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Abstract
In this study, we consider the shelter location and allocation problem under demand uncer-
tainty. In particular, we seek to improve the disaster preparedness level of Turkey by
developing a robust optimization approach for locating shelter areas required after a disastrous
earthquake in Istanbul. Our robust modelling framework implements a demand prediction
methodology which generates a number of ground shaking scenarios by incorporating the
effect of uncertainties in seismic parameters as well as the exposure level of the urban vul-
nerability. We reformulate the deterministic mixed integer linear programming version of the
problem as a robust model. This model leverages the robust nature of the model to account
for the uncertainties of parameters within each individual scenario. Our numerical results for
the small-scale Kartal district of Istanbul and the large-scale Anatolian side of Istanbul case
studies show that the proposed formulation yields solutions that are socially more acceptable
and preferable than those obtained by their deterministic and stochastic counterparts. Aim-
ing to produce stable and proper solutions that perform consistently well for any possible
occurrence of uncertain parameters, the recommended robust solutions lead to better results
by reducing possible regret which cannot be compensated after an earthquake.

Keywords Location · Robust optimization · Shelter site selection · Disaster preparedness ·
Humanitarian logistics

1 Introduction

Natural disasters and complex emergencies have been affecting people, causing enormous
losses of human life as well as economic and material destruction. The considerable costs
and impact of such events have become recurring causes of concern for many countries. As
natural disasters are becoming more frequent, intense, and costly, the number of affected
people has also been growing rapidly (De Haen and Hemrich 2007).
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According to the “Natural Disasters-2018” report prepared by the Centre for Research on
the Epidemiology of Disasters, there were 315 natural disasters causing 11,804 deaths, more
than68millionpeople affected, andUS$131.7 billion cost across theworld in 2018.The report
also reveals that earthquakes were the deadliest type of disaster accounting for more than
45% of deaths. Some examples of earthquakes causingmassive loss of life and property in the
last two decades include the Izmit, Turkey earthquake in 1999 (17,000 deaths), Indian Ocean
earthquake and tsunami in 2004 (227,898 deaths), Sichuan, China earthquake in 2008 (87,587
deaths), Haiti earthquake in 2010 (222,500 deaths), Tōhoku, Japan earthquake and tsunami
in 2011 (20,896 deaths), and Indonesia earthquake in 2018 (4,340 deaths). Among them, the
Indian Ocean earthquake and tsunami in 2004 provided evidence that the performance of
an emergency aid response is strongly related to the efficiency of disaster logistics planning
(Pettit et al. 2011). Fritz (2005) reported that disorganized and not well-planned structure
of relief operations conducted during the tsunami led to large-scale shortages of inventories
as well as medical personnel, thereby sparkling considerable interest among researchers and
practitioners to the planning and implementation of humanitarian relief operations (Kovács
and Spens 2007; Tatham and Christopher 2018).

The main purpose of humanitarian logistics, or humanitarian relief chain, is to alleviate
the suffering of vulnerable people by planning, implementing, and controlling an efficient
delivery and warehousing of goods, materials, and information, from the point of origin
to the affected area and people during a natural disaster or complex emergency (Thomas
and Kopczak 2005). The importance of a well-planned logistics management is especially
higher for disasters like earthquakes, for which there is no (or limited) warning. The high
uncertainties associated with the time, location, magnitude, and intensity of an earthquake
strike, and the number of affected people make it extremely challenging for decision-makers
to undertake pre-disaster decisions and investments. Therefore, organizations should incor-
porate Operations Research and Management Science (OR&MS) methodologies to their
earthquake disaster preparedness plans to identify the properties of uncertainties and develop
effective location and allocation of resources before a disaster hits.

Turkey, located on an active seismic belt at the boundary where the Arabian Plate and
the African Plate are moving towards the Eurasian Plate, has suffered from devastating
earthquakes in the past years. The most recent significant earthquake experienced in 1999 in
Izmit with the magnitude of 7.4 resulted in more than 17,000 fatalities, 44,000 injuries, more
than 100,000 collapsed buildings, and some 500,000 people homeless (Bendimerad et al.
2000; Özmen 2000). Devastating the city of Izmit, the earthquake also affected the districts
of Istanbul, Sakarya, Yalova and Duzce.

The same fault line (called the North Anatolian Fault Line) is expected to create another
disastrous earthquake near Istanbul, Turkey’s most populous city (with over 15 million peo-
ple) in the near future again (Murru et al. 2016). Research indicates that there is a 44± 18%
probability that Istanbul will be hit by a big shock of magnitude M > 7.0 (M stands for
magnitude) earthquake by 2030 (Parsons 2004; Kalkan et al. 2008). This prediction is also
supported by several reports conducted by the Istanbul Metropolitan Municipality (IMM).
Among them, reports IMM (2003, 2009a, b) analyze the impact and risk of a possible earth-
quake in the region from multiple perspectives, e.g., social, political, economic, and draw
attention to the importance of disaster preparedness plans. Indeed, the risks in the city posed
by earthquakes have been increasing steadily due to bad construction techniques, inadequate
infrastructure, overcrowding, etc. Although urban renewal, redevelopment, and construction
activities have gained considerable pace in the last years, there is still a lack of comprehen-
sive plans, complementary strategies, and legal arrangements to cover different aspects of
transformation (Koramaz et al. 2018).

123



Annals of Operations Research (2024) 339:1589–1635 1591

According to the report (JICA 2002) prepared by the IMM and Japan International Coop-
eration Agency (JICA), the relief operations during the 1999 Izmit earthquake were not well
organized in the first three days—the most crucial period—to assist and shelter the affected
people in the region. In the particular case of Turkey, the Turkish Red Crescent (http://www.
kizilay.org.tr/) is responsible for organizing such relief and recovery plans by selecting suit-
able shelter locations. This is achieved by generating a ranking procedure for all candidate
shelter locations by considering a number of assessment criteria such as accessibility of the
shelter area, distance to healthcare institutions, topography, slope of the terrain, and infras-
tructure. Upon ranking the locations, the Turkish Red Crescent simply selects sites starting
from the top-scoring candidate location to lower sequentially until the overall capacity of
sheltering is enough for accommodating the affected people in the region.

In their paper, Kılcı et al. (2015) described and improved the above methodology by
developing a deterministic mathematical model which maximizes the minimum weight of
open shelterswhile ensuring a sufficient level of service and utilization of shelters. In a follow-
up study, Kınay et al. (2018) successfully implemented a stochastic modeling framework for
the same problem to capture the demand uncertainty. In particular, the authors proposed a
maxmin programming model which incorporates probabilistic constraints associated with
shelter utilization rates and capacities. Using the data of two real-world cases, one for Kartal
district in Istanbul and other for the whole Anatolian side of Istanbul, they showed that their
approach can make a full difference in the performance compared to that of the deterministic
approach.

Although stochastic programming implementations in disaster relief studies can success-
fully incorporate uncertainties by minimizing an expected cost over multiple scenarios, they
neglect the impact of individual scenarios, which can lead to large relative regret and cast
doubt on overall network robustness. Considering that natural disasters happen rarely and
access to reliable data is limited in crises, obtaining accurate probability distributions that
explain parameter uncertainties is another challenge for planners. Hence, a successful human-
itarian relief operation should incorporate a robust relief network design which performs well
across all possible scenarios (Ergun et al. 2010; Paul and Wang 2019). This motivates us to
implement a robust optimization approach for such earthquake disaster management appli-
cations in which infeasibility cannot be accepted at all, and no distributional information is
available or the parameter uncertainty is not stochastic.

In this paper, we seek to improve the disaster preparedness level of Turkey by developing
a robust optimization approach for the problem of shelter area location and allocation in an
effort to provide decision support to the Turkish Red Crescent after an earthquake in Istanbul.
Building our paper upon two recent studies (Kılcı et al. 2015; Kınay et al. 2018), we first
generate a number of possible ground shaking scenarios for Istanbul which target demand
(the number of affected people that need sheltering) uncertainties. Using seismology theory
and the results of empirical earthquake risk assessment studies performed for Istanbul, our
shelter demand prediction approach allows capturing the effect of uncertainties in seismic
parameters as well as the exposure level of the urban vulnerability. Combined with our
robust optimization methodology, this approach hedges against parameter uncertainty within
scenarios prevalent in humanitarian relief operations which reflect the possible demand to
shelter sites in a post-earthquake scenario. In our modelling framework, we also employ a
set of closest assignment constraints which assigns each demand to its nearest open shelter
area, thereby implicitly capturing the notion of evacuation decisions. Then, we show the
performance of our modelling approach using real data for Kartal district and the whole
Anatolian side of Istanbul. Additionally, we assess and compare the quality of solutions
obtained from the proposed formulation with those of the stochastic approach with respect to
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the fairness (objective function value), accessibility (mean walking distance to the shelter),
satisfaction (feasibility for a scenario), and mean utilization rate performance measures.

We now review a selection of the literature on shelter site selection problems and robust
optimization applications in that domain.

1.1 Related work

The shelter site selection and demand allocation problem considered in this study belongs to
the large class of facility location problems for disaster relief which has a sizable literature in
the context of humanitarian logistics planning. Disaster management is typically carried out
through a four-phase cycle which includes mitigation, preparedness, response, and recovery.
The first two phases happen before an emergency and the last two after it (Neal 1997). In this
paper, we are concerned with the second phase of the cycle, which considers tactical level
preparedness to avoid or lessen the impact of disasters. In a more recent study, Farahani et
al. (2020) presents an excellent review of OR&MS applications in humanitarian operations
performed for responding disasters.

Disaster relief studies are further categorized by Kılcı et al. (2015) as: (i) emergency
medical center location problems, (ii) relief material warehouse location problems, and (iii)
shelter site location problems. Most studies in the first two categories are covered by existing
papers. Therefore, in this section, we give a brief review of studieswhich tackle the shelter site
location–allocation problems.We also focus on studies considering the particular case of pre-
disaster planning for a future Istanbul earthquake as well as notable studies that implement
robust optimization techniques.

A shelter site is a safe physical space containing shelters, basic services (health care,
sanitation, education, etc.), and goods (water, food, clothing, etc.) for hosting people affected
by a disaster. The shelter site selection problemconsiders determining the locations of shelters
as well as the allocation of demand to the shelters for improving the post-disaster recovery
phase of the affected population.

