Determination of the optimal embedding dimension

In this study, the false nearest neighbor method (FNN) is used to determine the optimal
embedding dimension. The calculation procedure for the FNN is as follows.

Step 1: In the embedding space with embedding dimension m, find the Euclidean distance
nearest neighbor of all points. The Euclidean distance between O(h) and O(l) is calculated
using Eq. (5).

‖O(h), O(l)‖ =
[
m−1∑

l=0

(o(h + gτ) − o(l + gτ))2

]1/2
(5)

Step 2: When any pair of nearest neighbors satisfies the following criterion, it is an FNN
point.

[
R2
m+1(h, l) − R2

m(h, l)

R2
m+1(h, l)

]1/2
= |o(h + mτ) − o(l + mτ)|

Rm(h, l)
≥ Rtol (6)

In Eq. (6), R2
m+1(h, l) and R2

m(h, l) represent the squared distance between any pair of
nearest neighbors at the optimal embedding dimensions of m + 1 and m, respectively, and
Rtol represents the threshold value.

Step 3: When m = 1, the ratio of the FNN points to the total number of phase points is
calculated, and m is gradually increased until the ratio is less than 5%. The chaotic attractor
geometry is considered to be completely opened and m is the optimal embedding dimension
at this time.

2.2.4 Volterra adaptive filter prediction model

The Volterra adaptive filter prediction model can predict a chaotic time series using only a
small sample of data, and it can automatically track the chaotic motion trajectory. This model
has high prediction accuracy for a chaotic time series (Qiao et al., 2020).
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Assuming that the input variable is O(p) = [o(p), o(p − τ), ..., o(p − (m − 1)τ )] and
the output variable is y(p) = o(p + 1), the Volterra adaptive second-order filtering model is
as follows:

ô(p + 1) = h0 +
m−1∑

i=0

h1(i)o(p − iτ) +
m−1∑

i=0

m−1∑

j=i

h2(i, j)o(p − iτ)o(p − jτ) (7)

The coefficient and input vectors are expressed through Eqs. (8) and (9), respectively.

H(p) = [h0, h1(0), ..., h1(m − 1), h2(0, 0), h2(0, 1), ..., h2(m − 1,m − 1)]T (8)

Z(p) =
[
1, o(p), o(p − τ), ..., o(p − (m − 1)τ ), o2(p), o(p)o(p − τ), ..., o2(p − (m − 1)τ )

]T

(9)

Based on Eqs. (8) and (9), Eq. (7) can be expressed as

ô(p + 1) = HT (p)Z(p) (10)

2.3 ARIMAmodel

The ARIMA model is a traditional time-series analysis model that is widely used for time-
series forecasting (Ribeiro et al. 2021). The model provides a better prediction for a linearly
smoothed time series.

Here, ARIMA(p, k, q) is expressed through Eq. (11).
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�(�)∇k xt = 	(�)εt
E(et ) = 0,
Var(et ) = σ 2

e ,

E(et es) = 0, s �= t
E(eset ) = 0,∀s < t

(11)

In Eq. (11), ∇k = (1 − �)k ;�(�) = 1−φ1�− · · ·−φp�
p indicates the autoregressive

coefficient polynomial in ARIMA, and 	(�) = 1− θ1�−· · ·− θq�
q indicates the moving

smoothing coefficient polynomial.

2.4 ELM

ELM is a feedforward neural network with a single hidden layer. This model structure com-
prises an input layer, implicit layer, and output layer, similar to an ANN (Lin and Zhang,
2021). The layers are connected to each other using a characteristic mapping function. Infor-
mation from the input layer is processed by the implicit layer and passed to the output
layer, which then derives the calculated value according to the mapping function. Although
the random initialization of the parameters improves the generalization of the ELM, it also
requires the ELM to add a large number of nodes to achieve accurate training. For large
samples, several nodes consume an excessive number of computational resources and may
cause overfitting.

2.5 Bidirectional long-short termmemorymodel

The bidirectional long-short term memory model (BiLSTM) is divided into two independent
LSTMs, and the input sequences are input into the twoLSTMs in forward and inverse order for
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feature extraction. LSTM is a recurrent neural network, and it is proposed to solve the gradient
disappearance and explosion problems. The design concept of BiLSTM is to simultaneously
obtain the characteristics of the data with information between the past and future (Wang
et al., 2020). BiLSTM outperforms a single LSTM approach in terms of efficiency and
performance.

