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Abstract
The greenhouse gas emissions due to the energy use in production and distribution in a
supply chain are of interest to industries aiming to achieve decarbonization. The industry
subjected to carbon regulations require recycling and reusing materials to promote a circular
economy through a closed-loop supply chain (CLSC). In this research, we propose a two-
stage stochastic model to design the CLSC under a carbon trading scheme in the multi-period
planning context by considering the uncertain demands and carbon prices. We also provide
a four-step solution procedure with scenario reduction that enables the proposed model to be
solved using popular commercial solvers efficiently. This solutionmakes the proposedmodel
distinguished from the existing models that assume the firms can purchase or sell carbon
creditswithout quantity limitation. The application of the proposedmodel is demonstrated via
simulation-based analysis of the aluminum industry. The results that the proposed stochastic
model generates a network with capacity redundancy to cope with the varying customer
demands and carbon prices, while only a slight increase in cost and emission is observed
compared with the deterministic model. Furthermore, using scenario reduction, the model
solved with 80% of the scenarios share the same CLSC network configuration with the
model with full scenarios, while the deviation of the total costs is less than 0.53% and the
computational burden can be diminished by more than 40%. This research is expected to be
useful to solve optimization problems facing large-scale scenarios with known occurrence
probabilities aiming for energy conservation and emissions reduction.
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1 Introduction

Recent years have witnessed an upsurge of interest in sustainability and environmentally
friendly products and services. In this context, many countries have introduced environmental
regulations to cap and reduce carbon emissions, mainly from energy-intensive sectors such as
the manufacturing sector, which contributes to about a quarter of the greenhouse gas (GHG)
emissions (Xia et al., 2021).

Environmental regulations have a significant impact on the supply chains (SCs) due to
sourcing, manufacturing, distributing, storing, and disposing of products. Many firms reuse
end-of-life or used product parts to remanufacture the products. Such a type of integration of
used parts and new parts for developing the final product is called a closed-loop supply chain
(CLSC). In a CLSC structure, collecting and reprocessing of used products may contribute
to reducing energy and emissions on total production, and at the same time, it promotes the
circular economy. It is to note that energy use and emissions in CLSC are also subject to
change with product configuration (Xu, Elomri, et al., 2017; Yavari & Geraeli, 2019; Yolmeh
& Saif, 2020), use of alternate materials, and changes in the distribution system.

Cap-and-trade is amongst the most common carbon emissions regulations. In order to
implement this regulation, the government authority sets a level for emissions discharged
up to a specific quantity (also known as carbon cap) for a given time period. This specific
quantity is then split into allowances (called permits) and distributed to the firms in a bid to
reduce their emissions. The firms would have to adopt measures to reduce the emissions, and
if they reduce the emissions below the permit, they can sell the remaining part of the permit
in the carbonmarket. Similarly, a firm that is not able to reduce the emissions to the permitted
level can purchase emissions from the market to offset their emissions and remain within the
permitted level (Du et al., 2020). That means cap-and-trade regulation will require a firm to
consider a trade-off between the investment in emissions reduction operations and the carbon
prices in the tradingmarket (Khalifehzadeh&Fakhrzad, 2019). Achieving emission-effective
operations can be reached by investing in energy-efficient equipment and technology as well
as by reprocessing used/end-of-life products (Baptista et al., 2019). Overall, this regulation
allows firms to make decisions on emissions reduction based on their financial incentives
and helps to reduce the overall cost of emissions reduction. Therefore, the variabilities in the
trading price of carbon and demand for the products, and the types of inputs to the production
system become essential in the design of a CLSC (Wang et al., 2017).

In this paper, CLSC facing cap-and-trade regulation is analyzed to obtain an eco-friendly
design. The design considers uncertainty in carbon price aswell as the uncertainties in demand
formultiple products. A set of decision factors, like remanufacturing, green supplier selection
and facility location, selection of transportation modes based on their carbon emissions, and
the logistics flow, are used to develop the CLSC. Three perspectives motivate the design
presented in this paper:

(1) A CLSC can produce multiple products in multiple periods. The interactions in different
periods for different products can increase complexity in the CLSC network configura-
tion.

(2) The implementation of environmental regulation by the government can affect the via-
bility of a business because such a policy can create a new environmental and economic
impact. Therefore, fuel switching, changes in inputs, and changes in the purchase and
production behavior are important for an eco-friendly CLSC design.
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(3) A firm is subjected to uncertainties on the carbon price. There are also uncertainties
on the demand for multiple products in different periods. Therefore, the design of an
eco-friendly CLSC becomes challenging.

In this study, a mixed-integer linear programming (MILP) based model is proposed. The
contributions in this paper are listed as the following:

(1) Most of the existing CLSC models consider a single period or deterministic situation.
However, the model presented here considers CLSC design in the context of the multi-
period stochastic situation. The uncertain demands and carbon prices are first represented
by a set of discrete scenarios with given probabilities of occurrence.

(2) Based on the review, this is one of the first papers that address the impact of the price
volatility (for both purchasing and selling carbon credits unlimitedly) in carbon trading
for a CLSC design in multiple planning contexts. The modeling approach proposed
in this paper allows the firm to make the decision on carbon trading based on carbon
credits. The firm can decide on the amount to trade so that its CLSC is green.

(3) A four-step solution procedure is proposed to assistant to solve the multi-period two-
stage stochastic model with popular commercial solvers, like Cplex or Gurobi, and
avoids long run times. This solution makes the proposed model distinguished from the
existing models that assume that the firms can purchase or sell carbon credits without
quantity limitation. The main advantage of the proposed approach lies in that the firms
are allowed to make decisions on purchasing or selling carbon credits firstly, and then
to decide the optimal quantity.

(4) The results of the simulation-based analysis contribute to the understanding of strategic
and tactical policies by the policymakers when they consider applying the carbon trading
policy.

In the remaining sections of the paper, the literature in this area is analyzed in Sect. 2. The
eco-friendly CLSC design problem is introduced in Sect. 3. The multi-period formulations
are given in Sect. 4. The computational experiment and the data used in the analysis are given
in Sect. 5. The results and discussions are given in Sect. 6. The conclusions from the study
and potential research direction are given in Sect. 7.

