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Abstract
Twin support vector machine (TWSVM) and twin support vector regression (TSVR) are
newly emerging efficient machine learning techniques which offer promising solutions for
classification and regression challenges respectively. TWSVM is based upon the idea to
identify two nonparallel hyperplanes which classify the data points to their respective classes.
It requires to solve two small sized quadratic programming problems (QPPs) in lieu of solving
single large size QPP in support vector machine (SVM) while TSVR is formulated on the
lines of TWSVM and requires to solve two SVM kind problems. Although there has been
good research progress on these techniques; there is limited literature on the comparison of
different variants of TSVR. Thus, this review presents a rigorous analysis of recent research
in TWSVMand TSVR simultaneouslymentioning their limitations and advantages. To begin
with, we first introduce the basic theory of support vector machine, TWSVM and then focus
on the various improvements and applications of TWSVM, and then we introduce TSVR and
its various enhancements. Finally, we suggest future research and development prospects.
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1 Introduction

SVM (Cortes and Vapnik 1995) is a prominent classification technique widely used since its
inception. It was first introduced by Cortes and Vapnik (1995) in 1995 for binary classifica-
tion problems. SVM seeks to find decision hyperplanes that determine the decision boundary
which can classify the data points into two classes. These decision planes are called support
hyperplanes and the distance between them is maximized by solving a quadratic program-
ming problem (QPP). SVM is computationally powerful even in non-linearly separable cases
by using kernel trick (Cristianini et al. 2000). SVM has remarkable advantages as it utilizes
the idea of structural risk minimization (SRM) principle which provides better generaliza-
tion as well as reduces error in the training phase. As a result of its superior performance
even in non-linear classification problems, it has been implemented in a diverse spectrum of
research fields, ranging from text classification, face recognition, financial application, brain-
computer interface, bio-medicine, human action recognition, horse race odds prediction and
multiple instance learning (Tong and Koller 2001; Agarwal and Tomar 2014; Schölkopf et al.
2004; Tay and Cao 2001; Gupta et al. 2019a; Noble 2004; Osuna et al. 1997; Hua and Sun
2001; Byvatov and Schneider 2003; Morra et al. 2010; Tanveer et al. 2020b; Vapnik 2013;
Edelman 2007; Poursaeidi and Kundakcioglu 2014). SVM has also been used in feature
selection methods (Le Thi and Nguyen 2017). Robust SVM penalized all the samples via
new loss function for better generalization in presence of noise (Wang et al. 2010b). Although
SVM has outperformed most other systems, it still has many limitations in dealing with com-
plex data due to its high computational cost of solving QPPs and its performance highly
depends upon the choice of kernel functions and its parameters. Many improvements have
been made in the last decade to enhance the accuracy of SVM (Li et al. 2019, 2020). One
such critical enhancement was generalized eigenvalue proximal SVM (GEPSVM) (Man-
gasarian and Wild 2001; Khemchandani and Chandra 2017; Shao et al. 2013b) that led the
foundation of TWSVM (Khemchandani and Chandra 2007; Jayadeva and Chandra 2016).
The idea behind GEPSVM is to determine two nonparallel hyperplanes via solving two gen-
eralized eigenvalue problems. TWSVM (Khemchandani and Chandra 2007; Jayadeva and
Chandra 2016) enhanced the generalization ability of GEPSVM. TWSVM also determines
two nonparallel hyperplanes and needs to solve a pair of small QPPs in lieu of solving one
complex QPP in SVM. Computational cost of TWSVM is approximately one-fourth of the
SVM. TWSVM is faster and has better generalization performance than SVMandGEPSVM.
Authors also extended TWSVM for nonlinear classification problems by introducing kernel.
But, in nonlinear cases when a kernel is used, the formulation requires to solve inverse of
matrices. Also, its performance highly depends upon the selection of kernel functions and its
parameters for nonlinear classification. Although TWSVM is still in its rudimentary stage,
many improvements and variants have been proposed by researchers due to its favorable
performance especially in-case of handling large datasets which is not possible with the con-
ventional SVM. Huang et al. (2018) reviewed the research progress of TWSVM until 2017
for classification problems.

Support VectorMachine has also been used effectively for regression and is called support
vector regression (SVR) (Basak et al. 2007). SVR is different than SVM in some aspects as it
sets a margin of tolerance ε and find the optimal hyperplane such that the error is minimized.
Thus, it finds a function such that error can be maximum of ε distance, thus any error within
ε deviation is acceptable. Learning speed of SVR is low as it needs to solve a large sized QPP.
Researchers have proposed many variants of SVR to improve its performance in terms of
reducing computational complexity and improving accuracy (Drucker et al. 1997; Smola and
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Schölkopf 2004). Some other variants of SVR includes ε–support vector regression (ε–SVR)
(Shao et al. 2013e), Fuzzy SVM (Chuang 2007), ν–SVR (Chang and Lin 2002), robust and
sparse SVR (Tanveer et al. 2016b) and some other algorithms (Yang et al. 2009; Elattar et al.
2010). ε–SVR has high computational cost and in order to remediate this, an efficient twin
support vector regression (TSVR) (Peng 2010b) determined two nonparallel hyperplanes
that clusters the data points in two classes by optimizing the regression function. TSVR uses
ε–insensitive up and down-bound functions to optimize the final regression function. TSVR
formulation is computationally less complex as it needs to solve a pair of smaller QPPs in
lieu of solving one large QPP in SVR, thus it’s speed is much more than SVR. However,
in TSVR, the spirit of TWSVM was missing, improved TSVR (TWSVR) (Khemchandani
et al. 2016) which works on the similar lines of TWSVM was proposed. To further boost
the performance of TSVR, many algorithms have been introduced by researchers which are
discussed in Sect. 3.

In the past years, twin support vector classification and regression algorithms have been
developed rapidly and are implemented to solve some real-life challenges. However, there is
limited literature on twin support vector regression as it is a relatively new theory and needs
further study and improvement. Thus, the objective of this paper is to present an compendium
of recent developments in TWSVM and TSVR, identify limitations and advantages of these
techniques and promote future developments.

The framework of this paper is as follows, Sect. 2 presents brief about SVM and TWSVM,
Sect. 3 and 4 include the recent advancements and applications of TWSVM respectively,
Sect. 5 presents a brief about TSVR, Sects. 6 and 7 include the recent advancements and
applications of TSVR respectively and at last Sect. 8 provides synopsis, future research and
development prospects.

2 Related work

Suppose a binary classification problem with dataset X ∈ R
l×n in which l1 data points are

in class +1 (termed as positive class) and l2 data points are in class −1 (termed as negative
class) and these are represented by matrix A and B respectively. For classification problems,
the data label Y ∈ {−1, 1} and for regression Y ∈ R. Accordingly, these matrices will be of
size (l1 × n) and (l2 × n) where n is feature space dimension and l = l1 + l2.

2.1 Support vector machine (Cortes andVapnik 1995)

The optimization problem of support vector machine is given as follows:

min
u,ξ

1

2
uT u + c

l∑

k=1

ξk

s.t . yk(u
Tφ(xk) + b) ≥ 1 − ξk, k = 1, . . . , l

ξk ≥ 0, k = 1, . . . , l, (1)

where, c > 0 is the regularisation parameter, and φ(x) represents the non-linear mapping of
the input x and ξ is the vector of slack variables.

Form the above given optimization problem, one can see that all the data samples appear
in the constraints of the optimization problem. Hence, the complexity of the model is high
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as it involves solving a single large quadratic programming problem. Thus, the complexity
of SVM is O(l3).

2.2 Twin support vector machines (Khemchandani and Chandra 2007)

Standard twin SVM is a binary classification model. To categorize data samples which can-
not be separated by linear functions, TWSVM uses kernel functions to convert the higher
dimensional data space to the required form. The two kernel generated surfaces are given as
below:

K (xT , DT )u+ + b+ = 0 and K (xT , DT )u− + b− = 0, (2)

here D = [A; B]; and K is a kernel function. The formulation for nonlinear TWSVM
classification is defined as below:

min
u+, b+, ξ1

1

2
‖K (A, DT )u+ + e1b+‖2 + c1e

T
2 ξ1

s.t . − (K (B, DT )u+ + e2b+) + ξ1 ≥ e2, ξ1 ≥ 0 (3)

and

min
u−, b−, ξ2

1

2
‖K (B, DT )u− + e2b−‖2 + c2e

T
1 ξ2

s.t . K (A, DT )u− + e1b− + ξ2 ≥ e1, ξ2 ≥ 0, (4)

here c1, c2 ≥ 0, e1, e2 are vectors of ones of suitable dimensions and ξ1, ξ2 are called slack
variables. After using the Lagrange multipliers α ≥ 0, β ≥ 0 and the Karush–Kuhn–Tucker
(K.K.T.) (Kuhn andTucker 1951) conditions, the duals of the QPPs in (3) and (4) are defined
as below:

max
α

eT2 α − 1

2
αT Q(PT P)−1QTα

s.t . 0 ≤ α ≤ c1 (5)

and

max
β

eT1 β − 1

2
βT P(QT Q)−1PTβ

s.t . 0 ≤ β ≤ c2, (6)

where P = [K (A, DT ) e1] and Q = [K (B, DT ) e2]. After solving (5) and (6), the proxi-
mal hyperplanes are given as follows:

[
u+
b+

]
= −(PT P + δ I )−1QTα, (7)

[
u−
b−

]
= (QT Q + δ I )−1PTβ, (8)

where δ I is a regularization term and δ > 0.
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A new sample x ∈ R
n is allocated to either class on the basis of the proximity of kernel

generated surface to x , i.e.,

class(x) = sign
(K (xT , DT )u+ + b+

‖u+‖ + K (xT , DT )u− + b−
‖u−‖

)
, (9)

where sign(·) is signum function.
From optimization problems (3) and (4), one can see that the constraints of only one class

appear in the optimization problemwhile generating the hyperplane for the other class. Thus,
the size of the constraints in QPPs of TWSVM is approximately half compared to the SVM
formulation (assuming the data is balanced between the classes). TWSVM is approximately
four times faster than the usual SVM. The complexity of TWSVM is 2 ∗ O((l/2)3). In
terms of generalization, TWSVM and SVM have comparable generalization performance
(Khemchandani and Chandra 2007).

3 Research progress on twin support vector machines

In this section, we discuss the progress of TWSVM based models in classification problems.
The variants of TWSVM (given in Fig. 1) are

3.1 Least squares twin support vector machines

To reduceTWSVMtraining time,Kumar andGopal (2009) formulated least squaresTWSVM
(LS-TWSVM) algorithm. The major advantage of LS-TWSVM over TWSVM is that it only
deals with linear equations in place of QPPs in TWSVM which reduces the computational
complexity of the model. LS-TWSVM has comparable accuracy but low computational time
than TWSVM. Although the computational time of LS-TWSVM is less than TWSVM, its
generalization performance is poor as same penalties are allotted to the samples either being
positive or negative. LS-TWSVM apply the empirical risk minimization (ERM) principle
which affects accuracy and also causes over-fitting problem. Also, it doesn’t take into account
the effects of samples having different locations. To avoid this limitation, weighted LS-
TWSVM (Xu et al. 2014a) gives different weights to the samples depending upon their
locations. Experimental results have shown that weighted LS-TWSVM yields better testing
accuracy than TWSVM and LS-TWSVM but its computational time is more than these
algorithms.

To incorporate expert’s knowledge in LS-TWSVM classifier, knowledge-based LS-
TWSVM (KBLS-TWSVM) (Kumar et al. 2010) included polyhedral knowledge sets in
the formulation of LS-TWSVM. Experimental results have shown that KBLS-TWSVM is
simple and more apt classifier compared to LS-TWSVM. In order to improve accuracy of
LS-TWSVM, Wang et al. (2010a) incorporated the manifold geometric structure of data of
each class. It requires to solve a set of linear equations.