2.6 MOSMA

The slime mold algorithm (SMA) is a population-based metaheuristic algorithm proposed
by Li, Chen, et al. (2020). The slime mold can establish the best pathway for connecting food
in a relatively superior manner through a combination of positive and negative feedback.
Therefore, SMA adjusts the search path and obtains the optimal result based on a positive
and negative feedback system. SMA simulates three different morphotypes in the hunting
process of slime mold: finding food, wrapping food, and approaching the food morphotype.
The mathematical model of SMA is as follows:

⎧
⎨

⎩

Xnl = R1 · (Ub − Lb) + Lb, i f (R1 < 0.03)
Xnl = Xb(k) + Vb · (W · XA(k) − XB(k)), i f (R2 < p)
Xnl = Vc · X(k), i f (R2 ≥ p)

(12)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W (Smell I ndex( j)) =
⎧
⎨

⎩

1 + R2 · log
(
oF−M( j)
oF−wF + 1

)
, condition

1 − R2 · log
(
oF−M( j)
oF−wF + 1

)
, others

Smell I ndex = sort(M)

Vb = [−l, l]

l = arctan h
(
−

(
k

Max_t

)
+ 1

)

p = tanh|M( j) − BF |

(13)

In Eqs. (12) and (13), X indicates the current position of the slime mold, k indicates the
number of current iterations, Lb andUb represent the lower and upper bounds of the search
range, Vb is the vibration parameter,W represents the weight of the slime mold, bF denotes
the optimal fitness, wF denotes the worst fitness, and BF denotes the optimal fitness in
all iterations. Smell I ndex denotes the sequence of sorted fitness values (ascending in the
minimum value problem), and R1 and R2 denote a random value within the range of [0,1].

SMA can effectively solve many practical problems (Li, Chen, et al., 2020; Li, Wen,
et al., 2020). MOSMA is proposed to effectively achieve multiple goals. It is a multiobjective
improvement algorithm based on the SMA algorithm, using an elite non-dominated sorting
method to estimate the Pareto optimal solutions. In addition, to ensure the diversity of Pareto
optimal solutions, MOSMA added a crowding distance mechanism to increase the coverage
of all objectives (Premkumar et al., 2021). The steps for an elitist non-dominated sorting
approach are as follows:

Step 1: Calculate the non-dominated results of the objective function.
Step 2: Sort the non-dominated results using non-dominated sorting.
Step 3: Find the non-dominated ranking of all non-dominated results to determine the optimal
solution.
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The crowding distance (cdni ) is calculated through the following formula:

cdni = f n+1
i − f n−1

i

f max
i − f min

i

(14)

In Eq. (14), f max
i and f min

i denote the maximum and minimum values of the i − th
objective function, respectively. The non-dominated ranking and crowding distance (cdni )
are used to determine the optimal solution.

To optimize the prediction accuracy and robustness of the hybrid prediction model, the
multiobjective functions are defined as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f PF
1 = 1

n

n∑

i=1

∣
∣(OPi − FPi )

/
OPi

∣
∣ × 100%

f PF
2 =

√
1
n

n∑

i=1

(
Pi − P

)2
, Pi = OPi − FPi

(15)

In Eq. (15), OPi and FPi denote the i − th actual and predicted COPs, respectively. In
addition, P denotes the mean of Pi .

2.7 Interval forecastingmethod

Although the PF provides an explicit value, the reliability of providing this value is not given
by the PF. Therefore, the IF is proposed to fill in this gap. The IF can provide considerable
information to users regarding forecast results (Sun et al., 2020). The common distributions
in the field of energy price forecasting are the Gumbel, generalized extreme value (GEV),
and gamma distribution (Jiang et al., 2021; Wang, Niu, et al., 2021). In this study, the MLE is
used to fit the optimal distribution of the prediction error series. However, the interval width
and prediction accuracy of the IF are irreconcilable. To obtain an IF with a narrow width
and high prediction accuracy, the CIACs (ζ1 and ζ2) are added (Jiang et al., 2021), and are
determined using MOSMA. The calculation formulas of the i − th day’s IF are as shown
below:

Ub(1−α)
i = FPi + ζ1 · Dist∗1−(α/2) ·

√
Var

(
ETV F_EMD_MOSMA

)
(16)

Lb(1−α)
i = FPi − ζ2 · Dist∗(α/2) ·

√
Var

(
ETV F_EMD_MOSMA

)
(17)

where Lb(1−α)
i andUb(1−α)

i are the lower and upper bounds of the confidence interval at the
confidence level (1−α), FPi denotes the i−th day’s PF result, and Dist∗1−(α/2) and Dist∗