2 Literature review

2.1 Eco-friendly supply chain design under carbon trading scheme

The carbon trading scheme is one of the most popular policy constraints in supply chain
design and also affects the cost and emission of the supply system as well as its network
structure. Urata et al. (2017) propose a supply chain design method for the determination
of location for suppliers and processing units (factories) in multiple countries. The authors
optimize the costs by considering emissions reduction ratios and found that the lower factory
cost is an important criterion for assembling products, even if there is an increase in the
emission reduction ratio. The study also shows that the location of the factories should be
switched between the countries when the costs of achieving the emission reduction ratio tar-
get are higher than the procurement costs. Shu et al. (2018) establish a trade-off model using
subsidies and carbon taxes to account for exchanges between the old and the remanufactured
product. The model helps to develop pricing and production decisions for the companies.
M. Wang et al. (2018) considered a refrigerated food supply in a fresh food supply chain
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and show that the cap-and-trade policy can increase supply chain competitiveness through
the utilization of refrigerated logistics and emission permits. Alkhayyal (2019) develop a
MILP model to optimize a reverse supply chain and show that the current carbon tax pol-
icy may not be effective to limit emissions. Manupati et al. (2019) develop a non-linear
mixed-integer programming-based mathematical model for production–distribution supply
chain design with lead time consideration. Considering both sustainability and reliability
factors in supply chain design, Kabadurmus and Erdogan (2020) develop a MILP model to
design a sustainable supply chain by considering supplier reliability. Li et al. (2020) use an
approach base on the interpretative structural model to address the impacts of the four poli-
cies (emission cap, carbon tax, carbon trade, and carbon offset) on coal supply chain design.
The differential evolution strategy combined with the salp swarm algorithm is used to solve
this problem. Elhedhli et al. (2021) investigate the green supply chain design problem with
emission-sensitive demand. In this study, a mixed-integer second-order cone programming
reformulation is used so that the nonlinear model can be solved using commercial software.

A few studies also investigate the supply chain design under a carbon trading scheme
in an uncertain environment. A set of uncertain input parameters, like transportation costs
and demands, are taken into account by Boronoos et al. (2021) in supply chain design under
different carbon emission policies (i.e., the carbon tax, cap, cap-and-trade, and offset mech-
anisms). In this study, a robust mixed flexible-possibilistic programming approach is used
and the result shows that the cap-and-trade policy outperforms other policies in most cases.
A MILP model is developed by Valderrama et al. (2020) to design a multi-echelon, multi-
period, and multi-product environmental mining supply chain design under a carbon trading
scheme. This study reveals that the total supply chain cost and carbon emission increase if
the decision-maker is risk-averse. Considering the uncertainty in the quality of the returned
products, Samuel et al. (2020) build a scenario-based robust model in CLSC design. The
results show that the carbon cap policy affects the network structure much more than does
the carbon cap and trade policy. Homayouni et al. (2021) adopt the robust-heuristic optimiza-
tion approach to design a green supply chain by contemplating uncertainty in all main costs,
like transportation and shortage costs. To address the uncertainty in transportation cost in
CLSC design, Liu et al. (2021) established a distributionally robust fuzzy model to optimize
the worst-case performance of the network.

2.2 Modeling uncertainty with scenario-based approaches in supply chain design

The scenario-based modeling approach is effective and efficient if uncertainties in the supply
chain have to be considered. This approach helps in finding a robust solution for changes in
the environment (Zhou et al., 2019). As a result, more tractable models can be generated by
allowing parameters to be statistically dependent (Snyder, 2006). Consequently, the scenario
approach is often preferred by the industry and it is generally suitable in a combined situation
where decisions can be delayed through the “wait-and-see” and taken instantly through the
“here-and-now” approach (Georgiadis et al., 2011).

Some of the observed studies are performed in a single-period context. Rezaee et al. (2017)
develop a scenario-based stochastic model considering the uncertainty in demand and carbon
price. The authors find that carbon price distribution is a sensitive factor in CLSC design. Two
types of SCs, one with an increased level of robustness called robustly green supply chain
and another with an increased level of greenness called greenly robust SCs are compared
by Fahimnia et al. (2018). The authors mention that having a robustly green supply chain
may be more attractive in terms of financial and branding terms, however, these conclusions
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may differ when the parameters governing the design of the supply chain change. Zhen et al.
(2019) address the uncertain demand in the stochastic programming model for green and
sustainable CLSC design. Hamdan and Diabat (2019) investigate the two-stage stochastic
blood supply chain problem minimizing the cost, delivery time, and the number of outdated
units of the system. The problem is solved in CPLEX with the epsilon-constraint method. A
scenario-based robust approach is adopted by Haghjoo et al. (2020) to reliable blood supply
chain network design with periodic variation in demands and facilities disruptions. The self-
adaptive imperialist competitive algorithm is used to solve the proposed model. Similarly,
Fattahi et al. (2020) a two-stage stochastic model for the supply chain network design under
disruption events. The sample average approximation (SAA)method is used to handle a large
number of disruption scenarios.

Multi-period models are also considered by various authors for the design of CLSC.
Haddadsisakht andRyan (2018) propose a three-stage stochasticmodel. The authors combine
uncertainties in the rates of the carbon tax and probabilistic scenarios for the quantity of
product demand and product return. Mohammed et al. (2017) propose multiple periods based
stochastic model. The uncertain demand and the relevant returned products are modeled in
multiple scenarios with a known probability of occurrence. However, the study does not
consider the volatility of the carbon price in the carbon trading scheme and it only considers
a limited number of scenarios. Salehi et al. (2019) develop a robust stochastic model for
designing a blood supply chain network in crisis. However, only two periods including the
first 24 h, and the 48 h after the crisis are considered. Alizadeh et al. (2019) present a
robust three-stage stochastic model for an olefin supply chain network design with biomass
feedstock seasonality and uncertain carbon emission tax rate. The SAA method is used to
solve a large-scale problem with numerous scenarios. Fattahi and Govindan (2020) develop
a multi-stage stochastic model to supply chain distribution networks under disruption and
demand uncertainty. In this study, the scenarios are reduced with a bundling method. Tolooie
et al. (2020) develop a multi-period two-stage stochastic model for reliable supply chain
network design under uncertain disruptions and demand. The L-shaped method is proved
to solve large-scale problems efficiently. Azaron et al. (2021) establish a multi-objective
two-stage stochastic programming model in responsive supply chains considering uncertain
demands and selling prices. In this study, the SAA scheme is used to handle an infinite number
of scenarios.

2.3 Research gap analysis

The customer demand and carbon price are the two major sources of uncertainties in eco-
friendlyCLSCdesign. The uncertain demands have been discussed explicitly (Haddadsisakht
& Ryan, 2018; Xu, Elomri, et al., 2017; Xu, Pokharel, et al., 2017; Yavari & Geraeli, 2019),
however, research is limited in terms of considering carbon price volatility in CLSC design
(Rezaee et al., 2017; Xu et al., 2019). When the carbon trading policy is enforced, the
organizations are required to make operational decisions periodically to account for factors
like sold or purchased carbon quantities. Furthermore, whether the single-period or multi-
period problems, a large number of scenarios could be involved in solving the scenario-based
models (Alizadeh et al., 2019; Fattahi et al., 2020; Hamdan & Diabat, 2020; Tolooie et al.,
2020). A solution that can be adapted to commercial solvers in solving large-sized real-world
problems is still scarce. The uncertain demands and carbon prices create a more challenging
decision-making situation in terms of the modeling approach and solving the supply chain
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design problem. The review also shows that if uncertainties are considered, the scenario-
based approach is better for a CLSC design (Pan & Nagi, 2010; Zhou et al., 2019). Thus, the
research proposed in Sect. 3 onwards focuses on a scenario-based multiple period stochastic
model to simultaneously capture uncertain customer demand and carbon trading price for
the design of a CLSC.