Although, LS-TWSVM performed well with large datasets compared to TWSVM, Gao et
al. (2011) designed l1-normLS-TWSVM(NLS-TWSVM) to automatically select the relevant
features in order to strengthen the algorithm in dealing with high-dimensional datasets.
NLS-TWSVM is based on LS-TWSVM and includes a Tikhonov regularization term. To
outdo LS-TWSVM in accuracy and avoid over-fitting problem, Improved LS-TWSVM (ILS-
TWSVM) (Xu et al. 2012) improved the classification accuracy by implementing structural
risk minimization principle. ILS-TWSVM is faster and yields comparable generalization
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and computational time to LS-TWSVM. Since L2 norm magnifies the outlier effect in least
squares TWSVMmodels, hence, capped L2,p norm based least squares TWSVM (Yuan and
Yang 2021) was formulated to reduce the effect of outliers and noise.

To take advantage of the correlation between some data points and reduce the effect of
noise, Ye et al. (2012a) used density of the sample to allot weights for each sample (DWLSC).
Experimental results demonstrate better classification accuracy of theDWLSC than TWSVM
and LS-TWSVM.

There are several real-life problems which are essentially multicategory problems. The
extensions of TWSVM to multicategory is also an active research domain where several
research papers have evolved addressing the same. However, class imbalance problem is
common in multicategory classification as all binary SVMs are trained with all patterns.
To deal with these issues Nasiri et al. (2014) formulated energy-based LS-TWSVM (ELS-
TWSVM) in which the constraints of LS-TWSVM are converted to an energy model to
decrease the impact of noise and outliers. TWSVM, LS-TWSVM, and ELS-TWSVM satisfy
the empirical riskminimization (ERM) principle and also in these techniques thematrices are
positive semi-definite. Thus, to remediate this problem, Tanveer et al. (2016a) embodied the
SRM principle in ELS-TWSVM and proposed robust ELS-TWSVM (RELSTSVM) which
makes the matrices positive definite. Moreover, RELSTSVM uses an energy parameter to
handle the noise and thus make the algorithmmore robust. Results have shown the promising
generalization performance of RELSTSVM with less computational time when compared
with the baseline algorithms (Table 1). In the recent comprehensive evaluation (Tanveer et al.
2019) of 187 classifiers on 90 datasets, RELSTSVM (Tanveer et al. 2016a) emerged as the
best classifier. Khemchandani and Sharma (2016) proposed robust least squares TWSVM
(RLS-TWSVM) which is fast and yields better generalization performance and is also robust
to handle the noise. Further, the application in the field of human activity recognition is
explored in the paper. The authors in Khemchandani and Sharma (2016) also proposed
Incremental RLS-TWSVM to increase the training speed of RLS-TWSVM and Incremental
RLS-TWSVM also deals with noise and outliers effectively. Tomar and Agarwal (2014)
proposed feature selection based LS-TWSVM to diagnose heart diseases using F-score to
choose the most relevant features which enhances the accuracy of the model. To handle
imbalanced datasets, a novelweightedLS-TWSVM(Tomar et al. 2014c) for imbalanced data,
which has better accuracy and geometric mean than SVM and TWSVM, was proposed. To
further enhance the accuracy on imbalanced datasets, Hybrid Feature Selection BasedWLS-
TWSVM (HFS based WLS-TWSVM) (Tomar and Agarwal 2015a) approach was proposed
for diagnosing diseases like Breast Cancer, Diabetes and Hepatitis which can tackle data
imbalance issues. Xu et al. (2015) included data distribution information into the structural
LS-TWSVM (SLS-TWSVM) classifier. It is based on structural TWSVM and performs
clustering before classification and embody the structural information into the model. SLS-
TWSVMhas a better generalization performance than ν-SVM (Chen et al. 2005), ν-TWSVM
(Peng 2010c), STWSVM (Qi et al. 2013a) and LS-TWSVM (Kumar and Gopal 2009). It
also improves the noise insensitivity of LS-TWSVM.

Mei and Xu (2019) proposed a novel multi-task LS-TWSVM algorithm which is build
on directed multi-task TWSVM (DMTWSVM) and LS-TWSVM. It focuses on multitask
learning instead of commonly applied single task learning in TWSVM and LS-TWSVM.
This algorithm is computationally effective as it only requires to solve linear equations in
lieu of QPPs in DMTWSVM.

Least square twin support vector hypersphere (LSTSVH) (Tomar and Agarwal 2015a) is
an enhancement of twin support vector hypersphere (TSVH) (Peng and Xu 2013b). TSVH
is different from TWSVM as it obtains two hyperspheres through solving two small SVM

123



Annals of Operations Research (2024) 339:1223–1268 1229

type problems. Experimental results demonstrate that LSTSVH has almost same accuracy as
SVM, LS-SVM, TWSVM, LS-TWSVM, and TSVH but has high computational time than
LS-SVM and LS-TWSVMand less than SVM and TWSVM. Tanveer et al. (2020a) proposed
efficient large scale least squares twin support vector machines (LS-LSTWSVM) which uses
different Lagrangian functions to eliminate the need for calculating the inverse matrices and
thus enhance the performance of TWSVM on large scale datasets.

3.2 Projection twin support vector machine

Projection TWSVM (P-TWSVM) (Chen et al. 2011) is a multiple-surface classification
(MSC) technique based on themulti-weight vector projectionSVM(MVSVM)andTWSVM.
Chen et al. (2011) introduced P-TWSVM with minimizing within class variance princi-
ple. Unlike finding hyperplanes in TWSVM, P-TWSVM finds projection axes to distinctly
separate samples. To enhance performance of P-TWSVM, authors proposed a recursive algo-
rithm in which for each class multiple projection axes are considered. P-TWSVM is a better
classifier as hyperplanes are more fitted for single plane based samples while for datasets
having complex sample distribution like XOR problems, projection directions can gener-
ate better accuracy. Experimental results have shown that P-TWSVM has better accuracy
than GEPSVM, TWSVM, LS-TWSVM, andMVSVM. However, it is computationally more
complex than TWSVM. Thus, Shao et al. (2012a) proposed improved P-TWSVM and used
the idea in LS-SVM (Suykens et al. 1999) and LS-TWSVM (Kumar et al. 2010) and added
a regularization term into P-TWSVM simultaneously maintaining the optimization prob-
lem to be positive definite. It is simple, fast and has similar classification accuracy but less
computational time than P-TWSVM.

Although P-TWSVM is an efficient classifier, it only implements empirical risk mini-
mization principle which can incur possible singularity problems which need to be dealt
with principal component analysis (PCA) and linear discriminant analysis (LDA). Shao et al.
(2013c) formulated a new P-TWSVM variant by introducing a maximummargin regulariza-
tion term called RP-TWSVM in which empirical risk is replaced by regularized risk. Authors
further proposed a successive over-relaxation (SOR) technique and a genetic algorithm (GA)
for parameter selection to optimally solve the primal problems. RP-TWSVM not only has
better accuracy but also has a better generalization than P-TWSVM.

To implement least square P-TWSVM to non-linear problems, Ding and Hua (2014)
introduced kernel to LSP-TWSVM (Shao et al. 2012a) which also deals with linear equa-
tions similar to LSP-TWSVM and opposed to P-TWSVM. Authors introduced nonlinear
recursive algorithm in order to improve its performance. Experimental results have shown
good classification accuracy than LSP-TWSVM and P-TWSVM.

Guo et al. (2014) proposed a feature selection approach for LSP-TWSVM which finds
two projection directions and has comparable prediction accuracy to that of TWSVM,
LS-TWSVM and LSP-TWSVM and a similar generalization ability to TWSVM and LS-
TWSVM.

LSP-TWSVM enhances the performance of P-TWSVM but fails to include underlying
data information to enhance classification accuracy. To overcome this limitation, weighted
LSP-TWSVM (LIWLSP-TWSVM) (Hua and Ding 2015) exploited local information into
the algorithm. LIWLSP-TWSVM is more effective than LSP-TWSVM as it uses weighted
mean rather than standard mean in LSP-TWSVM. It has better generalization ability but its
computational cost is high when solving multi class problems (Table 2).
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Clustering based TWSVM
6.3%
Semi-Supervised TWSVM
4.9%

Multi-Class TWSVM
12.7%

Other Improvements of TWSVM
21.8%

Fuzzy TWSVM
5.6%

Least Squares TWSVM
14.1%

Projection TWSVM
7.7%

Twin Parametric Margin SVM
7.0%

Robust and Sparse TWSVM
6.3%

Pinball Loss TWSVM
5.6%

Universum Data and Imbalanced 
7.7%

Variants of TWSVM

Fig. 1 Variants of TWSVM

Hua et al. (2017) formulated a novel projection TWSVM (NP-TWSVM). NP-TWSVM
has many advantages over P-TWSVM. It is faster than P-TWSVM as calculation of inverse
matrices is not avoided inNP-TWSVM. It determines the projection axes so thatmargin across
the sample and class is greater than or equal to zero. Experimental results have shown that
it obtains better generalization and accuracy when compared with other baseline algorithms.
An efficient nonparallel sparse projection SVM (NPrSVM) (Chen et al. 2020c) finds optimal
projection for each class such that the projection values of within class instance are clustered
as much as possible within an insensitive tube while those of other class instance are kept
away. Extensive experiments show that NPrSVM is superior than PTWSVM in terms of
generalization performance, training time, sparsity and robustness to outliers. ν− projection
twin SVM (Chen et al. 2020b) seeks projection axis for each class in a manner that ν controls
the fraction of support vectors and error margin, and also avoids thematrix inversions. Robust
rescaled hinge loss based projection TWSVM model (Ren and Yang 2021) use different
parameters to control the effect of outliers and the model results in better performance.

3.3 Twin parametric margin support vector machine

Motivated by the idea of TWSVMandPar-ν-SVM(Hao 2010), Peng (2011a) formulated twin
parametric-margin SVM (TPMSVM). Like par-ν-SVM, TPMSVM seeks to determine two
parametric margin hyperplanes which defines the positive and negative margin respectively.
It’s an indirect classifier even suitablewhen noise is heteroscedastic as it automatically adjusts
a flexible margin. Experimental results have shown that TPMSVM has comparable general-
ization ability to SVM, Par-ν-SVM, and TWSVM. Also, TPMSVM has much lower training
time than Par-ν-SVM as it solves two small sized QPPs like TWSVM. TPMSVM classifier
is not sparse due to the formulations of its parametric- margin hyperplanes. TPMSVM has
good generalization but it is computationally complex as it solves two QPPs. Wang et al.
(2013) added a quadratic function to TPMSVM in primal space to get better training speed.
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The proposed algorithm is called smooth twin parametric-margin SVM (STPMSVM). Also,
the authors proposed the use of genetic algorithm (GA) in STPMSVM to overcome the draw-
back of regularizing at least four parameters in TPMSVM. To obtain sparsity and feature
noise insensitivity, truncated pinball loss TPMSVM (Wang et al. 2021a) was proposed. The
optimal separating hyperplanes are obtained via concave-convex procedure (CCCP).

Shao et al. (2013d) proposed least squares TPMSVM (LSTPMSVM) to decrease the
training cost of TPMSVM as LSTPMSVM solves two primal problems rather than dual
problems. This change makes it less complex and increases training speed. It has comparable
or better classification accuracy but with remarkably less computational time than TPMSVM.
For model selection, the authors proposed a particle swarm optimizer (PSO) which effec-
tively optimizes the four parameters defined in LSTPMSVM. In terms of generalization,
LSTPMSVM performs better than TPMSVM and LS-TWSVM. In order to consider prior
structural data information, Peng et al. (2013) proposed structural twin parametric-margin
SVM (STPMSVM). Based on cluster granularity, the class data structures are included in
the problem. STPMSVM not only obtained good generalization ability but also showed fast
learning speed, and better performance than TPMSVM. TPMSVM is an efficient classifier
but it losses the sparsity due to the weight vectors of the hyperplanes. To solve this issue,
centroid-based TPSVM (CTPSVM) (Peng et al. 2015b) was introduced which uses the pro-
jection of the centroid points and leads to a sparse optimal hyperplane by optimizing the
centroid projection values.