(α/2)
are the 1 − (

α
/
2
)
quantile and

(
α
/
2
)
quantile of the optimal distribution, respectively. In

addition, ETV F_EMD_MOSMA is the prediction error sequence of TVF_EMD_MOSMA, and
ζ1 and ζ2 are the CIACs determined through MOSMA. The objective functions for the IF in
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MOSMA can be defined as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f I F1 = 1
n

n∑

i=1

∣
∣
∣
∣

IW (1−α)
i

max{OPi ,i=1,2,...,n}−min{OPi ,i=1,2,...,n}

∣
∣
∣
∣

f I F2 = −
n∑

i=1
A(1−α)
i

A(1−α)
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−2α · IW (1−α)
i − 4

(
Lb(1−α)

i − FPi
)
, i f F Pi < Lb(1−α)

i

−2α · IW (1−α)
i , i f F Pi ∈

[
Lb(1−α)

i ,Ub(1−α)
i

]

−2α · IW (1−α)
i − 4

(
FPi −Ub(1−α)

i

)
, i f F Pi > Ub(1−α)

i

IW (1−α)
i = Ub(1−α)

i − Lb(1−α)
i

(18)

where OPi and FPi denote the i − th actual and predicted COFP, respectively; and Lb(1−α)
i

andUb(1−α)
i are the lower and upper bounds of the confidence interval at the confidence level

(1 − α). When the objective functions f I F1 and f I F2 take the minimum value, the position
of the slime mold is the values of ζ1 and ζ2.

2.8 Framework of proposed TVF_EMD_MOSMA

The proposed TVF_EMD_MOSMA is introduced in this section. The overall framework is
shown in Fig. 1. In this study, the point and interval prediction results ofWCOFP and BCOFP
are derived using TVF_EMD_MOSMA. The detailed steps are as follows:

Fig. 1 Framework of the proposed TVF_EMD_MOSMA
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Step 1: Data processing

Using the TVF_EMD method, the high-frequency noise in the COFP time series is filtered
out. Consequently, a smooth COFP time series is obtained. Thereafter, the processed COFP
time series is used in the TVF_EMD_MOSMA prediction model.

Step 2: Point forecast

The processed COFP time series is input into the four submodels (Volterra adap-
tive filter, ARMIA, ELM, and BiLSTM) as an input variable, and the output is{
FP(1)

i , FP(2)
i , FP(3)

i , FP(4)
i

}
. Here, FP( j)

i denotes the predicted result from the j − th

submodel. In addition,
{
FP(1)

i , FP(2)
i , FP(3)

i , FP(4)
i

}
is combined as the final predicted

value FPi by a set of weights
{
�(1),� (2),� (3),� (4)

}
determined using MOSMA.

Step 3: Interval forecast

The optimal distribution of the prediction error series is determined using the MLE. The
CIACs (ζ1 and ζ2) are determined using MOSMA. Finally, the confidence intervals with
confidence levels of 90%, 95%, and 99% are calculated by Eqs. (15) and (16).

3 Studied data and performance evaluationmetrics

In this section, the studied data (original, training set, and test set data) are presented in detail.
The performance evaluation metrics for the PF and IF are also presented.

3.1 Studied data

WCOFP and BCOFP have a large international influence and are often regarded as the
reference prices for the international oil spot market. Therefore, the study sample includes
the daily settlement prices of the WCOFP and BCOFP from 4 January 2010 to 30 September
2021. These data are available on Investing.com (https://cn.investing.com/com-modities/
crude-oil-historical-data). The period from 4 January 2010 to 30 September 2020 is selected
as the training set for training the prediction model. The remaining data (1 October 2020 to
30 September 2021) are used as the test set to evaluate the model prediction performance.
More details of the dataset are presented in Table 2.

3.2 Performance evaluationmetrics

In this section, a system of metrics for evaluating the performances of PF and IF is presented
(Wang, Niu, et al., 2021; Wang Wang et al., 2021; Wang et al., 2021; Wang et al., 2021).
A detailed description of the metrics is presented in Table 3. The abbreviations used in this
study are described in "Appendix 1".

4 Experiments and analysis

In this section, two control experiments to test the performance of the proposed
TVF_EMD_MOSMApredictionmodel are introduced in detail.Experiment I demonstrated
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the excellent PF performance of the proposed hybrid prediction model by setting up multiple
sets of controlled trials. Experiment II determined the optimal distribution of the predic-
tion error series using MLE. Confidence intervals with confidence levels of 90%, 95%, and
99% were calculated using MOSMA. The IF performance of the proposed hybrid prediction
model was tested.

4.1 Experiment configuration

4.1.1 Experimental environment

All experiments in this study were conducted using MATLAB R2020a. The experimental
platform was a laptop computer with a 64-bit 1.80 GHz AMD Ryzen7 4800U CPU with a
Radeon graphics card and 16 GB of RAM, running on Windows 10.