3 Problem description

Figure 1 shows a general CLSC network. The products manufactured from plants are sent to
the market (customers) through the distribution channel, and the used products are collected
and sorted to either transport them for remanufacturing or to dispose of them. The emissions
due to the operations along the CLSC are calculated by considering the flows of the raw
materials, and new and used (collected) products.

In this study, the random fluctuations of the carbon price and the customer demand during
each planning period are taken into account. It is common to assume that the expected
occurrence of those random events follows a known probability distribution (Azaron et al.,
2021; Khalifehzadeh & Fakhrzad, 2019). Thus, the realization of the random parameters
during a time period forms the decision scenario, whose occurrence probabilities is also can
be obtained. The scenarios can help to generate the possible outcomes for decision-making.
The decisions during each time period should consider a set of scenarios that are incorporated
in both the current time period and former time periods in a path, as shown in Fig. 2. Each
scenario represents a history of the processeswith the occurrence probabilities of the uncertain
parameters. The scenarios are created when all uncertain parameters are realized. Since the
carbon price and demand are dynamic and modeled as independent stochastic processes,
the uncertain information is captured in a multi-layered scenario tree containing both “wait-
and-see” and “here-and-now” decisions (Fattahi & Govindan, 2020). The former is a pre-
determined variable which refers to those such as facility location, which is required for
a decision on a basic network design when the demand realization or the carbon trading
activity is not considered. The latter are control variables including the selection of supplier
and transportation mode, logistics decisions, and the carbon trading decisions, which are
required to address any feasibility owing to a particular set of carbon prices and demands.

The assumptions made to develop the model are given below:

(1) Demand uncertainty for the multiple products is considered independent of each other.

For tes�ng and sor�ng

For disposal

For remanufacturing

Forward  flow
Reverse flow

Supplier(R) plant(M) Distributor hub (D) Customer Zone(C)

Collec�on center(U)Disposal center(V)

Fig. 1 The CLSC network considered in this study
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Uncertainty 
informa�on  

Products 
demand

Carbon 
price

Scenario

t1 t2 t3

Time 
period

t4 t5

Path

t0

Fig. 2 Illustration of the scenario tree for the multi-period CLSC network design

(2) The carbon credit is allowed to be purchased or sold simultaneously during any period.
(3) The products differ from each other in raw material consumption, cost, and emission

due to the operation, but with the same customer demand pattern.
(4) The transport is outsourced and several modes are provided by transporters with the

negotiated price.
(5) The selections of the non-strategic supplier for parts or materials and logistics with

different transportation modes can be changed at the beginning of each period, but not
during a period (Mohajer Tabrizi et al., 2016). The shift or the reallocation of their orders
with extreme inequality between several suppliers is a common tactic to gain resilience
in the manufacturing industry, like the automobile industry and the metal-processing
industry.

(6) Though the carbon price is time-varying, it is unnecessary to make decisions on carbon
trading activity every day. Because whether carbon credit is purchased or sold, the
enterprise should take some measures to offset the credits. However, it would take a
relatively long time to arrange such operational measurements and see the results of
those efforts. The managers are required to make decisions on purchasing or selling the
carbon credits at the beginning of each period.

4 Mathematical model

4.1 Parameters and sets

P Products (p � 1..P)

R Supplier candidates(r � 1..R)
M Factory or plant candidates (m � 1 . . . M)
D Distribution center candidates (d � 1 . . . D)
U Collection center candidates (w � 1 . . .U )
V Disposal center candidates (u � 1 . . . V )
C Customer zones (c � 1 . . .C)
N All nodes (n � 1..N ), N � R ∪ M ∪ D ∪ U ∪ V
F Transportationmodes ( f � 1..F)
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T Periods, (t � 1…T)
HD Discrete events associated with the demand levels of products, indexed by hd
HP Discrete events associated with the carbon prices, Indexed by hp
∅ Combined events belonging to HD and HP {(hd, hp) | (hd ∈ HD, hp ∈ HP}; CSC

CSC � ∅1 × ∅2 × · · · ∅t , set of scenarios
∅st : Combined event of the scenario s at period t, s ∈ CSC
CTft Unit transportation cost using transportation mode f in period t;
Crt Unit purchasing cost at supplier r in periodt
CFpit Unit processing cost of product pat facility i in forward logistics in period t , i ∈

M ∪ D
CBpjt Unit processing cost of product pat facility j in reverse logistics in period t , j ∈

U ∪ V ∪ M
CFi mathrmFixed cost f or the f acili t y i
di j Distance between nodesiand j , i , j ∈ N
CPr Manufacturingcapacityofsupplierr
C PFm Manufacturing capacity of manufacturerm;
CPFd Distributing capacity of distribution center d
CPBm Remanufacturing capacity of manufacturerm
CPBn The capacity of facility nin reverse logistics
CUH p Capacity utilization rate of per unitproduct p
DMhd

pct Demand of customer cfor product pin period t , when occurring event hd ∈ HD
RRp Recovery rate for product p
RDp Disposal ratio of products p
RM p Remanufacturing rate of products p
RL Number limitation of suppliers in each period
ET f t Emission using transportation mode f in period t , in ton per mile
ERrt Emission for handling unit material at supplier r in period t
E F pit Emission for handling unit product pat facility i in forward logistics in period t , i ∈

M ∪ D
EBpjt Emission for handling unit product pat facility j in reverse logistics in periodt , j ∈

U ∪ V∪
Max: A very large number
Capt Carbon cap in period t
δ
hp
t : Carbon price in the carbonmarket in period t , considering event hp ∈ HP
PBhd Occurrence probability of the demand level, hd ∈ HD
PBhp Occurrence probability of the carbon price, hp ∈ HP
PBs Occurrence probability of scenario s, PBs �

(PBhd PBhp)∅s1(PBhd PBhp)∅s2 · · · (PBhd PBhp)∅st

4.2 Decision variables

wr f t , wm f t , wd f t , wc f t , wu f t ,

1if the transportationmode f is adopted in periodtby facility R,

M, D, C, or U separately for shipping the products to its customers ; 0otherwise;

xi 1 If the facility at location i is chosen ; 0 otherwise, i ∈ N
yrt 1 If the supplier r is selected in period t ; 0 otherwise, i ∈ S ∪ M ∪ D ∪U ∪ V
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Qrm f s
t Material quantity shipped from supplier r to plantmusing transportationmode f at

timet , in scenarios
Qi j f s

pt Quantity of product p shipped from i to j using transportation mode f at time t in
scenario s, i , j ∈ N

ϕs
t carbon credit bought or sold in period t underscenarios, ϕ ≥ 0 if the carbon credit

is purchased from.
the market, otherwise ϕ < 0.

