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Abstract
Orthogonal Nonnegative Matrix Factorization (ONMF) with orthogonality constraints on a
matrix has been found to provide better clustering results over existing clustering problems.
Because of the orthogonality constraint, this optimization problem is difficult to solve. Many
of the existing constraint-preserving methods deal directly with the constraints using differ-
ent techniques such as matrix decomposition or computing exponential matrices. Here, we
propose an alternative formulation of the ONMF problem which converts the orthogonal-
ity constraints into non-convex constraints. To handle the non-convex constraints, a penalty
function is applied. The penalized problem is a smooth nonlinear programming problem
with quadratic (convex) constraints that can be solved by a proper optimization method. We
first make use of an optimization method with two gradient projection steps and then apply
a post-processing technique to construct a partition of the clustering problem. Comparative
performance analysis of our proposed approach with other available clustering methods on
randomly generated test problems and hard synthetic data-sets shows the outperformance of
our approach, in terms of the obtained misclassification error rate and the Rand index.

Keywords Orthogonal Nonnegative Matrix Factorization · Isoperimetry problem ·
Clustering · Optimization problem with orthogonality constraints

1 Introduction

Optimization problems with orthogonality constraints posed as

min
X∈Rn×k

F(X) s.t . XT X = Ik, (1a)

have wide applications in various areas such as polynomial optimization, combinatorics,
eigenvalue problems, and clustering (Jiang and Dai 2015). These problems are difficult to
solve since the orthogonality constraints may lead to several local solutions and, in particular,
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several of these problems are NP-hard. There is no guarantee that a global solution will be
obtained except for a few simple cases; e.g., finding the extreme eigenvalues. It is not easy to
even generate a sequence of feasible points since it can be numerically expensive to preserve
the orthogonality constraints. Most existing methods for preserving constraints either use
re-orthogonalization of the matrix or generate points along geodesics ofMk

n = {X ∈ R
n×k :

XT X = I }. Matrix factorizations such as singular value decomposition (SVD) are needed
for the former, and the latter must solve partial differential equations (PDEs) or compute
exponential matrices. To avoid these difficulties, we propose an alternative formulation that
converts the orthogonality constraints into non-convex equality (or inequality) constraints.
To handle these non-convex constraints, a penalty function is applied. The penalized problem
is a smooth nonlinear programming problem with quadratic constraints that can be solved
by a proper optimization method.

The nonnegative matrix factorization (NMF) problem proposed by Paatero and Tapper
(1994) has a wide range of applications, such as pattern recognition, chemical engineering,
fault diagnosis, and outlier detection (Banker et al. 2017; Duan et al. 2009; Tosyali et al.
2020). The orthogonal nonnegative matrix factorization (ONMF) problem can be interpreted
as the NMF problem, with an additional orthogonality constraint that significantly changes
the nature of the problem, making it suitable for clustering (Li et al. 2020; Peng et al.
2020). Ding et al (2006) studied NMF with orthogonality constraint for the first time and
showed its effectiveness in clustering. Following that, several ONMF algorithms have been
developed for a wide range of applications (Pompili et al. 2014). Most of these algorithms
use a multiplicative updating framework on the Stiefel manifold Mk

n (iteratively updating
matrices by taking the element-wise product with other computed non-negative matrices
(He et al. 2020; Pan and Ng 2018)). Other approaches include hierarchical alternating least
squares (HALS) (Kimura et al. 2015), and penalty function utilization for the orthogonality
constraints (Del Buono 2009).

Here,we introduce an approach for solving the isoperimetry andONMFproblems using an
efficient optimization algorithm. First, we present alternative formulations of the isoperime-
try and ONMF problems, converting the orthogonality constraints into a smooth nonlinear
programming problem with convex constraints in Section 2.2 and Section 3, respectively.
Then, we solve these reformulated problems, in particular the ONMF, efficiently using a
dedicated algorithm. It is remarkable that, instead of solving the ONMF problem for the
matrix solutions, we convert the problem into subproblems and solve for vector solutions
(see Section 3.1). Finally, we apply a post-processing technique to extract a solution to the
clustering problem. Comparative computational results are provided in Section 4 and our
concluding remarks are given in Section 5.

In summary, here our contributions are listed as follows:

• Reformulation of the matrix orthogonality constraint as a set of non-convex smooth
constraints.

• Application of a penalty function including non-convex smooth constraints as penalty
terms, leaving out only convex constraints.