To incorporate structural information present in data, Rastogi et al. (2018d) proposed
robust parametric TWSVM for pattern classification (RP-TWSVM) which seek to find
two parametric margin hyperplanes that has the capability to adjust margin to capture het-
eroscedastic noise data information. Khemchandani et al. (2018b), formulated angle-based
TPSVM (ATPSVM) is proposed, which can efficiently handle heteroscedastic noise. Other
improvementswhichmaximizes angle between the twin hyperplanes are proposed byRastogi
et al. Rastogi et al. (2018c). Takingmotivation fromTPMSVM,ATPSVMdetermines a pair of
hyperplanes so that the angle between their normals is maximized. Recently, Richhariya and
Tanveer proposed a novel angle based universum LS-TWSVM (AULSTWSVM) for pattern
classification. In contrast to ATPSVM (Rastogi et al. 2018c), the AULSTWSVMminimizes
the angle between universum hyperplane and classifying hyperplane. To incorporate the prior
information about the distribution of the data using the universum, AULSTWSVM used lin-
ear loss (Shao et al. 2015) in the formulation. Numerical experiments show the promising
generalization performance with very less computational time. Further, the application in the
diagnosis of Alzheimer’s disease is explored.

Moreover, the proposed AULSTWSVM includes linear loss (Shao et al. 2015) in the
optimization problem, while incorporating prior information about data distribution using
the universum.Moreover, the solution of AULSTWSVM involves system of linear equations
leading to less computation time (Kumar and Gopal 2009)

3.4 Robust and sparse twin support vector machine

TWSVM achieves better accuracy and is faster when compared to conventional SVM but
it loses sparsity as it considers l2 norm of distances in the objective function. Thus, in
order to make TWSVM sparse, Peng (2011b) proposed TWSVM in primal space which
provides a sparse hyperplane with better generalization ability. To improve the robustness,
a regularization term is also added. It has comparable generalization and a rapid learning
speed to TWSVM and LS-TWSVM but the computational cost is high. Peng and Xu (2013c)
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proposed robust minimum class variance TWSVM (RMCV-TWSVM) classifier to enhance
generalization and robustness of TWSVM. This algorithm has an extra regularization term
which makes its learning speed comparable to TWSVM but obtains better generalization
ability than TWSVM.

Qi et al. (2013b) proposed robust TWSVM using second-order cone programming for-
mulation. It is effective with noise-corrupted data. This algorithm overcomes the limitation
of TWSVM and computes the inverse of matrices which are not suitable for large datasets,
it takes only the inner products about samples by which kernel trick can be applied directly
and does not need to solve the extra inverse of matrices. It is superior in computational time
and accuracy than other TWSVMs. Tian et al. (2014a) proposed sparse nonparallel support
vector machine (SN-SVM). While TWSVM losses the sparseness, SN-SVM has the inher-
ent sparseness as it uses the two loss functions instead of one in existing TWSVM. Only
the empirical risk is considered in TWSVM, SN-SVM introduces the regularization term
by maximizing the margin. TWSVM minimizes the loss function based on l1 or l2-norm.
Thus, Zhang et al. (2014) proposed l p-norm-LS-TWSVM which is an adaptive as p can be
automatically chosen by data. Robust non-parallel SVM via second order cone program-
ming (López et al. 2019) is robust to outliers and noise, and constructs the two separating
hyperplanes via maximisation of probabilistic framework.

In order to intensify the robustness and sparsity in the original formulation of TWSVM,
Tanveer (2015b), incorporated regularization technique and formulated a linear programming
l1-norm TWSVM (NLP-TWSVM) which needs to solve linear equations rather than solving
QPPs in TWSVM which makes it fast, robust, sparse and a simple algorithm. Experimental
results demonstrate that NLP-TWSVM’s generalization ability is better and computational
time is less than GEPSVM, SVM, and TWSVM. Tanveer (2015c, 2013) proposed smooth-
ing approaches for 1-norm linear programming TWSVM (SLPTWSVM). The solution of
SLPTWSVM reduces to solving two systems of linear equations which makes the algorithm
extremely simple and computationally efficient. Tanveer et al. (2019c) proposed sparse pin-
ball TWSVM (SP-TWSVM) by introducing ε insensitive zone pinball loss function in the
orginal TWSVM formulation. SP-TWSVM is noise insensitive, retain sparsity and more sta-
ble for re-sampling. Robust capped l1 norm TWSVM (Wang et al. 2019a) reduced the effect
of outliers which resulted in better performance. To reduce the overfitting issues, capped l1
norm twin bounded support vector machines (Ma et al. 2020) was proposed. Efficient and
robust l1 norm TWSVM (Yan et al. 2019) used l1 norm to maximise the ratio of interclass
scatter to intraclass scatter. The authors used iterative procedure to get the optimal separating
hyperplanes. Adaptive capped Lθ,ε-loss based TWSVM (Ma et al. 2021) is a generalized
TWSVM model wherein θ and ε parameters are optimized to meet the objectives of robust
to noise and outliers.

3.5 Pinball loss twin support vector machine

Xu et al. (2016c) proposed a novel TPMSVM with the pinball loss (Pin-TPMSVM). The
authors introduced pinball loss function that is based on maximizing quantile distances
between the two classes instead of hinge loss function whichmaximizes the distance between
the closest samples of the two classes. This leads to noise insensitivity and as well as re-
sampling stability. Pin-TPMSVM has excellent capability to handle noise which makes the
model a more robust classifier but little attention is given on sparsity due to which the test-
ing time is high and there is instability in re-sampling. Xu et al. (2016d) also formulated
a maximum margin and minimum volume hyperspheres with pinball loss (Pin-M3HM).
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Authors proposed this algorithm to enhance the generalization of twin hypersphere SVM
(TH-SVM) for noise present in datasets. The algorithm classifies samples of two classes by
a pair of hyper-spheres, each containing either majority or the minority class samples simul-
taneously maintaining maximum margin between the hyperplanes. Pin-M3HM is fast and
has better accuracy than TWSVM. Sharma and Rastogi (2018) proposed two models called
ε-Pin-TWSVMand Flex-Pin-TWSVM. ε-Pin-TWSVM introduces ε parameter to reduce the
impact of noise and to attain a sparse solution while Flex-Pin-TWSVM uses a self-optimized
framework which makes this algorithm flexible to estimate the size of insensitive zone. It
adapts to the structure of data. Pin-TPMSVM has impressive ability to handle noise but to
reduce parameter tuning time, Yang et al. (2018) introduced a new solution approach for the
TPMSVM in which one instance is considered at a time and it is solved analytically without
solving optimization problem. It is fast, simple and flexible. Since pinball loss function is not
differentiable at zero, hence, smooth pinball loss TWSVM (Li and Lv 2021) used smooth
approximation function and solved the objective functions via Newton-Armijo method.

For imbalanced data classification Xu et al. (2018b) proposed a maximum margin twin
spheres which uses pinball loss. This algorithm finds homocentric spheres so that the smaller
one captures positive class samples and the larger one repel negative samples. It requires
to solve a QPP and a Linear programming (LP) problem. This algorithm has good gen-
eralization performance and noise insensitivity, however, suffers due to large complexity.
To reduce the complexity, bound estimation-based safe acceleration for maximum margin
of twin spheres machine with pinball loss (Yuan and Xu 2021) was proposed. Sharma et al.
(2019) proposed a Stochastic Quasi-Netwonmethod based TPSVMusing Pinball Loss Func-
tion (SQN-PTWSVM) which can scale the training process to handle millions of data points
while simultaneously deals with noise and re-sampling data issues. Twin neural networks
(Pant et al. 2019) uses feature maps which allows better discrimination among classes. The
twin neural network is also extended to multiclass problems wherein the number of neural
networks trained is proportional to number of classes.

The aforementioned pinball loss TWSVM algorithms are based on TPMSVM and not on
the original TWSVM algorithms. Tanveer et al. (2019b) introduced pinball loss to the orig-
inal TWSVM, termed as general TWSVM with pinball loss (Pin-GTSVM). Pin-GTSVM
(Tanveer et al. 2019b; Ganaie and Tanveer 2021) is less sensitive to the outliers and more
stable algorithm for re-sampling as compared to the original TWSVM. To retain the sparsity
of original TWSVM and Pin-GTSVM, Tanveer et al. (2019c) proposed a novel sparse pinball
TWSVM (SP-TWSVM) which uses ε-insensitive zone pinball loss function. SP-TWSVM
has better classification accuracy than TWSVM and Sparse Pin SVM and it is insensitive
to outliers, retains sparseness and suitable for re-sampling. Recently, Tanveer et al. (2019a)
proposed improved sparse pinball TWSVM (ISPTWSVM) by adding a regularization term to
the objective function of SP-TWSVM. ISPTWSVM implements SRM principle and also the
matrices appear in the dual formulation are positive definite which makes the proposed algo-
rithm computationally less complex and it also achieves better accuracy than other baseline
algorithms. Most of the twin SVM based models involve matrix inversion operations which
limits their applicability to large scale data. Hence, large scale pinball TWSVM (Tanveer
et al. 2021g) uses pinball loss function to reduce the issues of feature noise and reformulated
the Lagrangian in a manner that matrix inversions are no longer involved in the optimization
problems. This scaled the model to large scale data.
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3.6 Twin support vector machine for universum data and imbalanced datasets

Qi et al. (2012a) formulated TWSVM for universum data classification (U-TWSVM). Uni-
versum data is defined as the data samples which does not belong to any given class.
This algorithm utilizes the universum data to enhance TWSVM classification accuracy. U-
TWSVMemploys newdata points to the either class based on its proximity to the hyperplanes.
Experimental results have shown that U-TWSVMhas better accuracy than TWSVM. In order
to construct a robust classifier by including the prior information embedded in the universum
samples Qi et al. (2014) formulated nonparallel SVM (U-NSVM) which maximizes the two
margins related to the two nearest adjacent classes.

As many real life problems consists of datasets which are imbalanced in nature i.e. classes
do not contain same number of data samples, due to which many machine learning algo-
rithms cannot be implemented. Thus, to enhance the performance of TWSVMwhile dealing
with imbalanced datasets, Shao et al. (2014b) proposed weighted Lagrangian TWSVM for
imbalanced data classification. Authors introduced a quadratic loss function to the formu-
lation of TWSVM which enabled faster training of data points. Also, this is more robust
to outliers and has better computational speed and accuracy than TWSVM. Tomar et al.
(2014c) proposed weighted LS-TWSVM for imbalanced datasets by adjusting the classifier
and assigning distinct weight to training samples. The results of the experiment shows that
its accuracy is more than SVM, TWSVM, and LS-TWSVM. Furthermore, in 2015, Xu et al.
(2016a) formulated least squares TWSVM (ULS-TWSVM) which exploits the universum
data. It introduces a regularization term thus implements SRM principle and is computa-
tionally less complex as it requires to solve linear equations in place of QPPs in TWSVM.
Cao and Shen (2016) proposed combining re-sampling with TWSVM for imbalanced data
classification. In this algorithm, authors presented a hybrid re-sampling technique which
utilizes the one side selection (OSS) algorithm and synthetic minority oversampling tech-
nique (SMOTE) algorithm to balance the training data. This is combined with TWSVM for
classification purpose. However, SMOTE algorithm based on K -nearest neighbors can often
result in over-fitting. Robust rescaled hinge loss TWSVM (Huang et al. 2019) and density
weighted TWSVM (Hazarika and Gupta 2021) for imbalanced datasets resulted in improved
performance.