4.3 Objective function

The objective function for cost minimization is given in Eq. (1) with the fixed cost (ZF),
cost of product purchase (Z P), the cost for manufacturing (ZM), the cost for distribution
(ZD), costs for transportation cost (ZT ), costs to handle reverse logistics (Z B), and the costs
of emissions. Since the uncertainties are modeled through multiple scenarios, the expected
variable cost is the sum of probability multiplied by the resulting cost for all scenarios. As
the emission cost is determined by the quantities traded in the carbon market, the cost is
estimated after calculating the total emissions.

Minimize Z � ZF + ZP + ZM + ZT + ZB +
∑

s, t

P Bsδ
hp
t ϕs

t (1)

Fixed cost:

ZF �
∑

i

CFi xi , i ∈ M ∪ D ∪U ∪ V (2)

Purchasing cost:

ZP �
∑

s, r ,m, t , f

P Bs Q
rm f s
t Crt (3)

Manufacturing cost:

ZM �
∑

s

PBs

⎛

⎝
∑

p,m, d , t , f

Qmd f s
pt −

∑

p, u,m, t , f

Qum f s
pt

⎞

⎠CFpmt (4)

Distributing cost:

ZD �
∑

s, p, d , c, t , f

P Bs Q
dcf s
pt CFpdt (5)

Transportation cost:

ZT �
∑

s
PBs (

∑

r ,m, t , f

Qrm f s
t drmCT f t +

∑

p,m, d, t , f

Qmd f s
pt dmdCT f t +

∑

p, d, c, t , f

Qdc f s
pt ddcCT f t+

∑

p, c, u, t , f

Qcu f s
pt dcuCT f t +

∑

p, u, v, t , f

Quv f s
pt duvCT f t +

∑

p, u,m, t , f

Qum f s
pt dumCT f t )

(6)

In particular, the processing cost in reverse logistics includes collecting cost, disposal cost,
and the remanufacturing cost of the used products.

ZB �
∑

s, p, c, u, t , f

P BsQ
cu f s
pt C Bput +

∑

s, p, u, j , t , f

P BsQ
u j f s
pt C Bpjt , j ∈ V ∪ M (7)
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4.4 Constraints

The constraints set eqs. (8–11) consider the balance of materials. Constraint (8) ensures that
the quantity of shipped and manufactured products are equal. Constraint (9) ensures flow
balance in a distribution center. Constraint (10) guarantees that the used products would
be collected as per the estimated return rate. Constraint (11) ensures the flow balance in
collection centers.

∑

r , f

Qrm f s
t �

∑

d , f

Qmd f s
pt −

∑

u, f

Qum f s
pt , ∀t , p, m, s (8)

∑

m, f

Qmd f s
pt �

∑

c, f

Qdc f s
pt , ∀t , p, d , s (9)

DMhd
pc(t−1)RRp �

∑

u, f

Qcu f s
pt ∀t , p, c, s, (hd, hp) ∈ ∅st (10)

∑

c, f

Qcu f s
pt �

∑

v, f

Quv f s
pt +

∑

m, f

Qum f s
pt ∀t , p, u, s (11)

The constraints set in Eqs. (12–18) consider capacities. Constraint (12) represents that
all customer demands would be satisfied. Constraint (13) ensures that for each supplier the
raw material supply quantities are less than its handling capacity. Constraints (14) and (15)
limit the manufacturing and remanufacturing of products based on the available capacity.
Constraints (16–18) control the flows in and out of a distribution or a collection center.

∑

d , f

Qdc f s
pt ≥ DMhd

pct∀t , p, c, s, (hd, hp) ∈ ∅st (12)

∑

m, f

Qrm f s
t ≤ yrtC Pr∀t , r , s (13)

⎛

⎝
∑

p, d , f

Qmd f s
pt −

∑

p, u, f

Qum f s
pt

⎞

⎠CUHp ≤ xiC PFm∀t , i , s (14)

∑

p, u

Qums
pt CUHp ≤ xmCPBm∀t , s (15)

∑

p, c, f

Qdc f s
pt CUHp ≤ xdC PFd∀t , s (16)

∑

p, c, f

Qcu f s
pt CUHp ≤ xuC PBu∀t , s (17)

∑

p, u, f

Qu j f s
pt CUHp ≤ x jC PBj∀t , s, j ∈ M ∪ V (18)

The constraints in Eqs. (19–28) force the selection of only one transportation mode during
each period. Constraint (29) states that all the used products that are collected would be
handled rightly. Constraint (30) confirms that the total number of suppliers should be within
the limit. Since it is not possible to anticipate which scenario will happen, this decision must
be unique for all scenarios passing by this node. Constraint (31) ensure non-anticipative
while W σ s

τ t denotes the decision variables in the model, which are Qrm f s
t , Qi j f s

pt orϕhp
t . The

index σandτ represent other indices incorporated in the mentioned three variables. The non-
anticipative constraint guarantees the decision variables of a node on different paths have the
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same values.
∑

p,m, d

Qmd f s
pt ≤ wm f t Max∀t , f , s (19)

∑

p, d , c

Qdcf s
pt ≤ wd f t Max∀t , f , s (20)

∑

p, c, u

Qcu f s
pt ≤ wc f t Max∀t , f , s (21)

∑

p, u, j

Qu j f s
pt ≤ wu f t Max∀t , f , s, j ∈ V ∪ M (22)

∑

r ,m

Qrm f s
t ≤ wr f t Max∀t , f , s (23)

∑

f

wr f t � 1∀t (24)

∑

f

wm f t � 1∀t (25)

∑

f

wd f t � 1∀t (26)

∑

f

wrc f t � 1∀t (27)

∑

f

ww f t � 1∀t (28)

RDp + RMp � 1∀p (29)

∑

r

yrt ≤ RL ∀t (30)

W σ s
τ t − W σ(s+1)

τ t � 0, ∀t , s (31)

Constraint (28) limits the total emission during each period.

EPt + EMt + EDt + EBt + ETt −
∑

s

PBsϕ
s
t ≤ Capt , ∀t (32)

4.5 Emissions

Given that the carbon trading decisions are control variables, the total emissions should be
estimated in each period so that the firms can decide on the quantity of emissions for trading
(purchasing or selling). The total emissions refer to the emissions from suppliers (EPt ),
emissions from manufacturing (EMt ), emissions due to distribution (EDt ), emission from
reverse logistics (EBt ), and emissions from transportation (ET t ) as given in Eqs. (29–33).

