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Abstract
Approximately sixty years ago two seminal findings, the cutting plane and the subgradient
methods, radically changed the landscape of mathematical programming. They provided, for
the first time, the practical chance to optimize real functions of several variables character-
ized by kinks, namely by discontinuities in their derivatives. Convex functions, for which
a superb body of theoretical research was growing in parallel, naturally became the main
application field of choice. The aim of the paper is to give a concise survey of the key ideas
underlying successive development of the area, which took the name of numerical nonsmooth
optimization. The focus will be, in particular, on the research mainstreams generated under
the impulse of the two initial discoveries.

Keywords Nonsmooth optimization · Cutting plane · Subgradient method · Bundle method

1 Introduction

Nonsmooth optimization (NSO), sometimes referred to as Nondifferentiable optimization
(NDO), dealswith problemswhere the objective function exhibits kinks. Even though smooth-
ness, that is the continuity of the derivatives, is present in most of the functions describing
real world decision making processes, an increasing number of modern and sophisticated
applications of optimization are inherently nonsmooth. The most common source of non-
smoothness is in the choice of the worst-case analysis as a modeling paradigm. It results
in choosing objective functions of the max or, alternatively, of the min type, thus in stat-
ing minmax or maxmin problems, respectively. Nonsmoothness typically occurs whenever
solution of the inner maximization (or minimization) is not unique. Although such phe-
nomenon is apparently rare, nevertheless its occurrence might cause failure of the traditional
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differentiable optimization methods when applied to nonsmooth problems. Among other
areas where nonsmooth optimization problems arise we mention here:

– Minmaxmin models, coming from worst–case–oriented formulations of problems
where two types of decision variables are considered, “here and now” and “wait and
see”, respectively, with in the middle the realization of a scenario taken from a set of
possible ones.

– Right-hand-side decomposition of large scale problems (e.g., multicommodity flow opti-
mization) where the decomposition into subproblems is controlled by a master problem
which assigns resources to each of them. In such framework, the objective function of
the master is typically nonsmooth.

– Lagrangian relaxation of Integer or Mixed-Integer programs, where the Lagrangian dual
problem, tackled both for achieving good quality bounds and for constructing efficient
Lagrangian heuristics, consists in the optimization of a piecewise affine (hence nons-
mooth) function of the multipliers.

– Variational inequalities and nonlinear complementarity problems, which benefit from
availability of effective methods to deal with systems of nonsmooth equations.

– Bilevel problems, based on the existence, as in Stackelberg’s games, of a hierarchy of two
autonomous decision makers. The related optimization problems are non-differentiable.

Although the history of nonsmooth optimization dates back to Chebyshëv and his contri-
bution to function approximation (Chebyshëv 1961), it was in the sixties of last century when
mathematicians, mainly from former Soviet Union, started to tackle the design of algorithms
able to numerically locate the minima of functions of several variables, under no differentia-
bility assumption. The subgradient was the fundamental mathematical tool adopted in such
context. We recall here the contributions by Shor (1985), Demyanov andMalozemov (1974),
Polyak (1987), and Ermoliev (1966).

Based on quite a different philosophy, as it will be apparent in the following, a general
method able to cope with nondifferentiability was devised, independently, by Kelley (1960)
and byCheney andGoldstein (1959). Instead of trusting on aunique subgradient, the approach
consisted in the simultaneous use of the information provided by many subgradients. The
parallel development of convex analysis, thanks to contributions by Fenchel, Moreau and
Rockafellar, was providing, at that time, the necessary theoretical support.

A real breakthrough took place approximately in the mid seventies, when the idea of an
iterative process based on information accumulation did materialize in the methods inde-
pendently proposed by Lemaréchal (1974) and Wolfe (1975). From those seminal papers
an incredibly large number of variants flourished, under the common label of bundle type
methods. This family of methods, originally conceived for treatment of the convex case, was
appropriately enriched by features able to cope with non convexity.

Inmore recent years, motivated by the interest in solving problemswhere exact calculation
of the objective function is either impossible or computationally costly, severalmethods based
on its approximate computation were devised. At this time the derivative free philosophy is
successfully stepping in the nonsmooth optimization world.

Establishing a taxonomy of methods in such a rich area is a difficult and somehow arbi-
trary task. We will adopt the following, imperfect scheme, defining a classification in terms
of methods based on single-point information and those grounded onmulti-pointmodels. All
subgradient-related methods, ranging from classic fixed step one to recent accelerated ver-
sions, belong to the first group, while in the second group we will comprise the cutting-plane
related approaches, including bundle methods and their variants. We will see, however, that
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even in the multi-point approaches, to paraphrase Orwell in his Animal farm, all points are
equal, but some points are more equal than others.

The methods grounded on inexact function and/or subgradient evaluation will be also cast
in the above framework. Some other methods, that can hardly fit the proposed scheme, will
be treated separately.

We confine ourselves to the treatment of convex unconstrained optimization problems.
When appropriate, we will also focus on the extension of some algorithms to nonconvex
Lipschitz functions, or to special classes of nonconvex functions, such as the Difference-of-
Convex (DC) ones.