4.1.2 Model parameter settings

The proposed hybrid prediction model consists of four submodels (Volterra adapter filter,
ARIMA, ELM, and BiLSTM) and MOSMA optimization algorithms. Three types of control
models have been developed: (1) Benchmark models: BPNN, LSTM, Volterra adapter filter,
ARIMA, ELM, BiLSTM, TVF_EMD_BPNN, TVF_EMD_Voterra, TVF_EMD_ARIMA,
TVF_EMD_ELM, and TVF_EMD_BiLSTM. (2) The models using different data denois-
ing methods: EMD_MOSMA and REMD_MOSMA. (3) The models using different
optimization algorithms: TVF_EMD_SFL, TVF_EMD_SMA, TVF_EMD_MOALO, and
TVF_EMD_MOWOA. The detailed parameter settings for the models are listed in Table 4.

4.2 Experiment I: PF result analysis

Three types of control trials were conducted to demonstrate the superiority of the PF perfor-
mance of the proposed hybrid prediction model. The results of Experiment I are shown in
Fig. 2.

4.2.1 Comparison with benchmark models

Multiple benchmark models were used as control models to demonstrate that
the TVF_EMD_MOSMA outperformed the single model. The PF performances of
TVF_EMD_MOSMA and multiple benchmark models are presented in Table 5.

(1) By comparing the model using the TVF_EMD denoising method and the model
without denoising, the PF’s accuracy and stability of the model using TVF_EMD
are better than those of the model without denoising. For instance, the evaluation
metrics of the ELM using TVF_EMD for WCOFP are MAPEWCOFP

TV F_EMD_ELM =
0.9317, MdAPEWCOFP

TV F_EMD_ELM = 0.7231, MAEWCOFP
TV F_EMD_ELM = 0.5431, and

RMSEWCOFP
TV F_EMD_ELM = 0.7114. However, the evaluation metrics of the ELM

without denoising for WCOFP are MAPEWCOFP
ELM = 1.6058,MdAPEWCOFP

ELM =
1.3558,MAEWCOFP

ELM = 0.9392, and RMSEWCOFP
ELM = 1.2365. The MAPE, MdAPE,

MAE, and RMSE of the TVF_EMD_ELM are much smaller than those of the ELM,
indicating that the PF performances of ELM are improved by using the TVF_EMD
denoising method.
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Table 4 Parameter settings of the model and optimization algorithm

Method Parameter Symbol Value Reason

TVF_EMD Bandwidth
threshold

wb 0.08 Common value

Max number of
IMFs

NI 50 Preset

B-spline order Ob 26 Common value

BPNN Hidden layer nodes
number

Nh 10,15,10 Trial–error manner

Iteration number Ni 10,000 Trial–error manner

Learning rate Lr 0.1 Trial–error manner

Training
requirements
precision

Ptr 0.0001 Preset

LSTM Hidden layer nodes
number

Nh 50 Trial–error manner

Iteration number Ni 1000 Trial–error manner

Learning rate Lr 0.001 Trial–error manner

Volterra Time delay Td 21(WTI),
14(Brent)

The MI method

Embedding
dimension

De 10(WTI),
11(Brent)

The FNN method

Order On 3 Common value

ELM Iteration number Ni 10,000 Preset

Hidden layer nodes
number

Nh 5 Trial–error manner

BiLSTM Variable learning
rate

Lr 0.001(0.5) Trial–error manner

Iteration number Ni 3000 Trial–error manner

Hidden layer nodes
number

Nh 100 Trial–error manner

FLA, SMA Iteration number Ni 100 Trial–error manner

Population size Sp 200 Trial–error manner

MOALO,
MOWOA,
MOSMA

Population size Sp 200 Trial–error manner

Archive size Sa 100 Trial–error manner

Iteration number Ni 100 Trial–error manner

(2) The benchmark models show different predictive performances for the different
datasets. For WCOFP, TVF_EMD_ELM achieved the best PF performance. However,
TVF_EMD_ARIMA was the best-performing benchmark model for BCOFP. There-
fore, to obtain the optimal prediction performance for different datasets, the proposed
hybrid prediction model combines submodels using the optimal weights determined by
MOSMA.
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Fig. 2 Results of Experiment I
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(3) For the BCOFP, all evaluation metrics of TVF_EMD_MOSMA are smaller
than those of all the benchmark models (MAPEBCOFP

TV F_EMD_MOSMA =
0.8281,MdAPEBCOFP

TV F_EMD_MOSMA = 0.7109,MAEBCOFP
TV F_EMD_MOSMA = 0.5862,

and RMSEBCOFP
TV F_EMD_MOSMA = 0.7488). For WCOFP, the model comparison results

are similar to those of BCOPF, demonstrating that the TVF_EMD_MOSMA prediction
model achieves a better PF performance than all benchmark models.

4.2.2 Comparison of different denoising methods

To compare the different denoising methods (TVF_EMD, EMD, and REMD),
EMD_MOSMA and REMD_MOSMAwere set as the control models. The PF performances
of TVF_EMD_MOSMA and the control models with different denoising methods are listed
in Table 6.