EPt �
∑

s, r ,m, f

P Bs Q
rm f s
t E Rrt (33)

EMt �
∑

s

PBs

⎛

⎝
∑

p,m, d , f

Qmd f s
pt −

∑

p, u,m, f

Qum f s
pt

⎞

⎠EFpmt (34)
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EDt �
∑

s, p, d , c, f

P Bs Q
dcf s
pt (35)

EBt �
∑

s, p, c, u, f

P Bs Q
cu f s
pt E Bput +

∑

s, p, u, j , f

P Bs Q
u j f s
pt E Bpjt , j ∈ V ∪ M (36)

ETt �
∑

s, r ,m, f

P Bs Q
rm f s
t drm ET f t +

∑

s, p,m, d, f

P Bs Q
md f s
pt dmd ET f t +

∑

s, p, d, c, f

P Bs Q
dc f s
pt ddcET f t

+
∑

s, p, c, u, f

P Bs Q
cu f s
pt dcu ET f t +

∑

s, p, u, v, f

P Bs Q
uv f s
pt duvET f t +

∑

s, p, u,m, f

P Bs Q
um f s
pt dum ET f t

(37)

5 Solution procedure

The solution to the CLSC design model cannot be obtained using most of the commercials
solvers (like Gurobi and Cplex solvers) directly mainly for two reasons: (1) numerous scenar-
ios need to be created to account for the uncertainties in planning periods; (2) carbon trading
decision, for purchasing or selling carbon credit, should be determined before deciding the
amount of the carbon credits should be traded on the carbon market during each period.
Therefore, a four-step solution procedure is proposed in this paper, as shown in Fig. 3.

In the first step, the scenario tree is built up and the probabilities of all the scenarios are
calculated. Given a problem with p probable values of the carbon price and q probable values
of the demand during a time period (p ∈ P , p ∈ Q), the structure of the node-based scenario
tree is shown in Fig. 4. There are ((pq)T+1 − 1)/(pq − 1) nodes and (pq)T scenarios. Each
complete path from the root node n1 to one of the leaves represents a determinative scenario.
Assume that the probabilities of values of the carbon price and demand during a time period
are (PBhd(1),P Bhd(i),. . . , PBhd(p))and(PBhp(1),P Bhp( j),. . . , PBhp(q)) respectively,

Fig. 3 Solution procedure
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Fig. 4 Scenario tree generation for the multi-period stochastic model

the nodes at the first layer of the scenario tree (t � 1) have the probabilities of:

π1 � {
π |π � PBhd(i) ∗ PBhp( j), i ∈ P , j ∈ Q

}
(38)

The probabilities of the nodes or scenarios at the time period k of the scenario tree are as
follows:

πk � {
π

∣∣π � PBhd(i) ∗ PBhp( j) ∗ π(k−1), i ∈ P , j ∈ Q, k
〉
1
}

(39)

The probabilities of the scenarios of the whole scenario tree can be obtained using Eqs.
(38, 39).

The full scenarios are created when all uncertain parameters are realized (You & Gross-
mann, 2008). The scenarios help to generate the possible outcomes for consideration by the
decision-makers. For instance, consider a problem with two periods (t1–t2) problem and two
uncertain parameters with known probabilities of p1, p2, p3, and q1 and q2. In this case, an
event includes the combined occurrence of all the uncertain parameters. Thus, a node in the
scenario tree represents an event. In such a case, there are six events in the first period and
thirty-six events in the second period, and the probabilities have to be obtained accordingly
as shown in Fig. 5. For instance, the nodes n0, n1, and n7 form a scenario with a probability
of (p1*q1)*(p1*q1). Figure 5 shows that there are thirty-six such probability scenarios in the
given tree.

In the second step, scenario reduction is performed to alleviate the computational burden.
The scenario method is a straightforward way to model the problem. However, with the
increasing number of scenarios, the problem size rises exponentially (You & Grossmann,
2008). As shown in Fig. 4, when the numbers of the periods and the uncertain parameters
are large, the scenarios that should be taken into account would experience an exponen-
tial increase. This results in a significant increase in the computational burden. Hence, a
combined forward and reverse scenario reduction technique proposed by Dupačová et al.
(2003); Heitsch and Römisch (2003) is adopted to reduce the computing time. The reduction
algorithms focus on narrowing the distance between the expected and reduced (new) proba-
bilities (Dvorkin et al., 2014; Zeballos et al., 2014). The control parameters are used to guide
the reduction and to obtain the set of scenarios that can be used in future runs. Consequently,
the retained scenarios could be used to solve the stochastic model, rather than considering
all the scenarios,

In the third step, the carbon trading strategy, purchasing or selling, is examined. In the
existing literature, it is common to assume that the market is capable of dealing with any
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Fig. 5 Example of the nodes with their probabilities in a scenarios tree with two periods and two uncertain
parameters

quantity of carbon credit that the firms plan to purchase or sell under the estimated price.
However, in a real-world situation, there is always a limitation concerning the exact amount
of sold or purchased carbon credits, and it is impossible to know the amount in advance.
When several carbon prices exist in the same period, the best strategy for the firm would be
to sell carbon credits at the highest price and purchase them at the lowest price. However,
this would not happen in a real-world situation. Following the assumption (6) in Sect. 3, only
one of the two carbon trading strategies, which are purchasing (

∑
hp ϕ

hp
t ≥ 0) or selling

(
∑

hp ϕ
hp
t < 0) credits, can be selected in each period. Thus, in this stage, the carbon trading

strategies are examined by solving the proposedMILP model initially by limiting ϕ
hp
t within

a given range.
In the fourth step, since the best carbon trading decisions on purchasing or selling are

known during each period, the optimal solution for the eco-friendly CLSC design can be
obtained by solving the proposed MILP model over the remained scenarios.
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6 Experiment research

6.1 Data description

Two types of family products are considered in this simulation-based case analysis. The
CLSC has three potential suppliers (R1, R2, R3), three possible plants (M1, M2, M3), four
candidate distribution centers (D1, D2, D3, D4), five customers (C1, C2, C3, C4, C5) for the
manufactured/remanufactured products, three potential disposal centers (U1, U2, U3), and
three candidate collection centers (W1, W2, W3). The data used for the analysis is given in
the next section.

The base reference data on the distance between the facilities is adopted from Paksoy et al.
(2011). The overall planning horizon consists of three periods. Based on the data given by
Ndjebayi (2017), the fixed cost and the processing cost of the facilities are estimated as given
in Table 1, and the emissions generated from the processing of alumina, new products, and the
used products, are presented in Table 2. The statistics performed by Aluminum Association
(2011) are used to estimate the reused product flow in the reverse network: RRp is between
(0.6 and 0.8); RDp is between (0.05 and 0.15); RM p is between (0.85 and 0.95). The carbon
cap is assumed to be 10,000 in the first period and will decrease 10% during the following
planning period.