Encouraged by the performance of ν-TWSVM (Peng 2010c) and U -TWSVM (Qi et
al. 2012a), Xu et al. (2016b) proposed ν-TWSVM for universum data classification (Uν-
TWSVM). It ismore flexible in using the prior knowledge fromuniversumdata to improve the
generalization ability. It uses two hinge loss functions so that data can remain in a nonparallel
insensitive loss tube. Experimental results have shown thatUν-TWSVM has better accuracy
and also costs lower running time than other baseline algorithms.

Xu (2017) proposed maximum margin twin spheres SVM algorithm (MMTSSVM) to
overcome many limitations of TWSVMwhile dealing with imbalanced data. This algorithm
seeks to determine two homocentric spheres so that smaller one captures as many positive
class samples and the larger one repel negative samples simultaneously increases the margin
between the spheres.

Richhariya et al. (2018) added a regularization term into the optimization problem of uni-
versumTWSVMtomakematrices non-singular and improve the generalization performance.
The proposed algorithm is called improved universum TWSVM. It has better generalization
and training time than USVM and UTWSVM. Richhariya and Tanveer (2019) proposed a
fuzzy universum SVM (FUSVM) based on information entropy. Universum support vec-
tor machines are more efficient than other SVM methods as it includes prior information
of samples. But, it is not effective in case of noise-corrupted datasets. FUSVM introduces

123



Annals of Operations Research (2024) 339:1223–1268 1237

weights such that it gives fewer weights to the outlier universum points. Further, the authors
proposed a fuzzy universum TWSVM (FUTWSVM). Both the algorithms have better gener-
alization performance than SVM, USVM, TWSVM, and UTWSVM. Recently, Richhariya
and Tanveer (2020b) proposed a reduced universum twin support vector machine for class
imbalance learning (RUTWSVM-CIL) with the idea of prior information about the data
distribution. RUTWSVM-CIL used reduced kernel matrix, and thus applicable for the large
sized imbalanced datasets.Numerical experiments on several imbalanced benchmark datasets
showed the applicability of RUTWSVM-CIL. Richhariya and Tanveer (2020a) also proposed
a novel parametric model for universum based twin support vector machine and extended its
application for the classification of Alzheimer’s disease data. Fuzzy universum least squares
TWSVM(Richhariya andTanveer 2021a; Borah et al. 2018) and fuzzy least squares TWSVM
(Ganaie et al. 2021b; Gupta and Richhariya 2018) solved a linear system of equations instead
of solving the QPPs, hence, the model is fast and requires no external toolbox for solving the
optimization problems. Robust TBSVM (Borah and Gupta 2021) is proposed to make the
model more robust to noise in imbalance datasets.

3.7 Fuzzy twin support vector machines

Chen and Wu (2018) proposed a novel fuzzy TWSVM (NFTWSVM) which takes care
of the problem of dealing with one class playing major role in classification, by assign-
ing fuzzy membership to different samples. The proposed NFTWSVM includes fuzzy
neural networks and provides more generalized results. Richhariya and Tanveer (2019) pro-
posed a fuzzy universum SVM (FUSVM) based on information entropy. This algorithm is
also discussed in Sect. 3.6. Richhariya and Tanveer (2018a) also proposed a robust fuzzy
LS-TWSVM (RFLS-TWSVM-CIL) to boost the performance of TWSVM on imbalanced
datasets. The optimization problem in this algorithm is strictly convex as it uses 2-norm
of the slack variables. Authors further proposed a fuzzy membership function to deal with
imbalanced problems as it provides weights to samples and includes data imbalance ratio.
RFLS-TWSVM-CIL obtains better generalization and is computationally more efficient as it
requires to solve two linear equations. However, RFLSTWSVM-CIL algorithm implements
empirical risk minimization principle which requires inverse of matrices to be positive semi-
definite. In order to improvise, Ganaie et al. (2020b) introduced a regularization term to
the primal formulation of RFLSTWSVM-CIL. The proposed algorithm is regularized robust
fuzzy least squares (RRFLSTWSVM) which doesn’t require the extra assumption of inverse
of matrices to be positive semi-definite and performs better than RFLSTWSVM-CIL.

Khemchandani et al. (2018a) formulated fuzzy LS version of TSVC in which each data
point has a fuzzy membership value and is allotted to different clusters. This algorithm is also
discussed in Section 3.11. Chen et al. (2020a) proposed entropy-based fuzzy least squares
TWSVMwhich considers the fuzzymembership for each data point basis entropy. Rezvani et
al. (2019) formulated intuitionistic fuzzy TWSVM (IFTWSVM) which is modified version
of fuzzy TWSVM as it considers the position of input data in the feature space and calculate
adequate fuzzymembership and also reduces the effect of noise. Zhang et al. (2019) proposed
fuzzy TWSVMwhich assigns fuzzymembership based on intra-class hyperplane and sample
affinity. Experimental results showed that this algorithm has better accuracy than TWSVM
and classic fuzzy TWSVM. Gupta et al. (2019b) proposed entropy-based fuzzy twin support
vector machine (EFTWSVM-CIL) which is an efficient algorithm for imbalanced datasets
as it assigns fuzzy membership values based on entropy of the samples. Chen et al. (2020a)
proposed entropy-based fuzzy least squares twin support vector machine (EFLSTWSVM)
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which is an improvised version of EFTWSVM-CIL by formulating the QPPs in least squares
sense and retains the superior characteristics of LSTWSVM. Experimental results shown that
this algorithm performed better than other baseline fuzzy TWSVM algorithms (Table 3).

3.8 Some other improvements of twin support vector machines

Kumar and Gopal (2008) enhanced TWSVMusing smoothing techniques. Authors proposed
to transform the primal problems of TWSVM into smooth unconstrained minimization prob-
lems and used Newton−Armijo algorithm for optimization. Smooth TWSVM (STWSVM)
has comparable generalization to TWSVM but is significantly a faster algorithm. Khem-
chandani and Chandra (2009) proposed iterative alternating algorithm to make kernels learn
efficiently. Zhang (2009) proposed boosting based TWSVM for clusteredmicrocalcifications
detection. Results have shown that this method improved detection accuracy. Bagging algo-
rithm was combined with boosting to solve the unstable problem of TWSVM. This method
is called BB-TWSVM. Twin support vector machine in linear programs and robust TWSVM
(Qi et al. 2013b) have also been proposed for the classification problems (Li and Tian 2014).

Shao et al. (2010) proposed a bi-level programming method to multiple instance clas-
sification, called MI-TWSVM. Multiple instance learning (MIL) is a supervised technique
wherein the training data points consist of labeled bags and these bags include multiple unla-
beled instances. For binary classification, a bag is a negative sample if all the instances in
it are negative and it is labeled a positive sample if at least one instance is positive. Similar
to TWSVM, the proposed algorithm seeks two hyperplanes thereby the positive hyperplane
is closest to the positive instances and as distant as possible from the negative instances and
vice-versa. Ghorai et al. (2010) proposed a unity norm TWSVM classifier (UNTWSVM)
which includes unity norm equality constraints and a quadratic loss function in the objec-
tive function of TWSVM. This algorithm can be solved by sequential quadratic optimization
method.UNTWSVMhasmore computational cost thanTWSVMespecially for large datasets
because of the nonlinear formulation. Generalized TWSVM (Moosaei et al. 2021) proposed
two models, in the first model the authors used the l1 and l∞ norm in the optimization prob-
lems and in second model the convex, piecewise quadratic objective function is solved via
generalized Newton method.

In order to improve TWSVM’s generalization ability and to decrease support vectors
(SVs), Peng (2010c) introduced a variable p and parameter ν in TWSVM and proposed
ν-TWSVM. An improved ν-TWSVM (Xu and Guo 2014a) has also been proposed for the
classification problems. The parameter ν controls the trade-off between the SV and marginal
error while adaptive p overcomes the limitations of constraints being over-restricted in
TWSVM and thus reduces the number of support vectors. But, it gives the same penal-
ties to each misclassified sample and results in over-fitting. Thus, Xu et al. (2012) introduced
the rough set theory into ν-TWSVM to remediate this limitation. This algorithm is more
effective in avoiding over-fitting as it gives different penalties to different points depending
upon location. It also has better generalization than ν-TWSVM.

Although rough ν-TWSVM (Xu et al. 2012) performs better than ν-TWSVM, it provides
different weights to negative samples and same weights to all the positive samples. Thus, Xu
et al. (2014b) formulated K nearest neighbor (KNN) weighted rough ν-TWSVMwhich gives
different penalties to the samples of both the classes. It has better accuracy and lower com-
putational cost than ν-TWSVM and Rough ν-TWSVM. In another attempt to enhance the
results of ν-TWSVM, Khemchandani et al. (2016) formulated two models for binary classi-
fication: IνTWSVM and IνTWSVMFast. Both the algorithms are faster than ν-TWSVM as
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IνTWSVM solves one small QPP and an unconstrained minimization problem (UMP) while
IνTWSVM Fast solves one unimodal function and one UMP. To overcome the disadvantage
of TWSVM being sensitive to outliers, Xie and Sun (2015) implemented class centroid and
proposed multitask centroid TWSVM for multitask problems.

For handling large scale datasets, Shao et al. (2015) introduce weighted linear loss in
TWSVM and proposed weighted linear loss TWSVM (WL-TWSVM) to classify large scale
datasets. The proposed algorithmonly dealswith linear equationswhich increases the training
speed and also has better generalization than TWSVM. To further fasten up the training
process, Sharma and Rastogi (2018) and Wang et al. (2018), recently proposed stochastic
conjugate gradientmethod based twin support vectormachine (SCH-TWSVM).The resulting
model showed effective performance on binary activity classification problem.

Shao et al. (2011) introduced the regularization term inTWSVMto embodySRMprinciple
and formulated a new algorithm called twin bounded support vector machines (TBSVM). To
further speed up training, SOR technique is used. Numerical results on various datasets show
that TBSVM is faster and has better generalization ability than TWSVM. Ye et al. (2011)
formulated localized TWSVM via convex minimization (LC-TWSVM) which effectively
constructed two nearest-neighbor graphs in the original input space to reduce the space
complexity of TWSVM. Shao andDeng (2013) in 2012 considered the unity norm constraints
and added a regularization term tominimize structural risk in TWSVMand proposedmargin-
based TWSVM with unity norm hyperplanes (UNHMTWSVM). The proposed algorithm is
fast, has better generalization and accurate compared to TWSVM. Lagrangian TBSVMwith
L2 norm (Gupta and Gupta 2019) replaced L1 norm of the slack variables with L2 norm to
improve the performance.

To include statistical data information in TWSVM, Peng and Xu (2012) formulated twin
Mahalanobis distance-based SVM (TMSVM) that uses each classes covariance to determine
hyperplanes. It has better training speed and generalization than TWSVM. Shao et al. (2012b)
introduced a probability based TWSVM model (P-TWSVM) which is more accurate than
TWSVM. In 2012, Shao and Deng (2012) formulated a coordinate descent based TWSVM to
increase the efficiency of TWSVM by introducing a regularization term. Further, to solve the
dual problems, the authors proposed a coordinate descent method which reduces the training
time even in case of large datasets as it deals with single data point at once.

To include the underlying correlation information between data points in TWSVM, Ye et
al. (2012b) formulated a novel nonparallel plane classifier, called Weighted TWSVM with
Local Information (WL-TWSVM). A major limitation of this algorithm is that it doesn’t
work for large-scale problems as it finds the K -nearest neighbors for all the samples. Based
on TWSVM, Peng and Xu (2013b) formulated a twin-hypersphere SVM (TH-SVM). Unlike
TWSVM, it determines two hyperspheres and avoids the matrix inversions in its dual formu-
lations.