Among studies which tackle the shelter site selection problem, Pan (2010) proposed
a maximal covering location model for determining the locations of shelters in a typhoon-
induced disaster scenario. They demonstrated themodel performance on a small scale random
instance. Coutinho-Rodrigues et al. (2012) developed a multi-objective mixed integer lin-
ear programming (MILP) model for determining shelter locations and paths (from affected
districts to shelters) in case of a disaster. Considering various objectives such as the mini-
mization of travel distances for primary and backup paths, path and shelter risks, transfer time
of people to hospitals, and total number of shelters, they tested their model for a simulated
fire situation in the city center of Coimbra, Portugal. Kongsomsaksakul et al. (2005) consid-
ered the shelter location problem for flood evacuation planning and posed the problem as a
Stackelberg game where the leader (planner) determines shelter locations to minimize the
total evacuation time and the follower (evacuees) chooses the shelter and evacuation route.

Chen et al. (2013) approached the problem from a different perspective and categorized
shelters into three hierarchical groups as immediate, short-term, and long-term shelters.
The authors formulated a MILP model which minimizes the total travel distance during
relocation of the population in a post-earthquake scenario among different types of shelters.
They discussed that the effectiveness of a relief operation strongly depends on the budgetary
constraints on the construction of shelters. Liu et al. (2011) analyzed and defined a number
of principles for the problem. They reported that pre-earthquake evaluation of shelter sites as
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well as environmental, social, and economic impacts likely to arise from an earthquake play
a crucial role in the decision process.

In our review of the literature pertaining to the location of shelters, we encountered a
number of studies which consider multiple objectives simultaneously. For example, Trivedi
and Singh (2017) proposed a hybridmulti-objectivemodelwhich incorporates group decision
making with Analytic Hierarchy Process (AHP), fuzzy set theory, and goal programming
techniques. Their model incorporates criteria used by the Turkish Red Crescent and considers
minimizing risk, travel distance, number of shelters opened and uncovered portion of demand
while maximizing a number of qualitative factors. In a follow-up study, Trivedi and Singh
(2019) proposed a multi-criteria decision aid framework based on fuzzy sets, AHP, TOPSIS
(Technique for Order Preference by Similarity to Ideal Solution) and goal programming to
tackle the temporary planning problem. They demonstrated the performance of their model
on a case study of the 2015 Nepal earthquake. Later, in Trivedi and Singh (2020), the authors
propose another multi-objective shelter site selection model which incorporates the damage
uncertainties. Considering the poor performance ofmulti criteria decisionmaking tools in the
presence of inconsistent data, Song et al. (2019) proposed the use of the qualitative flexible
multiple criteria (QUALIFLEX) method for the shelter site location problem. They tested
the proposed method on a case study of the 2008 Wenchuan County, China earthquake.

Similarly, Xu et al. (2016) proposed a multi-objective model for selecting uncapacitated
shelter locations under deterministic demand and formulated it as a variant of the p-median
and location set covering models. In another study, Chanta and Sangsawang (2012) pro-
posed a bi-objective MILP formulation that maximizes the coverage portion of victims and
minimizes the total distance traveled. They solve the problem for the 2011 flood disaster in
Thailand using an ε-constraint method. Again, focusing on the coverage performance, Wei
et al. (2012) proposed an integrated location set covering and maximum covering location
model for siting urban shelters in small and medium-sized cities. citenajafi2013multi formu-
lated multi-objective, multi-period, multi-mode, and multi-commodity stochastic and robust
models for planning emergency response after an earthquake response in the presence of
demand and supply uncertainties. They implemented a scenario-based linear robust model
similar to that used in Bertsimas and Sim (2004) and solved by converting the master prob-
lem into three sub-problems that optimize the three objectives hierarchically. In Haghi et
al. (2017) the authors proposed a multi-objective robust model for locating unreliable relief
goods distribution centers and health centers (allowing facility failures due to earthquakes) in
emergency logistics settings. Theirmodel attempts tomaximize the response level whilemin-
imizing the total operational total costs. They formulated the model with a scenario-based
approach and solved it with ε-constraint method and the Nondominated Sorting Genetic
Algorithm-II (NSGA-II). Alçada-Almeida et al. (2009), on the other hand, adopted a holistic
approach which combines location and evacuation route assignment decisions. They for-
mulated a multi-objective mathematical model integrated with a geographical information
system-based decision support system. Their model determines the number and locations of
shelters and the optimal path assignments that affected people should use after a major fire
disaster. Considering disasters caused by hurricanes, Li et al. (2011) formulated a two-stage
stochastic programming model which determines shelter locations and capacities at the first
stage and demand allocation in the second stage. The model seeks to minimize the total
system cost associated with transportation and shelter locations.

The topic of robust modeling and optimization for planning emergency logistics under
uncertainties in demand, transportation time, etc. have received attention both from
researchers and policy makers. There exist several studies which propose different robust
modeling perspectives for relief and emergency logistics. Among those Ben-Tal et al. (2011)
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developed a robust optimization approach with min–max criterion and parameter uncertainty
for assigning emergency response and evacuation vehicles under demand uncertainty. Con-
sidering the problem of locating relief distribution centers, Lu (2013) developed a robust
formulation which seeks to minimize the maximum weighted travel time between relief sta-
tions and distribution centers. In their robust formulation, the authors used prescribed intervals
for parameters, rather than probability distributions and solved it with simulated annealing
based heuristic. Liu et al. (2018) first developed a stochastic model for optimal deployment
of emergency resources to be used after a catastrophic earthquake in a mountainous areas.

Assuming uncertain demand and travel time, they implemented the scenario-based robust
optimization approach proposed byBertsimas and Sim (2003). Considering emergency logis-
tics operations Du et al. (2020) also proposed a robust optimization model which uses three
different parameter uncertainty sets as box set, polyhedral set, and ellipsoid set. The authors
formulated the model as three stages with objectives of minimizing fixed cost, transportation
cost, and total cost with respect to the needs of secondary disaster relief, respectively. For each
uncertainty type, the problem is solved with off-the-shelf solvers. Kamyabniya et al. (2021),
on the other hand considered the emergency logistics network which incorporates the flow
between blood regional units and emergency shelters. The authors proposed a bi-objective
scenario-based robust optimization model and solved it with Lagrangian relaxation and the
augmented ε-constraint method.

Because of the high levels of earthquake hazard, vulnerability, and exposure factors
in Istanbul, seismic hazard, risk reduction action, and post-recovery studies have become
progressively more important (Ansal et al. 2009). Among studies which consider the par-
ticular case of Istanbul, Bayram et al. (2015) developed a second-order conic programming
model that is capable of solving real size combined location and evacuation route planning
problems to optimality. They showed the performance of the conic model on the shelter
location problem for Istanbul. However, they did not incorporate uncertainty in demand and
evacuation management. Later, Bayram and Yaman (2018a) developed an exact algorithm
utilizing Benders decomposition to solve two-stage stochastic mathematical model which
seeks to determine the optimal shelter locations and route assignment. The first stage of their
model determines the shelter site and the second stage determines routing decisions via a
second-order cone programming. Using JICA (2002) data, the authors test their model on
two instances for Istanbul. Bayram and Yaman (2018b) implemented a two-stage stochastic
mathematical model on a case study for a potential earthquake in Istanbul and compared the
performance of deterministic and stochastic programming solutions.

As another important study tackling the case of Istanbul, Kılcı et al. (2015) considered the
problem of selecting temporary shelter site locations and the assignment of demand nodes
(affected people) to each open shelter area. The authors proposed amathematicalmodelwhich
seeks to maximize the minimumweight of open shelter areas while ensuring a sufficient level
of service and utilization of shelters. They compared and validated their results for a base case
scenario for Kartal district of Istanbul with those obtained from the Turkish Red Crescent’s
methodology on shelter site selection. Their modelling approach incorporates deterministic
data and assumes that the exact number of affected people for each demand node is known.
As also stated by the authors, such data is not immediately available in the aftermath of
an earthquake, and to compensate for this drawback, the model should be extended as a
robust optimization model. In their follow-up study, Kınay et al. (2018) extended Kılcı et al.
(2015)’s work by reformulating the problem as a stochastic model with chance constraints
(associated with shelter utilization rates and capacities) that is capable of capturing demand
uncertainty. Adopting a continuous uniform distribution assumption, they incorporated the
variability by considering three different demand patterns as low,medium and high. They first
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developed an approximate deterministic equivalent formulation for their chance-constrained
model and linearized it by deriving a piecewise linear approximation of the non-linear terms.
Next, they solved the resulting MILP model for the Kartal district and the whole Anatolian
side of Istanbul. Their numerical results implied that, compared to the deterministic model
solutions, those obtained from the stochastic model is likely to improve the solution quality
when uncertainty exists. They also showed that different shelter utilization rates or demand
patterns may lead to completely different solutions.

The application of robust models to optimize disaster relief operations is not new. Li
et al. (2012) considered the evacuation needs for a post-hurricane scenario and proposed a
robust scenario-based bi-level mathematical model which seeks to minimize the expected
unmet shelter demand and travel time. Their model incorporates the uncertainty of evacuation
demand and the effect of shelter location decisions on the traffic dynamics. They demonstrate
the performance of their modelling approach on a real-world case study for the state of North
Carolina. As another example, Kulshrestha et al. (2011) developed a robust optimization
approach for finding the optimal locations of shelters and their capacities under demand
uncertainty.Themodel seeks tominimize total shelter establishment andoperating costswhile
ensuring that all potential evacuees are accommodated. In Boonmee et al. (2016) the authors
applied a robust MILP formulation which minimizes the mean and variance of the total travel
distance for the problem. They demonstrated the performance of themodel on a case study for
the Chiang Rai province in Thailand. Yahyaei and Bozorgi-Amiri (2019) proposed a robust
MILP model for determining three types of facilities, i.e., shelters, unreliable distribution
centers, and supportive distribution centers. Themodel aims to minimize the overall opening,
operating, and transportation cost of the relief network under uncertain demand. In a more
recent study, Li et al. (2020) implemented a scenario-based hybrid robust and stochastic
modeling approach for designing distribution center and shelter locations for responding
catastrophic disasters. They proposed a hedging algorithm based on Lagrangian relaxation
and tested it on a case study for the Rio de Janeiro state of Brazil.

Table 1 summarizes the basic characteristics of the aforementioned literature on shelter
location studies. The first column introduces the paper, the second column states if the demand
is certain (deterministic) or uncertain, the third column displays the modelling approach
implemented (i.e., deterministic, stochastic, robust), the fourth column displays how the
robustness concept is implemented (e.g. parameter uncertainty, multiple scenarios) for those
applying robust modelling, the fifth column states whether evacuation decisions are imposed
implicitly by using the closest assignment constraints, the sixth column represents whether
the shelters are assumed to have limited capacities or not, the seventh column displays the
type(s) of disaster the paper considers, and the last two columns represent the objective(s)
and the underlying setting of the study.

