
Annals of Operations Research (2022) 312:1119–1141
https://doi.org/10.1007/s10479-021-04515-0

ORIG INAL RESEARCH

Scheduling problem in seru production system considering
DeJong’s learning effect and job splitting

Zhe Zhang1 · Xiaoling Song1 · Huijun Huang1 · Yong Yin2 · Benjamin Lev3

Accepted: 23 December 2021 / Published online: 9 January 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Seru is a relatively new type of Japanese production mode originated from the electronic
assembly industry. In practice, seru production has been proven to be efficient, flexible,
response quickly, and can cope with the fluctuating production demands in a current volatile
market. This paper focuses on scheduling problems in seru production system. Motivated
by the realty of labor-intensive assembly industry, we consider learning effect of workers
and job splitting with the objective of minimizing the total completion time. A nonlinear
integer programming model for the seru scheduling problem is provided, and it is proved to
be polynomial solvable. Therefore, a branch and bound algorithm is designed for small sized
seru scheduling problems, while a local search-based hybrid genetic algorithm employing
shortest processing time rule is provided for large sized problems. Finally, computational
experiments are conducted, and the results demonstrate the practicability of the proposed
seru scheduling model and the efficiency of our solution methods.

Keywords Seru scheduling · Learning effect · Job splitting · Branch and bound · Genetic
algorithm

B Zhe Zhang
zhangzhe@njust.edu.cn

Xiaoling Song
songxiaoling@njust.edu.cn

Huijun Huang
njustwww@163.com

Yong Yin
yyin@mail.doshisha.ac.jp

Benjamin Lev
bl355@drexel.edu

1 School Economics and Management, Nanjing University of Science and Technology, Nanjing
210094, People’s Republic of China

2 Graduate School of Business, Doshisha University, Karasuma-Imadegawa, Kamigyo-ku, Kyoto
602-8580, Japan

3 Drexel University, Philadelphia, PA 19104, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-021-04515-0&domain=pdf
http://orcid.org/0000-0001-8029-9679
http://orcid.org/0000-0002-3265-7328

1120 Annals of Operations Research (2022) 312:1119–1141

1 Introduction

In Industrial Revolution 4.0, fast response is widely recognized as another dimension of
demand in the manufacturing industry in addition to product volume and product variety
(Yin et al., 2018). Hence, more and more companies must reconfigure their production sys-
tem since the traditional assembly line could not response to current volatile market quickly
enough (Nikkei-Business, 2016; Wang et al., 2019). In this situation, seru production system
(SPS), which was first implemented at a factory producing video cameras for Sony company
named Sony Minokamo in 1992 (Liu et al., 2014a), is used to cope with the effect of fluctu-
ating demand, and it could achieve efficiency, flexibility and fast response simultaneously. In
fact, due to the autonomy in SPS, seru becomes a key factor in the smartmanufacturing Indus-
try 4.0 (Yin et al., 2018). Roth et al. (2016) reviewed the research of operations management
during the last 25 years and pointed out that seru production was one of eight promising
future research directions because seru could response quickly to customer requirements
with high efficiency and flexibility. Therefore, seru production has been regarded as a new
“beyond lean” production mode for Industry 4.0 (Yin et al., 2017). Seru is the Japanese
pronunciation of cell, and the SPS is a work-cell-based assembly systems decomposed from
the traditional assembly line (Lian et al., 2018; Zhang et al., 2021). Figure 1 is an example
for an assembly line converting into SPS. The underlying philosophy of SPS is to benefit
from both the high-efficiency advantage of the assembly line and the flexibility advantage of
cellular manufacturing systems (CMSs) (Yu and Tang, 2019). In fact, according to references
(Kimura and Yoshita, 2004; Kono, 2004; Noguchi, 2003), the benefits are not just efficiency
and flexibility but also the reduction of throughput time, setup time, work-in-process (WIP)
inventory, labor hours, shop floor space, and finished product inventory. For example, Sony
Minokamo reduced 10,000 square meters of floor space and 170 workers by SPS just after
one year (Yamada, 2009). Another example was in Canon company, the average working

Fig. 1 An assembly line is decomposed into a seru production system

123

Annals of Operations Research (2022) 312:1119–1141 1121

time of WIP was shortened from three days to six hours, and 720,000 square meters of work-
shop space in 54 factories were reduced after implementing SPS (Nikkei Mechanical, 2003;
Hisashi, 2006). Some researchers also show that seru is more adaptive and competitive in
an unpredictable environment with multiple product models, fluctuating volumes, and short
product life cycles (Kaku, 2017; Zhang et al., 2017). Hence, SPS has been considered as a
potential production system for Industry 4.0 (Treville et al., 2017; Yin et al., 2018). Unfor-
tunately, although so many remarkable benefits have been proven in production practice,
the research on SPS is still minimal due to its short history. However, SPS still has recently
attracted attention from some leading scholars and practitioners throughout the world (Roth
et al., 2016; Treville et al., 2017; Yin et al., 2018). In this paper, for the first time, we will
focus on seru scheduling problems considering DeJong’s learning effect and job splitting,
and hopefully it could improve the theory of seru scheduling problems, along with providing
the professional guidance to practical seru production.

In practice, as an extension or upgrade to the Toyota’s traditional JIT material system
(JIT-MS), the key to obtain the SPS’s high performance is JIT organization system (JIT-OS)
(Stecke et al., 2012). The difference between JIT-MS and JIT-OS is that JIT-MS focuses
on materials while JIT-OS on organizations, i.e., serus. The mechanism of JIT-OS is the
correct serus, in the right place, at the appropriate time, in the exact amount (Ayough et al.,
2020; Sun et al., 2019; Yin et al., 2018). It contains three-stage decisions in JIT-OS, i.e.,
seru formation, seru loading and seru scheduling (Sun et al., 2020; Yu and Tang, 2019).
First, a seru production system is configured with the appropriate serus amounts and types
by seru formation. Then, by seru loading, the products ordered are allocated to each seru
appropriately. Finally, considering the due date and schedule rule, the implement production
plans are obtained by seru scheduling. Previous research mainly focused on seru formation
and seru loading. Kaku et al. (2009) studied the insight of line-seru conversion problems
by simulation experiments and pointed out the number of serus should be formatted in dif-
ferent cases. Liu et al. (2013) investigated the training and assignment problem of workers
when a conveyor assembly line is entirely reconfigured into several serus and developed a
bi-objective mathematical model to minimize the total training cost and to balance the total
processing times among multi-skilled workers in each seru. To evaluate the performance of
after converting the assembly line to SPS, Yu et al. (2012, 2013, 2014, 2017) constructed a
series of mathematical models to investigate the line-seru conversion performances includ-
ing the total throughput time and the total labor hours, and the mathematical characteristics
such as solution space, combinatorial complexity and non-convex properties, were also ana-
lyzed. Shao et al. (2016) considered a line-seru conversion problem with stochastic orders
based on queuing theory and developed a non-linear combination optimization model to con-
firm the seru formation. Luo et al. (2016) proposed a combinatorial optimization model for
seru loading problem considering worker-operation assignment in single period and studied
uncertain seru loading problems by a bi-objective model to minimize the makespan and the
total tardiness penalty cost (Luo et al. 2017). Then, they designed a simulated annealing and
genetic algorithm for a bi-level seru loading problem in SPS (Luo et al., 2021). Lian et al.
(2018) developed a mathematical model to improve the inter-seru and inter-worker work-
load balance to solve worker grouping, seru loading and task assignment concurrently, and
a meta-heuristic algorithm based on NSGA-II was designed to solve the proposed model.
Jiang et al. (2021) transformed the seru scheduling problem into the assignment problem and
proved they could be solved in polynomial time. Yılmaz (2020a) provided workforce related
operational strategies of SPS for the workforce scheduling and focused on a bi-objective seru
workforce scheduling problem considering the inter worker transfer (Yılmaz, 2020b). Zhang
et al. (2022) proposed a logic-based Benders decomposition method for the seru scheduling

123

1122 Annals of Operations Research (2022) 312:1119–1141

Fig. 2 Learning effects from jobs

problem. However, the research on scheduling problem in SPS is still very rare due to its
complexity even though it is one of the most important critical factors of JIT-OS. This paper
will focus on the seru scheduling problems considering DeJong’s learning effect and job
splitting and provide efficient solution methods for it.