By comparing the evaluation indicators of TVF_EMD_MOSMA, EMD_MOSMA,
and REMD_MOSMA, the evaluation indicators (MAPE, MAE, MdAPE, and RMSE) of
TVF_EMD_MOSMA were smaller than those of EMD_MOSMA and REMD_MOSMA.
The results indicate that the TVF_EMDmethod shows excellent performance. In otherwords,
TVF_EMD is more suitable for data processing of COFP prediction than the other denoising
methods (EMD and REMD).

4.2.3 Comparison of different optimization algorithms

In this section, different optimization algorithms are compared. To demonstrate the
superiority of MOSMA, multiple control models (TVF_EMD_SFL, TVF_EMD_SMA,
TVF_EMD_MOALO, and TVF_EMD_MOWOA) were constructed by keeping the sub-
models and denoising methods unchanged and solely changing the optimization algorithm.
The parameter settings for these models are listed in Table 4. The PF performances of
TVF_EMD_MOSMA and the control models with different optimization algorithms are
listed in Table 6.

Comparing the evaluation metrics of TVF_EMD_MOSMA and the control models using
different optimization algorithms, only the MdAPE of TVF_EMD_MOSMA for BCOFP
is larger than that of the optimal model (TVF_EMD_MOALO) by 0.04. For other cases,
TVF_EMD_MOSMA has the smallest evaluation metric values (MAPE, MAE, MdAPE,
and RMSE) for the WCOFP and BCOFP. In other words, MOSMA achieves higher stability
and accuracy than SFL, SMA, MOALO, and MOWOA. Experiment I helps conclude that
the proposed hybrid prediction model is more effective for the PF of COFP.

4.3 Experiment II: IF result analysis

In this section, the optimal distribution of the prediction error series is determined using
MLE. The confidence intervals with confidence levels of 90%, 95%, and 99% and the IF per-
formance of the proposed hybrid prediction model are presented. The results of Experiment
II are shown in Fig. 3.

4.3.1 Selection of the optimal distribution function for COFP prediction error series

The IF can provide more information to users regarding the forecast results. The common
distributions in the field of energy price forecasting are the Gumbel, GEV, and gamma distri-
butions (Jiang et al., 2021; Wang, Niu, et al., 2021). Therefore, we chose these distribution
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Fig. 3 Results of experiment II
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Table 7 Results of fitting the distribution functions of WCOFP_E and BCOFP_E

Data Metric Gumbel GEV Gamma

WCOFP_E RMSE 0.2910 0.7220 0.2510

R 0.9740 0.9250 0.9770

BCOFP_E RMSE 0.3140 1.1060 0.1240

R 0.9630 0.8430 0.9870

functions to fit the distribution characteristics of the COFP prediction error series using the
MLE. The R and RMSE are used as evaluation metrics to evaluate the fitting effect of the
distribution function. And R is the correlation coefficient of the fitted distribution (Gumbel,
GEV, and gamma) with empirical distribution (observations). The results of fitting the distri-
bution functions of the WCOFP prediction error series (WCOFP_E) and BCOFP prediction
error series (BCOFP_E) are listed in Table 7.

For WCOFP_E, the R of the Gumbel and gamma distributions are close, and the RMSE
of the gamma distribution is the smallest. Therefore, the gamma distribution is chosen as the
distribution function of WCOFP_E. For the distribution function of WCOFP_E, the shape
parameter is 5.2 and the inverse scale parameter is 0.4, as estimated using the MLE.

For BCOFP_E, the R of the gamma distribution was the largest, and the RMSE of the
gamma distribution was the smallest. Therefore, the gamma distribution is considered to be
the optimal distribution of BCOFP_E. For the distribution function of BCOFP_E, the shape
parameter is 16.63 and the inverse scale parameter is 0.19, as estimated using the MLE.

4.3.2 IF performance of TVF_EMD_MOSMA

After determining the optimal distribution function of COFP_E using the MLE, the CIACs
were added to the hybrid prediction model to enable the IF with a narrow width and high
prediction accuracy. The confidence intervals with confidence levels of 90%, 95%, and 99%
were derived using the PF results, optimal distribution, and CIACs. The IF performance of
the proposed TVF_EMD_MOSMA is presented in Table 8.