The table reveals that, although several studies tackled the shelter site location problem
under different objectives and settings, few of themhandled the demand uncertainty explicitly
by implementing a stochastic or robust optimization approach. Two of the papers applying
the robust optimization approach accounted for uncertainty via generating multiple possible
scenarios and optimizing over these scenarios. The rest of the papers employing the robust
approach focused on the uncertainty inherent in problem parameters such as demand for
shelters. To the best of our knowledge, our study is the first one to consider parameter
uncertainty in a multiple scenario setting for the shelter site location problem. Moreover, the
problem has never been considered from a robust optimization approach under the closest
assignment constraints although it makes much sense in our problem setting as will be
discussed in more detail below. We also note that the closest assignment constraints are
implicitly used to capture the notion of evacuation decisions. Finally, different from previous
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robust studies, we adopt a more socially preferable goal (in accordance with the goals of the
Turkish Red Crescent) and employ a maxmin objective function rather than minimizing cost
or travel distance.

1.2 Key features and contributions of the study

We summarize the main features and contributions of our work to the relevant literature as
follows:

(i) We utilize the basic seismology theory and results obtained from the empirical studies
carried out for the North Anatolian Fault Line to derivemore realistic shelter demands in
the aftermath of a possible earthquake in Istanbul. In particular, our demand prediction
methodology allows capturing the effect of uncertainties in (1) seismic parameters, i.e
earthquake magnitude, intensity level, and (2) exposure level of the urban vulnerability,
i.e. population, distance to the ruptured fault line of a possible earthquake, quality of
infrastructure systems.

(ii) Different from the previous studies which rely on unverified and theoretical parametric
probability distributions for addressing uncertainty in demand for shelter sites, for the
first time in the literature, we quantify the uncertainty via seismic parameters which are
allowed to vary within distribution-free uncertainty sets that are dictated by the seismol-
ogy science. In our modelling framework, we take an ensemble of earthquake scenarios
consisting of a finite number of equally likely earthquake magnitudes. Integrated with
our demand prediction methodology, we take advantage of capturing both the predicted
outcome in terms of the number of people who need shelter and the uncertainty inherent
in this prediction.

(iii) The seismology science asserts that the number of people affected by the earthquake
depends on the intensity level. Therefore, rather than perturbing the percentage of people
in need of shelter as done in the previous studies, for the first time in the literature,
we apply the perturbation to the intensity level which is the actual source of variation in
shelter demand. This is a novel andmore realistic approach for shelter demand prediction
after an earthquake.

(iv) In ourmodelling framework,we also implicitly capture the notion of evacuation decisions
by employing a set of closest assignment constraints which assigns each demand node to
its nearest open shelter area. As another realistic assumption, we do not allow population
splitting among shelters and assign all affected people living in the same district to the
same opened shelter, which is also the closest one to them.

(v) Building our work upon Kılcı et al. (2015) and Kınay et al. (2018) which develop deter-
ministic and stochastic approaches for the same problem in an effort to provide decision
support to the Turkish Red Crescent, we propose a robust optimization approach to hedge
against the uncertainty inherent in earthquake disasters. The proposed approach incor-
porates parameter uncertainty in a multiple scenario setting. Our sensitivity analysis and
detailed comparison with the solutions obtained from the stochastic approach show that
the proposed approach leads to solutions that can better adjust to a real setting. Hence, our
results can provide decision support to the Turkish Red Crescent in developing socially
more acceptable and preferable solutions for the case of the (expected) Istanbul earth-
quake.

To sum up, the mainmotivation and argument of our study is to provide a robust modelling
framework which constitutes an alternative approach to the previously published determinis-
tic and stochastic approaches which can potentially generate high regret and/or socially not
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preferable solutions. Since a realistic plan for such an important strategic decision should
compensate for the uncertainty in demand that is inherent in disasters such as earthquakes,
we highlight on the superiority of our modelling framework in terms of social acceptability.
Having said that, in this study, we propose a novel and more realistic solution approach for
a vital real-life problem which directly has an impact on alleviating the human suffering.

The remainder of this article is organized as follows: Sect. 2 introduces the shelter
location–allocation problem and explains our solution methodology. Section 3 presents the
mathematical formulations of the deterministic model and the proposed robust optimization
model. In Sect. 4, we report and discuss the computational studies performed on two case
studies, i.e., a small-scale instance for theKartal district of Istanbul, and a large-scale instance
of the whole Anatolian side of Istanbul. Additionally, we provide a detailed comparison anal-
ysis of our robust approach with the stochastic approach of Kınay et al. (2018) in this section.
Section 5 concludes the paper with a few remarks.

2 The shelter location–allocation problem and solutionmethodology

In this section, we introduce the shelter location–allocation problem for the case of Istanbul,
Turkey and the framework of our solution methodology. For this purpose, we first present
the assumptions and definition of the problem in Sect. 2.1. Then, we discuss the basics of our
robust optimization approach in Sect. 2.2. Finally, we explain our methodology for predicting
the demand for shelters in Sect. 2.3.

2.1 Problem definition and assumptions

We consider the shelter location and allocation problem that is faced by the Turkish Red
Crescent in the context of improving the earthquake disaster preparedness level for the case
of Istanbul, Turkey. Before an earthquake hits, the TurkishRedCrescent aims to determine the
best shelter location combination among several candidate locations to serve districts in the
affected region. We denote the set of candidate shelter locations by i ∈ I and set of districts
by j ∈ J . Potential shelter areas, which are known in advance, are ranked with respect
to the weights determined through several criteria, among which are distance to healthcare
institutions, topography of the terrain, sanitary system, etc. The weight of each candidate
shelter location i ∈ I is represented by wi ∈ [0, 1]. A shelter area is said to be “open” if it
is established and some population is assigned to it.

The objective is determined as maximizing the minimumweight of open shelter locations.
Basically, this objective targets the least advantageous victims and aims to fulfill some kind
of fairness level perceived among districts. Both Kılcı et al. (2015) and Kınay et al. (2018)
addressed the same problem and adopted a number of assumptions in their modelling frame-
works. Since we take the deterministic model proposed by Kılcı et al. (2015) as our baseline
and compare the performance of our proposed robust solution methodology with that of the
stochastic approach of Kınay et al. (2018), we adopt the same assumptions.

– At least 3.5 square meters living space should be assigned to each person in the shelter
area. Additionally, 45 square meter space should be reserved for utilities such as roads,
sanitation, health, education, and nutrition in each shelter area.

– People living in the same district should be allocated to the same shelter location due to
keeping the social structure of the society.

– Each shelter location i ∈ I has a maximum capacity qi measured in square meters.
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– All shelter locations must be utilized above a rate, β ∈ [0, 1], determined in advance.
– Each district must be allocated to the closest open shelter.
– The population of each district is assumed to be concentrated in its centroid.

2.2 Robust optimization approach for shelter site selection

Although facility location problems observed in the private sector and public sector share
similar objective functions which seek to maximize some kind of utility subject to a number
of organizational and/or technical constraints, they differ in the way that these objectives and
constraints are formulated. These differences frequently influence the solutions obtained. In
particular, decisions in the private sector usually involve economic concerns and incorporate
system costs (or profit) and service quality trade-offs for the private owners. Public facility
decisions (e.g., hospitals, fire-fighting, police station, civil defense, search, and rescue opera-
tions), on the other hand, tend to serve the society as a whole with the objective ofmaximizing
a benefit or minimizing a cost which is not quantifiable in monetary terms (Revelle et al.
1970). Additionally, the increasing number of catastrophic disasters have forced governments
to develop disaster preparedness and emergency response plans (Najafi et al. 2020). In this
regard, the problem considered in this study is a public sector problem impacting the disas-
ter management performance of governments. Hence, a successful pre-disaster management
plan should prioritize the society benefit by considering the expected results of all possible
scenarios. In other words, although an optimal plan which accounts for the “worst-case”
may suggest opening more shelters (which potentially yields additional cost), as it is mostly
observed in robust approaches, it is often the socially acceptable or socially preferable course
of action.Motivated by this concern, we adopt a robust optimization approachwhich accounts
for the whole spectrum of possible earthquake scenarios (including the worst-case) and still
ensures a certain level of fairness among the districts of Istanbul.

The concept of robust optimization was first developed to manage various uncertainties
and handle noisy data (Mulvey et al. 1995). It aims to generate stable and proper solutions
that perform consistently well for any possible occurrence of uncertain parameters and across
all scenarios (Erişkin 2021). In other words, it attempts to determine the best solution among
those “immunized” against data uncertainty. Robust optimization belongs to a family of
scenario-based optimization approaches such as scenario optimization (Dembo 1991) and
scenario aggregation (Rockafellar and Wets 1991; Laguna 1998).

An important feature of our optimization model is that it is capable of optimizing over an
ensemble of earthquake magnitude forecasts rather than only a single forecast. We start with
generating a set of possible ground shaking scenarios for Istanbul, denoted by S where each
scenario represents a specific earthquake magnitude denoted by Ms . Next, for each district
j ∈ J and scenario s ∈ S, we predict the shelter demand d js using themethodology described
in Sect. 2.3. The robustness aspect of our proposed model is reflected by the scenario index
s ∈ S, that is present on the d js parameter as well as uncertainty sets of parameters within a
scenario which dramatically impact location and allocation decisions.

This modeling approach allows us to ensure that the resulting location–allocation plan
performs well in a variety of possible outcomes, rather than tailoring the plan toward a
single earthquake magnitude forecast or subjective variability. To quantify the benefits of
our robust optimization approach in temporary shelter area location–allocation planning, we
firstly examine the performance of two optimization approaches:

– Deterministic Optimization (DO): This approach corresponds to the deterministic case
proposed by Kılcı et al. (2015). It is a simple method for choosing a single scenario over
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which to optimize. In this approach, the problem is solvedwith respect to the deterministic
single value of the shelter demand, denoted by d j .

– Robust Optimization (RO): An ensemble of earthquake forecast set s ∈ S is generated
with respect to expert opinions (IMM and JICA reports for the case of Istanbul) and
principles of seismology. Given an ensemble of earthquake magnitudes Ms,∀s ∈ S, for
each scenario s ∈ S and district j ∈ J we calculate d js as defined in Sect. 2.3 and add
uncertainty to the deterministic prediction for each scenario using themaximumdeviation
of demand from its nominal value. This technique leverages the within scenario-robust
nature of the model to account for the uncertainties of parameters within each scenario
in the ensemble.

Afterwards, we compare the (RO) approach with the stochastic optimization approach of
Kınay et al. (2018) in termsof various performancemeasures byperforming a post-earthquake
analysis.