Moreover, it can be noticed that the learning effect will occur and the processing time will
be reduced when the job come from the same batch consecutively (Janiak et al., 2013; Sun
et al., 2013). The later a given job is scheduled in the sequence repeatedly, the shorter its
processing time (Mosheiov, 2001; Pei et al., 2019). Taking camera assembly manufactory
shown in Fig. 2 as an example, it is intuitive that learning effect for the same product style is
significant, while insignificant for the different product styles. Many researchers concerned
on the learning effect in production scheduling. Biskup (1999) analyzed learning effects
in production scheduling problems and pointed out that the well-known learning effect had
never been considered in connectionwith scheduling problems. (Mosheiov and Sidney, 2003)
studied the scheduling problem of makespan and total flow-time minimization, a due-date
assignment problemand total flow-timeminimizationwith the job-dependent learning curves,
where the learning in the production process of some jobs to be faster than that of others.
Rostami et al. (2020) investigated an integrated scheduling of production and distribution
activities considering deterioration and learning effect, and proved that the integrated decision
can reduce costs significantly. Wang et al. (2020) constructed a joint decision model to solve
cell formation and product scheduling problems together in cellular manufacturing systems
considering the learning and forgetting effect, and designed an improved bacterial foraging
algorithm to minimize the makespan. Biskup (2008) proposed state-of-the-art review on
production scheduling problems with learning effect.

In practice, an order is normally composed by several identical jobs, and a job batch can be
split into several sub-jobs to improve the delivery time (Huang, 2010;Kim, 2018). Job spitting
is always a hot issue in production scheduling. Nessah and Chu (2010) proposed a new lower
bound of total weighted completion time for infinite split scheduling with job release dates
and unavailability periods. Huang and Yu (2017) discussed the theoretical applications of
subjects about multi-objective optimization, lot-splitting, and ant colony optimization. Liu et
al. (2014b) proposed a lower bound of the production scheduling problem and a job-splitting
algorithm corresponding to the lower bound, while a branch-and-bound algorithm and a
hybrid differential evolution algorithm were also designed. Kim and Kim (2020) formulated
the production scheduling problem with job splitting while the flexible idle time considering
job splitting was inserted into initial schedule. To minimize both the makespan and electric
power consumption, Chen et al. (2020) proposed a multi-objective mixed-integer program-
ming for energy-efficient hybrid flow shop scheduling with job spitting. Figure 3 shows three
different schedules for seru scheduling considering learning effect and job splitting, and it

123

Annals of Operations Research (2022) 312:1119–1141 1123

Fig. 3 A Gantt chart for a seru scheduling considering learning effect and job splitting

is interesting in production practice. For example, there are 10 jobs A, 9 jobs B, 5 jobs C,
and 4 jobs D in a batch need to be scheduled in SPS. Schedule 1 is to finish the current
job as soon as possible, thus, it just schedules the job to the current least heavily loaded
seru one by one until all jobs are assigned in this SPS. In schedule 2, all jobs processed by
one seru, i.e., jobs cannot be split. Total 10 jobs A are assigned to seru 1, 9 jobs B and 4
jobs D are assigned to seru 2, 5 jobs C are assigned to seru 3, respectively. The completion
timed maybe longer due to the unbalanced job assignment. Schedule 3 splits the jobs in an
appropriate way considering the learning effect at the same time, which is also the problem
studied in this paper. As it can be seen, in Schedule 3, 10 jobs A are split into two parts and
assigned to seru 1 (6 jobs A) and seru 3 (4 jobs A). For job B, C and D, they are allocated
to one seru, i.e., seru 2, seru 3 and seru 1, respectively. Hence, comparing schedule 3 with
schedule 1, the total processing time of schedule 3 is shorter than that of schedule 1 which
is affected by the learning effect. Similarly, comparing schedule 3 with schedule 2, the total
completion time of schedule 3 is shorter. By above comparisons, it can be seen that schedule
3 is the best schedule which considers both the total processing time and the total completion
time. Therefore, this paper will also concentrate on seru scheduling problem considering job
splitting and learning effect simultaneously to minimize the total completion time in SPS.

The remainder of this paper is organized as follows: Sect. 2 describes the seru scheduling
problem and presents the analytical property. A non-linear integer programming model for-
mulation is presented in Sect. 3, and themodel analysis is also provided. Then, in Sect. 4, B&B
algorithm, and a local search-based hybrid genetic algorithm (LS-hGA) employing shortest
processing time (SPT) rule are designed for the small and large sized problems, respec-
tively. Finally, Sect. 5 reports the computational results and conducts comparison analysis.
Concluding remarks are made in Sect. 6, along with the discussion about further research.

2 Problem description

SPS has three types of seru, i.e., divisional seru, rotating seru and yatai (Liu et al., 2014a), see
Fig. 4. Yu and Tang (2019) provided a detailed description about three seru types according
to the evolution of SPS. First, if the workers in an assembly line can handle more than one
task, i.e., partially cross-trained workers, then, an assembly line could be decomposed several
short lines and divisional serus are configured. In other words, a divisional seru is a short
line staffed with partially cross-trained workers, where each worker will handle more tasks

123

1124 Annals of Operations Research (2022) 312:1119–1141

Fig. 4 Three types seru

compared to the original assembly line (Yin et al., 2018). In practice, the tasks in a divisional
seru are divided into different sections in charge by the partially cross-trainedworkers (Stecke
et al., 2012). Subsequently, some workers are completely cross-trained along with the worker
training on seru implementation. It means that these workers could assemble all tasks of a
job from start to finish, thus, the rotating serus can be constructed (Stecke et al., 2012). Now,
the equipment is shared by completely cross-trained workers, and they move in rotating seru
with one worker following another (Yin et al., 2017). In addition, the worker returns to the
first workstation and start a new round when a job is completed (Liu et al., 2014a). In the end,
some rotating serus could evolve into yataiswhen the waste of workers’ talents is eliminated
(Stecke et al., 2012). Yatai is an ideal production mode and only contains one completely
cross-trained worker handles all tasks of a job, and it is a small single-person production unit
with highly autonomous (Yu and Tang, 2019). Seru 1 in Fig. 1 is divisional seru, seru 2 is
rotating seru and seru 3 is yatai, respectively. The seru type discussed in this paper is yatai
because it is the most sensitive type for learning effect, and the divisional seru and rotating
seru are left for the future research.