2 Related works

This section reviews several works, namely k-means and isoperimetry problems, that are
closely related to our work here. The k-means is one of the most popular unsupervised
learning approaches being used for solving the well-known clustering problem. Many recent
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developments of k-means have been reported in the literature (see Fard et al. 2020; Fränti
and Sieranoja 2018; Huang et al. 2021; Moreno et al. 2020; Sinaga and Yang 2020; Xia et al.
2020; Yu et al. 2018 for more details). The isoperimetry is an approach for finding a cluster
structure in a data-set, characterizing the greatest similarity within a cluster and the greatest
dissimilarity between the other clusters, by minimizing the sum of the weights of the edges
connecting the specified cluster to the other clusters ( Dinler et al. 2020; Qin et al. 2017).

2.1 K-means

A fundamental problem of clustering, known as Minimum Sum-of-Squares Clustering
(MSSC), is to partition n points based on a minimum sum-of - squares model into k clusters.
Given a set X of n points in an m-dimensional Euclidean space, denoted by

X = {xi = (xi1, . . . , xim)T ∈ R
m, i = 1, . . . , n},

the partitionalMSSC deals with the assignment of the n points into k disjoint clusters denoted
by A = (A1, . . . , Ak) centered at cluster centers c j ( j = 1, . . . , k) based on the total sum-of-
squared Euclidean distances of the points xi from their respective assigned cluster centroids
ci , that is,

f (X , A) =
k∑

j=1

|A j |∑

i=1

||x ( j)
i − c j ||2, (2)

where |A j | is the number of points in A j , and x ( j)
i is the i th point in A j . Note that if the

clusters are known, then the function f (X , A) achieves its minimum when each points is
assigned to its closest cluster center. On the other hand, if the points in clusters A j are fixed,
then the function

f (X , A j ) =
|A j |∑

i=1

||x ( j)
i − c j ||2 (3)

is minimal when

c j = 1

|A j |
|A j |∑

i=1

x ( j)
i . (4)

The classical k-means algorithm (McQueen 1967) is described as follows:

(1) Construct k clusters created randomly in a domain containing all the points.
(2) Assign each point to the closest cluster center.
(3) Recalculate cluster centers using current cluster points.
(4) If the predefined criteria are met, then stop; otherwise, go to (2).

Another way to model the MSSC problem is based on the assignment problem. Let
Y = [yi j ] ∈ R

n×k be the assignment matrix defined by

yi j =
{
1, if xi is assigned toA j

0, otherwise.

As a consequence, the cluster center of the cluster A j is defined by

c j =
∑n

l=1 yl j xl∑n
l=1 yl j

,
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which is the mean of all the points in the cluster. Using this, Peng andWei (2007) introduced
the following model for the k-means problem:

min
yi j

k∑

j=1

n∑

i=1

yi j ||xi − c j ||2 (5a)

s.t .
k∑

j=1

yi j = 1 (i = 1, . . . , n), (5b)

n∑

i=1

yi j ≥ 1 ( j = 1, . . . , k), (5c)

yi j ∈ {0, 1} (i = 1, . . . , n, j = 1, . . . , k). (5d)

The constraints (5b) ensure that each point xi is assigned to exactly one cluster, and (5c)
ensures that there are exactly k clusters. We can show (5a) in matrix form by Ferebinous
norm as follows (Bauckhage 2015):

k∑

j=1

n∑

i=1

yi j ||xi − c j ||2 = ||X − CY ||2F ,

where X ∈ R
m×n is a matrix of data vectors xi ∈ R

m , C ∈ R
m×k is a matrix of cluster

centroids c j ∈ R
m and Y ∈ R

k×n is the assignment matrix.

2.2 Isoperimetry problem

Given a weighted graph G = (X , E), for any partition (subpartition) A = {A1, . . . , Ak}, we
define the vector v as follows:

v =
(

w(A1)

|A1| , . . . ,
w(Ak)

|Ak |
)

,

where w(Ai ) is the sum of the weights of edges between Ai and Ac
i (i .e., X − Ai ) and

|Ai | is the number of vertices in the cluster Ai , for 1 ≤ i ≤ k. We are to find a partition (or
subpartition) of vertices so that the norm of v is minimized. For p = 1, the mean version of
the isoperimetry problem is defined as

I P Pm
k (G) = min

{Ai }k1∈Dk (X)

‖v‖1 = min
{Ai }k1∈Dk (X)

1

k

(
k∑

i=1

c(Ai )

|Ai |

)
,

where Dk(X) is the collection of all the k-subpartitions of the set X . Actually, the isoperimetry
problem is a relaxed version of the normalized cut problem, in such a way that some points
may not be assigned to any cluster.