2.3 Shelter demand predictionmethodology

In their study, Kılcı et al. (2015) assumed that approximately 12.5% of the population for a
particular district would need sheltering in the aftermath of an earthquake disaster in Istanbul.
This ratio is called as the Percent Affected Ratio (PAR). This assumption is based on (1) the
data set provided by Unal (2010) as part of his Ph.D. thesis where he performed extensive
analysis and surveys with experts, and (2) casualty and damage predictions for a possible
Istanbul earthquake given by Özmen (2002). Adopting the same assumptions, Kınay et al.
(2018) extended the deterministic model by assuming a uniformly distributed uncertainty
around the mean value of the 12.5% PAR. However, as also stated by the authors, keeping
the PAR value constant for all sub-districts in a relatively large geography is not a reasonable
approach when the study involves a large geography.Moreover, in a real earthquake scenario,
the PAR value of each district is strongly related to the intensity of the earthquake, which is a
function of the earthquakemagnitude and distance to the ruptured fault line. As Jonkman et al.
(2010) remarks, no general methodology that can be used to estimate casualties for different
event types is available. Thus, realistic estimation methods that take into account the nature
of the disaster under consideration are required. Having said that, to predict the number of
people who will need sheltering in each district in the affected regions of Istanbul more
accurately, we implement a novel shelter demand prediction methodology which accounts
for uncertainties in seismic parameters, i.e. magnitude, intensity, as well as exposure level of
the urban vulnerability, i.e. district population, distance to the ruptured fault line, and quality
of infrastructures. Figure 1 displays the main components of our methodology.

STEP 1
Generate

Earthquake Scenarios

STEP 2
Predict Intensity 

Levels

STEP 3
Predict Shelter 

Demand

Scenario set

Intensity level for
each district and
scenario OUTPUT

Shelter demand for
each district and

scenario

 - Expert opinion on the lowest and
highest earthquake magnitude
estimates for the region

- Distance of each district
to the epicenter
- Standard deviation of the
intensity level

- District populations
- Predictions for:
     * Number of buildings
     * Building damage levels (%)
     * Casualties
     * Directly affected population

Fig. 1 Flowchart of shelter demand prediction methodology

123



Annals of Operations Research (2024) 339:1589–1635 1605

Before proceeding with the details of our prediction methodology, we find it useful to
provide preliminaries on seismic terms. The intensity of an earthquake can be defined as the
effect of an earthquake over a particular area, which is simply a function of the magnitude
and distance to the ruptured fault line of the earthquake. In other words, the intensity variable
represents the oscillation level of the Earth’s surface during an earthquake. Intensity scales,
such as the Medvedev–Sponheuer–Karnik (MSK) scale, Modified Mercalli Scale, and the
Rossi-Forel scale, are used to measure the amount of shaking at a particular location. An
earthquake causes different intensities of shaking in the area of the epicenter where it occurs,
i.e., high intensities near the epicentre and lower intensities further away.

Earthquake magnitude is a measure of the amount of seismic energy released by an
earthquake and recorded by seismographs. An earthquake has onemagnitude that ismeasured
at its source. The Richter Magnitude Scale (Richter 1935) measures the magnitude of an
earthquake as the logarithm of the maximum trace amplitude expressed in thousandths of
a millimeter with which the standard short-period torsion seismometer would register that
earthquake at an epicentral distance of 100 kilometers (Garnder and Knopoff 1974). In
seismology, the term epicenter refers to the point where an earthquake originates. Generally,
the greatest damage occurs at the vicinity of the epicenter and the intensity of the earthquake
is in a particular district is inversely related to the distance from the epicenter.

As the first step, we associate each scenario s with a specific magnitude Ms . Next, for
each district j ∈ J and scenario s ∈ S, we compute the macroseismic intensity level I L js

as a function of the magnitude and the closest distance of the district to the ruptured fault
line (in km.), R j . There exist a number of studies in the literature that attempt to derive this
relationship. Among them, Erdik and Eren (1983) focused on the attenuation of earthquake
intensities in Turkey and compiled available iso-seismal maps and data. Hence, at the second
step, we compute all district-fault line distances and use the following empirical equation
proposed by Erdik and Eren (1983) to predict the intensity levels along the regions close to
the North Anatolian Fault Line:

I L js = 0.34 + 1.54Ms − 1.27 ln R j , ∀ j ∈ J , s ∈ S, (σI L = 0.60) (1)

where σI L is the standard deviation of the intensity.
Using the same attenuation function (1) and the MSK scale, Özmen (2002) assessed the

expected damage in Istanbul for a possible earthquake in the Marmara region of the North
Anatolian Fault. The MSK scale Medvedev and Sponheuer (1969), also referred as MSK-64
scale, is a commonly used scale which assesses the severity of ground shaking with respect to
its observed impact to an area during an earthquake. It uses 12 intensity degrees expressed in
Roman numerals. Adopting a similar approach in our third step,we predict the shelter demand
from each district j ∈ J and for each scenario s ∈ S, denoted by d js , using the empirical
building damage level percentages given in Özmen (2002) and casualty estimations as given
in Unal (2010). For the sake of completeness, we provide a summary of these assumptions
and empirical data below.

Table 2 reports the percentage of buildings damaged (heavy, medium, and light) during
the 1999 Izmit Earthquake in the affected areas of different intensities varying between level
VI and X. Özmen (2000) reported that, building structures in Istanbul show similar properties
with those in Izmit and these ratios can be used to predict the damage ratios for a possible
disastrous earthquake in Istanbul. Similarly, Pyper Griffiths et al. (2007) assessed the seismic
risk in Istanbul and stated that one should expect the ratio of buildings that may be damaged
or collapsed in the southern parts of Istanbul to be the same as that of Izmit and Düzce. We
also note that for the fractional I L js values returned by the equation (1), we calculate their
corresponding damage percentages by simply interpolating the data given in Table 2.
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Table 2 Percentage of buildings damaged during the 1999 Izmit earthquake in affected areas of different
intensities

Intensity level Effect Heavy damage (%) Medium damage (%) Light damage (%)

VI Strong 0.04 0.22 0.24

VII Very strong 0.91 2.67 2.59

VIII Damaging 2.82 4.41 5.31

IX Destructive 15.70 18.16 22.75

X Devastating 33.06 15.29 19.14
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Fig. 2 a Intensity levels as a function of magnitude and distance to fault line b resulting PAR values

Using Table 2 data, Unal (2010) predicted the number of people who are affected and the
number of people who need sheltering using the following assumptions:

– The number of infrastructures of a district is approximately equal to the ratio of district
population to the average size of a household, which is taken as 3.75.

– 25% of the population residing in heavily damaged, 0.5% of the population residing in
medium damaged, and 0.005% of the population residing in lightly damaged houses are
expected to die.

– 75% of the population residing in heavily damaged, 75% of the population residing in
medium damaged, and 0.005% of the population residing in lightly damaged houses are
expected to be directly affected by the earthquake.

– 50% of the affected population will need sheltering while others will leave the region.

Figure 2a, b display the intensity levels and resulting PAR values, respectively, calculated
for different magnitudes (varying between 6 and 8) and distances to the fault line (varying
between 5 and 35 km). Although the direction of the relationship between seismic parame-
ters, the exposure level of vulnerability, and PAR is known, generating a good (or realistic)
PAR estimate is a challenge for planners. As can be seen in the figure, PAR value can
change significantly depending on the seismic parameters and exposure level of the urban
vulnerability. Thus, selecting unverified parametric probability distributions may yield inac-
curate demand predictions. Calculated in accordance with the principles described in this
section, the individual PAR values predicted for each district and scenario are more realistic
to address the uncertainty in demand for shelter after a possible earthquake.

The details of our PAR predictions for the case of Istanbul will be reported in Sect. 4.
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3 Problem formulation

In this section, we provide the details of the twomodelling approaches (i) deterministicMILP
formulation denoted by (DO), and (ii) within scenario robust formulation denoted by (RO).

3.1 Deterministic MILP formulation

Proposed by Kılcı et al. (2015) and later revised by Kınay et al. (2018), the main objective
of this formulation is to select the best possible combination of shelter areas while assigning
each district to an open shelter area. The objective function considers the weights of the
candidate shelter locations and maximizes the minimum weight of open shelters. In the
formulation, it is assumed that the exact district demands are known in advance. In this
respect, the deterministic model is formulated as a MILP model as follows:

Sets

i ∈ I : Set of candidate locations
j ∈ J : Set of districts

Parameters

wi : Weight of candidate shelter location i ∈ I , wi ∈ [0, 1]
d j : Total demand of district j ∈ J (square meters)
qi : Capacity of candidate shelter location i ∈ I (square meters)
dist Sortedi j : i th closest candidate shelter location index to demand node j ∈ J
β : Threshold value for minimum utilization of open shelters
disti j : Distance between candidate shelter location i ∈ I and district j ∈ J

Decision Variables

xi =

{
1, if candidate location i ∈ I is chosen as a shelter area

0, otherwise

yi j =

{
1, if district j ∈ J is assigned to location i ∈ I

0, otherwise
wmin = minimum weight among open shelters

Formulation

(DO): max wmin (2a)

subject to wmin ≤ xiwi + (1 − xi ) ,∀i ∈ I (2b)∑
i∈I

yi j = 1,∀ j ∈ J (2c)

∑
j∈J

yi j d j ≤ qi xi ,∀i ∈ I (2d)

∑
j∈J

yi j d j ≥ qiβxi ,∀i ∈ I (2e)

ydist Stored1 j j = xdist Stored1 j ,∀ j ∈ J (2f)

ydist Sortedi j j ≥ xdist Sortedi j −
i−1∑
k=1

xdist Sortedk j ,

∀ j ∈ J , i = 2, 3, . . . , |I |
(2g)
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xi ∈ {0, 1} ,∀i ∈ I (2h)

yi j ∈ {0, 1} ,∀i ∈ I , j ∈ J (2i)

The objective function (2a)maximizes theminimumweight of open shelter areas. Together
with the objective function, constraints (2b) ensure that wmin takes the minimum weight of
the open shelters. Constraints (2c) guarantee that each district is assigned to one and only one
shelter location. Constraints (2d) ensure that capacities of the shelter areas are not exceeded.
Constraints (2e) define theminimumutilization rate for each shelter location. Constraints (2f)
and (2g) provide that each district is assigned to the closest open shelter location. Decision
variable domains are defined via constraint sets (2h) and (2i).