Following the first study on the learning effect in aircraft industry manufacturing (Wright,
1936), many researchers proposed a large variety of position-based learning effect models.
In Wright’s model, the learning effect is described as the cost: Cx = C1xb, where x is the
cumulative production count, Cx is the cumulative average cost for producing x units, C1

is the cost for producing the first unit, and b is the learning curve exponent (i.e., learning
index, b ≤ 0). Obviously,Cx will decrease when x is increasing. Biskup (1999) constructed a
production schedulingmodelwith the learning effect: p jr = p̄ j ra , where p̄ j is the processing
time for producing job j for the first time, p jr is the actual processing time of job j in
position r of a schedule (i.e., the r th repetition), and a ≤ 0 is also the learning index.
Mosheiov and Sidney (2003) proposed a job-dependent learning index a j and the learning
effect is p jr = p̄ j ra j , while Bachman and Janiak (2004) provided a linearized learning
effect model as p jr = p̄ j − rv j , where v j is a given coefficient. Similarly, Cheng et al.
(2013) applied p jr = p̄ j (1+∑r−1

k=1 βkln p̄[k])arb for production scheduling with a position-
weighted learning effect. Unfortunately, all these models suffer a common drawback: if the
job is processed late among many jobs, then p jr is close to zero, which is not going to occur
in practice. In this situation, DeJong proposed a new learning effect model to cope with this
defect as

Ts = T1

(

M + (1 − M)

sm

)

(1)

123

Annals of Operations Research (2022) 312:1119–1141 1125

where s stands for the sth cycle, T1 is the processing time required for the first cycle of
a batch, Ts is the processing time required for the sth cycle of the batch, M is the factor
of incompressibility in production practice (0 ≤ M ≤ 1), and m is positive number and
represents the exponent of reduction and is (0 < m < 1). According to Eq. (1), the processing
time for the sth cycle product will fall when s increases, but it will approach a certain limit
T1M . Thus, DeJong’s learning effect model overcomes the drawback. In addition, when
M = 0, Eq. (1) is Ts = T1

1
sm = T1s−m, 0 < m < 1, which means that Wright’s log-linear

learning effect model is a special case of DeJong’s model. In this paper, we will use DeJong’
model to describe the learning effect in seru scheduling problems.

In the seru scheduling problem, there are j ∈ J ≡ {1, 2, . . . , nJ } job need to be processed
on i ∈ I ≡ {1, 2, . . . , nI } serus. For each job j , it has N j identical quantities which can be
split into several sub-parts and assigned in parallel serus. Meanwhile, the processing time of
job j is denoted as p j . In the assembly process, learning effect will occur the same job is
processed consecutively. Let t(τ, p j) be the processing time of job j in τ th repetition, and
τ a non-negative integer. t(τ, p j) satisfies

t(τ, p j) ≥ t(τ + 1, p j)

where t(0, p j) = 0 and t(1, p j) = p j . Define f (τ, p j) as the total processing time of
consecutively processing τ items, and

f (τ, p j) = �τ
υ=1t(υ, p j)

Then, the following theorems hold.

Theorem 1 Assume that there are Q quantities in job j , and two sub-jobs are split with
quantity τ1 and τ2 with τ1 + τ2 = Q. Without loss of generality, let τ1 ≥ τ2, then:
(1) f (τ1, p j) + f (τ2, p j) ≥ f (τ1 + 1, p j) + f (τ2 − 1, p j);
(2) min

(
f (τ1, p j) + f (τ2, p j)

) = f (Q, p j).

Proof (1) Following the property of function t(τ, p j), we know that t(τ1, p j) ≥ t(τ1+1, p j).
Thus,

t(τ1 + 1, p j) ≤ t(τ1, p j) ≤ t(τ2, p j)

due to τ1 ≥ τ2. Then,

t(τ1 + 1, p j) ≤ t(τ2, p j)

i.e.,

f (τ1 + 1, p j) − f (τ1, p j) ≤ f (τ2, p j) − f (τ2 − 1, p j)

⇒ f (τ1, p j) + f (τ2, p j) ≥ f (τ1 + 1, p j) + f (τ2 − 1, p j).

(2) Since f (τ1, p j) + f (τ2, p j) ≥ f (τ1 + 1, p j) + f (τ2 − 1, p j), then

min
(
f (τ1, p j) + f (τ2, p j)

) = f (τ1 + 1, p j) + f (τ2 − 1, p j)

moreover,

f (τ1 + 1, p j) + f (τ2 − 1, p j) = f (τ1 + τ2, p j) = f (Q, p j)

hence,

min
(
f (τ1, p j) + f (τ2, p j)

) = f (Q, p j)

��

123

1126 Annals of Operations Research (2022) 312:1119–1141

From Theorem 1, we know that job splitting will increase the total processing time when
considering learning effect.

Theorem 2 Let π be an optimal schedule of SPS, then all sub-jobs coming from the same lot
and scheduled on the same seru i should be processed as a single sub-job in π .

Proof Assume that job j has sub-jobs 1 with τ1 quantities and sub-jobs 2 with τ2 assigned
on the same seru i , and sub-jobs 1 is assigned before sub-jobs 2 while sub-jobs 1 and 2 are
not allocated continuously. Now, let sub-jobs 1 move to the front of sub-jobs 2, and job j’s
total processing time will decrease as f (τ1 + τ2, p j).

According to Theorem 1 (2), we know that f (τ1 + τ2, p j) ≤ f (τ1, p j) + f (τ2, p j).
Therefore, all sub-jobs coming from the same lot and scheduled on the same seru i should
be processed as a single sub-job in the optimal schedule π . ��
Theorem 3 For each single seru i in SPS, there exists an optimal schedule π that assigns
sub-jobs follow the same lot.

Proof . Assume that π is an optimal schedule, and the last completed sub-job of job j is
completed in seru i . Subsequently, check other sub-jobs of job j assigned in other serus
in SPS. If these sub-jobs are moved to the last position in its original seru, then job j’s
completion time will remain the same. According to Theorem 2, the completion time of all
other jobs will maintain stable or decrease. Hence, by removing job j , an optimal schedule
which is no worse than the original one will be obtained. Therefore, all the assigned sub-jobs
from job j could follow the same lot. ��

3 Model formulation

Based on Theorems 1–3, the non-linear integer programming model of seru scheduling
problems considering DeJong’s learning effect and job splitting is constructed in this section.

3.1 Notation

i seru index, i ∈ I ≡ {1, 2, . . . , nI }
j job index, j ∈ J ≡ {1, 2, . . . , nJ }
r position index, r ∈ {1, 2, . . . , nJ }
p j processing time of job j
pr j processing time of job j in the r th repetition
N j number of job j
a a constant, such that a ≥ max j N j

qi j quantities of job j assigned to seru i
ci j completion time of job j at seru i
CTj completion time of job j
M incompressible factor, 0 ≤ M ≤ 1
b learning index, −1 ≤ b ≤ 0
T total completion time of all jobs

xi jk =
{
1, if qi j > k;
0, otherwise.

y jr =
{
1, if j is assigned in the position r;
0, otherwise.

123

Annals of Operations Research (2022) 312:1119–1141 1127

zi j =
{
1, if qi j > 0;
0, otherwise.

3.2 Modeling

The objective of seru scheduling problem considering learning effect and job splitting in this
paper is to minimize the total completion time, thus:

min T =
nJ∑

j=1

CTj (2)

Since each job in SPS has one position in the sequence, so
∑nJ

j=1 y jr ≤ 1, r = 1, 2, . . . , nJ∑nJ
r=1 y jr ≤ 1, j = 1, 2, . . . , nJ

(3)

Further, the sum of items quantity from job j assigned to seru i is equal to the total items
number of jobs j , here

nI∑

i=1

qi j = N j , j = 1, 2, . . . , nJ (4)

Also, the items quantity of job j assigned to seru i can be interpreted by the binary variable
xi jk as

qi j =
N j∑

k=1

xi jk, i = 1, 2, . . . , nI , j = 1, 2, . . . , nJ (5)

Moreover, if there are two quantity constants k and k
′
, and k

′
> k, then

xi jk ≥ xi jk′ ,∀k ′
> k (6)

Because the items quantity of job j assigned to seru i is non-negative integer, and zi j is a
binary variable, hence

qi j ≥ zi j (7)

Similarly,

azi j ≥ qi j (8)