The AIS is used to measure the accuracy of the IF, and a larger AIS indicates a higher
prediction accuracy. The FICP is also used to measure the accuracy of IF, and it is the
frequency at which observations fall into the prediction intervals. FINAW is used to measure

Table 8 IF performance of the proposed TVF_EMD_MOSMA

Data Confidence level (1 − α)% AIS FICP FINAW

BCOFP 90 − 0.5943 0.9008 0.1423

95 − 0.3441 0.9542 0.1676

99 − 0.0944 0.9924 0.2706

WCOFP 90 − 0.6363 0.9043 0.1638

95 − 0.4012 0.9468 0.1718

99 − 0.0868 0.9894 0.3112
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the width of the confidence interval, with smaller values indicating a better IF performance.
As presented in Table 8, the value of the FICP is extremely close to the confidence level,
indicating that the IF results in this study are reasonable. The values of FINAW and AIS are
quite small when the given confidence level is achieved, which indicates that the IF results
show high accuracy and narrow interval width. In other words, the IF performance of the
proposed hybrid prediction model is excellent.

5 Discussion

TVF_EMD_MOSMA is further discussed in this section, including the sensitivity analysis,
the accuracy and stability improvement ratio, and the forecasting effect analysis.

5.1 Sensitivity analysis

Sensitivity analysis was employed to measure the robustness of the model’s predictive per-
formance; in particular, sensitivity analysis was used to measure the effect of a change in
the model parameters on the prediction results. This study considered the effect of the vari-
ation of two parameters, population size and iteration number, on the model’s prediction
performance. The sensitivity analysis indicators AM

s are calculated as follows (Wu et al.,
2022).

AM
s =

m∑

j=1

1

m
· (
Mj − M

)2
(19)

whereMj is the evaluationmetric (MAPE,MdAPE,MAE, and RMSE) of j−th experiment,
M is the mean of Mj , and m is the number of experiments.

In this study, the population size Sp takes individual values from (100, 150, 200*, and
250), and the number of iterations Ni takes individual values from (50, 100*, 150, and 200).

The * indicates the optimal parameter of MOSMA. The pattern SpNi indicates that the
population size Sp changes and the number of iterations Ni remains unchanged at 100. The

pattern SpNi indicates that the number of iterations Ni changes and the population size Sp
remains unchanged at 200. The results of the sensitivity analysis are listed in Table 9.

The values of all sensitivity analysis indicators are extremely small. Take

AMAPE
s_WCOFP

(
SpNi

)
as an example,AMAPE

s_WCOFP

(
SpNi

)
is 0.0004. However, the small-

est MAPE for WCOFP is 0.8281, which is more than two thousand times as large as

Table 9 Results of the sensitivity analysis

Data Pattern AMAPE
s AMdAPE

s AMAE
s ARMSE

s

WCOFP SpNi 0.0004 0.0025 0.0002 0.0001

SpNi 0.0004 0.0059 0.0002 0.0001

BCOFP SpNi 0.0002 0.0022 0.0001 0.0004

SpNi 0.0001 0.0008 0.0001 0.0000
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AMAPE
s_WCOFP

(
SpNi

)
. Therefore, the effect of the parameter changes on the prediction perfor-

mance is small. In other words, the prediction performance of the proposed hybrid prediction
model is robust.

5.2 Accuracy and stability improvement ratio

The improvement of the proposed TVF_EMD_MOSMA was measured in comparison with
the controlmodel. I Ra and I Rs were proposed tomeasure the improvements in the prediction
accuracy and stability, respectively. I Ra and I Rs were calculated as follows:

I Ra = MAPEcontrol − MAPETV F_EMD_MOSMA

MAPEcontrol
× 100% (20)

I Rs = MAEcontrol − MAETV F_EMD_MOSMA

MAEcontrol
× 100% (21)

where MAPEcontrol and MAEcontrol denote the MAPE and MAE of the control model,
respectively, andMAPETV F_EMD_MOSMA andMAETV F_EMD_MOSMA denote theMAPE
and MAE of the proposed TVF_EMD_MOSMA. The results of I Ra and I Rs are presented
in Table 10.

Compared with the control model, the proposed TVF_EMD_MOSMA showed a
significant improvement in the prediction accuracy and stability. For the WCOFP,
TVF_EMD_MOSMA improved the prediction accuracy and stability by an average of
39.0965% and 33.4563%, respectively. For the BCOFP, TVF_EMD_MOSMA improved

Table 10 Results of I Ra and I Rs

Model WCOFP BCOFP

I Ra (%) I Rs (%) I Ra (%) I Rs (%)