For the medium and long-distance road freight transportation, the alternative transport
modes are grouped according to their fuel use. Four emerging low-carbon fuels, including
biofuels, synthetic fuels, methane, and gas, are considered in the case study. Using the sta-
tistical data provided in Ambel and Earl (2019); (Department for Transport, Great Minster
House, 2018), the emissions for the transport modes in the first period are estimated in
Table 3. As technological development on low-carbon fuels is continuous, it is assumed that
transportation costs will be reduced by 5% in the following periods (McKinsey, 2019).

In many practical applications, practitioners generally specify a set of optimistic, neutral,
and pessimistic outlooks to represent the trends in customers’ demand. The demand levels
of products p1 and p2 and corresponding probabilities of hd1, hd2, and hd3 in each period

Table 1 The fixed cost ($million) and processing cost ($/ton)

Parameter Value (fixed cost; processing cost) Parameter Value (processing cost)

CFd [0.5; 1] CFpmt [900;1300]

CFm [2.5; 4] CBpmt [200; 300]

CFu [0.4; 0.5] CFpdt [30; 60]

CFv [0.08; 0.12] CFpwt [80; 120]

Crt [300; 400] CBput [120; 150]

Table 2 Carbon emission from processing (ton/ton)

Parameter Value Parameter Value Parameter Value

Ert [0.8, 1.2] EBpmt [0.4, 0.7] EFpdt [0.1, 0.2]

EFpmt [1.5, 2.5] EBput [0.2, 0.3] EBpwt [0.05, 0.1]
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Table 3 Transportation cost and carbon emission

Battery electric Plug-in hybrid
electric

Methanol Compressed natural
gas

Diesel

Cost
($/ton-km)

1.12 1.08 1.02 0.51 0.32

Emission
(g/ton-km)

40 51 53 93 100

are presented in Table 4. The daily spot carbon price is selected from the European Climate
Exchange (ECX) from April 2020 to July 2021 and analyzed using the K-means clustering
method with two cluster centroids to simulate the actual distribution of the carbon price.
The estimated carbon prices are generated as $35.3/ton and $57.9/ton with the probabilities
of 0.59 and 0.41, respectively. There are three periods (t1, t2, and t3), two carbon prices,
and five demands with specific probabilities in each period. Therefore, the combination of
uncertain parameters results in 6 (2*3) scenarios during the first period, 36 scenarios (6*2*3)
scenarios during the second period, and 1296 (6*6*6*6) scenarios during the fourth period.

Given the scenario tree, a group of lumped scenarios can be given to elaborate the non-
anticipative constraint in Eq. (31). For instance, in the first time period, there are 6 lumped
sets of constraints, and each constraint consists of 36 scenarios, as shown in Eq. (40):

W σ((k∗36+1)∗s)
τ t1 − W σ((k+1)∗36∗s)

τ t1 � 0, ∀s, k � {0, 1, 2, . . . , 5} (40)

where (k ∗ 36 + 1) ∗ s represents the numbered scenario. For instance, when k � 0, the
Eq. (40) transformed to be

W σ∗s
τ t1 − W σ(36∗s)

τ t1 � 0, ∀, s (41)

The Eq. (41) ensures that the decision variable Qrm f s
t1

(
orQi j f s

pt1 orϕ
hp
t1

)
have identical

values from scenario1 to scenario 36.
Similarly, there are 36 lumped sets of constraints, and each constraint consists of 6 sce-

narios in the second period, as shown in Eq. (42):

W σ((k∗6+1)∗s)
τ t2 − W σ((k+1)∗6∗s)

τ t2 � 0, ∀s, k � {0, 1, 2, . . . , 35} (42)

The proposed model is validated by solving a set of instances of the experiment. The
experiments are coded in GAMS 24.1.3 and solved with GAMS/CPLEX 12.5 on a PC with
Intel Core2 i7, and with 16 GB DDR II at 1.8 GHz.

6.2 Cost and emission across different scenarios

6.2.1 Overall performance of the CLSC design

Table 5 provides the performance of the CLSC design. The retained scenarios from Case 1
to Case 11 represent different uncertain events that are considered for CLSC design. Case 11
considers all of the events formed by the combination of the occurrence of all the uncertain
parameters in CLSC design. Case 2 has 130 retained scenarios, of the 1296 total scenarios, to
solve the model and generate the results in Table 5. Moreover, Case 0 represents the results
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Table 5 Results from the multi-period stochastic approach across different scenarios

Case Number of
scenarios

Total cost
($)

Total
emission
(tons)

Carbon
trading
quantity
(tons)

Variables Constraints CPU
time(s)

0 Deterministic 28,891,940 38,373 4683 3103 381 –

1 1 23,765,780 32,446 3079 3103 381 163

2 130 27,434,500 34,583 5588 116,152 14,532 305

3 259 30,188,550 39,367 9856 222,802 27,882 740

4 389 31,201,100 41,125 11,615 332,296 41,588 1562

5 518 30,149,990 39,262 7993 443,212 55,472 2432

6 648 31,148,800 40,994 9725 552,706 69,178 3025

7 778 30,565,970 40,151 7596 664,333 83,151 5677

8 907 30,440,870 39,899 6428 775,249 97,035 7067

9 1037 30,542,890 40,082 6548 884,743 110,741 8640

10 1166 30,259,860 38,977 5019 995,659 124,625 14,782

11 1296 30,279,380 39,605 5418 1,105,153 138,331 11,405

of the deterministic model where there is no uncertainty considered. The carbon trading
quantity includes both the purchased and sold carbon credits.

With more scenarios included in the problem, the number of variables also increases. This
leads to an increase in CPU times for the computation of the solution. Table 5 shows that
from Case 1 to Case 11, there is a jump of also almost 356 times for variables, and the CPU
time is increased by 900% to find an optimum solution.

6.2.2 Cost and emission under in different cases

In general, the total cost and emissions rise from Case 1 to Case 4 due to the requirements of
more materials, new products, and used products to meet the demand resulted from a higher
level of uncertainties. Such uncertainties require large capacities to be considered in CLSC,
which will increase total cost and emissions. The analysis shows that if the CLSC faces the
Case 4 situation, it will have both high cost and high emissions; (1) due to higher demand
than those in other cases leading to higher costs, and (2) due to higher transportation and
manufacturing costs compared to that in other cases leading to higher emissions in reman-
ufacturing and transportation. Furthermore, it is interesting to observe that the total cost
sequence converges to an optimum solution in Case 11 with full scenarios (1296 scenarios).
The experiment with full scenarios in Case 11 represents the real decision uncertain envi-
ronment, while other cases only consider part of the uncertain events. That means neglecting
some of the uncertain events would result in unexpected results that could be far from the
best possible performance. Because the combinations of the selected uncertain events could
create a decision environment that leads to increased cost, for instance, a higher customer
demand. Similar findings are also obtained in three-period and five-period experiments (See
Appendix Tables 7 and 8).