Considering the DeJong’s learning effect, the processing time of job j in the r th repetition
is

p jr = p j (M + (1 − M)rb) (9)

where −1 ≤ b ≤ 0, 0 ≤ M ≤ 1. M = 0 imply a completely manual operation as Wright’s
model, and M = 1 represents p jr = p j , respectively. Hence, the completion time of job j
at seru i can be denoted as

ci j = zi j
∑nJ

r=1 y jr
(∑r

m=1
∑nJ

n=1 ynm pn
∑Nn

k=1 xink(M + (1 − M)rb)
)

i = 1, 2, . . . , nI ; j = 1, 2, . . . , nJ
(10)

123

1128 Annals of Operations Research (2022) 312:1119–1141

where Eq. (10) is a non-linear constraint which contains themultiplication of xi jk , y jr and zi j .
In addition, the completion time job j at seru i should be less than or equal to the completion
time of job j , thus

ci j ≤ CTj (11)

Finally, there are also have some logical constraints as

xi jk, y jr , zi j ∈ {0, 1},∀i, j, k, r
nI , nJ , N j , qi j ∈ Z
T ,CTj ∈ R,∀i, j, k, r
−1 ≤ b ≤ 0, 0 ≤ M ≤ 1

(12)

Hence, the non-linear integer programming model of seru scheduling problem considering
DeJong’s learning effect and job splitting could be constructed as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min T = ∑nJ
j=1 CTj

s.t .

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑nJ
j=1 y jr = 1

∑nJ
r=1 y jr = 1

ci j ≤ CTj∑nI
i=1 qi j = N j

qi j = ∑N j
k=1 xi jk

ci j = zi j
∑nJ

r=1 y jr
(∑r

m=1
∑nJ

n=1 ynm pn
∑Nn

k=1 xink(M + (1 − M)rb)
)

xi jk ≥ xi jk′ ,∀k ′
> k

qi j ≥ zi j
azi j ≥ qi j
xi jk, y jr , zi j ∈ {0, 1},∀i, j, k, r
nI , nJ , N j , qi j ∈ Z
T ,CTj ∈ R,∀i, j, k, r
−1 ≤ b ≤ 0; 0 ≤ M ≤ 1
r = 1, 2, . . . , nJ ; i = 1, 2, . . . , nI ; j = 1, 2, . . . , nJ

(13)

3.3 Model analysis

Assume that now there are nI parallel serus in SPS, and the quantity of jobs assigned to seru
i is Ni = ∑nJ

j=1 qi j , i = 1, 2, . . . , nI . Thus, the allocation of nJ jobs to nI serus can be
expressed as

A(nJ , nI) =
⎛

⎝
nJ∑

j=1

q1 j ,
nJ∑

j=1

q2 j , . . . ,
nJ∑

j=1

qnI j

⎞

⎠ (14)

with
∑nI

i=1 Ni = nJ . Therefore,
∑nJ

j=1 CTj can be rewritten as

nJ∑

j=1

CTj =
nI∑

i=1

Ni∑

r=1

(Ni − r + 1)[p j (M + (1 − M)rb)] (15)

Since each item of job can be only processed in one position of seru and each position of
seru also can only process one item of job, so if the vector A(nJ , nI) is given, then the seru

123

Annals of Operations Research (2022) 312:1119–1141 1129

scheduling problem reduced to the matching problem with the objective:

min T =
nJ∑

j=1

Ni∑

r=1

p jθ jr (16)

where θ jr = (Ni − r + 1)[(M + (1 − M)rb)], i = 1, 2, . . . , nI , r = 1, 2, . . . , Ni . For
provide the complexity result on seru scheduling problem, the following lemma should be
stated first.

Lemma 1 Let αn and βn be two sequences of non-negative numbers, and the sum of products∑N
n=1 αnβn is the smallest if the sequences are monotonic in the opposite way, while the

largest if the sequences are monotonic in the same way.

Proof See Hardy et al. (1967) on Page 261. ��
According to Lemma 1, for Eq. (16), the largest processing time should be matched to

the smallest θ jr , the second largest processing time with the second smallest θ jr , and so on.
Hence, the minimum total completion time of seru scheduling problem is obtained.

Theorem 4 For the seru scheduling problem of SPS considered in this paper, it is polynomial
solvable in O(nnIJ lognJ) time given the number of serus nI .

Proof For the allocation of nJ jobs to nI serus A(nJ , nI), Ni = ∑nJ
j=1 qi j may be

0, 1, . . . , nJ for i = 1, 2, . . . , nI . Thus, if the number of jobs on the first nI − 1 serus
is known, the number of jobs processed on the last nI seru could be determined uniquely
because

∑nI
i=1 Ni = nJ . Therefore, an upper bound on the number of allocations A(nJ , nI)

is (nJ +1)(nI−1). Moreover, as a matching problem, min
∑nJ

j=1 p jθ j requires O(n logn) time
to solve (Ji and Cheng, 2010). In this case, the seru scheduling problem of SPS in this paper
min

∑nI
i=1

∑Ni
r=1 p jθ jr is solvable in O(nnIJ lognJ) time. ��

4 Solutionmethods

4.1 Branch and bound algorithm (B&B)

According to Theorem 4, the proposed seru scheduling problem model is polynomial solv-
able. Hence, branch and bound algorithm (B&B) is designed to solve the small-sized seru
scheduling problem. In B&B, a node at the lth level in B&B tree represents a partial schedule
where l jobs are scheduled. Let j[l]i be the distributing array of job j[l], and

j[l]i = {δ j[l]1, δ j[l]2, . . . , δ j[l]nI }∑nI
i=1 δ j[l]i = N[j]

(17)

where j[l] is lth assigned job index. Thus, the node at lth level ξl can be defined as:

ξl = {
(j[1], j[l]i), (j[2], j[2]i), . . . , (j[l], j[l]i)

}
(18)

For example, assume that there is a SPS with two serus and three jobs need to be scheduled.
Node {(1, (1, 1)), (3, (2, 2)), (2, (3, 2))} indicates that job 1 is split into two sub-jobs, and
one is assigned to seru 1, while the other assigned to seru 2. Similarly, job 3 is also split into
two sub-jobs, and two items are assigned to seru 1, while other two items are assigned to
seru 2. Job 2 is split into two sub-jobs, and three items are assigned to seru 1, while other

123

1130 Annals of Operations Research (2022) 312:1119–1141

two items are assigned to seru 2. Further, the schedule sequence is job 1 → job 3 → job 2.
For branching in B&B algorithm, the depth-first strategy with complete node enumeration is
employed (Clausen and Perregaard, 1999), and the following dominance rule (DR) will be
used in B&B algorithm: assume that there are two partial solutions π1 and π2 for the seru
scheduling problem of SPS, and they are both assigned the same jobs to the serus. Without
loss of generality if workloads of all serus in π1 are no larger than that in π2, and current π1’s
total completion time is no larger than π2, then π1 dominates π2 , and the partial solution π2

should be deleted from B&B process.
In addition, the lower bound (LB) of given node will be determined as follows. Let π be

a given node, and JA be the set of assigned jobs, while JN A be the set of unassigned jobs.
Without splitting, the unassigned jobs in JN A are re-indexed according to the total process-
ing time by the ascending order as 1, 2, . . . , |JN A|. Let wnI = (w1, w2, . . . , wnI), wi <

wi+1, i = 1, 2, . . . , nI − 1 be the vector of current serus workload for the node π , then LB
of π can be obtained by the following theorem.