Constraints (2f) and (2g) are called as the closest assignment constraints andwere initially
proposedbyRojeski andReVelle (1970). There are several other closest assignment constraint
alternatives proposed in the discrete location analysis literature. Espejo et al. (2012) identified
and discussed themost promising ones.Among those alternatives, Kınay et al. (2018) adopted
the constraint set (3) which was originally proposed by Wagner and Falkson (1975), and
reported that it is more efficient for large-scale problems in terms of computation time. It
was also proved by Espejo et al. (2012) that (3) dominates (2f) and (2g).

|I |∑
s=i+1

ydist Sorteds j j + xdist Sortedi j ≤ 1,∀ j ∈ J , i = 1, . . . , |I − 1| (3)

In this study, we implemented the closest assignment constraint alternative (4) proposed
by Berman et al. (2009). As we will show in Sect. 4.2, this set of constraints presents better
performance compared to (2f) and (2g) as well as constraints (3) in terms of computation
time. ∑

i∈I
yi j disti j ≤ xi ′disti ′ j + (1 − xi ′)M,∀i ′ ∈ I , j ∈ J (4)

The closest assignment constraints (4) in the model particularly reflect the human
behaviour and implicitly captures routing decisions because after the occurrence of a dis-
aster, individuals instinctively tend to reach to the closest open shelters. The model ensures
this requirement along with the indivisibility of demand (2c), capacity constraints (2d), and
minimum utilization constraints (2e). In other words, the generated solutions satisfy that, if
a candidate shelter location is closest to a demand point (district), and there does not exist
any feasible allocation of districts to this location that satisfies the utilization and/or capacity
requirements, then the model does not allow this location to be "open" in the solution.

3.2 Robust MILP formulation

In this section, we propose a robust counterpart of the formulation (DO). For the new model
formulation, we define the following additional set, parameters and decision variables.

Additional Set

s ∈ S : Set of scenarios

Additional Parameters

d js : Total demand of district j ∈ J in scenario s ∈ S (square meters)
d js : Total nominal demand of district j ∈ J in scenario s ∈ S (square meters)
d̂ js : Maximum deviation in demand of district j ∈ J in scenario s ∈ S from its nominal
value d js (square meters)
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τs : Uncertainty level of demand in scenario s ∈ S, τs ∈ [0, 1]
Additional Decision Variables

yi js =

{
1, if district j ∈ J is assigned to location i ∈ I in scenario s ∈ S

0, otherwise

First developed by Bertsimas and Sim (2003, 2004), this modeling technique allows
point estimates of uncertain demand to vary in distribution-free uncertainty sets within each
scenario to providewithin-scenario robustness. Being uncertain by nature, the shelter demand
of district j in a scenario s can be defined with the following uncertainty set:

φ js =
{
d js :

∣∣d js − d js
∣∣

d̂ js
≤ τs,∀i ∈ I , s ∈ S

}
(5)

where d js is the nominal demand value of district j in scenario s, while d̂ js represents
the maximum deviation of demand of district j from its nominal value (d js) in scenario
s. This formulation of uncertainty allows demand to vary in the interval uncertainty set
[d js − d̂ js, d js + d̂ js], while amount of deviation from the nominal value (in other words,
robustness level of the solution) is controlled by the uncertainty level τs , where τs ∈ [0, 1].
When τs = 0, the problem reduces to the deterministic version and demands take their
nominal values. Conversely, when τs = 1, the problem is solved for the worst case scenario
and becomes the most conservative one.

It should also be noted that the formulation of a robust counterpart is strongly connected
with the selection of an appropriate uncertainty set. There exist a number of other alternative
uncertainty sets, e.g., polyhedral, ellipsoidal, in the literature. In the robust optimization
framework, if the uncertainty set defined by the decision-maker covers the whole uncertain
space, then it is ensured that the robust solution (if it exists) is feasible for any realization
of uncertainty. In this study, we modelled the uncertainty associated with the earthquake
magnitude by using an interval uncertainty set. This choice is preferable since it is capable
of reflecting the actual variability in the earthquake magnitude level (given in Equation (1))
and covering the whole uncertain space. Additionally, its implementation and analysis in our
robust framework is relatively more tractable. Another variation could be to apply a budget
of uncertainty which would narrow the total uncertainty within a scenario such that:

∑
j∈J

∣∣d js − d js
∣∣

d̂ js
≤ Γs, ∀s ∈ S (6)

where Γs represents the uncertainty budget defined for scenario s. When Γs = 0, no uncer-
tainty is allowed for the parameters associated with scenario s, which enforces them to take
their nominal values. When Γs = |J |, on the other hand, Equation (6) becomes redundant
and the individual parameter uncertainty level is controlled with Equation (5). As Bertsi-
mas and Thiele (2006) remarked, the main rationale for using a budget of uncertainty is the
assumption that some forecasts will exceed their nominal values while others will fall below
the estimate, hence, as the number of sources of uncertainty increases it is likely that the
aggregated scaled deviation will belong to a much narrower range. Conversely, low probabil-
ity solutions might involve high-magnitude risks and may not be acceptable for the society.
Applying the robust optimization approach to the humanitarian relief logistics, the purpose
of which is to alleviate the suffering of vulnerable people, we find it safer not to apply a
budget of uncertainty. Accordingly, within scenario robust model formulation is provided
below:
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(RO):max wmin (7a)

subject to wmin ≤ xiwi + (1 − xi ) ,∀i ∈ I (7b)∑
i∈I

yi js = 1,∀ j ∈ J , s ∈ S (7c)

∑
j∈J

yi js(d js + τs d̂ js) ≤ qi xi ,∀i ∈ I , s ∈ S (7d)

∑
j∈J

yi js(d js + τs d̂ js) ≥ qiβxi ,∀i ∈ I , s ∈ S (7e)

∑
i∈I

yi jsdisti j ≤ xi ′disti ′ j + (1 − xi ′)M,

∀i ′ ∈ I , j ∈ J , s ∈ S

(7f)

xi ∈ {0, 1} ,∀i ∈ I (7g)

yi js ∈ {0, 1} ,∀i ∈ I , j ∈ J , s ∈ S (7h)

The MILP model (RO) considers all scenarios simultaneously and addresses uncertainty
in demand within scenarios through constraints (7d) and (7e). The rest of the constraints
are the same as those in model (DO) while they are augmented to cover all scenarios under
consideration. The model (RO) maximizes the minimum weight of open shelters while the
demand of each district is subject to deviation bounded by the uncertainty sets. Note that we
only consider the positive deviations from the nominal demand in constraints (7d) and (7e),
even though negative deviations are also possible in reality. Keeping in mind that the purpose
of humanitarian relief operations is to alleviate the human suffering, we find it socially more
preferable to focus on only the positive deviations in demand in our formulation.

4 Computational results

In this section, we present application of the robust formulation (RO) on two case studies. In
both cases, models are implemented in General Algebraic Modeling System (GAMS 2012)
and R (R Core Team 2017) and solved with CPLEX 12.5. All runs are performed on a
computer having Intel Xeon E5-2630 2.40 GHz (2 Core) processor and 128 GB of RAM.

4.1 Computational study for the Kartal district

The data set we used for the Kartal district of Istanbul was first generated by Unal (2010)) as
part of his Ph.D. thesis, and later used by Kılcı et al. (2015) and Kınay et al. (2018). Having
38.54 square kilometers of area and a population of 425.000, Kartal is one of the 39 districts
of Istanbul. There are 25 candidate shelter locations, each having a weight ranging from
0.674 to 0.982 with an average of 0.827 and standard deviation 0.097. Capacities of these
shelters range from 24,000 square meters to 150,000 square meters with an average capacity
of 49,309. There are 20 sub-districts of Kartal demand points of which are considered as
sub-district centroids.

In their study, Kılcı et al. (2015) assumed that approximately 12.5% of the population
would need to stay in the shelter areas after an earthquake. Additionally, they assumed that
this percentage is constant for all sub-districts. Emphasizing that a so-called PAR assumption
of 12.5% is not reasonable since this parameter can hardly be known in advance, Kınay et al.
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(2018) introduced demand variability of PAR by considering three different patterns which
essentially correspond to different levels of variability: high, moderate and low. Centering
in the original PAR value assumed by Kılcı et al. (2015), Kınay et al. (2018) considered
an uniform interval for each pattern t such that PAR = 12.5% × U [at , bt ] and 10 figures
from each variability pattern were drawn to form a sample for demand values. Then, μ j and
σ j are estimated from this sample as the parameters of the demand distribution. The main
drawback of this approach is that these uncertainty patterns are subjective and regarding
distribution may not represent uncertainty in shelter demand after an earthquake because
the number of people that would need shelter area is closely related to the intensity of the
earthquake. Additionally, Kınay et al. (2018) assumed that the expected value of the PAR
is 12.5%, however, this figure should be calculated based on the probability mass function
of earthquake intensities which indeed dictate the number of people that will require shelter
along with the exposure level of the urban vulnerability.

To overcome the drawbacks of the previous approaches and calculatemore realistic shelter
demand values, we generated a number of earthquake scenarios. In particular, the predic-
tions given in JICA (2002) and IMM (2003) considered a number of earthquake scenarios
with magnitudes varying between 6.9 and 7.7 depending on the surface length of the North
Anatolian Fault Line rupture for a possible earthquake expected to occur in Istanbul until
2030. However, the historical earthquakes occurred in the region reveal that the faults near
Istanbul are capable of generating earthquakes with magnitudes up to 7.9. Hence, we define
21 distinct scenarios, each of which corresponds to a different magnitude varying between
6.9 to 7.9, i.e., Ms ∈ {6.90, 6.95, . . . , 7.90}. Hinged on the intensity of a given earthquake
and the exposure level of the urban vulnerability, the shelter demand of each sub-district of
Kartal is predicted in accordance with the procedure explained in Sect. 2.3. Distance between
each district and its closest fault line is measured by using the online distance calculator tool
in Disaster and EmergencyManagement Presidency’s interactive web application for Turkey
earthquake hazard maps (AFAD 2018). Consequently, average and individual sub-district
PAR figures calculated for each scenario s ∈ S are displayed in Fig. 3. As seen from the
figure, the average PAR values for Kartal vary between 7.14% to 17.98%. As expected, the
intensity and shelter demand is proportional to the magnitude and inversely proportional to
the distance from the fault line. For a given scenario, the differences among sub-district PAR
quantities are explained by the varying distances between sub-districts and fault lines. For
a given sub-district, on the other hand, the differences among scenarios are caused by the
effect of earthquake magnitude levels.

4.1.1 Results of the deterministic model

Firstly, we solve the shelter location–allocation problem for each scenario s ∈ S with the
(DO) model to obtain their corresponding deterministic solutions for ten different mini-
mum utilization threshold values as β = {0.0, 0.1, . . . , 0.9}. Hence, solving each of the 21
scenarios with 10 different β values leads to a total of 210 instances.