It is to note that under the given carbon cap, the firms can balance their emissions by
purchasing or selling (trading) carbon credits in the market. The trading quantity is positive
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Fig. 6 Carbon trading quantity under different retained scenarios

if the firms purchase carbon credit from the market, and negative if the firms sell carbon
credit. Between Cases 1 and 4, the carbon trading quantity increases by 277% due to the
rise in total emissions. However, for the remaining cases, the trading quantity is reduced,
as shown in Fig. 6. This reduction occurs as the cost burden brought by the trading is less
than that brought by other CLSC decisions. Further investigation shows that the emission in
other cases is lower than the Case 4; as a result, firms have less available carbon credit to
sell during the first period, and their emission goals can be fulfilled through the purchase of
carbon credits in the following periods. This means firms can use the trading strategies to
make the CLSC more greener when they are faced with carbon regulations.

6.2.3 Network structure configuration and transportation mode selection

Table 6 shows the CLSC facilities selected under different scenarios in the planning periods.
For example, in Case 0, supplier R3 is to be considered in the second, third, and fourth
periods. However, the suppliers R4 are selected during the first period. When the uncertain
events increase from Case 1 to Case 4, large facilities or more facilities should be included in
the CLSC. The fixed cost, which accounts for almost 40% of the total cost, is one of the main
contributions of the changes of the total cost in Table 5, for instance, Case 2. It is worthy to be
noted that the CLSC network structure is very stable from Case 7 to Case 11. Furthermore,
the supplier selection decisions are not changed associated with CLSC network configuration
from Case 1 to Case 11. Although the supplier R2 and R3 have a higher unit emission, their
lower cost is the main reason to be joined in the CLSC.

It also indicates that the proposed model generates a network with capacity redundancy
to address the varying customer demands and carbon prices. The Case 0 model represents
the deterministic model and shows the lowest cost and provides the network with a fewer
number of facilities. Therefore, compared with the Case 0 model, the total emission and total
costs for Case 11 are increased by 3.2% and 4.8%, respectively.

The analysis also reveals that only the diesel (f5) is selected as fuel for transportation in
all of the arcs of the CLSC. It means that the current carbon price in the current ECX failed to
work as an incentive tool to motivate the firms to use low-carbon fuels-based transportation
mode in the CLSC design.
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Table 6 Evolution of the CLSC network across different scenarios

Nodes Case 0 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10 Case 11

R2 t1, t2, t3, t4 t4 t1, t2,

t3, t4

t1, t2,

t3, t4

t1, t2,

t3, t4

t1, t2,

t3, t4

t1, t2,

t3, t4

t1, t2,

t3, t4

t1, t2,

t3, t4

t1, t2,

t3, t4

t1, t2, t3, t4 t1, t2, t3, t4

R3 t2, t3, t4 t1, t2, t3,

t4

t2, t3, t4 t2, t3, t4 t2, t3, t4 t2, t3, t4 t2, t3, t4 t2, t3, t4 t2, t3, t4 t2, t3, t4 t2, t3, t4 t2,t3,t4

R4 t1 t1, t2, t3 t1 t1 t1 t1 t1 t1 t1 t1 t1 t1

M1 √ √ √ √ √ √ √ √ √ √ √
M2 √
M3 √ √ √ √ √ √ √ √ √ √ √
D1
D2 √ √ √ √ √ √ √ √ √ √ √ √
D3 √ √ √ √ √ √ √ √ √ √
D4
w1 √ √ √ √ √ √ √ √ √ √ √
w2 √ √ √ √ √ √ √
w3 √ √ √ √
U1 √ √ √ √ √ √ √ √ √ √ √ √
U2 √ √ √ √
U3 √ √ √ √ √ √ √

In the analysis of the three above subsections, Case 8, which represents 80% of the 1296
scenarios, shares the same network structure, the same carbon trading strategy in all the time
periods, and similar transportation mode selection decisions with Case 11. Moreover, the
difference in the total costs of the two Cases is less than 0.53%, as is the lowest difference
compared with Cases that share the same network structure as Case 11. Similar results are
also gained in three-period and five-period experiments (See Appendix Tables 7 and 8). It
indicates that 80% of retained scenarios can be used to represent the full scenarios when
solving the proposed stochastic model while almost 40% of the CPU time can be saved.

6.3 Sensitivity analysis concerning carbon price level and cap

The impact of the carbon price at the carbon cap on the cost, emissions, and carbon trad-
ing quantity are investigated using sensitivity analysis. The prices in L1 are 35.3$/ton and
57.9$/ton (as mentioned before) with known probabilities are assumed as the base carbon
prices. In Fig. 7, LX denotes that the carbon price reaches X times the original prices. From
the figure, it can be observed total emission gets reduced when the carbon prices increase
from L1 to L7. In this case, the reduction is due to the choice of energy-efficient suppliers in
CLSC. Figure 8 also shows a sharp increase in the total cost coupled with a dramatic drop
in the total emission from L1 to L1.5. Further analysis reveals that the carbon trading cost
contributes to more than 30% of the cost increase in L15. Also, the greener supplier and
manufacturer with a higher production cost are selected to reduce the impact of the increased
carbon prices. This type of supplier sourcing network configure coupled with the increasing
emission cost leads to a rise in the total cost. Thus, the increase in the carbon price alters the
CLSC network configuration.

As to the carbon trading quantity, a reduction of 36.5% is obtained from L1 to L4. It
indicates that the firms get less active at high carbon price levels, as shown in Fig. 8. Because
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Fig. 8 Carbon trading quantity varying carbon price level

for the CLSC which has to purchase carbon credits to meet their emission constraint, a low-
carbon internal operation is a more cost-efficient approach to reduce the emission, rather
than the external carbon market. In contrast, further analysis reveals that a greener CLSC or
a CLSC under the loose carbon cap could be more active at high carbon price levels to gain
more revenue by selling carbon credits.

Figure 9 reports that the total cost and total emission of the CLSC associated with various
carbon caps. It is interesting to observe that a tightening carbon cap leads to not only a higher
total cost but also a lower total emission. One of the reasons is that we have used gradual
tightening carbon caps, as a result, the exact carbon caps during each period are different.
For instance, the carbon cap is 10000 in the first period, while it is 7290 in the four periods.
Consequently, different carbon trading decisions are made across the planning periods, as
can be seen in Fig. 8. The second is that different carbon price occurs to the carbon trading
activities. Further analysis reveals that the carbon credits are sold with a price of 57.9$/ton
with a probability in the scenario when the selling strategy is adopted. However, the carbon
credits would be purchased with a price of 35.3$/ton with a probability in the scenario when
the purchasing strategy is pursued. Thus, it allowed the decisions maker to take advantage
of the fluctuation of the carbon price to gain revenue or reduce cost.
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Fig. 9 Total cost and emission under the varying carbon price

Further analysis shows that the choice of fuel in transportation doesn’t change even when
the carbon price increases from L1 to L4. It indicates that diesel fuel is the most competitive
transportation mode not only at the current trading price but also when the carbon price is
increased by 4 times. This insensitivity could be due to the lower contribution, less than 18%,
of fuel cost in the total costs. Therefore, the adoption of less carbon-emitting transportation
mode in CLSC can only be selected if the cost of those fuels is subsidized.