Theorem 5 Define a function as

gw(x) =
nI∑

i=1

max{x − wi , 0}, x ∈ (wi ,+∞) (19)

where g−1
w is its inverse function. c j is the completion time of job j , and AWj is the possible

additional workload from unassigned job. Then, the lower bound (LB) of the node π is the
completion time of assigned job j plus the additional workload from unassigned job, i.e.,

L B =
∑

j∈JA

c j +
|JN A|∑

j=1

g−1
w

⎛

⎝
j∑

ι=1

AWι

⎞

⎠ (20)

Proof If x ∈ [wi , wi+1], wi < wi+1, i = 1, 2, . . . , nI − 1, then

gw(x) =
nI∑

i=1

max{x − wi , 0} =
i∑

κ=1

(x − wκ) (21)

Evidently, gw(x) increases monotonously with x in interval [wi , wi+1]. If x ≥ wnI , then

gw(x) =
nI∑

i=1

max{x − wi , 0} =
nI∑

i=1

(x − wi) (22)

and gw(x) still increases monotonously with x in [wnI ,+∞]. Since the function gw(x) is
continuous, thus, in the whole definition domain, its monotonicity is preserved. In other
words, gw(x) increases monotonously with x ∈ (w1,+∞).

Moreover, the optimal schedule assigns jobs in a fixed sequence according to Theo-
rems 2 and 3. Assume that the unassigned jobs in JN A are allocated in the sequence
[1], [2], . . . , [|JN A|] and the completion time is c j ≤ c j+1. Now, proving

g−1
w

⎛

⎝
j∑

ι=1

AWι

⎞

⎠ ≤ c[j] (23)

equals to

gw(c[j]) =
nI∑

i=1

max{c[j] − wi , 0} ≥
j∑

ι=1

AWι (24)

123

Annals of Operations Research (2022) 312:1119–1141 1131

according to gw(x)’s monotonically increasing. For the left side,
∑nI

i=1 max{c[j] − wi , 0} is
greater than or equal the additional workload of [1], [2], . . . , [j] jobs assigned to the seru,
while for the right side,

∑ j
ι=1 AWι is the minimum additional workload of [1], [2], . . . , [j].

In addition,
∑

j∈JA c j is a fixed value in node π , thus, LB for nodes π in the B&B process
is obtained and the Theorem 5 is proved. ��

Based on the discussion above, the detailed B&B algorithm procedure is shown as Algo-
rithm 1.

Algorithm 1: Procedure of B&B algorithm for seru scheduling problem

1 Step 1. Define the node set s = ∅, and no job assigned in node π0. Let s = s ∪ π0, and the upper bound
UB= +∞.

2 Step 2. Select a node πl with the deepest level from s. Then, for the nodes with the same level l, the
node with the minimum lower bound (LB) is also obtained by Eq. (20).

3 Step 3. Denote JA as the assigned job set of node π , and the job set which is not assigned yet is
JN A = nJ − JA .

4 Step 4.
5 while JN A �= ∅ do
6 select a job j ∈ JA , and let H be the set of all possible distributing arrays satisfying Eq. (17);
7 while H �= ∅ do
8 select h ∈ H , then let πl+1 = πl ∪ (j, h) and LB(πl+1) be the lower bound of πl+1;
9 if l + 1 < nJ then

10 if LB(πl+1) < UB and πl is not dominated by the existing nodes using DR then
11 s = s ∪ {πl+1}, H = H − h;
12 end
13 end
14 else Calculate the total completion time T of πnJ ;
15 if T < UB then
16 T = UB, and πnJ = πmin;
17 end
18 end
19 JN A = JN A − j ;
20 end
21 Step 5. Repeat step 2 until s = ∅. Step 6. Output the optimal schedule πmin.

4.2 Local search-based hybrid genetic algorithm (LS-hGA)

Although the B&B algorithm proposed in the last subsection is useful at solving small-sized
seru scheduling problem, its computational time is still exponentially growing as the schedul-
ing parameters. In this case, to solve the large-sized seru scheduling problem efficiently, a
local search-based hybrid genetic algorithm (LS-hGA) employing shortest processing time
(SPT) rule will be design in this subsection. In fact, hybrid genetic algorithm has been proved
to be effective for the production scheduling problems already (Al-Hakim, 2001; Defersha
and Rooyani, 2020; Li and Gao, 2016; Zhang et al., 2009).

4.2.1 Individual representation

In this paper, the optimization seru scheduling problem concerns two points: one is deter-
mining job’s sequence in SPS, and the other is job’s splitting. According to the structure of

123

1132 Annals of Operations Research (2022) 312:1119–1141

proposed model and the analysis mentioned above, the encoding approach in this paper is
based on two dimensions chromosome. Each chromosome in LS-hGA includes job’s index
order

OI = { j[1], j[2], . . . , j[nJ]} (25)

and job’s splitting ratio in nI serus

SR = {sri j }, i = 1, 2, . . . , nI , j = 1, 2, . . . , nJ (26)

satisfying
∑nI

i=1 sri j = 1, sri j ∈ [0, 1]. Therefore, the complete chromosome could be
denoted as Ch = {

OI , {sri j }
}
.

In LS-hGA, the splitting ratio sri j can be decoded by

qi j = �sri j × N j�,∀i < nI
qnI j = N j − ∑nI−1

i=1 �sri j × N j� (27)

Hence, chromosome’s total completion time can be gained if qi j and the scheduling sequence
are obtained.

4.2.2 Procedure of genetic algorithm

Denote the hth individual of LS-hGA in the t th generation as

Chh,t =
{
OIh,t , SRh,t

}
=

{
{ j h,t

[1] , j h,t
[2] , . . . , j h,t

[nJ]}, {sri j }h,t
}

(28)

where h ∈ H = 1, 2, . . . , n pop−si ze. For each generation t , the population will be evolved
according until the maximum iteration number tmax is reached, and the best individual will
be selected to perform the local search. The detailed procedure of LS-hGA is presented in
Algorithm 2 and 3.

Algorithm 2: Procedure of local research

1 Step 1. In SPS, find the seru i
′
having the maximal load. Then, denote the last assigned job index as j

′
,

and the sub-job size as Q
i ′ j ′ . Remove Q

i ′ j ′ items sub-job from seru i
′
.

2 Step 2. Confirm the seru i
′′
having the minimum load. If Q

i ′′ j ′ is the sub-job size of job j
′
assigned to

seru i
′′
, then let Q

i ′′ j ′ = Q
i ′′ j ′ + 1, while Q

i ′ j ′ = Q
i ′ j ′ − 1.

3 Step 3. If Q
i ′ j ′ = 0, stop. If the total completion time is smaller than the original one, then the original

chromosome is replaced. Otherwise, go to the step 2.

5 Computation results and analysis

To test the performance of B&B algorithm for the small sized seru scheduling problems
and LS-hGA for the large sized ones, two sets of numerical experiments are conducted and
performances are analyzed.

123

Annals of Operations Research (2022) 312:1119–1141 1133

Algorithm 3: Procedure of hGA
1 Step 1. Set h = 1.
2 Step 2. From the parent chromosomes, select the chromosome according to the minimum total
completion time ci j . Then, put this chromosome into the children population, and h = h + 1.

3 Step 3.Following the roulette wheel rules, select two parents with index h1 and h2. Generate an integer
in [0, nJ] randomly, and denote it as I N1.

4 Step 4. To generate child’s job sequence, let the first I N1 job index equal to the first I N1 jobs’ indices

from OIh2,t . Subsequently, select the left nJ − I N1 jobs’ indices from OIh2,t . In this process, by
crossover, the fixed scheduling sequence, i.e., shortest processing time (SPT) rule is used to generate
the children sequence.

5 Step 5. In order to generate the job splitting of child, set the first job distributing array I N1 and

nJ − I N1 job distributing array from SRh1,t , respectively.
6 Step 6. Randomly generate an integer in [0, nJ] again and denote it as I N2, and generate a real number
RN randomly in [0, 1] if RN < Pmutation . The new generated array will replace I N2 job distributing
array.