Solutions and objective function values obtained for all 210 instances are reported in
Table 3. The results reveal that (DO) is capable of finding feasible solutions for all scenarios
whenβ ≤ 0.6.Among all feasible solutions, the objective function values vary between 0.948
and 0.803. As expected, (DO) tends to yield better objective values for smaller demand and
utilization threshold values.

The minimum and maximum number of shelters opened are observed as 2 and 9, respec-
tively. Recall that the model forces all affected populations to be assigned to their closest
open shelter area while ensuring that the utilization of each shelter opened is greater than the
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Fig. 3 PAR values calculated for all 21 scenarios and 20 sub-districts of Kartal. Solid lines with circles
represent PAR quantities averaged over all sub-districts. Small circles represent PAR value of each individual
sub-district. The dashed and dotted lines display the minimum and maximum PAR values among the 20
sub-districts, respectively

defined β value (see constraint set (2e)). This enforces the model to suggest opening more
shelters for higher PAR and smaller β values. However, as β and PAR increase, the model
not only returns lower objective function values, but also fails to find feasible solutions when
PAR > 16.34% and β = 0.7, PAR > 15.42% and β = 0.8, and PAR > 14.25% and
β = 0.9. It can obtain a feasible solution for only 7 out of 21 scenarios when β = 0.9. Once
again, these results emphasize the need for robust models which are capable of compensating
the uncertainty in demand.

We also observe that the solutions obtained when β equals 0.7, 0.8 and 0.9 are in harmony
with those of Kınay et al. (2018). However, none of the scenarios has a PAR value that is
exactly equal to 12.5%. For instance, PAR values of scenario 8 and 9 are 12.2% and 12.9%,
respectively. Deterministic solutions of scenario 8 for β = 0.7 and β = 0.8 are the same
as those of Kınay et al. (2018), conversely, when β = 0.9 the model (DO) cannot reach a
feasible solution for scenario 8.

4.1.2 Results of the robust model

In the robust optimization model (RO), the nominal shelter demand values of districts (d js)

are equal to the deterministic values. These deterministic demand values are calculated by
means of Equation (1) which predicts the intensity of an earthquake. As explained in Sect.
2.3, the number of people requiring shelter depends on the intensity. Therefore, rather than
perturbing the PAR value itself, we apply the perturbation to the intensity level which is
the actual source of variation in shelter demand. Accordingly, we calculated the maximum
variability in shelter demand of district j in scenario s (d̂ js) based on the variability of
intensity in that particular scenario s.Weconsidered amaximumvariation of 3σI L in intensity,
hence, we cover 99.73% of the cases that can be encountered. As pointed out in Sect. 3.2,
the actual variability in shelter demand is controlled with the parameter τs . Therefore, when
τs = 1 for all scenarios, the model (RO) is said to be 99.73% robust. Accordingly, for the
99.73% robust model, the PAR values vary between 19.46% and 23.57%.
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Table 4 Solutions obtained with the model (RO)

β/τ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 A B C C D E E E E F F

0.1 F G H I I F F F F I I

0.2 J K L F B F F F F F I

0.3 INF J J M M F F F B I I

0.4 INF INF INF INF INF M N N F F F

0.5 INF INF INF INF INF INF INF O P R R

0.6 INF INF INF INF INF INF INF INF INF INF R

We solve the (RO) model for different values of β = {0, 0.1, . . . , 0.9} and τ =
{0, 0.1, . . . , 1}, yielding a total of 110 instances. Although (RO) has the flexibility to assign
specific τs for each scenario s ∈ S, without loss of generality, we use the same demand
uncertainty level in all scenarios since we have no reason or additional information to do
otherwise.

The solutions obtained from the model (RO) are summarized in Table 4. In this table,
columns correspond to uncertainty values while rows represent threshold values for the
minimum utilization rate. Each cell in the table represents a solution, details of which are
given in Table 5. The maximum β value that yields at least one feasible solution is 0.6, in
other words, when β > 0.6 the model (RO) cannot obtain a feasible solution regardless of
the value of τ . Hence, in Table 4, we do not report results for instances with β ≥ 0.7.

The first column of Table 4 essentially corresponds to the deterministic case where the
model (RO) takes nominal demand values of shelters in each scenario and combines them
into a single model. In this case up to minimum utilization rate of 0.2 can be achieved for all
open shelters. Additionally, when we do not have uncertainty in shelter demands (τ = 0),
the maximum objective value we can achieve is 0.809. As uncertainty in shelter demand (in
other words the robustness of the model) increases, we obtain feasible solutions for higher β

values due to increase in shelter demand of each district. We also observe that as uncertainty
in demand increases, solutions F, I and R are observed more frequently among 17 distinct
solutions.

Table 5 provides additional information regarding the frequency, objective function value
and opened shelters for each of the 17 distinct solutions observed in Table 4. The results
reveal that with 19 observations (which accounts for 35.18% of all solutions) F is the most
frequently obtained solution. Additionally, this solution meets relatively higher shelter uti-
lization threshold requirements and achieves themaximum objective function value observed
among all solutions. There are other alternative solutions that meet higher utilization thresh-
old values for some uncertainty levels than the solution F; such as solutionsM (for τ = 0.3
and 0.5), N (for τ = 0.6), O (for τ = 0.7), P (for τ = 0.8), and R (for τ = 0.9 and 1.0).
However, the solution F outperforms these solutions in terms of the objective function value.
The solution I follows F with a frequency of 7 which accounts for 12.96% of all solutions.

We also observe that 16 out of 17 solutions (all solutions except for R)) suggest opening
shelter 4. Shelter 4 is followed by 10, 13, and 19 with relative frequencies of 88.23%, 76.47%
and 70.58%, respectively. We also note that, these shelters are open in solution F along
with shelters 12 (64.70%), 17 (41.17%), and 25 (58.82%). These are the most frequently
opened shelters in solutions. In this respect, relative frequencies of each solution and shelters
opened are presented in Fig. 4a, b, respectively. Figure 4c shows averages of maximum
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Table 5 Solution information of the model (RO)

Solution Frequency Objective value Open shelter IDs # of Open shelters

A 1 0.809 4-10-13-18-19-20-25 7

B 3 0.809 1-4-10-12-13-17-19-25 8

C 2 0.809 1-4-10-12-13-17-18-19-20-25 10

D 1 0.809 4-10-12-13-17-18-19-20-25 9

E 4 0.809 1-4-10-12-13-17-19-24-25 9

F 19 0.809 4-10-12-13-17-19-25 7

G 1 0.809 1-4-10-12-13-18-25 7

H 1 0.809 1-4-10-12-13-25 6

I 7 0.809 4-10-12-13-17-19-24-25 8

J 3 0.809 4-10-13-19-20 5

K 1 0.809 4-10-12-13-25 5

L 1 0.809 1-4-10-13-19-20 6

M 3 0.801 1-4-5-8-9-15-17-19 8

N 2 0.801 1-4-5-8-12-15-19-20 8

O 1 0.795 2-4-5-8-10-15 6

P 1 0.739 4-10-19-20-23 5

R 3 0.739 10-12-13-18-23 5

and mean utilization rates of 21 scenarios when the solution F is applied for uncertainty
levels τ ≥ 0.5. This figure reveals that the solution F ensures relatively high utilization rates
over 21 scenarios. As uncertainty level (in other words the robustness level) increases, mean
and maximum utilization rates of 21 scenarios increase. When τ = 1.0, which is the worst
case scenario, the solution F achieves reasonably high average utilization rates even though
threshold for minimum utilization enforced by the model is low. In the light of these findings,
we can assert that the model (RO) recommends implementing the solution F which achieves
higher utilization levels of shelters and the maximum objective function value among all
solutions.

4.1.3 Comparison with the stochastic optimization approach

As a well-known approach, stochastic programming tackles the uncertainty inherent in prob-
lem parameters by assuming that the probability distributions governing these parameters are
known and can be estimated. Taking advantage of this information, stochastic programming
aims to find a solution that is feasible for most of the instances to occur by maximizing
over the expectation of the unknown parameters. However, the empirical distributions of
parameters pertaining to natural disasters such as floods or earthquake are hardly known,
thereby making stochastic optimization approaches more challenging. Assuming an empir-
ical probability distribution which does not properly represent the variation associated with
the uncertain parameters may lead to solutions that are socially not acceptable or preferable
and cause high regrets, which can not be compensated after the disaster occurs. Considering
that uncertain parameters are usually known only within certain bounds, on the other hand,
robust optimization hedges against uncertainty by considering the deterministic variability
of the parameters and provides versatile solutions that are robust to all possible outcomes
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Fig. 4 a Relative frequencies of solutions, b relative frequencies of shelters opened, c average of maximum
and mean utilization rates of 21 scenarios for solution F

to some extent. Having said that, in this section, we compare the solution recommended by
our robust model with those of Kınay et al. (2018) which applied stochastic programming
approach to the same problem by utilizing chance constraints.

Kınay et al. (2018) obtained solutions for three different variability patterns as low, mod-
erate, and high, and three different β values as 0.7, 0.8, and 0.9, as briefly explained in Sect.
4.1. Utilizing chance constraints which allow them to violate hard constraints enforcing uti-
lization thresholds and capacity requirements, they reached a number of solutions for a set
of violation probabilities. The solutions and their characteristics are summarized in Table 6.
We denote their 6 unique solutions as AS,BS,CS,DS,ES,FS. As can be inferred from the table,
they did not achieve a feasible solution for high variability pattern when β = 0.8 and 0.9 and
obtained multiple solutions for some variability patterns due to different constraint violation
probabilities.

Most of the humanitarian relief decisions are naturally a priori andmade under uncertainty
before a disaster occurs. After the disaster takes place, the veil of uncertainty disappears and
a posteriori decisions follow which are constrained with a priori decisions. In the shelter
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Table 6 Solutions obtained by Kınay et al. (2018) for the Case Study-1

β Variability Solution ID Open shelter IDs # of Open shelters

0.7 Low AS 10-19-25 3

Moderate AS 10-19-25 3

DS 13-18-19-25 4

High AS 10-19-25 3

DS 13-18-19-25 4

ES 8-9-12-25 4

FS 4-8-9-12 4

0.8 Low BS 4-10-14 3

Moderate CS 14-23 2

High – INF –

0.9 Low CS 14-23 2

Moderate CS 14-23 2

High – INF –

location–allocation problem, for instance, locations of the shelters as well as allocation of
demands to these shelters are determined a priori, however, allocation or routing decisions
are tailored based on the given outcome of the earthquake. We based our comparison on this
fact and considered 21 scenarios generatedwith our realistic demand predictionmethodology
as the omniscient cases. Assuming that an earthquake with a particular intensity has already
happened, we make optimal allocations of the resulting demands to the shelters established
a priori by both the recommended solution of the model (RO) and those obtained by Kınay
et al. (2018). Since an earthquake has already happened and the shelters were established
before an earthquake, we do not impose utilization thresholds and make allocations based
on the assumptions given in Sect. 2.1, including the closest assignment constraint.