To incorporate the structural data information in TWSVM, Qi et al. (2013a) formulated
structural-TWSVMwhich is superior in training time as well as accuracy to that of TWSVM.
However, it still ignores the importance of different samples within each cluster. To overcome
this drawback, Pan et al. (2015) uses K -nearest neighbor based structural TWSVM which
provides different penalties to the samples of different classes. However, it suffers from
overfitting due to empirical risk minimisation. To reduce the overfitting issues, efficient
KNN weighted TWSVM (Xie and Xu 2019) introduced the regularisation term to avoid the
issues of overfitting. This also ensured the minimization of structural risk which results in
better generalization.

Shao et al. (2014a) formulated a different nonparallel hyperplane SVM in which hyper-
planes are determined by clustering the samples based on similarity between the two classes.
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This algorithm has better or comparable accuracy with low computational time. To optimally
select the parameters in TWSVM, Ding et al. (2016) proposed TWSVM build on Fruit Fly
Optimization Algorithm (FOA-TWSVM). It can optimally select the parameters in less time
and with better accuracy. In 2017, Pan et al. (2017) proposed safe screening rules to make
TWSVM efficient for large-scale classification problems. The safe screening rules reduce
the scale by eliminating training samples and giving same solution as the original problem.
Experimental results show that safe screening rules can greatly reduce the computational time
while giving the same solutions as original ones. Yang and Xu (2018) proposed safe sample
screening rule (SSSR) for Laplacian twin parametric-margin SVM (LTPSVM) to address the
problems while handling large-scale problems. Pang and Xu (2019) proposed safe screening
rule for Weighted TWSVM with local information (WLTWSVM) to implement the algo-
rithm for large-scale datasets. Experimental results demonstrate the effectiveness of SSSR
for WLTWSVM as it performes better than SVM and TWSVM with significantly less com-
putational time. Recently, Zhao et al. (2019) proposed an efficient non-parallel hyperplane
Universum support vector machine (U-NHSVM) for classification problems. U-NHSVM is
flexible to exploit the prior information in universum.

Tanveer (2015c) proposed unconstrained minimization problem (UMP) formulation of
Linear programming TWSVM to enhance robustness and sparsity in TWSVM. Tanveer
(2015a) also proposed an implicit Lagrangian TWSVM which is solved by using finite
Newton method. Tanveer and Shubham (2017a) proposed smooth TWSVM via UMP which
increases the generalization ability and training speed of TWSVM.

Multi-label learning deals with data havingmultiple labels and has gained a lot of attention
recently. Chen et al. (2016) proposedmulti-label TWSVM (MLTWSVM) that exploits multi-
label information from instances. Azad-Manjiri et al. (2020) proposed structural twin support
vector machine for multi-label learning (ML-STWSVM) which embeds the prior structural
information of data into the optimization function of MLTWSVM based on the same clus-
tering technology of S-TWSVM. This algorithm achieved better performance compared to
other baseline multi-label learning algorithms.

Rastogi et al. (2018b) proposed a new loss function termed as (ε1, ε2)-insensitive zone
pinball loss function which generalizes other existing loss functions e.g. pinball loss, hinge
loss. The resulting model takes care of noise insensitivity, instability to re-sampling and scat-
terdness present in the datasets. Tanveer et al. (2019) presented rigorous comparison of 187
classifiers which includes 8 variants of TWSVM and exhaustive evaluation of these classi-
fiers was performed on 90 UCI benchmark datasets. Results have shown that RELS TSVM
achieved highest performance than all other classifiers for binary classification task. Thus,
RELSTSVM is the best TWSVM based classifier. For more details, one can refer to Tanveer
et al. (2019). Ganaie and Tanveer (2020) proposed a novel classification approach using pre-
trained functional link to enhance the feature space. Authors performed the classification task
by LSTWSVM on the enhanced features and validated the performance on various datasets.
Some other recent research onTWSVMinclude (Ganaie et al. 2020a)where authors proposed
a novel way for generating oblique decision trees. The classification of training samples is
done based on the Bhattachrayya distance with randomly selected feature subset and then
hyperplanes are generated using TBSVM. Themajor advantage of the proposedmodel is that
there is no need for any extra regularization as matrices are positive definite. The ensemble
(Ganaie et al. 2021a) based models of twin SVM based models was proposed in Tanveer et
al. (2021a).
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3.9 Twin support vector machine for multi-class classification

Earlier, TWSVMwas only implemented to solve binary class problems, however, themajority
of problems in the real-world applications are generally based onmulticategory classification.
Thus, Xu et al. (2013) formulated Twin-KSVC. It implements “1-versus-1-rest" form to
provide ternary output (−1, 0, 1). This algorithm requires to solve two smaller-sized QPPs.
It has better accuracy than 1-versus-rest TWSVM but losses sparsity. Yang et al. (2013)
proposed multiple birth SVM (MBSVM). It is computationally better than TWSVM even
when number of classes are large.

Xie et al. (2013) extended TWSVM application for multi-class problems and proposed
one-versus-all TWSVM (OVA-TWSVM)which solve k-category problem using one-versus-
all (OVA) approach to develop k TWSVM. To strengthen the performance ofmulti-TWSVM,
Shao et al. (2013a) formulated a separating decision tree TWSVM (DTTWSVM). The basic
idea of DTTWSVM is to embody the best separating principle rule to create a binary tree
and then built binary TWSVM model on each node. Experimental results have shown that
DTTWSVM has low computational complexity and better generalization.

Xu and Guo (2014b) formulated twin hyper-sphere multi-class SVM (THKSVM) which
employs the “rest-versus-1” structure instead of “1-versus-rest” structure in TWSVM. In
order to find hyperspheres, it constructs k (no. of classes) classifiers and finds k centers and k
radiuses for each hypersphere. Each hypersphere covers maximum points of K1 classes and
is as distant as possible from the rest classes. It has fast computational speed as compared to
Twin-KSVC and also inverse operation of matrices are not required while solving dual QPPs
ofTHKSVM.Thus, it performs better on large datasets and has better accuracy than“1-versus-
rest” TWSVM but lower than Twin-KSVC. To enhance the performance of Twin-KSVC,
Nasiri et al. (2015) formulated LS version of Twin-KSVC that works similar to Twin-KSVC
but solves linear system of equations rather than pair of QPPs in Twin-KSVC. The proposed
algorithm is fast, simple and has better accuracy and lower training time than Twin-KSVC.
To enhance the performance of Twin-KSVC and to include local information of samples,
Xu (2016) proposed K -nearest neighbor-based weighted multi-class TWSVM which uses
information from within class and applies a weight in the objective function. This algorithm
has low computational cost and better accuracy than Twin-KSVC.

Based on the multi-class extension of the binary LS-TWSVM, weighted multi-class LST-
WSVM algorithm (Tomar and Agarwal 2015b) and regularized least squares twin SVM
(Ali et al. 2022) have been proposed for multi-class imbalanced data. To control sensitivity
of classifier, weight setting is employed in loss function for determining each hyperplane.
Experimental results have shown the superiority and feasibility of the proposed algorithm
for multi-class imbalanced problems. The authors (Tomar and Agarwal 2015c) extended
LS-TWSVM for multi-class classification and compared various concepts of a multi-class
classifier like “One-versus-All", “One-versus-One", “All-versus-One" and “Directed Acyclic
Graph (DAG)". DAG MLS-TWSVM performance is superior and has high computational
efficiency.

Yang et al. (2016) formulated least squares recursive projection TWSVM. For each class,
it determines k projection axes and needs to solve linear equations. It has similar performance
as MP-TWSVM. Based on P-TWSVM, Li et al. (2016) proposed multiple recursive projec-
tion TWSVM (Multi-P-TWSVM) which solves k QPPs in order to determine k-projection
axes (for k classes). Authors introduced regularization term and recursive procedure which
increases the generalization but this algorithm is complex when more orthogonal projection
axes are generated.

123



Annals of Operations Research (2024) 339:1223–1268 1243

Ding et al. (2017) review various multi-class algorithms as per their structures: “one-
versus-rest”, “one-versus-one”, “binary tree”, “one-versus-one-versus-rest”, “all-versus-
one” and “direct acyclic graph” based multi-class TWSVM. All these multi-class TWSVMs
have some advantages and disadvantages. In general, one-versus-one TWSVMs have higher
performance. Ai et al. (2018) proposed a multi-class classification weighted least squares
TSVH using local density information in order to improve the performance of LSTSVH.
Authors introduced local density information into LSTSVH to provide weight for each data
point in order to avoid noise sensitivity. Pang et al. (2018) proposed K -nearest neighbor-based
weighted multi-class TWSVM (KMTWSVM) that incorporated "1-versus-1-versus-rest"
strategy for multi-class classification and also takes into account the distribution of all
instances. However, it is computationally extensive especially for large-scale problems. Thus,
authors in Pang et al. (2018) also proposed safe instance reduction rule (SIR-KMTWSVM)
to reduce its computational time. de Lima et al. (2018) proposed improvements on least
squares twin multi-class classification SVM which is “one-versus-one-versus-rest” strategy
andgenerated ternaryoutput. Theproposed algorithmonlyneeds to dealwith linear equations.
Numerical results demonstrate that it achieves better classification accuracy thanTwin-KSVC
(Xu et al. 2013) and LSTKSVC (Nasiri et al. 2015). Qiang et al. (2020) proposed improve-
ment on LSTKSVC by proposing robust weighted linear loss twin multi-class support vector
machine (WLT-KSVC) which takes care of the two drawbacks of LSTKSVC; sensitive to
outliers and misclassifying some rest class samples due to the use of quadratic loss. Experi-
ments on theUCI andNDCdatasets showed promising results of this algorithmbut its training
accuracy significantly decreases as the number of classes increases. Li et al. (2019) proposed
a nonparallel support vector machine (NSVM) for multiclass classification problem. Numer-
ical experiments on several benchmark datasets clearly show the advantage of NSVM. In
2020, Tanveer et al. (2021d) proposed a fast and improved version of KWMTWSVM (Xu
and Wang 2014) called least square K-nearest neighbor weighted multi-class TWSVM (LS-
KWMTWSVM). Numerical experiments on various KEEL imbalance datasets showed high
accuracy and low computational time for the proposed LS-KWMTWSVM as compared to
other baseline algorithms. A multiclass nonparallel parametric margin SVM (Du et al. 2021)
has also been proposed for multiclass classification. Kernel free least squares TWSVM (Gao
et al. 2021) via special fourth order polynomial surface resulted in improved performance in
multiclass problems.

3.10 Twin support vector machine for semi-supervised learning

Semi-supervised learning (SSL) techniques have achieved extensive attention from many
researchers in the last few years due to its promising applications in machine learning and
data mining. In many real-world challenges, labeled data is not easily available and thus it
deteriorates the performance of supervised learning algorithms due to insufficient supervised
information. SSL overcomes this limitation and uses both unlabeled and labeled data.