Volterra 60.8226 60.0070 59.4903 60.8264

BPNN 53.4161 43.9726 45.1408 36.1938

LSTM 66.2892 56.7463 68.5897 59.3378

BiLSTM 60.5251 53.3454 45.7872 37.2133

ARIMA 64.7967 56.8469 46.0802 36.6911

ELM 53.0586 43.5107 47.6648 39.9139

TVF_EMD_Volterra 38.4473 38.6899 31.6862 31.5614

TVF_EMD_BiLSTM 37.3578 24.8855 29.2525 18.8610

TVF_EMD_ARIMA 26.5256 10.8402 16.4859 2.9233

TVF_EMD_ELM 19.0994 2.3140 20.9895 8.5942

EMD_MOSMA 30.8147 31.3629 43.5053 43.0763

REMD_MOSMA 32.8307 31.1044 25.4770 26.5874

TVF_EMD_SFL 27.8064 27.8241 43.7852 44.0809

TVF_EMD_SMA 11.9011 11.6462 32.3337 32.1214

TVF_EMD_MOALO 11.0696 10.8594 1.4284 1.6113

TVF_EMD_MOWOA 30.7829 31.3451 43.5014 43.0597

Average 39.0965 33.4563 37.5749 32.6658
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the prediction accuracy and stability by an average of 37.5749% and 32.6658%, respec-
tively. Comparedwith LSTM, TVF_EMD_MOSMAachieved the largest improvement in the
prediction accuracy (I RLST M_WCOFP

a = 66.2892% and I RLST M_BCOFP
a = 68.5897%).

ComparedwithVolterra, TVF_EMD_MOSMAhas the largest improvement in prediction sta-
bility (I RVolterra_WCOFP

s = 60.0070% and I RVolterra_BCOFP
s = 60.8264%). Compared

with the benchmark model, the model using different denoising methods, and the model
using different optimization algorithms, the proposed hybrid prediction model significantly
improved prediction accuracy and stability.

5.3 Forecasting effect analysis

The first- and second- order effectiveness (T E1 and T E2, respectively) were introduced to
measure the forecasting effect of the model (Wang et al., 2021b, c, d;Wang, Niu, et al., 2021).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T E1 = e1
T E2 = e1

(
1 −

√
e2 − (e1)2

)

ek =
n∑

i=1
Qi Ak

i , Qi = 1
n

Ai = 1 − |bi |

bi =
⎧
⎨

⎩

−1, (OPi − FPi )
/
OPi < −1

(OPi − FPi )
/
OPi , −1 ≤ (OPi − FPi )

/
OPi ≤ 1

1, (OPi − FPi )
/
OPi > 1

(22)

where OPi and FPi denote the i − th actual and predicted COFP, respectively, and n is
the number of predicted values. In addition, T E1 and T E2 are larger, indicating a higher
predictive efficiency of the model. The evaluation results regarding the forecasting efficiency
of the multiple models are listed in Table 11.

The results in Table 11 demonstrate that the first- and second- order effectiveness (T E1

and T E2, respectively) of the proposed TVF_EMD_MOSMA are the highest. In other
words, the proposed hybrid prediction model achieved the highest prediction efficiency in
comparison with the other control models. By comprehensively considering the sensitivity
analysis, accuracy and stability improvement ratio, and forecasting effect analysis, the pro-
posed TVF_EMD_MOSMA can achieve a higher forecasting accuracy, better forecasting
stability, and higher forecasting efficiency compared with other control models. Therefore,
the proposed hybrid prediction model is reliable, valid, and significant.

6 Practical applications and limitations of themodel

In this section, the practical applications and limitations of the proposed
TVF_EMD_MOSMA, as well as future research in this area, are presented.

6.1 Practical applications

COPs are closely related to socioeconomic, international, and national security. However,
international COPs are volatile and uncertain, owing to various factors. The proposed
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Table 11 Evaluation results of multiple models’ forecasting efficiency

Model WCOFP BCOFP

T E1 T E2 T E1 T E2

TVF_EMD_MOSMA 0.9925 0.9853 0.9921 0.9856

TVF_EMD_MOALO 0.9915 0.9850 0.9916 0.9851

TVF_EMD_SMA 0.9914 0.9832 0.9878 0.9768

TVF_EMD_ELM 0.9907 0.9825 0.9908 0.9827

TVF_EMD_ARIMA 0.9898 0.9804 0.9901 0.9812

TVF_EMD_SFL 0.9896 0.9820 0.9853 0.9696

TVF_EMD_MOWOA 0.9891 0.9803 0.9853 0.9741

EMD_MOSMA 0.9891 0.9802 0.9853 0.9741

REMD_MOSMA 0.9888 0.9799 0.9889 0.9805

TVF_EMD_BiLSTM 0.9880 0.9779 0.9883 0.9776

TVF_EMD_Volterra 0.9878 0.9776 0.9879 0.9782

ELM 0.9839 0.9704 0.9842 0.9710

BPNN 0.9838 0.9704 0.9849 0.9718

BiLSTM 0.9809 0.9667 0.9847 0.9704

Volterra 0.9808 0.9688 0.9796 0.9661

ARIMA 0.9786 0.9610 0.9846 0.9710

LSTM 0.9776 0.9559 0.9736 0.9367

TVF_EMD_MOSMA for the prediction of COFP is reliable, valid, and significant. It can pro-
vide valuable reference information for investors (Medina–Olivares et al., 2021), companies,
and governments.