7 Step 7. Set h = h + 1.
8 Step 8. If h < n pop−si ze , go back to the step 3.

5.1 Experiments settings

The following procedure will be used to randomly generate two sets of numerical experi-
ments:

(1) Data setting for small sized seru scheduling problems: nI = {2, 3, 4, 5}, nJ =
{6, 7, 8, 9, 10}, and items quantity of per job is an integer randomly generated from
uniform distribution within [1, 10].

(2) Data setting for large sized seru scheduling problems: nI = {5, 10, 15, 20}, nJ =
{20, 40, 60, 80, 100}, and items quantity of per job is an integer randomly generated
from uniform distribution within [1, 100].

In addition, the processing time of a single item for a job j is also an integer generated from
the discrete uniform distribution within [10, 100]. For each combination of nI and nJ , 100
numerical examples are generated randomly. Further, set learning index b = −0.8, M = 0.5,
n pop−si ze = 100, tmax = 500, Pcrossover = 0.7 and Pmutation = 0.3. All experiments are
conducted on Windows 10 with an Intel 7, 8 GB RAM system, and the algorithms are
developed with MATLAB R2019a.

5.2 Results and analysis

5.2.1 Computational results of the B&B algorithm

The computational results of the B&B algorithm for the small sized seru scheduling problems
are shown in Table 1. From Table 1, we determine that the B&B algorithm can solve the small
sized problems efficiently when nI ≤ 3, nJ ≤ 8, and the item of per job is smaller than
10. However, its computational time will grow exponentially as the scheduling parameters
increase, and uncompleted test times will also grow vigorously when nI ≥ 4, nJ ≥ 9. In
this situation, we can conclude that B&B algorithm cannot cope with the large sized seru
scheduling problems considered in this paper, and the requirement of LS-hGA is justify
manifestly.

123

1134 Annals of Operations Research (2022) 312:1119–1141

Table 1 Computational results of
B&B algorithm for small sized
problems

nI n J Uncompleted test times CPU time
(millisecond)

2 6 0 1.62

7 0 2.97

8 0 10.40

9 0 55.39

10 0 173.26

3 6 0 3.87

7 0 29.61

8 0 2647.66

9 0 142691.35

10 18 –

4 6 0 67.82

7 0 1524.33

8 0 643212.08

9 33 –

10 41 –

5 6 0 188.92

7 0 3567.28

8 38 135887.67

9 44 –

10 50 –

5.2.2 Computational results of LS-hGA

Similarly, the computational results of the LS-hGA for small sized seru scheduling prob-
lems are presented in Table 2, where RD1 is the relative deviation of the optimal schedule
obtained by LS-hGA from the result of instance obtained by B&B algorithm, and RD1 can
be calculated by

RD1 =
∑100

γ=1 RD
1
γ

100 × 100%

RD1
γ = TLS−hGA−TB&B

TB&B
× 100%

(29)

After 50 runs of LS-hGA, TLS−hGA is the average total completion time, and TB&B is the
optimal solution of instance gained from by B&B algorithm. Table 2 shows that LS-hGA
has a relatively steady calculation CPU time compared with B&B algorithm, and the average
CPU time of LS-hGA is just 146.72 milliseconds. The larger of nI and nJ , the more obvious
computational time advantage of LS-hGA. Moreover, when nI is fixed, RD1 will increase
following the nJ ; while the RD1 will increase following the nI even though nJ /nI decreases.

Further, the computational results of the LS-hGA for large sized seru scheduling problems
are provided in Table 3, where RD2 is the relative deviation of the optimal schedule provided
by LS-hGA from the best solution Tmin. Similarly, RD2 is obtained by

RD2 =
∑100

γ=1 RD
2
γ

100 × 100%

RD2
γ = TLS−hGA−Tmin

Tmin
× 100%

(30)

123

Annals of Operations Research (2022) 312:1119–1141 1135

Table 2 Computational results of
LS-hGA for small sized problems nI n J CPU time (millisecond) nJ /nI RD1(%)

2 6 116.28 3.00 1.19

7 122.91 3.50 2.31

8 119.37 4.00 3.72

9 107.43 4.50 4.01

10 131.72 5.00 5.29

3 6 146.72 2.00 4.11

7 181.48 2.33 6.69

8 147.66 2.66 7.33

9 176.35 3.00 10.26

10 188.27 3.33 –

4 6 138.61 1.50 8.17

7 184.22 1.75 10.23

8 149.42 2.00 14.92

9 163.24 2.25 –

10 171.49 2.50 –

5 6 162.93 1.20 10.59

7 188.37 1.40 12.74

8 164.26 1.60 18.37

9 201.38 1.80 –

10 173.57 2.00 –

Similarly, TLS−hGA is the average total completion time, and Tmin is the minimum total
completion time of all 50 runs.

FromTable 3, we know that LS-hGA still effective for solving the large sized seru schedul-
ing problems. On the hand, CPU time is more sensitive with the quantities of serus nI , for
example, the CPU time runs-up sharply from nI = 15 to nI = 20. On the other hand, if nI
is fixed, the CPU time is almost steady. RD2 is also sensitive with the quantities of serus
nI , and it also generally increases following the quantities of jobs nJ increasing. Hence, in
practice, the production manager must let the appropriate quantities of serus be a top priority
in SPS to improve the efficiency of system.

5.2.3 Comparison analysis

To scrutinize the management insights for seru production practice, comparison analysis for
both job splitting and Dejong’s learning effect are made.

For evaluating the effect of job splitting in seru scheduling problem, the comparison of
RD2 with un-splitting is performed by the large sized problems, and the results are shown
in Table 4. It can be known that when nJ /nI is large, the performance of un-splitting type is
better, and when nJ /nI is small, the job splitting performs well. That is because if nJ /nI is
large, earlier job splitting may have significant indirect costs to unassigned jobs in production
practice, such as the extended set-up time, insufficient learning effect, and so on. If nJ /nI is
small, earlier job splitting will not have many additional costs to unassigned jobs because the
balance between serus is one of the most important factors to minimize the total completion
time for SPS.

123

1136 Annals of Operations Research (2022) 312:1119–1141

Table 3 Computational results of
LS-hGA for large sized problems nI n J CPU time (millisecond) nJ /nI RD2 (%)

5 20 724.66 4.00 6.54

40 768.39 8.00 10.21

60 836.47 12.00 14.33

80 810.14 16.00 16.57

100 859.62 20.00 20.49

10 20 924.16 2.00 29.48

40 897.63 4.00 33.06

60 975.29 6.00 42.62

80 1027.68 8.00 40.97

100 1283.87 10.00 51.65

15 20 2479.35 1.33 56.09

40 2184.20 2.67 67.17

60 2639.47 4.00 69.61

80 2968.44 5.33 72.24

100 3047.92 6.67 78.55

20 20 10627.09 1.00 74.32

40 13412.75 2.00 86.37

60 12141.96 3.00 82.96

80 16843.77 4.00 93.08

100 18642.55 5.00 89.70

Table 4 Comparison of RD2 for
job un-splitting and splitting

nI n J n J /nI Splitting Un-splitting

5 20 4.00 6.54 9.15

40 8.00 10.21 9.82

60 12.00 14.33 5.33

80 16.00 16.57 6.75

100 20.00 20.49 6.06

10 20 2.00 29.48 40.27

40 4.00 33.06 38.96

60 6.00 42.62 50.09

80 8.00 40.97 40.18

100 10.00 51.65 39.42

15 20 1.33 56.09 90.44

40 2.67 67.17 86.21

60 4.00 69.61 88.14

80 5.33 72.24 83.82

100 6.67 78.55 87.66

20 20 1.00 74.32 98.53

40 2.00 86.37 92.45

60 3.00 82.96 95.09

80 4.00 93.08 97.75

100 5.00 89.70 95.80

123

Annals of Operations Research (2022) 312:1119–1141 1137

Fig. 5 Total completion time T with M = 1 (nI = 5)

Fig. 6 Total completion time T with M = 1 (nI = 10)

Further, for testing the Dejong’s learning effect on seru scheduling problems, the incom-
pressibility factor M = 1 is performed by the large sized problems (no learning effect).
Detailed results for each case (nI = 5, 10, 15, 20, nJ = 20, 40, 60, 80, 100) with different
values of T are shown in Figs. 5, 6, 7 and 8.