In Dehghanpour-Sahron and Mahdavi-Amiri (2020), Dehghanpour and Mahdavi-Amiri
formulated the isoperimetry problem as follows:

min
Y∈Rn×k

tr(Y T LY ) (6a)

s.t . Y T Y = Ik, (6b)

Y ≥ 0, (6c)
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where L is the Laplacian matrix and Ik is the k×k identity matrix. The orthogonal constraint
Y T Y = Ik , together with the nonnegativity constraint Y ≥ 0 ensure that each row of the
matrix Y has at most one non-zero entry. Thus, matrix Y in (6) is closest to that in (5a) and
shows the cluster assignment of the data set (here, the binary condition is omitted).

As noted, the orthogonality constraint (6b) and the nonnegative constraint (6c) indicate
that there is at most one non-zero element in each row of Y . We note that every vector x ∈ R

n

has at most one nonzero element if and only if ||x ||1 = ||x ||2. Thus, constraint (6b) for matrix
Y can be written as follows:

||ŷTi ||21 = ||ŷTi ||22 (i = 1, . . . , n), (7a)

||y j ||22 = 1 ( j = 1, . . . , k), (7b)

where ŷi and y j are the i th row and the j th column of Y , respectively. So, we have a new
model for the clustering problem as follows:

min
Y

tr(Y T LY ) (8a)

s.t . ||ŷTi ||21 = ||ŷTi ||22 (i = 1, . . . , n), (8b)

||y j ||22 = 1 ( j = 1, . . . , k), (8c)

Y ≥ 0. (8d)

Problem (8) is still difficult to solve for two reasons. First, the constraint (8b) is nonconvex
and second, constraints (8b) and (8c) are written across the rows and across the columns of Y ,
respectively. Therefore, it is difficult to applying methods based on decomposition, specially
when size of the problem is large. To deal with these issues, we propose a penalized function
as follows:

min
Y

tr(Y T LY ) + ρ

2

n∑

i=1

(||ŷTi ||21 − ||ŷTi ||22) (9a)

s.t . ||y j ||22 = 1 ( j = 1, . . . , k), (9b)

Y ≥ 0, (9c)

where scalar ρ > 0 is the penalty parameter.
Next, we use the same idea to reformulate the ONMF problem.

3 Orthogonal nonnegativematrix factorization

Orthogonal nonnegative matrix factorization (ONMF), an approximate matrix factorization
technique with matrix orthogonality conditions and nonnegativity constraints, has recently
been shown towork remarkablywell for clustering tasks (Pompili et al. 2014).We consider an
orthogonal nonnegative matrix factorization problem as follows. Given a d by n nonnegative
matrix M and a rank k factorization (with k < n), we are to solve

min
U∈Rd×k ,V∈Rk×n

‖M −UV ‖2F (ONMF)

s.t . VV T = I ,

U ≥ 0, V ≥ 0.
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Here, we consider each column of the matrix M as a point in R
d and construct the data-set

X = {x1, . . . , xn}, with xi being the i th column of M .
Similarly, if we apply to (ONMF) the same procedure used before to convert problem (6)

into the problem (9), we get

min
U∈Rd×k ,V∈Rk×n

‖M −UV ‖2F (10a)

s.t .||v j ||21 = ||v j ||22 ( j = 1, . . . , n), (10b)

||v̂Ti ||22 = 1 (i = 1, . . . , k), (10c)

U ≥ 0, V ≥ 0. (10d)

And, the penalized function of the ONMF problem achieves as follow:

min
U∈Rd×k ,V∈Rk×n

‖M −UV ‖2F + ρ

2

n∑

j=1

(||v j ||21 − ||v j ||22) (11a)

s.t . ||v̂Ti ||22 = 1 (i = 1, . . . , k), (11b)

U ≥ 0, V ≥ 0, (11c)

where v̂i , i = 1, . . . , k, and v j , j = 1, . . . , n, are the i th row and the j th column of V ,
respectively. Note that V is an assignment matrix with vi j �= 0 indicating that x j is in cluster
Ai , and nonzero elements of the matrix HV are the same as the ones in V , where H is a
diagonal matrix with 0 < hii ≤ 1 (i = 1, . . . , k). So, from clustering point of view, both V
and HV provide the same cluster assignment. Also, (U , V ) and (UH−1, HV ) provide the
same objective value in the ONMF problem, i.e. ,

‖M −UV ‖2F = ‖M −UH−1HV ‖2F .

Morever,

HV =

⎛

⎜⎜⎜⎝

h11 0 0 0
0 h22 0 0

0 0
. . . 0

0 0 0 hkk

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

v̂T1
v̂T2
.

.

v̂Tk

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

h11v̂T1
h22v̂T2

.