Qi et al. (2012b) formulated a novel Laplacian – TWSVM for the semi-supervised classi-
fication problem. This algorithm assumes that data points lie in low dimensional space and
uses the geometric information of the unlabeled data points. Similar to TWSVM it solves a
pair of QPPswith inversematrix operations. Results have shown that Lap-TWSVMhas better
flexibility, prediction accuracy and generalization performance than conventional TWSVM.
This algorithm has excellent performance for semi-supervised classification problems but
due to QPPs and inverse matrix operations, its computational cost is high. Thus, to increase
the training speed of Lap-TWSVM, Chen et al. (2014a) formulated LS version of Lap-
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TWSVM (Lap-LS-TWSVM). Unlike Lap-TWSVM, it needs to deal with linear equations
and is done using conjugate gradient algorithm. It has less training time than Lap-TWSVM.
Another algorithm was formulated by Chen et al. (2014b) to improve the performance of
Lap-TWSVM by transforming the QPPs to UMPs in primal space and smoothing method
is used which is effectively solved by Newton-Armijo algorithm. It achieved comparable
accuracy as Lap-TWSVM with less computational time. Khemchandani and Pal (2016b)
extended this to multi-class classification and formulated Lap-LS-TWSVM which evaluates
training samples to “1-versus-1-versus-rest” and provides ternary output (−1, 0,+1). It has
better accuracy and less training time than Lap-TWSVM.

Based on the similar idea of Lap-TWSVM, Yang and Xu (2016) proposed an extension of
traditional TPMSVM, which makes use of graph Laplacian and creates a connection graph
of the training data points whose solution can be obtained by solving two SVM-type QPPs.
Experiments reveal that LTPMSVMhas higher classification accuracy than SVM,TPMSVM,
Lap-TWSVM, and TWSVM.

Khemchandani and Pal (2017), blended the Laplacian—TWSVM and Decision Tree–
TWSVM classifier and formulated a tree based classifier for semi-supervised multi-class
classification. Extensive experiments on color images shows the feasibility of the model.
Another interesting approach in this direction in 2019, has been suggested by Rastogi and
Sharma (2019) called as Fast Laplacian TWSVMforActive Learning (FLap−TWSV MAL )
where the authors proposed to identify themost informative and representative training points
whose labels are queried for domain experts for annotations. Once the corresponding labels
are acquired, this limited labeled and unlabeled data are used to train a fast model that
involves solving a QPP and an unconstrained minimization problem to seek the classification
hyperplanes.

3.11 Twin support vector machine for clustering

Wang et al. (2015b) formulated twin support vector clustering algorithm (TSVC) build upon
TWSVM. It divides the data samples into k clusters such that the data samples are around
k cluster center points. It exploits the information from clusters (both between and within
clusters) and the center planes are determined by solving a series of QPP. Authors in Wang
et al. (2015b) also proposed a nearest neighbor graph (NNG)-based initialization to make
the model more stable and efficient. Improved TSVC (Moezzi et al. 2019) decomposed the
multiclass clustering problem into multiple two cluster problems.

Khemchandani et al. (2018a) formulated fuzzy least squares version of TSVC in which
each data point has a fuzzy membership value and is allotted to different clusters. The
proposed algorithm solves primal problems instead of dual problems in TSVC. Experimental
results show that the proposed algorithm obtains comparable clustering accuracy to that of
TSVC but has less training time.

Khemchandani and Pal (2016a) replaced the hinge loss function of TSVC with weighted
linear loss and introduced a regularization term in TSVC which needs to solve linear equa-
tions and also implements the structural risk component. The proposed algorithm called
weighted linear loss TSVC achieves higher accuracy than TSVC. The loss function proposed
in Khemchandani and Pal (2016a) is not continuous and therefore, authors in Rastogi and
Pal (2019) modified the weighted linear loss function to form a continuous loss function and
implemented TSVC and WLL-TSVC in semi-supervised framework and also introduced a
fuzzy extension of semi-supervisedWLL-TSVC tomake a robust algorithmwhich is less sen-
sitive to noise. Experimental results have demonstrated that the proposed algorithm achieved
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better clustering accuracy and less computational time than TSVC and WLL-TSVC. Tree-
based localized fuzzy twin support vector clustering (Tree-TSVC) was proposed by Rastogi
and Saigal (2017). Tree-TSVC is a novel clustering algorithm that builds the cluster that
represents a node on a binary tree, where each node comprises of proposed TWSVM based
classifier. Due to the tree structure and the formulation that leads to solving a series of systems
of linear equations, Tree-TSVC model is efficient in terms of training time and accuracy.

TSVC uses squared L2-norm distance which leads to noise sensitivity. Also, each cluster
plane learning iteration requires to solve a QPP which makes it computationally complex. To
address these issues in TSVC, Ye et al. (2018) used L1 norm distance and proposed L1-norm
distance minimization-based robust TSVC which only deals with linear equations instead of
series of QPPs. Ye et al. (2018) further proposed RTSVC and Fast RTSVC to speed up the
computation of TSVC in nonlinear case. Numerical experiments shown that this model has
higher accuracy as compared to other k-clustering methods and has less computational time
than TSVC. Zhen et al. (2019c) proposed ramp-based TSVC by introducing the ramp cost
function in TSVC. The solution of the proposed algorithm is obtained by solving non-convex
programming problem using an alternating iteration algorithm. Bai et al. (2019) introduced
regularization in clustering and proposed largemargin TSVC.Bai et al. (2019) proposed a fast
least squares TSVC with uniform coding output. The algorithm achieves better performance
than TSVC and other plane-clustering methods. Wang et al. (2019d) proposed a general
model for plane-based clustering which includes various extensions of k-plane clustering
(kPC). It optimizes the problem by minimizing the total loss which is derived from both
within-cluster and between-cluster. It can capture data distribution accurately. Richhariya
et al. (2020a) proposed projection based least square TSVC (LSPTSVC) and employed
the concave-convex procedure (CCCP) to solve the optimization problem. LSPTSVC only
needs to solve a set of linear equations and thus leads to significantly less computational time.
TSVC uses hinge loss function, hence suffers from the issues of noise and has low sampling
stability. To overcome these issues, pinball loss twin support vector clustering (Tanveer et al.
2021b) used pinball loss function to penalize the samples.However, it suffers from the issues
of overfitting as it minimises the empirical risk. Hence, pinball loss twin bounded support
vector clustering (Tanveer et al. 2021e) introduced the regularisation term to minimise the
structural risk and avoids the issues of overfitting. Introduction of pinball loss function leads
to loss of sparsity in the model. Hence, sparse pinball loss TSVC (Tanveer et al. 2021c, f)
used ε-insensitive pinball loss function tomake themodel sparse. It implements the empirical
risk minimisation principle and thus suffers due to overfitting. To minimise the overfitting
issues, sparse pinball twin bounded support vector clustering (Tanveer et al. 2021e) used the
regularisation term to minimise the structural risk and hence, avoid the issues of overfitting.

4 Applications of twin support vector classification

TWSVM has been implemented to solve many real-life classification challenges and has
shown promising results in some applications (Fig. 2).

4.1 Biomedical applications

TWSVMhas been applied to detect breast cancer in early stages by detecting amass in digital
mammograms (Si and Jing 2009). A hybrid feature selection based approach has also been
implemented for detecting breast cancer,Hepatitis, andDiabetes (Tomar andAgarwal 2015a).
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Fig. 2 Applications of twin support vector classification

Wang et al. (2016b) proposed TWSVM in combination with dual-tree complex wavelet
transform (DTCWT)method for Pathological BrainDetection. TWSVM is also implemented
for detecting cardiac diseases, one such applicationwas proposed byHoussein et al. Houssein
et al. (2018), heartbeats were detected using Swarm-TWSVM and this algorithm achieved
better accuracy than TWSVM. Refahi et al. (2018) used LSTWSVM and DAG LS-TWSVM
classifiers for predicting arrhythmia heart disease. Chandra and Bedi (2018) proposed linear
norm fuzzy based TWSVM for color based classification of human skin which achieved
better accuracy than other conventional methods. Xu et al. (2015) proposed semi-supervised
TWSVM for detection of Acute-on-chronic liver failure (ACLF). Also, many researchers
have applied TWSVM to detect Alzheimer’s disease in its early stages (Tanveer et al. 2020;
Zhang andWang 2015;Wang et al. 2016c; Alam et al. 2017; Tomar and Agarwal 2014;Wang
et al. 2016b; Tomar et al. 2014b; Wang et al. 2016a; Tomar et al. 2014a; Wang et al. 2015a).

4.2 Alzheimer’s disease prediction

Richhariya and Tanveer (2021b) proposed an angle based universum least squares TWSVM
(AULSTWSVM) which performed with 95% accuracy for detecting Alzheimer’s disease
(AD). Richhariya et al. (2020b) also proposed universum support vector machine based
recursive feature elimination (USVM-RFE) for detecting AD. Khan et al. (2021) proposed
an approach to improve the classification accuracy in mild cognitive impairment (MCI),
normal control (NC), and AD subjects using structural magnetic resonance imaging (sMRI).
Authors used FreeSurfer to process MRI data and derive cortical features which are used in
TWSVM, LSTWSVM and RELSTSVM to detect AD. Sharma et al. (2022) proposed fuzzy
LS-TWSVM based deep learning network for prognosis of the Alzheimer’s disease.

4.3 Speaker recognition

Cong et al. (2008) formulated multi-class TWSVM for speaker recognition with feature
extraction based on gaussian mixture models (GMMs). It gives better results than traditional
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SVM. Yang and Wu (2009) proposed multi-TWSVM which find hyperplane for every class
and takes constraints from other classes separately on the QPP. This algorithm performed
better than many other algorithms for speaker recognition.

4.4 Text categorization

Kumar and Gopal (2009) formulated a least squares TWSVM and experiments have shown
the validity of themodel for text applications. Francis and Sreenath (2019) proposedmanifold
regularized TWSVMfor text recognition and the proposedmethod achieved highest accuracy
among SVM, LSTWSVM and other methods. Non-parallel SVM (Tian et al. 2014b) and
efficient pinball TWSVM (Rastogi and Pal 2021) has also demonstrated better performance
in text categorization.

4.5 Intrusion detection

It is a system which monitors or protects the network against any malicious activity. It has
been a critical component for network security. Researchers (He and Zheng 2014; Ding et al.
2008; Mousavi et al. 2015; Nie et al. 2013) applied TWSVM for intrusion detection and
results have shown that it achieves better accuracy than other intrusion detection algorithms.

4.6 Human activity recognition

Khemchandani and Sharma (2016) proposed least square TWSVM for human activity recog-
nition which gives promising results even with the outliers. Nasiri et al. (2014) formulated
energy-based LS-TWSVM algorithm. Khemchandani and Sharma (2017) also proposed
robust parametric twin support vector machine which can effectively deal with the noise.
Mozafari et al. (2011) used the Harris detector algorithm and applied LS-TWSVM for action
recognition and achieved the highest accuracy than other state-of-the-art methods. Kumar
and Rajagopal (2018) proposed Multi-class TWSVM for detecting human face happiness
combined with Constrained Local Model. Kumar and Rajagopal (2019) also proposed semi-
supervisedmulti TWSVM to predict human facial emotionswith 13minimal features that can
detect six basic human emotions. Algorithm achieved highest accuracy and least computation
time with minimal feature vectors.

4.7 Image denoising

Yang et al. (2014) proposed edge/texture-preserving image denoising based on TWSVM
which is very effective to preserve the informative features such as edges and textures and
better than other image denoising methods available. Shahdoosti and Hazavei (2018) pro-
posed a ripplet formulation of the total variationmethod for denoising images. This algorithm
attains promising results in improving the image quality in terms of both subjective and objec-
tive inspections.