(1) By considering a combination of the spot prices and the forecast prices of COFP,
investors can decide on an investment strategy to achieve their profit goals.

(2) Companies that use crude oil as a feedstock or produce oil for sale can apply hedging
operations based on the forecast results of COFP to control their production costs and
sales risks.

(3) Governments can decide on the import, export, storage, and use of crude oil according
to the forecast results of the COFP to ensure the stability of domestic oil prices. Stable
domestic oil prices are crucial for the smooth development of economies and society.

6.2 Limitations and future research

The proposed TVF_EMD_MOSMA uses only the COFP time series to predict future prices.
COFP can be influenced by multiple factors, including inflation, exchange rates, supply
and demand, international politics, wars, and epidemics. Hence, these factors should be
considered in future studies. In the future, the proposed TVF_EMD_MOSMA should be
extended to the forecasting of other energy prices, such as coal and natural gas prices.
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7 Conclusion

Crude oil is the most important energy source in the world, and fluctuations in crude oil
prices can have a significant impact on investors, companies, and governments. Therefore,
accurate prediction of COFP is crucial. In this paper, the TVF_EMD_MOSMA prediction
model is proposed to improve the accuracy and robustness of the prediction. A new data
denoising method, TVF_EMD, is used for COFP data processing. The chaotic time-series
prediction method, shallow neural networks, linear model prediction methods, and deep
learning methods are adopted as submodels for COFP prediction. The predicted values of
submodels are combined with the optimal weight that is determined using MOSMA. The
results of IFwith a narrowerwidth andhigher prediction accuracywere derivedby introducing
CIACs determined using MOSMA. The conclusions of this study are as follows.

(1) The new data denoising method, TVF_EMD, can significantly improve the prediction
accuracy of COFP. Comparison experiments helped determine that the prediction accu-
racy of the model using TVF_EMDwas significantly higher than that of other denoising
methods (EMD and REMD).

(2) The chaotic time-series prediction method, shallow neural network, linear predic-
tion model, and deep learning method were adopted as submodels. Combining their
prediction results with MOSMA can obtain accurate and stable prediction results.
The MAPE and MAE of WCOFP and BCOFP were MAPEWCOFP

TV F_EMD_MOSMA =
0.7538,MAPEBCOFP

TV F_EMD_MOSMA = 0.8281,MAEWCOFP
TV F_EMD_MOSMA = 0.5306, and

MAEBCOFP
TV F_EMD_MOSMA = 0.5862, respectively.

(3) The PF performance of the proposed TVF_EMD_MOSMA is highly robust. The sen-
sitivity analysis demonstrated that the variation in the model parameters had a slight
effect on the prediction performance. The maximum value of the sensitivity analysis
indicator AM

s is 0.0059, which is extremely small.
(4) The IF performance of the proposed TVF_EMD_MOSMA is excellent. By introducing

the CIAC determined usingMOSMA, the contradiction between the prediction accuracy
and interval width is balanced.
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Table 12 List of abbreviations

Abbreviation The full name

AIS Average interval score

ALO Ant lion optimization algorithm

ARIMA Autoregressive integrated moving average model

BiLSTM Bidirectional long short-term memory networks

BCOFP Brent crude oil futures price

BPNN Back propagation neural network

COFP Crude oil futures price

COFP_E COFP prediction error series

COP Crude oil price

CIAC Confidence interval adjustment coefficient

DBN Deep belief network

EMD Empirical mode decomposition

ELM Extreme learning machine

FICP Prediction interval coverage probability

FLA Frog leaping algorithm

FINAW Prediction interval normalized average width

FNN The false nearest neighbor method

GARCH Generalized autoregressive conditional heteroskedasticity model

GEV Generalized extreme value

IF Interval forecasts

LSTM Long short-term memory network

MdAPE Median absolute percentage error

MAE Mean absolute error

MLE Maximum likelihood estimate

MAPE Mean absolute percentage error

MI The mutual information method

ML Machine learning model

MLP Multi-Layer Perceptron

MOALO Multiobjective ant lion optimization algorithm

MOSMA Multiobjective slime mold algorithm

MOWOA Multiobjective whale optimization algorithm

PF Point forecasts

PSO Particle swarm optimization

RMSE Root mean square error

REMD Recursive empirical mode decomposition

GA Genetic algorithm

SMA Slime mold algorithm

SVM Support vector machine
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Table 12 (continued)

Abbreviation The full name

TVF_EMD Time varying filtering for empirical mode decomposition

VAR Vector autoregression model

WCOFP West texas intermediate crude oil futures price

WOA Whale optimization algorithm
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