Generally, for seru scheduling problems, the influence on the total completion time T
from learning effect is significant. T usually reaches the maximum value (the worst one) in
each case when M = 1. We also find that the learning effect becomes more evident along
with more nJ jobs in the same amount of seru since increased range of the total completion

123

1138 Annals of Operations Research (2022) 312:1119–1141

Fig. 7 Total completion time T with M = 1 (nI = 15)

Fig. 8 Total completion time T with M = 1 (nI = 20)

time T is descending. For example, T (nI = 5, nJ = 20) − T (nI = 5, nJ = 40) > T (nI =
5, nJ = 40) − T (nI = 5, nJ = 60). This phenomenon indicates that the learning effect
should be considered in practice for seru production managers, especially when nJ /nI is
large. Moreover, it is interesting to observe that the slope learning curve is decrease from
M = 0 → M = 0.5 to M = 0.5 → M = 1, which indicates that the job’s processing
time of decrease continuously and stabilize to a fixed value even M = 0 (the strongest
learning effect). Hence, the advantage of DeJong’s learning effect is validated. Therefore, to

123

Annals of Operations Research (2022) 312:1119–1141 1139

achieve high production efficiency, flexibility, and quick response, seru production managers
of should also give attention of DeJong’s learning effect in SPS.

6 Conclusions

This paper concerns with the scheduling problem in seru production system considering
DeJong’s learning effect and job splitting to minimize the total completion time. A non-
linear integer programmingmodel is developed, and B&B algorithm is designed for the small
sized problem while LS-hGA is for the large one. Computational results of experiments
demonstrate the effectiveness of proposed solution methods. Managerial insights are also
provided to seru production managers.

Future research will focus on applying the proposed model and algorithm to other seru
types including the divisional seru and rotating seru. Also, considering the conflicts of dif-
ferent decision goals in the practical decision-making process, the multi-objective model
should be considered in seru scheduling problem. Additionally, the uncertain factors, such as
stochastic product processing time, uncertain worker’s shortage, or redundancy, also should
be concerned. Finally, software development for the practical application in SPS based on
this paper is supposed to be considered in the future.

Acknowledgements This research was sponsored by National Natural Science Foundation of China (Grant
Nos. 71401075, 71801129), the Natural Science Foundation of Jiangsu Province (Grant No. BK20180452),
and the Fundamental Research Funds for the Central Universities (Grant No. 30920010021). We would like
to give our great appreciation to all the reviewers and editors who contributed this research.

References

Al-Hakim, L. (2001). An analogue genetic algorithm for solving job shop scheduling problems. International
Journal of Production Research, 39(7), 1537–1548.

Ayough, A., Hosseinzadeh, M., & Motameni, A. (2020). Job rotation scheduling in the seru system: Shake
enforced invasive weed optimization approach. Assembly Automation, 40(3), 461–474.

Bachman, A., & Janiak, A. (2004). Scheduling jobs with position-dependent processing times. Journal of the
Operational Research Society, 55, 257–264.

Biskup, D. (1999). Single-machine scheduling with learning considerations. European Journal of Operational
Research, 115(1), 173–178.

Biskup, D. (2008). A state-of-the-art review on scheduling with effects. European Journal of Operational
Research, 188, 315–329.

Chen, T., Cheng, C., & Chou, Y. (2020). Multi-objective genetic algorithm for energy-efficient hybrid flow
shop scheduling with lot streaming. Annals of Operations Research, 290, 813–836.

Cheng, T., Kuo, W., & Yang, D. (2013). Scheduling with a position-weighted learning effect based on sum-
of-logarithm-processing-times and job position. Information Sciences, 221, 490–500.

Clausen, J., & Perregaard, M. (1999). On the best search strategy in parallel branch-and-bound: Best-first
search versus lazy depth-first search. Annals of Operations Research, 90, 1–17.

Defersha, F., & Rooyani, D. (2020). An efficient two-stage genetic algorithm for a flexible job-shop scheduling
problemwith sequence dependent attached/detached setup,machine release date and lag-time.Computers
& Industrial Engineering, 147, 106605.

D & M Nikkei Mechanical. (2003). The challenge of Canon-Part 3. 588, 70–73.
Hardy, G., Littlewood, J., & Polya, G. (1967). Inequalities. Cambridge: Cambridge University Press.
Hisashi, S. (2006). The change of consciousness and company by cellular manufacturing in Canon Way.

Tokyo: JMAM. (in Japanese).
Huang, R. (2010). Multi-objective job-shop scheduling with lot-splitting production. International Journal of

Production Economics, 124(1), 206–213.

123

1140 Annals of Operations Research (2022) 312:1119–1141

Huang, R., & Yu, T. (2017). An effective ant colony optimization algorithm for multi-objective job-shop
scheduling with equal-size lot-splitting. Applied Soft Computing, 57, 642–656.

Janiak,A., Kovalyov,M.,&Lichtenstein,M. (2013). StrongNP-hardness of scheduling problemswith learning
or aging effect. Annals of Operations Research, 206(1), 577–583.

Ji, M., & Cheng, T. (2010). Scheduling with job-dependent learning effects and multiple rate-modifying
activities. Information Processing Letters, 110, 460–463.

Jiang, Y., Zhang, Z., Gong, X., & Yin, Y. (2021). An exact solution method for solving seru scheduling
problems with past-sequence-dependent setup time and learning effect. Computers & Industrial
Engineering, 158, 107354.

Kaku, I. (2017). Is seru a sustainable manufacturing system? Procedia Manufacturing, 8, 723–730.
Kaku, I., Gong, J., Tang, J., & Yin, Y. (2009). Modelling and numerical analysis of line-cell conversion

problems. International Journal of Production Research, 47(8), 2055–2078.
Kim, H. (2018). Bounds for parallel machine scheduling with predefined parts of jobs and setup time. Annals

of Operations Research, 261, 401–412.
Kim, Y., & Kim, R. (2020). Insertion of new idle time for unrelated parallel machine scheduling with job

splitting and machine breakdowns. Computers & Industrial Engineering, 147, 106630.
Kimura, T., & Yoshita, M. (2004). Remaining the current situation is dangerous: Seru Seisan. Nikkei

Monozukuri, 7, 38–61. (In Japanese).
Kono, H. (2004). The aim of the special issue on seru manufacturing. IE Review, 45(1), 4–5.
Li, X., &Gao, L. (2016). An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling

problem. International Journal of Production Economics, 174, 93–110.
Lian, J., Liu, C., Li, W., & Yin, Y. (2018). A multi-skilled worker assignment problem in seru production

systems considering the worker heterogeneity. Computers & Industrial Engineering, 118, 366–
382.

Liu, C., Yang, N., Li, W., Lian, J., Evans, S., & Yin, Y. (2013). Training and assignment of multi-skilled
workers for implementing seru production systems. International Journal of Advanced Manufacturing
Technology, 69(5–8), 937–959.

Liu,C., Stecke,K., Lian, J.,&Yin,Y. (2014a).An implementation framework for seru production. International
Transactions in Operational Research, 21(1), 1–19.