.

hkk v̂Tk

⎞

⎟⎟⎟⎟⎠
,

where ||hii v̂Ti ||22 = hii ||v̂Ti ||22 ≤ 1 (i = 1, . . . , k). Therefore, clustering is not affected if we
replace ||v̂Ti ||22 = 1 (i = 1, . . . , k), by ||v̂Ti ||22 ≤ 1 (i = 1, . . . , k), and choose (UH−1, HV )

instead of (U , V ) in (11). As a result, we have a newmodel for theONMFproblem as follows:

min
U∈Rd×k ,V∈Rk×n

‖M −UV ‖2F + ρ

2

n∑

j=1

(||v j ||21 − ||v j ||22) (12a)

s.t . ||v̂Ti ||22 ≤ 1 (i = 1, . . . , k), (12b)

U ≥ 0, V ≥ 0. (12c)

Now, problem (12) is a nonlinear programming problem with convex (quadratic) constraints,
and an efficient optimization method can be applied to solve it.

The Lagrangian function corresponding to the isoperimetry problem without constraint
(6c) can be written as

L(Y ,�) = tr(Y T LY ) − 1

2
tr(�(Y T Y − I )), (13)
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where� ∈ R
k×k is comprised of the Lagrangemultipliers.We define∇F(Y ) = DYL(Y ,�).

Dehghanpour-Sahron and Mahdavi-Amiri (2020) showed that if the similarity matrix C is
placed in problem (ONMF) rather than thematrixM , the solution of the problem is equivalent
to the solution of the isoperimetry problem. As a result, we can solve the problem (12) instead
of the problem (8). Numerical results show that problem (12) has advantages: first, it is easier
to solve than problem (8), and second, in problem (12), instead of solving the main problem,
we can solve k sub-problems, which significantly reducing the computing time.

3.1 Solving ONMF problem

We first apply the algorithm proposed by Bolte et al. (2014) known as the PALM algorithm
to obtain a solution of problem (12). This algorithm uses two gradient projection steps for V

and U . Suppose that Fρ(U , V ) = ‖M −UV ‖2F + ρ

2

∑n
j=1(||v j ||21 − ||v j ||22). At iteration l

of the algorithm, the variable V is obtained by solving the following problem:

V l+1 = argmin
V

||V − Bl ||2F
s.t . V ≥ 0, ||v̂Ti ||2 ≤ 1, i = 1, . . . , k, (14)

where Bl = V l− 1

t l
∇V Fρ(Ul , V l) and t l > 0 is a step size. It is remarkable that the objective

function and constraints of (14) can be separated with respect to the rows of V , and we can
decompose the updating of V to k subproblems as (15). At iteration l, the v̂i (i = 1, . . . , k)
are obtained as follows:

ṽl+1
i = arg min

v̂Ti ≥0, ||v̂i ||2≤1
||v̂i − b̂li ||22, (15)

v̂l+1
i = ṽl+1

i + τ(ṽl+1
i − v̂li ), (16)

where b̂li (i = i, . . . , k) are the rows of the matrix Bl . We note that problem (15) has a

simple solution as follows: partition b̂li = [b̂li−, b̂li+], where b̂li− = {b̂li ( j)|b̂li ( j) ≤ 0} and
b̂i+ = {b̂li ( j)|b̂li ( j) > 0}, for j = 1, . . . , n. Then, we get

v̂∗
i ( j) =

⎧
⎪⎨

⎪⎩

0, if b̂li ( j) ∈ b̂li−
b̂li ( j)

max ||b̂li+||2, 1
, if b̂li ( j) ∈ b̂li+.

Equation (16) introduced by Pock and Sabach (2016) is a correction step for the rows of
matrix V , where τ ∈ (0, 1) is a combination parameter. Numerical results show that if τ is
chosen carefully, the resulting correction step turns to reduce the number of iterations of the
algorithm significantly and as a result, the running time of the algorithm is reduced. Finally,
using a post-processing technique proposed by Dehghanpour-Sahron and Mahdavi-Amiri
(2020), we construct a partition for the clustering problem. The aim of this technique is to
obtain a 0-1 assignment matrix V , which vi j = 1 indicates x j is in cluster Ai . It constructs the
assignment matrix by rounding the elements of the input matrix to 0 and 1 with predefined
criteria. We explain this technique as follows. Suppose that the matrix V is an output of
the proposed algorithm (Algorithm 1 below). In each column of the matrix V , the maximal
element is preserved and the other elements are set to be zero (this ensures that every column
of V has only one nonzero element). In each row i of the matrix V , the maximal element is
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found and named to be Mi . In the i th row, for Vi j �= Mi , ∀1 ≤ j ≤ n, if Vi j <
4Mi

3n
, then

we set Vi j = 0, and an assignment matrix V is obtained.