Even though our primary comparison measure is the objective function value, which
essentially represents the fairness of the solution due to targeting the least advantageous
districts by maximizing the minimum shelter weight, we also considered three additional
measures. Proposed by Kınay et al. (2018), the accessibility measure is based on mean
walking distance, providing an evaluation of how much people walk on average to reach
to the nearest open shelters. Satisfaction measure represents if a solution is feasible for a
realization of a particular scenario. As the last performance measure, we examine the mean
utilization rates of open shelters.

We evaluated the performance of stochastic and robust modelling approaches for the
realization of three different uncertainty levels: τ = 0, 0.5 and 1.0. As explained previously,
τ = 0 corresponds to the case where demand values of scenarios take their nominal values
while τ = 1.0 represents the most conservative case. τ = 0.5, on the other hand, represents
a medium level of uncertainty. A detailed comparison of the solutions with respect to the
performance measures are given in Tables 7, 8, 9, 10.

We observe from these tables that stochastic optimization solutions can not generate a
feasible allocation of demands to the open shelters for none of the scenarios when τ = 1.0,
and for 19 scenarios out of 21 when τ = 0.5. For the nominal demand case where τ = 0,
none of the solutions meets the capacity demands of scenarios 12 through 21. This result is
to be expected due to the fact that stochastic programming optimizes over the expectation of
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the unknown parameters while ignoring individual scenarios. The infeasibility mainly stems
from the lack of enough capacity to meet the demand, while there are a few cases where a
feasible allocation can not be made in accordance with problem assumptions even though
the total capacity of open shelters are enough to cover the total demand. This result can be
observed from Table 9 where the figures in the table show the percentage of demand that
can be met with the capacity provided by the open shelters without considering the problem
assumptions such as indivisibility of demand and closest assignment in the allocation.

In terms of the fairness performance measure reported in Table 7, the robust solution F
outperforms all stochastic solutions but solutions AS andDS, while objective function values
of solutions F and DS are the same. This result shows that the robust solution F not only
yields a feasible solution for all possible earthquake scenarios but also provides fair solutions
for the people that are in need of shelter by opening high quality shelters. When we consider
the accessibility performance measure reported in Table 8, we observe that the solution F
outperforms all stochastic solutions by enabling the minimummean walking distances for all
scenarios. This performance measure is particularly important on the eve of an earthquake
because a long walking distance to the shelters would be unbearable for the survivors, some
of whom might even be injured.

Aswe stated, we do not seek utilization thresholdswhen allocating demands to the shelters
after an earthquake disaster, because whether to open a shelter is a priori decision and
once opened, people move to the closest shelters. Nonetheless, we computed the resulting
utilization rates of the shelters in accordance with the allocation made based on the problem
assumptions. Table 10 reveals that utilization rates of the solution F is relatively low with
respect to stochastic solutions while improves as uncertainty level increases, as expected.
When the uncertainty level is the highest, utilization rates of the solution F are reasonably
high where stochastic counterparts can not achieve a feasible solution at all.

As a consequence, all these measures clearly show that the solution recommended by the
model (RO) is not only feasible for all possible scenarios but also socially more acceptable
and preferable than stochastic counterparts in terms of fairness and accessibility.

The robust model (RO) proposes opening more shelters than the stochastic model to be
on the “safe” side, in return for a decrease in the utilization rate. Conversely, there exists
a trade-off between the feasibility and the utilization rate of a solution. In other words, as
the feasibility percentage of the solution increases, the utilization rate decreases. In this
regard, this trade-off for the robust solution F is visualized in Fig. 5 for different robustness
levels. Being a robust solution, solution F has enough capacity to meet the shelter demand
requirements of all scenarios for the highest uncertainty (τ = 1) with a mean utilization rate
of 72%, however, as the robustness level decreases, utilization rate decreases to a mean level
of 57% for τ = 0.5 and to a mean level of 42% for τ = 0. Moreover, as the earthquake
scenario worsens (i.e., the intensity of the earthquake increases), the feasibility percentage
of the solution decreases while the utilization rate increases due to an increase in shelter
demand.

4.1.4 Summary of the computational study for the Kartal district

In this subsection, we highlight the main findings of the computational study conducted
for the Kartal district. Firstly, we would like to emphasize that the computational study
does not assert that the robust optimization approach always outperforms the stochastic
optimization approach. The proposed robust model is preferable when a reliable information
on the probability distribution of the uncertain parameter (i.e., the intensity of the earthquake)
is not available and/or a strongly credible performance is sought without facing infeasible
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Fig. 5 Trade-off between the feasibility and utilization percentages of solutionF for different robustness levels
with respect to different scenarios

solutions and high regrets even in extreme scenarios. In the computational study, we aim to
show that robust model can outperform the stochastic optimization approach in such cases.
In this regard, the main findings can be summarized as follows:

(i) As uncertainty in shelter demand (in other words the robustness of the model) increases,
the model (RO) obtains feasible solutions for higher β values due to the increase in
shelter demand of each district.

(ii) Among 19 distinct solutions generated by the model (RO) with respect to different β

and τ values, the solution F has the maximum frequency. Moreover, this solution meets
relatively higher shelter utilization threshold requirements and achieves the maximum
objective function value observed among all solutions.

(iii) Stochastic optimization solutions can not generate a feasible allocation of demands to
the open shelters for none of the scenarios when τ = 1.0, and for 19 scenarios out of 21
when τ = 0.5. For the nominal demand case where τ = 0, none of the solutions meets
the capacity demands of scenarios 12 through 21. The infeasibility mainly stems from
the lack of enough capacity to meet the demand, while there are a few cases where a
feasible allocation can not bemade in accordance with problem assumptions even though
the total capacity of open shelters are enough to cover the total demand.

(iv) In terms of the fairness performance measure, the solution F outperforms all stochastic
solutions but solutions AS andDS, while the objective function values of solutions F and
DS are the same. This result shows that the robust solution F not only yields a feasible
solution for all possible earthquake scenarios but also provides fair solutions for people
that are in need of shelter by opening high quality shelters.

(v) When we consider the accessibility performance measure, we observe that the solution F
outperforms all stochastic solutions by enabling the minimum mean walking distances
for all scenarios.

(vi) Mean utilization rates of the solution F is relatively low with respect to stochastic
solutions, while improving as the uncertainty level increases. When the uncertainty level
is the highest, the utilization rates of the solution F are reasonably high where stochastic
counterparts can not achieve a feasible solution at all.
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Fig. 6 PAR values calculated for all 21 scenarios and 270 districts of the whole Anatolian side of Istanbul.
Solid lines with circles represent PAR quantities averaged over all districts. Small circles represent PAR
value of each individual district. The dashed and dotted lines display the minimum andmaximum PAR values
among the 270 districts, respectively

4.2 Computational study for the Anatolian side of Istanbul

In an effort to present the behavior of our model on a large-scale example, we consider
the data which corresponds to the whole Anatolian side of Istanbul. This side is the part
of Istanbul which lies in the Asia continent. The instance data consists of 230 candidate
shelter locations and 270 sub-districts of 12 districts. The population of sub-districts varies
between 339 and 72,907. The average and individual district PAR quantities calculated
for each scenario s ∈ S are displayed in Fig. 6. The figure reveals that the average PAR
values for the Anatolian case vary between 4.99% to 16.67%. Similar to the Kartal case,
for a given scenario, there is high variability among sub-district values due to their different
proximities to the North Anatolian fault line. For example, considering scenario 21, the the
sub-district Hacı Kasım located in Şile (the northmost district of Istanbul) has an individual
PAR = 9.50%, whereas the the sub-district Cami located in Tuzla (the southmost district
of Istanbul) has an individual PAR = 21.61%. All information, e.g. population, shelter area
weights, distances, PAR values and affected population for each district, etc. can be made
available upon request to the corresponding author.

Considering the enormous size of the model (RO) formulation in terms of number of
constraints (1,319,661) and decision variables (1,304,332), we first experimented using three
alternative closest assignment constraint sets, namely, constraints (2f)–(2g), (3), and (4) on
themodel (DO) in order to observe their computing time efficiencies. TheCPU times required
to solve the Anatolian side instance with the model (DO) with each of these constraints are
given in Table 11. As seen from this table, constraints (4) proposed by Berman et al. (2009)
provides an improvement of 30% over constraints (3) and 91% over constraints (2f)-(2g) in
terms of CPU time. Hence, in our case study-2 experiments we incorporated constraint set
(4) to the models (DO) and (RO) as the closest assignment constraints.

For the (RO) approach, we relaxed the utilization constraints and solved the model con-
sidering 21 scenarios by ignoring the uncertainty, i.e. β = 0 and τ = 0. Our model obtained
the optimal solution in 833.61 hours (34.7 days) of CPU time. Due to this excessive time, we
solved the model (RO) only for a single parameter combination. The solution recommended
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Table 11 CPU times of different
closest assignment constraints

Closest assignment constraint CPU time (min)

Constraints (2f)–(2g) 203.6

Constraints (3) 25.5

Constraints (4) 17.8

Table 12 Solution details of the model (RO) for the Anatolian side instance

Shel.ID Weight Mean Util. Max Util. Shel.ID Weight Mean Util. Max Util.