7 Conclusions

In this paper, a multiple period two-stage stochastic model is proposed for the design of an
eco-friendly CLSC design by considering a multi-product supply chain in a multi-echelon
and multi-period setting. The problem considers time-varying demand and carbon price
under the carbon trading scheme. This type of problem is prevalent in industries such as
the aluminum industry, stainless steel manufacturing, and plastic product production. The
model considers uncertainties through the development of scenarios for a particular network
lifecycle. A four-step solution method is proposed to solve the model.

The applicability of the model for CLSC design is verified via simulation with publicly
available data. The results show that the eco-friendly CLSC design can be obtained through
a reduction of emissions in production and transportation. Emissions may be reduced due to
the larger facilities and the use of returned product parts. Larger facilities are good if there
are expected higher fluctuations in product demand. However, higher demand fluctuations
increase the total costs. Although firms can leverage with carbon credits that they can sell in
the beginning, they may face a different situation at a later period. Based on the observations
in the simulations, the options explored in this paper for eco-friendly CLSC design are
summarized below.

(1) Carbon trading is a cost-effective way to fulfill the organization’s emission targets under
carbon price and demand uncertainties. Based on the emissions from transportation and
the cost of the carbon price, it appears that CLSC should focus less on switching to
cleaner fuel transportation mode. This may be one of the reasons for the low take up of
cleaner fuels for transportation. In these cases, decarbonization can be obtained through
the selection of emissions-efficient facilities and suppliers.

(2) The total cost of the CLSC increases under uncertainty; however, the solution generated
by the stochastic model is more flexible in terms of incorporating unexpected demand
and coping with the fluctuation in the carbon price.
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(3) Both the total cost and total emission of theCLSCmay rise under increasing uncertainties
as shown in different case scenarios used in the study. Therefore, when higher uncer-
tainties are expected, the firm should develop larger facilities and emissions-efficient
suppliers and this would lead to eco-friendly CLSC and firms may improve their cost
through the sale of carbon credits in the trading market.

(4) The sensitivity analysis reveals that if the carbon price keeps rising, it would alter
the CLSC network configuration and result in emission reduction and cost increase.
However, the varying carbon cap affects little the facility selection and emission because
of the low carbon price in the current market. Furthermore, for the industry, both the
total cost and total emission can be raised under a tight carbon cap.

The type of analysis proposed in this paper can be conducted by the researchers or the
practitioners to develop effective carbon tradingmechanisms that will support an eco-friendly
CLSC design. For organizations, the proposed model can be used to develop a supply chain
when they are expecting to face uncertainties and the need to ensure a reduction in carbon
emission. As the numerical study provides specific results for a supply chain, the model and
solution presented here are generic and can be extended in other application areas as well.

7.1 Research direction

The research presented here can be extended in different directions, as mentioned below.

(1) Like virgin materials, used products also incur costs for acquisition. The variations in
purchase price based on the demand for remanufactured products have been studied in
Pokharel and Liang (2012)_ENREF_15. When there are multiple types of products to
be collected, the price variations in each type of used product will also impact the design
of CLSC. Therefore, the inclusion of product prices would help to design better CLSC.

(2) In this study, the uncertain parameters of customer demand and carbon prices are esti-
mated for tactical level decisions such as logistics decisions at each period. It should be
understood that there can be other kinds of problems in the network during the oper-
ation level, such as device failure or the lack of operator, which requires operational
level decisions. These situations can change the cost and potentially the carbon as well.
Therefore, further research can also consider the implication of such uncertainties on
tactical and operational decisions.

(3) One of the limitations of this study is the operational decisions, like inventory level,
which is not considered in the current model. As the model is proposed with uncertain
parameters, considering inventory in the model in different echelons can support the
supply chain entities to provide a higher level of servicewith optimized cost and emission
levels. Themodel can provide answers to the level of inventorywhen there are changes in
the carbon emission quantities and the energy options adopted in the supply chain. This
type of inclusion might require the development of additional heuristics as developing
different decisions through the current model is time-consuming. Nevertheless, as the
current model provides the basis for the analysis, the addition of inventory coupled with
a new heuristic algorithm can provide solutions faster.

(4) In the numerical study conducted in this paper, it is observed solving the CLSC design
problem with more time periods with the proposed method is time-consuming. For
instance, the five-period experiment in the case study requiredmore than 60 h to generate
the optimum solution. Therefore, the solution procedure for themodel can be augmented
by developing innovative algorithms, for instance, heuristic algorithms, to solve large-
scale networks and large-scale scenarios.
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Appendix

See Tables 7, 8.

Table 7 Results from the multi-period stochastic approach across different scenarios for three-period problem

Case Number of scenarios Total cost Total Emission Carbon trading quantity

t1 t2 t3

Case 1 1 18,865,320 22,029 −2877 −1401 −794

Case 2 22 21,779,940 24,928 −2877 −786 1492

Case 3 43 23,454,500 27,164 −2877 814 2127

Case 4 65 23,454,500 27,164 −2877 814 2127

Case 5 86 23,722,330 27,570 −1976 755 1690

Case 6 108 24,962,640 29,272 −1972 1783 2361

Case 7 130 24,461,380 28,820 −1348 1068 2001

Case 8 151 24,461,370 29,377 −1132 1624 2654

Case 9 173 24,677,550 28,932 −865 1014 1684

Case 10 194 24,396,910 28,590 −515 662 1343

Case 11 216 24,532,370 28,550 −320 −680 126

Table 8 Results from the multi-period stochastic approach across different scenarios for five-period problem

Case Number of
scenarios

Total cost Total Emission Carbon trading quantity

t1 t2 t3 t4

Case 1 1 28,188,750 37,912 −2314 −1160 −553 179

Case 2 778 32,732,820 43,704 −2439 −357 896 1973

Case 3 1555 35,085,190 47,714 −1766 688 1825 2782

Case 4 2333 36,303,780 49,839 −2439 1759 2522 3246

Case 5 3110 35,085,190 47,714 −1766 688 1825 2782

Case 6 3888 35,350,580 47,781 −1720 1203 1787 2564

Case 7 4666 34,232,980 46,245 −1318 460 1342 2241

Case 8 5443 33,998,850 45,832 −1115 307 1187 2105

Case 9 6221 34,185,010 45,644 −1111 423 1162 1961

Case 10 6998 33,690,560 45,296 −973 222 1060 1842

Case 11 7776 33,389,050 45,790 −973 272 832 1547
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