Algorithm 1: Penalty Function Method (PFM) for Solving Problem (ONMF).

Give U0 ∈ R
d×k , V 0 ∈ R

k×n , ρ > 0, α > 1, τ ∈ (0, 1) and set r = 0.
While ||∇F(Y )||F > ε do

Set l = 0,U0 = Ur , V 0 = Vr .
Repeat

For i = 1 till k do

ṽl+1
i = arg min

v̂i≥0, ||v̂Ti ||2≤1
||v̂Ti − b̂li ||22,

v̂l+1
i = ṽl+1

i + τ(ṽl+1
i − v̂li ).

Endfor
Find step size tl , satisfying the Armijo-Wolfe line search condition.

Ul+1 = max{Ul − 1

tl
∇U Fρ(Ul , V l+1), 0}.

Set l = l + 1.
Until ||V l − V l−1||F ≤ ε

Set ρ = αρ and r = r + 1.
Set Vr = V l and Ur = Ul .

Endwhile
Apply post-processing technique to matrix Vr to get a new matrix V .

Post-processing technique.

Set V = Vr .
For all columns of V do

Preserve the maximal element and set the other elements to zero to get the matrix V .

Endfor
For i = 1 till k do

Find the maximal element in row i of V and store it in Mi .

For j = 1 till n do

If Vi j <
4Mi

3n
then set Vi j = 0 else set Vi j = 1.

Endfor

Endfor

3.2 Convergence analysis of the proposed algorithm

We first notice that any local minimal solution of (12) is feasible for (10). We know that
for a non-convex problem, a local minimal solution cannot be computed in general, and we
can only obtain a stationary point under some proper conditions (Bertsekas 1999). Suppose
that (Uρ, V ρ) is bounded and is a stationary point of (12) and (Uρ, V ρ) → (U∗, V ∗) as
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Table 1 Compared clustering algorithms

Notation Description

NJW Ng-Jordan-Weis algorithm (Ng et al. 2002)

DJS Daneshgar-Javadi-ShariyatRasavi algorithm (Daneshgar et al. 2013)

SKA Standard k-means algorithm (Arthur and Sergi 2007)

PGAG Pompili-Gillis-Absil-Glineur algorithm (Pompili et al. 2014)

KP Kim-Park algorithm (Kim and Park 2011)

KTK Kimura-Tanaka-Kudo algorithm (Kimura et al. 2015)

YFS Yang-Fu-Sidiropoulos algorithm (Yang et al. 2017)

SY Sinaga-Yang algorithm (Sinaga and Yang 2020)

DMA Dehghanpour-Mahdavi-Amiri algorithm (Dehghanpour-Sahron and Mahdavi-Amiri 2020)

PFM Our proposed algorithm (Penalty Function Method)

Table 2 Misclassification error rates and Rand indices on 4 test problems of [41]

Data-set n k NJW DJS SKA PGAG KP KTK YFS SY DMA PFM

2moon 300 2 0 0 0.223 0.131 0.14 0.135 0.12 0.009 0 0

4donut 700 4 0.31 0.14 0.2471 0.14 0.18 0.154 0.127 0.07 0.06 0.03

6moon 900 6 0.291 0.261 0.2744 0.242 0.37 0.268 0.205 0.18 0.17 0.09

spiral 1300 2 0.24 0.07 0.2631 0.37 0.44 0.412 0.3 0.156 0.18 0.14

Rand-Index 0.7528 0.8675 0.7450 0.7387 0.6647 0.718 0.758 0.843 0.8679 0.8902

(NJW) (DJS) (SKA) (PGAG) (KP)

(KTK) (YFS) (SY) (DMA) (PFM)

Fig. 1 Results due to ten algorithms on the “2moon" test problem

Table 3 Misclassification error rates and Rand indices on 4 test problems of [42]

Data-set n k NJW DJS SKA PGAG KP KTK YFS SY DMA PFM

Flame 240 2 0.35 0.22 0.162 0.047 0.012 0.06 0.034 0.007 0.012 0.004

R15 600 15 0.21 0.05 0.003 0.22 0.03 0.248 0.174 0.003 0.003 0.0017

Aggregation 788 7 0.36 0.16 0.14 0.22 0.18 0.246 0.168 0.102 0.09 0.03

D31 3100 31 0.23 0.28 0.1074 0.21 0.16 0.153 0.248 0.08 0.02 0.01

Rand-Index 0.7447 0.7722 0.8976 0.7953 0.8606 0.8139 0.7753 0.9205 0.9170 0.9410
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(NJW) (DJS) (SKA) (PGAG) (KP)