1 0.704080 0.52 0.77 133 0.771772 0.26 0.40

5 0.788021 0.46 0.66 136 0.876425 0.19 0.28

8 0.844608 0.58 0.83 138 0.702316 0.10 0.16

15 0.843545 0.34 0.50 147 0.729141 0.65 0.98

19 0.740290 0.32 0.43 157 0.707786 0.27 0.45

24 0.793249 0.18 0.26 166 0.855216 0.55 0.76

33 0.850611 0.42 0.59 168 0.796147 0.55 0.79

45 0.752814 0.11 0.17 169 0.805162 0.22 0.34

46 0.781146 0.60 0.93 170 0.778936 0.47 0.73

50 0.813283 0.69 0.99 171 0.893454 0.46 0.67

72 0.819059 0.64 0.99 175 0.866260 0.29 0.48

81 0.837859 0.54 0.81 177 0.792973 0.18 0.26

88 0.733447 0.23 0.33 185 0.755440 0.38 0.57

91 0.800685 0.18 0.28 195 0.820383 0.54 0.82

93 0.720678 0.18 0.27 196 0.822575 0.40 0.56

95 0.891362 0.23 0.34 200 0.810284 0.49 0.69

96 0.780623 0.33 0.48 204 0.791751 0.47 0.69

100 0.780655 0.64 0.86 207 0.725173 0.51 0.76

110 0.859889 0.45 0.62 210 0.877855 0.22 0.35

111 0.866857 0.24 0.35 216 0.790012 0.55 0.77

125 0.837197 0.16 0.22 220 0.800323 0.49 0.72

131 0.758436 0.67 0.92

opening 43 shelters and yielded an objective function value of 0.702316, i.e., the minimum
weight among all open shelters. The details of our solution are reported in Table 12.

Since we do not enforce minimum utilization rates for open shelters, we observe that
the mean and maximum utilization figures of shelters over 21 scenarios are relatively small,
as expected. The minimum of mean and maximum utilization figures belong to shelter 138
(indicated in bold in Table 12) which also determines the objective function value. When we
examine the utilization rates of all open shelters in 21 scenarios, we see that the rates increase
with demand, as shown in Fig. 7. For the worst case scenario (scenario 21) shelters 50 and
72 are utilized at rate 0.99, being the maximum among all open shelters.

Kınay et al. (2018) solved the same problem instance by applying a low variability to the
demand while keeping β = 0 and setting PAR = 12.5%. Hence, they relaxed the minimum
utilization threshold constraint. Under these assumptions, their solution yielded an objective
function value of 0.781146 by opening 26 shelters. In the same fashion, we compared the
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Fig. 7 Mean and maximum utilization rates of open shelters in 21 scenarios for the whole Anatolian side of
Istanbul

solution of the model (RO) with stochastic optimization solution of Kınay et al. (2018)
(hereafter (SO)) in terms of fairness, accessibility, satisfaction, and mean utilization rate
measures. Similarly, we take the nominal demand values of 21 scenarios of the Anatolian
side instance as the omniscient cases and conducted a posteriori analysis where optimal
allocations are made in compliance with the problem assumptions for a given set of open
shelters yielded by the solutions. The resulting performance measures are given in Table 13.

Table 13 depicts that, although the total capacity of open shelters is adequate to cover the
total demand of districts, the (SO) approach is not capable of providing feasible allocations for
scenarios 12 through 21 (as can be seen in the satisfaction column). This stems from the fact
that, problem constraints such as closest assignment and the indivisibility of district demands
make it impossible to find a feasible allocation for the scenario. Conversely, the (RO) yields
feasible solutions for all scenarios. In terms of fairness measure, the (SO) outperforms the
(RO) by a small margin, which we consider admissible. Accessibility measure reveals that
under the solution (RO), people walk approximately 0.6 km. less than those subjected to the
solution (SO). As emphasized previously, this performancemeasure is particularly important
in the post-earthquake phase. As expected, mean utilization rates of the model (RO) are
relatively lowwith respect to those of (SO)while they improve formore demanding scenarios
in which the (SO) does not even yield a feasible solution. Consequently, the comparison
analysis for theAnatolian case of Istanbul promotes our previous conclusion that the solutions
yielded by the model (RO) are not only feasible for all possible scenarios but also socially
acceptable and preferable.

4.3 Managerial insights

Our computational studies for the Kartal district and Anatolian side of Istanbul also provide
managerial insights and a valuable decision support to the decision-makers in terms of observ-
ing the consequences of adapting particular solutions once different earthquake scenarios are
realized. Significant managerial insights that can be derived from our computational studies
are summarized below:
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Table 13 Comparison of solutions obtained from the SO and RO models with respect to all four metrics

s PAR Fairness Accesibility Satisfaction Utilization

SO RO SO RO SO RO SO RO

1 4.99% 0.781 0.702 3320 2681 347% 616% 29% 17%

2 5.61% 0.781 0.702 3298 2677 308% 547% 32% 19%

3 6.29% 0.781 0.702 3288 2675 275% 488% 36% 22%

4 6.97% 0.781 0.702 3299 2684 248% 440% 40% 24%

5 7.74% 0.781 0.702 3285 2676 224% 397% 45% 27%

6 8.45% 0.781 0.702 3280 2674 205% 363% 49% 29%

7 9.19% 0.781 0.702 3288 2677 188% 334% 53% 32%

8 9.90% 0.781 0.702 3301 2686 175% 310% 58% 34%

9 10.61% 0.781 0.702 3299 2686 163% 289% 62% 37%

10 11.27% 0.781 0.702 3295 2685 154% 273% 66% 39%

11 11.87% 0.781 0.702 3308 2694 146% 259% 69% 41%

12 12.44% INF 0.702 INF 2700 139% 247% INF 43%

13 13.03% INF 0.702 INF 2703 133% 236% INF 45%

14 13.57% INF 0.702 INF 2699 127% 226% INF 47%

15 14.06% INF 0.702 INF 2707 123% 218% INF 49%

16 14.54% INF 0.702 INF 2710 119% 211% INF 50%

17 14.97% INF 0.702 INF 2716 116% 205% INF 52%

18 15.42% INF 0.702 INF 2712 112% 199% INF 53%

19 15.84% INF 0.702 INF 2714 109% 194% INF 55%

20 16.25% INF 0.702 INF 2714 106% 189% INF 56%

21 16.67% INF 0.702 INF 2,717 104% 184% INF 58%

(i) A successful pre-disaster management plan should prioritize the society benefit by consid-
ering the expected results of all possible scenarios. In other words, although an optimal
plan which accounts for theworst-casemay suggest openingmore shelters (which poten-
tially yields additional cost), as it is mostly observed in robust approaches, it is often the
socially acceptable or socially preferable course of action.

(ii) The uncertainty in demand should be quantified via realistic estimation methods which
consider the dynamics of the earthquake. To that end, assuming an empirical probability
distribution which does not properly represent the variation associated with the uncertain
parameters may lead to solutions that are socially not acceptable or preferable and cause
high regrets, which can not be compensated after the disaster occurs.

(iii) Although stochastic programming implementations in disaster relief studies can success-
fully incorporate uncertainties by minimizing an expected cost over multiple scenarios,
they neglect the impact of individual scenarios, which can lead to large relative regret
and cast doubt on the overall network robustness.

(iv) Although optimal solutions are generated with respect to the objective function under
consideration, other performance measures (such as accessibility and utilization) that
might provide different perspectives for comparing alternative solutions should also be
taken into account.

(v) Solving the robustmodel (RO) for different robustness levels and utilization rates provides
a holistic decision support to the decision-maker in terms of comparingmultiple solutions
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generated by the model. Conversely, within this analysis, taking into account the most
frequently opened shelters provides insight regarding the fitness of a shelter in terms of
being part of a good solution.

(vi) The robust model (RO) proposes opening more shelters than the stochastic model to
be on the safe side, in return for a decrease in the utilization rate. As our computational
study reveals, there exists a trade-off between the feasibility and the utilization rate of
a solution for different robustness levels. Hence, when comparing alternative solutions,
these trade-offs can provide efficient decision support to the decision-maker.

(vii) If there exists no further information regarding the uncertainty levels (τs) of particu-
lar scenarios, it would be a good practice to assume the same uncertainty levels in all
scenarios.

5 Conclusion and future work

In this study, we consider the shelter area location and allocation problem for an earthquake
disaster for the case of Istanbul, Turkey. The most challenging aspects of this problem are the
uncertainty in the intensity and the different exposure levels of vulnerability for districts in
the affected area, which directly determine the number of affected people requiring shelter in
the aftermath of a disastrous earthquake. Being part of the disaster management operations
that aim to improve the preparedness level and mitigate human suffering, shelter location and
allocation decisions should be robust to uncertainties associated with earthquake disasters.
Hence, in this research, we aim to improve the disaster preparedness level by developing a
robust optimization model for this problem.

Our computational experiments and comparison analyses clearly showed that the solutions
yielded by the model (RO) are not only feasible for all possible scenarios but also socially
more acceptable and preferable than the deterministic and stochastic counterparts in terms
of fairness and accessibility. As a result, the robust optimization approach allows us to hedge
against uncertainty more efficiently and lead to better solutions by reducing possible regret,
which cannot be compensated after an earthquake.

We can briefly summarize the contributions of our study as follows: First, we utilize
basic seismology theory and results from empirical studies for determining realistic shelter
demands after a possible earthquake. At this step, we build our demand prediction method-
ology on the fact that the number of affected people requiring shelter depends on seismic
parameters that quantify the intensity of an earthquake and the exposure level of the urban
vulnerability (i.e. population, distance to the ruptured fault line, quality of the infrastructure
systems). Second, rather than relying on unverified and theoretical parametric probability
distributions for addressing uncertainty in demand for shelter sites, we attempt to quan-
tify the uncertainty via seismic parameters. In order to take into account the uncertainty in
demand, our (RO) model utilizes distribution-free uncertainty sets that are dictated by the
seismology science. Hence, instead of adopting unrealistic assumptions which cannot be
verified with empirical data particularly in the context of humanitarian logistics, we allow
uncertain parameters to vary in predefined ranges in each scenario while controlling the level
of conservatism of the parameters. Additionally, we implicitly capture the notion of evacu-
ation decisions by enforcing the closest assignment constraints. Finally, we believe that the
robust modelling approach for planning such extraordinary or emergency service facilities
is a socially preferable approach that constitutes the key step in the transition from private to
public sector models.
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There are two aspects of the problem that can be addressed as future work. One research
direction is the objective function. The objective functions adopted in the threemodels ((DO),
(SO), and (RO)) maximize the minimum weight of open shelters. This particular objective
function was first used by Kılcı et al. (2015) and later by Kınay et al. (2018) because the main
aim of these studies was to provide decision support to the Turkish Red Crescent which seeks
for a solution that maximizes the minimum weight of open shelters. It is evident that this
objective function is not versatile enough to reflect different aspects of humanitarian relief
logistics such as deprivation costs (i.e., distance from shelters to hospitals or main roads,
walking distance from districts to shelters) or supply and medical equipment shortages.
Therefore, a future study may consider implementing alternative objective functions that
allow diversified solutions and consider different aspects of humanitarian relief logistics.

Another research direction of this study would be to develop a heuristic algorithm to solve
the model (RO) for large scale instances such as Anatolian side of Istanbul case. Considering
the enormous size of such problems, efficient heuristics can be utilized to obtain solutions
with reasonable computation times.
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