Liu, C., Wang, C., Zhang, Z., & Zheng, L. (2014b). Scheduling with job-splitting considering learning and
the vital-few law. Computers & Operations Research, 90, 264–274.

Luo, L., Zhang, Z., & Yin, Y. (2016). Seru loading with worker-operation assignment in single period. In
2016 IEEE international conference on industrial engineering and engineering management (IEEM)
(pp. 1055–1058).

Luo, L., Zhang, Z., & Yin, Y. (2017). Modelling and numerical analysis of seru loading problem under
uncertainty. European Journal of Industrial Engineering, 11(2), 185–204.

Luo, L., Zhang, Z., & Yin, Y. (2021). Simulated annealing and genetic algorithm based method for a bi-level
seru loading problem with worker assignment in seru production systems. Journal of Industrial and
Management Optimization, 17(2), 779–803.

Mosheiov, G. (2001). Scheduling problems with a learning effect. European Journal of Operational Research,
132(3), 687–693.

Mosheiov, G., & Sidney, J. (2003). Scheduling with general job-dependent learning curves. European Journal
of Operational Research, 147(3), 665–670.

Nessah, R., & Chu, C. (2010). Infinite split scheduling: a new lower bound of total weighted completion time
on parallel machines with job release dates and unavailability periods. Annals of Operations Research,
181, 359–375.

Nikkei-Business. (2016). How to handle Prius: Its delivery time is more than half a year. Tokyo: Nikkei
Business. (in Japanese).

Noguchi, H. (2003). Production innovation in Japan. Nikkan Kogyo Shimbun. (in Japanese).
Pei, J., Cheng, B., Liu, X., Pardalos, P., & Kong, M. (2019). Single-machine and parallel-machine serial-

batching scheduling problems with position-based learning effect and linear setup time. Annals of
Operations Research, 272, 217–241.

Rostami, M., Nikravesh, S., & Shahin, M. (2020). Minimizing total weighted completion and batch delivery
times with machine deterioration and learning effect: A case study from wax production. Operational
Research, 20(3), 1255–1287.

Roth, A., Singhal, J., Singhal, K., & Tang, C. (2016). Knowledge creation and dissemination in operations
and supply chain management. Production and Operations Management, 25(9), 1473–1488.

Shao, L., Zhang, Z., & Yin, Y. (2016). A bi-objective combination optimisation model for line-seru conversion
based on queuing theory. International Journal of Manufacturing Research, 11(4), 322–338.

123

Annals of Operations Research (2022) 312:1119–1141 1141

Stecke, K., Yin, Y., Kaku, I., &Murase, Y. (2012). Seru: The organizational extension of JIT for a super-talent
factory. International Journal of Strategic Decision Sciences, 3(1), 105–118.

Sun, L., Cui, K., Chen, J., Wang, J., & He, X. (2013). Some results of the worst-case analysis for flow shop
scheduling with a learning effect. Annals of Operations Research, 211, 481–490.

Sun, W., Wu, Y., Lou, Q., & Yu, Y. (2019). A cooperative coevolution algorithm for the seru production with
minimizing makespan. IEEE Access, 7, 5662–5670.

Sun, W., Yu, Y., Lou, Q., Wang, J., & Guan, Y. (2020). Reducing the total tardiness by seru production: Model,
exact and cooperative coevolution solutions. International Journal of Production Reseaech, 58(21),
6441–6452.

Treville, S., Ketokivi, M., & Singhal, V. (2017). Competitive manufacturing in a high-cost environment:
Introduction to the special issue. Journal of Operations Management, 49–51, 1–5.

Wang, L., Zhang, Z., & Yin, Y. (2019). Order acceptance and scheduling considering lot-spitting in seru
production system. In Proceeding of 2019 IEEE international conference on industrial engineering and
engineering management (pp. 1305-1309).

Wang, J., Liu, C., & Zhou, M. (2020). Improved bacterial foraging algorithm for cell formation and product
scheduling considering learning and forgetting factors in cellular manufacturing systems. IEEE Systems
Journal, 14(2), 3047–3056.

Wright, T. (1936). Factors affecting the cost of airplanes. Journal of Aeronautical Sciences, 3, 122–128.
Yamada, H. (2009).Waste reduction. Tokyo: Gentosha. (in Japanese).
Yin, Y., Stecke, K., Swink, M., & Kaku, I. (2017). Lessons from seru, production on manufacturing competi-

tively in a high cost environment. Journal of Operations Management, 49–51, 67–76.
Yin, Y., Stecke, K. E., Li, D. (2018). The evolution of production systems from Industry 2.0 through Industry

4.0. International Journal of Production Research, 56(1&2), 848–861.
Yılmaz, Ö. (2020a). Attaining flexibility in seru production system by means of Shojinka: An optimization

model and solution approaches. Computers & Operations Research, 119, 104917.
Yılmaz, Ö. (2020b). Operational strategies for seru production system: A bi-objective optimisation model and

solution methods. International Journal of Production Research, 58(11), 3195–3219.
Yu, Y., & Tang, J. (2019). Review of seru production. Frontiers of Engineering Management, 6(2), 183–192.
Yu, Y., Gong, J., Tang, J., Yin, Y., & Kaku, I. (2012). How to carry out assembly line-cell conversion?

A discussion based on factor analysis of system performance improvements. International Journal of
Production Research, 50(18), 5259–5280.

Yu, Y., Tang, T., Yin, Y., & Kaku, I. (2013). Reducing worker(s) by converting assembly line into a pure cell
system. International Journal of Production Economics, 145, 799–806.

Yu, Y., Tang, T., Yin, Y., & Kaku, I. (2014). Mathematical analysis and solutions for multi-objective line-cell
conversion problem. European Journal of Operational Research, 236, 774–786.

Yu, Y., Sun, W., Tang, J., & Wang, J. (2017). Line-hybrid seru system conversion: Models, complexities,
properties, solutions and insights. Computers & Industrial Engineering, 103, 282–299.

Zhang, Y., Li, X., &Wang, Q. (2009). Hybrid genetic algorithm for permutation flowshop scheduling problems
with total flowtime minimization. European Journal of Operational Research, 193, 869–876.

Zhang, X., Liu, C., Li,W., Evans, S., &Yin, Y. (2017). Effects of key enabling technologies for seru production
on sustainable performance. Omega, 66, 290–307.

Zhang, Z., Wang, L., Song, X., Huang, H., & Yin, Y. (2021). Improved genetic-simulated annealing algorithm
for seru loading problem with downward substitution under stochastic environment. Journal of the
Operational Research Society. https://doi.org/10.1080/01605682.2021.1939172

Zhang, Z., Song, X., Huang, H., Zhou, X., & Yin, Y. (2022). Logic-based Benders decomposition method for
the seru scheduling problemwith sequence-dependent setup time andDeJong’s learning effect.European
Journal of Operational Research, 297, 866–877.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1080/01605682.2021.1939172

	Scheduling problem in seru production system considering DeJong's learning effect and job splitting
	Abstract
	1 Introduction
	2 Problem description
	3 Model formulation
	3.1 Notation
	3.2 Modeling
	3.3 Model analysis

	4 Solution methods
	4.1 Branch and bound algorithm (B&B)
	4.2 Local search-based hybrid genetic algorithm (LS-hGA)
	4.2.1 Individual representation
	4.2.2 Procedure of genetic algorithm

	5 Computation results and analysis
	5.1 Experiments settings
	5.2 Results and analysis
	5.2.1 Computational results of the B&B algorithm
	5.2.2 Computational results of LS-hGA
	5.2.3 Comparison analysis

	6 Conclusions
	Acknowledgements
	References