(KTK) (YFS) (SY) (DMA) (PFM)

Fig. 2 Results due to ten algorithms on the “4donut" test problem

(KTK) (YFS) (SY) (DMA (PFM)

(NJW) (DJS) (SKA) (PGAG) (KP)

)

Fig. 3 Results due to ten algorithms on the “6moon" test problem

ρ → ∞. It is well known that if theMangasarian-Fromovitz constraint qualification (MFCQ)
(Facchinei and Pang 2007) holds for (10) at (U∗, V ∗), then (U∗, V ∗) is a stationary point of
problem (10). According to the obtained convergence results for the algorithms of (Bolte et
al. 2014) and (Pock and Sabach 2016), with a proper choice of t l (obtained from a proper
line search to ensure convergence of the iterates (Bertsekas 1999)) along with increasing
penalty parameter ρ, Algorithm 1 can obtain a bounded stationary point of problem (12).
Moreover, the convergence rate of Algorithm 1 depends on the utilized algorithm for solving
subproblems (15). In Shefi and Teboulle (2016), it is reported that the PALM algorithm has
a global convergence with an asymptotic sublinear convergence rate.

4 Comparative results

We implemented our proposed algorithm and other clustering methods onMATLABR2012a
environment in a Windows 7 machine with a 2.40GHz CPU and 4.00 GB RAM.

The numerical results are presented in two parts. In Sect. 4.1, we compared our proposed
algorithm (PFM) with other related algorithms (listed in Table 1) on some hard artificial
benchmark problems. Moreover, we also report numerical results of PFM on randomly gen-
erated graphs in Sect. 4.2 for an extensive evaluation of the performance of our proposed
algorithm. In all the tables, the best performance (having minimum error and highest Rand
index) is highlighted in bold and the second best is specified by an underline.
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(NJW) (DJS) (SKA) (PGAG) (KP)

(KTK) (YFS) (SY) (DMA) (PFM)

Fig. 4 Results due to ten algorithms on the “spiral" test problem

(NJW) (DJS) (SKA) (PGAG) (KP)

(KTK) (YFS) (SY) (DMA) (PFM)

Fig. 5 Results due to ten algorithms on the “Flame" test problem

(NJW) (DJS) (SKA) (PGAG) (KP)

(KTK) (YFS) (SY) (DMA) (PFM)

Fig. 6 Results due to ten algorithms on the “R15" test problem

Hyper-parameter settings

Here, we provide parameters used in our proposed algorithm. We set the tolerance for the
stopping criterion as ε = 10−6, penalization parameter as ρ = 10−5, and α = 1.1. The
correction step τ must be chosen carefully to reduce the number of iterations of the algorithm.
We set this to be 0.01, 0.12, and 0.3 for Tables 2, 3, 4, 5 and 6, respectively; these values have
been decided based on our experimentations. Note that, for exiting the inner loop of PFM, we
should use the relative error as ||V l − V l−1||F ≤ ε||V l ||F . Since ||V l ||F is a fixed number
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(NJW) (DJS) (SKA) (PGAG) (KP)

(KTK) (YFS) (SY) (DMA) (PFM)

Fig. 7 Results due to ten algorithms on the “Aggregation" test problem

(NJW) (DJS) (SKA) (PGAG) (KP)

(KTK) (YFS) (SY) (DMA) (PFM)

Fig. 8 Results due to ten algorithms on the “D31" test problem

due to orthogonality of V l (it is approximately
√
k, where k is the number of clusters), the

absolute and relative errors are almost equivalent, and thus we made use of absolute error.

4.1 Artificial data-sets

Here, we reported the numerical results obtained for the ten algorithms on two groups (four
test problems of [41] and four test problems of [42]) of the hard benchmark clustering prob-
lems, as shown inTables 2 and 3. For each entry of the tables,we reported themisclassification
rate (the ratio of incorrect labelings to the total number of objects) for the corresponding algo-
rithm. Also, to evaluate and compare the performance of the clustering methods, we reported
the Rand index (a measure of similarity between the data clusters which has a value between
0 and 1, and the higher the value, the better the clustering) in the last row of the tables. In
Tables 2 and 3, for each table, we reported this value as the average of the Rand indices over
all the test problems obtained by each algorithm. From the obtained results it is obvious that
PFM outperforms the other algorithms; PFM has the best or the second-best misclassification
error rates and also the highest Rand index over all the test problems. Figures 1, 2, 3, 4, 5,
6, 7 and 8 illustrate the performance of ten algorithms corresponding to Tables 2 and 3. By
observing the 2-dimensional shape of the test problems (depicted in Figs. 1, 2, 3, 4, 5, 6, 7
and 8), it is clear that PFM performs well in constructing the expected clusters.