4.8 Electroencephalogram (EEG)

Classification of electroencephalogram (EEG) for different mental activities has been an
active research topic. Richhariya and Tanveer (2018b) proposed universum TWSVM which
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is insensitive to outliers as it selects universum from the EEG datasets itself to generate
universum data points which remove the effect of outliers. Soman (2015) used the classifiable
metric to choose discriminative frequency bands and used the TWSVM to learn imbalanced
datasets. Tanveer et al. (2018) proposed entropy based features in Flexible analytic wavelet
transform (FAWT) framework and RELSTSVM Tanveer et al. (2016a) for classification to
detect epileptic seizure EEG. Tanveer et al. (2018) used FAWT framework for classification
of seizure and seizure-free EEG signals with Hjorth parameters as features and implemented
TWSVM, LSTWSVM and RELSTSVM (Tanveer et al. 2016a) for classifying signals. Li
et al. (2018) proposed LSTWSVM with a frequency band selection common spatial pattern
algorithm for detecting motor imagery electroencephalography. This algorithm achieved
faster training time compared to other SVMbaseline algorithms. Somemore researchers have
applied TWSVM for EEG classification, biometric identification and other leak detection
challenges (Kumar and Gupta 2021; Gupta et al. 2021; She et al. 2015; Li et al. 2018;
Kostílek and Št’astnỳ 2012; Lang et al. 2017; Dalal et al. 2019)

4.9 Other applications

Cao et al. (2018) proposed improved TWSVMwith multi-objective cuckoo search to predict
software bugs. Authors employed TWSVM to predict defected modules and used cuckoo
search to optimize TWSVM and this proposed method achieved better accuracy than other
software defect prediction methods. Chu et al. (2018) proposed Multi-information TWSVM
for detecting steel surface defects. The TWSVMmodels have also been used in image recog-
nition or face recognition (Qi et al. 2013b; Peng and Xu 2012; Chen and Wu 2018; Peng
and Xu 2013a) and facial expression recognition (Richhariya and Gupta 2019) and privacy
preservation (Anand et al. 2019).

The pinball loss function is defined as follows:

Lτ

(
Xy, y, gy,

(
Xy

)) =
{

eT (0 − ygy(Xy)), (0 − ygy(Xy)) ≥ 0,
−τeT (ygy(Xy) − 0), (0 − ygy(Xy)) < 0.

(10)

where gy(x) = g(x;wy, by) = wT
y x + by = 0, D(gy(A, 0)) denotes the intraclass distance

which represents objective function while D(gy(A), gy(B)) is interclass distance which cor-
responds to constraints, D(gy(x)) is the perpendicular distance of point x from the hyperplane
gy(x) = 0.

Optimization framework of various TWSVM algorithms are discussed in Table 4 (Li et al.
2019).

Table 5 shows the differences in major TWSVM methods based on the SRM principle,
sparsity, matrix inversion and noise insensitivity.

5 Basic theory of twin support vector regression

Peng (2010b) proposed an efficient twin support vector regression (TSVR) algorithm in line
with TWSVM, called twin support vector regresson (TSVR). Like TWSVM, it also requires
to solve two QPPs. It finds an end regressor that is the mean of ε-insensitive up and down
bound functions.TSVR has less computational time than a standard SVR and has better
generalization ability. The down- and up-bound functions for linear case are given below:

For any x ∈ Rn , the two hyperplanes are defined as follows:
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Table 5 Properties of different TWSVM algorithms

Models\characteristics SRM Sparsity Matrix inversion Insensitive to noise

TWSVM (Khemchandani and Chandra 2007) � � �
TBSVM (Shao et al. 2011) � � � �
LSTWSVM (Kumar and Gopal 2009) �
RELS-TSVM (Tanveer et al. 2016a) � � �
Projection TWSVM (Hua et al. 2017) � � �
TPMSVM (Peng 2011a) � � �
Pin-GTSVM (Tanveer et al. 2019b) � �
SP-TWSVM (Tanveer et al. 2019c) � � �
Pin-TPMSVM (Xu et al. 2016c) � �
ISPTWSVM (Tanveer et al. 2019a) � � � �

f1(x) = uT1 x + b1 and f2(x) = uT2 x + b2, (11)

The two QPPs in linear case are defined as below:

min
(u1,b1,ζ1)∈Rn+1+m

1

2
||y − eε1 − (Au1 + b1e)||2 + C1e

T ζ1

s.t . y − (Au1 + b1e) ≥ eε1 − ζ1, ζ1 ≥ 0 (12)

and

min
(u2,b2,ζ2)∈Rn+1+m

1

2
||y + eε2 − (Au2 + b2e)||2 + C2e

T ζ2

s.t . (Au2 + b2e) − y ≥ eε2 − ζ2, ζ2 ≥ 0, (13)

here, C1,C2 > 0; ε1, ε2 > 0 and ζ1, ζ2 are slack variables. The final regressor is the mean
of up and down regressors in (11), which is given as follows

f (x) = 1

2
( f1(x) + f2(x)) for all x ∈ Rn . (14)

For nonlinear case, kernel surfaces are used rather than hyperplanes which are given
below:

f1(x) = k(xT , AT )u1 + b1 and f2(x) = k(xT , AT )u2 + b2. (15)

The two QPPs in non-linear case are defined as below:

min
(u1,b1,ζ1)∈Rm+1+m

1

2

∣∣∣
∣∣∣y − eε1 − (k(A, AT )u1 + b1e)

∣∣∣
∣∣∣
2 + C1e

T ζ1

s.t . y − (k(A, AT )u1 + b1e) ≥ eε1 − ζ1, ζ1 ≥ 0 (16)

and

min
(u2,b2,ζ2)∈Rm+1+m

1

2

∣∣∣∣y + eε2 − (k(A, At )u2 + b2e)
∣∣∣∣2 + C2e

T ζ2

s.t . (k(A, AT )u2 + b2e) − y ≥ eε2 − ζ2, ζ2 ≥ 0. (17)
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For more details, one can refer to Peng (2010b).
Although taking motivation from TWSVM formulation, Peng (2010b) attempted to pro-

pose TSVR where the regressor is obtained via solving a pair of quadratic programming
problems (QPPs). However, later authors in Khemchandani et al. (2016) argued that TSVR
formulation is not in the true spirit of TWSVM. Further, taking the motivation from Bi and
Bennett (2003), they proposed an alternative approach to find a formulation for TSVR which
is in the true spirit of TWSVM. They have shown that their proposed TSVR formulation can
be derived from TWSVM for an appropriately constructed classification problem.

6 Research progress on twin support vector regression

In this section,wediscuss the progress of twinSVMbasedmodels for the regressionproblems.

6.1 Weighted twin support vector regression

XuandWang (2012) introducedweightedTSVRwhich gives differentweights to samples and
have different influence over bound functions. Computational results have demonstrated that
this algorithm avoids over-fitting and also yields good generalization ability. The authors Xu
and Wang (2014) also proposed K nearest neighbor based weighted TSVR (KNNWTSVR)
which gives different penalties to the samples based on their local information on number
of K -nearest neighbors. The weights are assigns based on number of K -nearest neighbors.
KNNWTSVR has better accuracy but similar computational complexity as its optimization is
similar to TSVR.However, the above algorithm only implements empirical riskminimization
and suffer from the inverse of positive semi-definite matrices. To overcome these limitations,
Tanveer et al. (2016) introduced an efficient regularized KNNWTSVR (RKNNWTSVR)
algorithm tomake it strongly convex.RKNNWTSVR leads to better generalization and robust
solution (Table 6). Computational cost is also reduced as it only deals with linear equations.
To overcome noise sensitivity in TSVR, Ye et al. (2016) introduced weighted matrix in
Lagrangian ε twin support vector regression. It uses quadratic loss functions and provides
different weights to samples through weighted matrix. It obtains better generalization and
also has less training time than TSVR and ε-TSVR models.

6.2 Projection twin support vector regression

TSVR (Peng 2010b) and twin parametric insensitive SVR (Peng 2012) have obtained better
generalization performance than classical SVR but both these algorithms only implement
empirical risk minimization and do not include any prior information about the data samples
which can lead to noise sensitivity. Thus, Peng et al. (2014) proposed an efficient twin pro-
jection SVR (TPSVR) algorithm which exploits the prior structural information of data into
the learning process. It seeks two projection axes such that projected points have as small as
possible empirical variance values on the down-and up-bound functions. This algorithm has
better generalization and requires small number of support vectors. The aforementionedmod-
els, use uniform weighting approach and assumes that all the samples are equally important.
However, this assumption may be wrong due to outliers and noise. Hence, wavelet weighted
projection TWSVM for regression (Wang et al. 2019b, 2021b) used wavelet based weights
to reduce the effect of outliers.
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6.3 Robust and sparse twin support vector regression

Although TSVR has proven to be an effective classifier with good generalization ability, it
is less robust due to the square of the 2-norm in the QPP of TSVR. Zhong et al. (2012)
improved TSVR by using 1-norm rather than 2-norm distance in TSVR’s QPP. It has less
training time and better generalization. Chen et al. (2012) formulated smoothTSVR (STSVR)
using smooth function in order to make the QPP of TSVR positive definite to obtain a
unique global solution. Authors converted the QPPs to unconstrainedminimization problems
(UMPs) and applied Newton method to solve it effectively. All these algorithms still have
high computational time due to quadratic or linear programming problems. To avoid this
shortcoming, a least squares version of TSVR (TLSSVR) was formulated by Zhao et al.
(2013) which leads to faster computational speed as it only deals with set of linear equations.
Authors also proposed sparse TLSSVR.

Chen et al. (2014c) introduced the regularization into the formulation of TSVR and imple-
mented l1-norm loss function tomake it robust and sparse simultaneously. Huang et al. (2016)
formulated a sparse version of least square TSVR by introducing a regularization term to
make it strongly convex and also converted the primal problems to linear programming prob-
lems. This leads to a sparse solution with significantly less computational time. Tanveer
(2017) formulated 1-norm TSVR to improve robustness and sparsity in original TSVR. 1-
norm TSVR has better accuracy, generalization, and less computational time than TSVR.
In 2020, Singla et al. (2020) proposed a novel TSVR (Res-TSVR) which is robust and not
sensitive to noise in data. The optimization problem is non-convex with smooth l2 regu-
larizer and thus, to solve it efficiently, the authors converted it to a convex optimization
problem. Res-TSVR performed best as compared to other robust TSVR algorithms in terms
of robustness to noise and better generalization. Gu et al. (2020) also proposed a TSVR
variant suitable to handle noise called fast clustering-based weighted TSVR (FCWTSVR)
which classify the samples into different categories based on their similarities and provides
different weights to samples located at different positions. The proposed algorithm performed
better than TSVR, ε-TSVR, KNNWTSVR and WL-ε-TSVR. ε-non parallel support vector
regression (Carrasco et al. 2019) uses two ε-tubes for better alignment of hyperplanes and to
get the more robust upbound and down bound regressor. Robust huber loss based twin SVR
(Balasundaram and Prasad 2020) penalizes the large deviation samples linearly and small
error samples are squared. This results in robustness to noise and outliers.

6.4 Other improvements on twin support vector regression

TSVR has proven to provide better generalization results but it needs to solve two QPPs
which increases the learning time for TSVR. Thus, Peng (2010a) formulated a primal TSVR
(P-TSVR),which only dealswith linear equations. This improves the learning speed of TSVR
and shows comparable generalization. Further, to increase the sparsity of TSVR, the author
introduced the back-fitting strategy for optimizing the unconstrained QPP. TSVR requires
two set of constraints one with each QPP which increases the computational time for large
datasets. To overcome this disadvantage, Singh et al. (2011) introduced rectangular kernels
in the formulation of TSVR and proposed reduced TSVR which resulted in the significant
saving of computational time and thus promoting its application for large datasets. To further
reduce computational time, a LS version of TSVR (TLSSVR) was formulated by Zhao et
al. (2013) which only deals with a set of linear equations. Authors also proposed sparse
TLSSVR.
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Huang and Ding (2013) further attempted to reduce the computational time by propos-
ing LS-TWSVM in primal space (TLSSVR) rather than dual space (PLSTSVR). This also
requires to find solution of two linear equations and has comparable accuracy to TSVR. To
make TSVR suitable to handle heteroscedastic noise structure, Peng (2012) proposed twin
parametric insensitive SVR (TPISVR) which determines a set of nonparallel parametric-
insensitive up and down-bound functions. It also works effectively when noise depends upon
the input value. It requires to solve two SVM-type problems, which increases its learning
speed. Computational results showed that it also has good generalization ability. Shao et
al. (2013e) implemented the SRM principle in TSVR primal space and proposed a new
regressor ε—TSVR which seeks to find a pair of ε-insensitive proximal functions. Further,
to reduce complexity, the successive over-relaxation (SOR) technique is employed. Exper-
imental results show that ε−TSVR has better generalization and fast training speed than
TSVR.