The paper is organized as follows. After stating the main NSO problem, the relevant
notation, and some basic theoretical background in Sect. 2, we introduce the NSO main-
streams in Sect. 3. In Sects. 4 and 5 we discuss, respectively, about the methods based on
single-point and multi-point models. Some classes of algorithms hard to classify into the
two mainstreams are surveyed in Sect. 6. Motivations and issues related to the use of inexact
calculations are discussed in Sect. 7, while in Sect. 8 some possible extensions of convex
methods to the nonconvex case are reported. We give only the strictly necessary references
in the main body of this survey, postponing to the final Sect. 9 more detailed bibliographic
notes and complementary information, along with few relevant reading suggestions.

The paper is a slightly revised version of Gaudioso et al. (2020c).

2 Preliminaries

We consider the following unconstrained minimization problem

min
{
f (x) : x ∈ R

n}, (1)

where the real-valued function f : Rn → R is assumed to be convex and not necessarily
differentiable (nonsmooth), unless otherwise stated. We assume that f is finite over Rn ,
hence it is proper. Besides, in order to simplify the treatment, we assume that f has finite
minimum f ∗ which is attained at a nonempty convex compact set M∗ ⊂ R

n . An uncon-
strained minimizer of f , namely any point in M∗, will be denoted by x∗. For a given ε > 0,
an ε-approximate solution of (1) is any point x ∈ R

n such that f (x) < f ∗ + ε. Throughout
the paper, the symbol ‖ · ‖ will indicate the �2 norm, while for any given two vectors a,b,
their inner product will be denoted by a�b.

Next, the fundamental tools of nonsmooth optimization are briefly summarized. Further
definitions and relevant findings will be recalled at later stages as they will be necessary.

Given any point x ∈ R
n , a subgradient of f at x is any vector g ∈ R

n satisfying the
following (subgradient-)inequality

f (y) ≥ f (x) + g�(y − x) ∀y ∈ R
n . (2)

The subdifferential of f at x ∈ R
n , denoted by ∂ f (x), is the set of all the subgradients of f

at x, i.e.,

∂ f (x) �
{
g ∈ R

n : f (y) ≥ f (x) + g�(y − x) ∀y ∈ R
n}. (3)

At any point x where f is differentiable, the subdifferential reduces to a singleton, its unique
element being the ordinary gradient ∇ f (x).
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Previous definitions are next generalized for any nonnegative scalar ε. An ε-subgradient
of f at x, is any vector g ∈ R

n fulfilling

f (y) ≥ f (x) + g�(y − x) − ε ∀y ∈ R
n, (4)

and the ε-subdifferential of f at x, denoted by ∂ fε(x), is the set of all the ε-subgradients of
f at x, i.e.,

∂ε f (x) �
{
g ∈ R

n : f (y) ≥ f (x) + g�(y − x) − ε ∀y ∈ R
n}. (5)

In case ε = 0 it obviously holds that ∂0 f (x) = ∂ f (x).
Since f is convex and finite over Rn , the subdifferential ∂ f (·) is a convex, bounded and

closed set; hence, for the directional derivative f ′(x,d) at any x, along the direction d ∈ R
n ,

it holds that

f ′(x,d) � lim
t↓0

f (x + td) − f (x)
t

= max
g∈∂ f (x)

g�d. (6)

In particular, at a point x where f is differentiable, the formula of classic calculus

f ′(x,d) = ∇ f (x)�d (7)

easily follows from (6) and recalling that ∂ f (x) = {∇ f (x)}.
Any direction d ∈ R

n is defined as a descent direction at x if there exists a positive
threshold t̄ such that

f (x + td) < f (x) ∀t ∈ (0, t̄ ].
Furthermore, we remark that for convex functions the following equivalence holds true

f ′(x,d) < 0 ⇔ d is a descent direction at x. (8)

At a later stage we will sometimes relax the convexity assumption on f , only requiring
that f be locally Lipschitz, i.e., Lipschitz on every bounded set. Under such assumption,
f is still differentiable almost everywhere, and it is defined at each point x the generalized
gradient (Clarke 1983) (or Clarke’s gradient, or subdifferential)

∂C f (x) � conv{g : g ∈ R
n,∇ f (xk) → g, xk → x, xk /∈ Ω f }, (9)

Ω f being the set (of zeromeasure)where f is not differentiable.Any point xwith 0 ∈ ∂C f (x)
will be referred to as a Clarke stationary point.

In the rest of the article, it will be referred to as an oracle any black-box algorithm capable
to provide, given any point x, the objective function value f (x) and, in addition, a subgradient
in ∂ f (x) or in ∂C f (x), depending on whether f is convex or just locally Lipschitz.