123



Annals of Operations Research (2024) 339:1481–1497 1493

Table 4 The average misclassification rates and Rand indices for 100 randomly generated test problems:
n = 1000, k = 5

Algorithms MR Mean

Parameters NJW DJS PGAG KP SKA KTK YFS SY DMA PFM

μw = 0.01, μt = 0.9 0.208 0.028 0.083 0.01 0.191 0.09 0.07 0.007 0.0098 0.005

μw = 0.01, μt = 0.01 0.443 0.164 0.363 0.094 0.345 0.37 0.312 0.02 0.009 0.004

μw = 0.02, μt = 0.02 0.088 0.03 0.177 0.182 0.061 0.2 0.134 0.06 0.008 0.004

μw = 0.03, μt = 0.03 0 0 0.221 0.001 0 0.241 0.18 0.012 0 0

μw = 0.04, μt = 0.04 0 0 0.002 0.002 0 0.005 0.003 0 0 0

μw = 0.05, μt = 0.05 0.185 0.01 0.098 0.191 0.107 0.09 0.042 0.09 0.007 0

μw = 0.01, μt = 0.1 0.183 0.01 0.082 0.09 0.106 0.084 0.062 0.016 0.012 0.01

μw = 0.02, μt = 0.1 0.186 0.05 0.265 0 0.118 0.22 0.162 0.014 0 0

μw = 0.03, μt = 0.1 0.184 0.085 0.098 0.091 0.107 0.092 0.064 0.02 0.01 0.01

μw = 0.04, μt = 0.1 0 0 0.244 0 0 0.252 0.2 0.001 0 0

μw = 0.05, μt = 0.1 0.16 0.038 0.165 0.15 0.091 0.18 0.132 0.005 0,006 0,006

μw = 0.1, μt = 0.01 0.26 0.021 0 0 0.167 0.03 0.03 0.002 0 0

μw = 0.1, μt = 0.02 0.03 0.025 0.013 0.013 0.01 0.016 0.01 0.001 0.003 0

μw = 0.1, μt = 0.03 0.126 0.016 0.134 0.144 0.08 0.1 0.08 0.01 0.02 0.01

μw = 0.1, μt = 0.04 0.203 0.029 0.279 0.034 0.221 0.28 0.22 0.012 0 0

μw = 0.1, μt = 0.05 0.21 0.106 0.183 0.133 0.234 0.2 0.164 0.019 0.016 0.011

μw = 0.02, μt = 0.03 0.184 0.013 0.09 0.1 0.114 0.1 0.04 0.05 0.014 0.015

μw = 0.02, μt = 0.04 0.19 0.076 0.087 0.09 0.128 0.092 0.078 0.046 0.01 0.01

μw = 0.02, μt = 0.05 0.009 0 0.02 0.081 0.009 0.04 0.014 0 0 0

μw = 0.03, μt = 0.02 0.14 0.04 0.15 0.145 0.091 0.15 0.128 0.005 0.003 0

μw = 0.03, μt = 0.04 0.16 0.1 0.163 0.132 0.102 0.184 0.132 0.062 0.017 0.012

μw = 0.04, μt = 0.02 0.4 0.16 0.32 0.094 0.32 0.24 0.14 0.12 0.018 0.012

μw = 0.04, μt = 0.03 0.08 0.03 0.2 0.24 0.051 0.26 0.18 0.09 0.007 0

μw = 0.04, μt = 0.05 0.015 0.01 0.09 0.19 0.01 0.14 0.06 0.005 0.009 0

μw = 0.05, μt = 0.02 0.2 0.1 0.08 0.01 0.12 0.094 0.064 0.05 0.088 0.08

μw = 0.05, μt = 0.03 0.18 0.02 0.1 0.18 0.06 0.12 0.05 0.028 0.015 0.02

Rand-Index 0.8452 0.9553 0.8574 0.9078 0.8906 0.8258 0.8688 0.9579 0.9888 0.9902

Time (sec.) 4.75 3.42 7.51 9.87 4.0131 8.34 7.128 5.12 5.94 4.1

4.2 Random graph generation and testing

Here, we investigate the performance of clustering algorithms and compare the obtained
results on some randomly generated test problems. For a comparable performance eval-
uation, several sample random graphs were generated using the benchmark generator of
Lancichinetti and Fortunato (2009) with parameters μt and μw . Table 4 shows the misclas-
sification rate for the algorithms on constructed randomly generated test problems using
several values of the parameters. We note that all algorithms were executed once for these
benchmarks and “MR Mean" is the average of the total error for each test problem. The last
two rows of the table respectively give Rand indices of the clustering algorithms and the
average running times of these algorithms on all the data-sets. For more statistical analysis,
we utilized the Dolan and Moré (2002) performance profiles to compare the performance
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Fig. 9 The Dolan-Moré performance profiles comparing the misclassification rates by NJW, DJS, KP, PGAG,
SKA, KTK, YFS, SY, DMA and PFM

Table 5 The average misclassification rates and Rand indices for 100 randomly generated test problems:
n = 10000, μw = 0.1, μt = 0.01, 0.02, 0.03, 0.04, 0.05.