Balasundaram and Tanveer (2013a) proposed linearly convergent Lagrangian TSVR
(LTSVR) algorithm. Experimental results have exhibited its suitability and applicability
due to the better generalization and less computational time than TSVR. Inspired by this
algorithm, Balasundaram and Gupta (2014) proposed Lagrangian dual of the 2-norm TSVR.
Results have demonstrated an increase in learning speedwith better accuracywhen compared
to TSVR. Tanveer et al. (2016) introduced the regularization term to the objective function of
TSVR and formulated regularized Lagrangian TSVR (RLTSVR).This algorithm implements
the SRM principle and requires to solve linear system of equations in place of QPP in TSVR.
Optimization problems are positive definite and avoid the singularity in the solution. It has
better accuracy and speed than conventional TSVR (Table 7).

Balasundaram and Tanveer (2013b) proposed smooth Newton method for LTSVR which
needs to solve linear equations in each iteration using Newton-Armijo algorithm. It has
comparable generalization ability but it is at least two times faster than TSVR.Khemchandani
et al. (2013) proposed TSVR for simultaneous learning. This algorithm is more accurate,
computationally less complex and more robust as it uses l1 norm error. Lagrangian twin
parametric insensitive twin SVR (Gupta et al. 2020; Gupta and Richhariya 2021) employed l2
norm of the square variables, also it is faster as it uses linearly convergent iterative scheme for
obtaining the end regressor. Asymmetric possibility and necessity regression by twin-support
vector networks (Hao 2020) and reularization based twin SVR with huber loss (Gupta and
Gupta 2021) improved the generalization performance of the end regressor.

Peng et al. (2015a) implemented the use of interval data to handle interval input-output
data (ITSVR). Rastogi et al. (2017a, 2018a) provided an extension of ν-SVR i.e ν-TWSVR
and large margin distribution machine based regression that it is in the true spirit of TWSVM.
Balasundaram and Meena (2016) proposed unconstrained TSVR formulation in the primal
space (UP-TSVR) which is speed and obtains better generalization than TSVR. This model
is solved by a gradient based iterative approach.

Parastalooi et al. (2016) proposed a modified version of TSVR by including the struc-
tural information from data and its distribution. Clustering is done based on the mean and
covariance matrix of the data which increases accuracy. Furthermore, to increase the training
speed, authors applied SOR technique and also optimized parameter selection by implement-
ing PSO algorithm. Rastogi et al. (2017b) proposed an improved version of ν-TSVR which
can automatically adjust the values of upper and lower bound parameters to attain better
accuracy. Experimental results have shown the superiority of the proposed algorithm over
ε-TSVR.

TSVR gives same weights to all the samples but in fact, different positions will influence
differently on the regressor which are ignored in TSVR. Thus, Xu et al. (2018a) proposed
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Table 6 Performance of various non-linear twin support vector regression (TSVR) based algorithms (Tanveer
et al. 2016)

Datasets Models RMSE MAE SSE/SST SSR/SST

IBM SVR (Vapnik and Vapnik 1998) 0.1283 0.0920 0.2872 0.4055

WSVR (Han and Clemmensen 2014) 0.0459 0.0379 0.0416 0.8365

TSVR (Peng 2010b) 0.0765 0.0551 0.1125 1.3937

KNNWTSVR (Xu and Wang 2014) 0.0330 0.0243 0.0217 1.0549

RKNNWTSVR (Tanveer et al. 2016) 0.0330 0.0243 0.0217 1.0549

Intel SVR (Vapnik and Vapnik 1998) 0.0500 0.0406 0.0552 0.8174

WSVR (Han and Clemmensen 2014) 0.0384 0.0295 0.0330 1.0524

TSVR (Peng 2010b) 0.0405 0.0314 0.0368 0.8208

KNNWTSVR (Xu and Wang 2014) 0.0971 0.0791 0.1922 0.5566

RKNNWTSVR (Tanveer et al. 2016) 0.0382 0.0285 0.0328 0.8390

SNP-500 SVR (Vapnik and Vapnik 1998) 0.0311 0.0253 0.0192 0.8825

WSVR (Han and Clemmensen 2014) 0.0296 0.0222 0.0174 1.064

TSVR (Peng 2010b) 0.0288 0.0212 0.0166 0.9702

KNNWTSVR (Xu and Wang 2014) 0.0296 0.0219 0.0174 0.9904

RKNNWTSVR (Tanveer et al. 2016) 0.0273 0.0193 0.0148 0.9907

Table 7 Performance of various non-linear twin support vector regression (TSVR) based algorithms (Tanveer
and Shubham 2017b)

Datasets Models RMSE MAE SSE/SST SSR/SST

Gas furnace SVR (Vapnik and Vapnik 1998) 0.0700 0.0459 0.088 0.8719

TSVR (Peng 2010b) 0.0578 0.0389 0.0599 0.8744

LTSVR (Balasundaram and Tanveer 2013a) 0.0634 0.0427 0.0718 0.8689

RLTSVR (Tanveer and Shubham 2017b) 0.0636 0.0439 0.0718 0.8623

IBM SVR (Vapnik and Vapnik 1998) 0.1283 0.0920 0.2872 0.4055

TSVR (Peng 2010b) 0.0765 0.0551 0.1125 1.3937

LTSVR (Balasundaram and Tanveer 2013a) 0.0328 0.0241 0.0214 1.0567

RLTSVR (Tanveer and Shubham 2017b) 0.0330 0.0245 0.0217 1.0604

Intel SVR (Vapnik and Vapnik 1998) 0.0500 0.0406 0.0552 0.8174

TSVR (Peng 2010b) 0.0405 0.0314 0.0368 0.8208

LTSVR (Balasundaram and Tanveer 2013a) 0.0343 0.0257 0.0266 0.9180

RLTSVR (Tanveer and Shubham 2017b) 0.0336 0.0251 0.0255 0.9421

asymmetric ν-TSVR based on pinball loss function. Pinball loss function gives different
penalties to the points lying above and below the bounds. It is insensitive to noise and also
has better generalization ability. Tanveer and Shubham (2017b) added regularization term in
TSVR in the primal form which yields better accuracy and more robust solution (Tables 6,
7).
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Table 8 Properties of different TSVR algorithms

Models\characteristics SRM Sparsity Matrix inversion Insensitive to noise

TSVR (Peng 2010b) � �
TWSVR (Khemchandani et al. 2016) � � �
ε−TSVR (Shao et al. 2013e) � � �
WTSVR (Xu and Wang 2012) � �
LTSVR (Balasundaram and Tanveer 2013a) � �
RLTSVR (Tanveer and Shubham 2017b) � � �
PTSVR (Peng 2010a) � � � �
KNNWTSVR (Xu and Wang 2014) � �
RKNNWTSVR (Tanveer et al. 2016) � � �

7 Applications of twin support vector regression

Ye et al. (2013b) implemented L1−ε- TSVR for forecasting inflation. This algorithm proved
to be excellent for feature ranking and determined important features for inflation in China.
Experimental results showed that its accuracy is better than the ordinary least square (OLS)
models. Ye et al. (2013a) also implemented ε-wavelet TSVR for inflation forecast. Authors
employed the wavelet kernel that can be used for any curve in quadratic continuous inte-
gral space. This algorithm derives lower root mean squared error (RMSE) and thus, is
an efficient method for inflation forecast. Ding et al. (2013) predicted stock prices using
polynomial smooth twin support vector regression. Numerical experiments reveal that this
algorithm can obtain better regression performance compared with SVR and TSVR. Le
et al. (2014) proposed a novel genetic algorithm (GA) based TSVR to improve the precision
of indoor positioning. It performs better than K - nearest neighbor and neural network but
comparable to SVR with significantly less computational time. Houssein (2017) proposed
particle swarm optimization (PSO) based TSVR for forecasting wind speed. The computa-
tional results proved that it achieves better forecasting accuracy and outperformed genetic
algorithm with TSVR and TSVR using radial basis kernel function. Wang and Xu (2018)
proposed safe screening rule (SSR) based on variational inequality (VI) to make TSVR effi-
cient for large-scale problems as SSR reduces computational time significantly. Authors also
implemented dual coordinate descent method (DCDM) to further increase the computational
speed of TSVR. Improved twin SVR (Ganaie et al. 2021c, 2022) was formulated for brain
age prediction. Twin SVR models have been benchmarked for the prediction of brain age in
Alzheimer’s disease (Beheshti et al. 2021).

Table 8 shows the differences in major TSVR methods based on the SRM principle,
Sparsity, Matrix Inversion and Noise Insensitivity.

8 Future research and development prospects

TWSVM classification algorithms have high training speed and accuracy than conventional
SVM but it’s still in the primitive stage of development and lacks practical application
background. TWSVM has low generalization ability and also lacks in sparsity. Therefore,
TWSVMneeds further research and improvements to effectively apply to real-life challenges.
Future research prospects for TWSVM can be as follows :
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• An interesting aspect can be coupling other machine learning algorithms with the
TWSVM. For example, a deep convolutional neural network can extract features which
can be classified using TWSVM with better accuracy.

• There is limited research on TWSVM applications for large-scale classification. Thus,
how to develop TWSVM algorithms for big data classification problems effectively is
worthwhile.

• For non-linear classification problems, TWSVM performance highly depends upon ker-
nel function selection and there is not enough research on this to guide researchers to
choose kernels as per different applications to get desired accuracy and performance of
the TWSVM algorithm. Thus, kernel selection and optimal parameters selection need
further study and improvement.

• Currently, only few TWSVM algorithms have been implemented for multi-class classi-
fication but it leads to class imbalance problem and often losses sparsity. Thus, further
study is required for TWSVM implementation for multi-class classification.

• Themain concept of GEPSVM/TWSVM is based on linear discriminant analysis (LDA).
A well cross study on TWSVM and LDA is worthy of future work.

• TWSVM applications to health care is currently limited. Thus, how to implement
TWSVM effectively for early diagnosis of human diseases like Alzheimer, Epilepsy,
Breast cancer etc is worthy of study.

• Clustering, which aims at dividing the data samples into different clusters, is major
fundamental problem in classification.Clustering basedTWSVMapproach is less studied
currently and needs further study and development.

• There is limited research on TWSVM applications for remote-sensing. Thus, how to
build efficient classifiers for remote-sensing can be explored.

TSVR is much faster than conventional SVR and also has better generalization ability.
But, it suffers from a lack of model complexity control and results in over-fitting. It also
losses sparsity similar to TWSVM and is sensitive to outliers. Further research on TSVR can
be on the following:

• A significant limitation of TSVR is high computational time as it loses the sparsity. More
work is required to find an efficient sparse TSVR algorithm.

• Data cleaning, transforming and pre-processing is an important issue for every machine
learning technique and can tremendously improve results and even help in identifying
novel interactions within data. As TSVR is a relatively new technique, various data han-
dling, cleaning, pre-processing techniques like missing value imputation can be explored
for improving the performance of TSVR.

• TSVR is evaluated only on few types of continuous variable problems. Application of
TSVR can be explored on a wide range of problems in different domains.

• The current TSVR requires off-setting of multiple hyperparameters and hence optimal
parameter selection is an issue. Thus, further research in the direction of identifying and
choosing parameters should be done.
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