Algorithm MR Mean

μt = 0.01 μt = 0.02 μt = 0.03 μt = 0.04 μt = 0.05 Rand-Index Time (sec.)

NJW 0.36 0.23 0.24 0.33 0.221 0.7238 213.71

DJS 0.221 0.195 0.216 0.29 ]0.2 0.7756 158.8

PGAG 0.28 0.193 0.234 0.219 0.211 0.7726 337.95

KP 0.3 0.193 0.224 0.34 0.22 0.7446 444.15

SKA 0.26 0.196 0.217 0.292 0.202 0.7666 180.58

KTK 0.3 0.2 0.224 0.3 0.24 0.7566 583.18

YFS 0.24 0.17 0.2 0.25 0.196 0.7828 481.55

SY 0.19 0.12 0.22 0.24 0.2 0.7886 324.75

DMA 0.19 0.145 0.2 0.29 0.18 0.7990 226.31

PFM 0.15 0.1 0.16 0.24 0.12 0.8202 190.45

of the clustering algorithms. Fig. 9 shows a comparison of the obtained misclassification
rates for the considered algorithms. We constructed this profile using all the test problems
corresponding to Tables 4.

Tables 5 and 6 provide the average misclassification rates and Rand indices of the related
algorithms on 100 randomly generated test problems, with parameters μw = 0.1 and μt =
0.01, 0.02, 0.03, 0.04, 0.05, respectively, for 10000 and 20000 points. In these tables, we
reported the Rand index as the average of the Rand indices of all the test problems.

5 Concluding remarks

We proposed an alternative formulation of the ONMF problem by converting the orthog-
onality constraints into convex constraints. Using a penalty function, we proposed a
proper optimization method to solve this problem. We first used a gradient-based opti-
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Table 6 The average misclassification rates and Rand indices for 100 randomly generated test problems:
n = 20000, μw = 0.1, μt = 0.01, 0.02, 0.03, 0.04, 0.05.

Algorithm MR Mean

μt = 0.01 μt = 0.02 μt = 0.03 μt = 0.04 μt = 0.05 Rand-Index Time (sec.)

NJW 0.45 0.39 0.36 0.43 0.441 0.5858 601.13

DJS 0.321 0.342 0.316 0.34 0.4 0.6562 494.31

PGAG 0.38 0.293 0.334 0.35 0.41 0.6466 1117.74

KP 0.4 0.35 0.344 0.38 0.43 0.6192 1420.08

SKA 0.351 0.362 0.331 0.336 0.4012 0.6440 531.12

KTK 0.392 0.323 0.324 0.28 0.42 0.6336 928.73

YFS 0.34 0.32 0.312 0.34 0.382 0.6646 682.48

SY 0.33 0.3 0.28 0.3 0.365 0.6801 748.16

DMA 0.323 0.342 0.32 0.27 0.365 0.6760 653.24

PFM 0.28 0.3 0.3 0.251 0.347 0.6908 540.16

mization algorithm and then applied a post-processing technique to extract a solution
to the clustering problem. Utilizing different test problems, we considered the perfor-
mance of our proposed algorithm in comparison with other available clustering algorithms,
namely, Ng-Jordan-Weiss (NJW), Daneshgar-Javadi-ShariyatRazavi (DJS), Standard k-
means (SKA), Pompili-Gillis-Absil-Glineur (PGAG),Kim-Park (KP),Kimura-Tanaka-Kudo
(KTK), Yang-Fu-Sidiropoulos (YFS), Sinaga-Yang (SY) and Dehghanpour-Mahdavi-Amiri
(DMA). Numerical results confirmed the practicality of our formulation and showed the
capability of our proposed approach for constructing the expected clustering.

We compared our proposed algorithmwith nine related clustering algorithms on hard syn-
thetic data sets and some randomly generated test problems. For a proper statistical analysis,
we utilized the Dolan-Moré performance profiles to compare the obtained misclassification
rate errors. Numerical results confirmed our proposed method to be successful in clustering;
PFM had the best or the second-best misclassification rate and also the highest Rand index
among all the compared methods.
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