3 Nonsmooth optimizationmainstreams

In order to understand the main difference between smooth (i.e., differentiable) and nons-
mooth functions, in an algorithmic perspective, we focus on comparing equations (6) and
(7). On one hand, for smooth functions, at any point x the gradient ∇ f (x) provides com-
plete information about the directional derivative, along every possible direction, through
the formula f ′(x,d) = ∇ f (x)�d, see (7). On the other hand, for nonsmooth functions, at
a point x where f is not differentiable, the directional derivative, along any given direction,
can only be calculated via a maximization process over the entire subdifferential, see (6),
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thus making any single subgradient unable to provide complete information about f ′(x, ·).
From an algorithmic viewpoint, such a difference has relevant implications that make not
particularly appealing the idea of extending classic descent methods to NSO (although some
elegant results for classes of nonsmooth nonconvex functions can be found in Demyanov
and Rubinov (1995)). In the following remark, we highlight why most of the available NSO
methods do not follow a steepest descent philosophy.

Remark 1 Let x ∈ R
n be given, and assume there exists a descent direction at x. The steepest

descent direction d∗ at x is the one where the directional derivative is minimized over the
unit ball, i.e.,

d∗ = argmin
{
f ′(x,d) : ‖d‖ ≤ 1, d ∈ R

n}.

We observe that d∗ is well defined both in the smooth and in the nonsmooth case. As for the
former, it simply holds that d∗ = −∇ f (x)/‖∇ f (x)‖. As for the latter, it holds that d∗ is the
solution of the following minmax optimization problem

min
{
max

{
g�d : g ∈ ∂ f (x)

} : ‖d‖ ≤ 1, d ∈ R
n
}

By applying the minmax-maxmin theorem it easily follows that

d∗ = − argmin
{‖g‖ : g ∈ ∂ f (x)

}
.

Hence, in the nonsmooth case, the steepest descent direction can only be determined, if the
complete knowledge of the subdifferential is available, by finding the minimum norm point
in a compact convex set.

As already mentioned, our review of the main classes of iterative algorithms for NSO is
based on the distinction between single-point andmulti-pointmodels. In the rest of the article,
we will denote by xk the estimate of a minimizer of f at the (current) iteration k. Methods
based on single-point models look for the new iterate xk+1 by only exploiting the available
information on the differential properties of the function at xk . Such information consist
either of a single subgradient or of a larger subset of the subdifferential, possibly coinciding
with the entire subdifferential. Sometimes, an appropriate metric is also associated to xk .
The aim is to define a local approximation of f around xk to suggest a move towards xk+1,
possibly obtained via a univariate minimization (line search).

Methods based on multi-point models exploit similar local information about xk , which
are enriched by data coming from several other points (typically the iterates x1, . . . , xk−1),
no matter how far from xk they are. Here the aim is no longer to obtain a local approximation
of f , but to construct an (outer) approximation of the entire level set of f at xk , that is, of
the set

Sk �
{
x : f (x) ≤ f (xk)

}
.

In the next two sections we will survey the two classes of methods. We wish, however, to
remark that the intrinsic difficulty in calculating a descent direction for a nonsmooth function,
suggests to look for iterative methods that do not require at each iteration decrease of the
objective function. In other words, monotonicity is not necessarily a “pole star” for designing
NSO algorithms (note, in passing, that also in smooth optimization the monotonicity of
objective function values is not a must (Barzilai and Borwein 1988; Grippo et al. 1991)).
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4 Methods based on single-point models

The focus of this section in on the celebrated subgradient method, introduced by N. Z. Shor
in the early 60s of the last century, see (Shor 1962). In particular, we aim to review the
convergence properties of the classic versions of the method, next giving some hints on
recent improvements. In its simplest configuration the subgradient method works according
to the following iteration scheme

xk+1 = xk − t
gk

‖gk‖ , (10)

where gk ∈ ∂ f (xk) and t > 0 is a constant stepsize. In order to develop a convergence
theory it is crucial to introduce the concept of minimum approaching direction at any point
x, as a direction along which there exist points which are closer to a minimizer than x. More
specifically, a direction d is defined as a minimum approaching direction at x, if there exists
a positive threshold t̄ such that

‖x + td − x∗‖ < ‖x − x∗‖, ∀t ∈ (0, t̄).

As previously pointed out, see (6)–(8), taking an anti–subgradient direction d = −g,
for any g ∈ ∂ f (x), thus satisfying the condition g�d < 0, does not guarantee that d is a
descent direction at x. On the other hand, it can be easily proved that such d is a minimum
approaching direction at x. In fact, for any x /∈ M∗, the convexity of f implies that

g�(x∗ − x) < 0. (11)

As a consequence, by letting

t̄ = 2g�(x − x∗)
‖g‖2 ,

from inequality (11) it follows that

‖x + td − x∗‖2 = ‖x − tg − x∗‖2
= ‖x − x∗‖2 + t(t‖g‖2 + 2g�(x∗ − x))

< ‖x − x∗‖2 (12)

for every t ∈ (0, t̄), namely, that d = −g is a minimum approaching direction at x.
Different types of directions are depicted in Fig. 1, where the contour lines of a convex,

piecewise affine function with minimum at x∗ are represented. Note in fact that, at point x,
direction d2 is both a descent and a minimum approaching one, since it points inside both the
contour at x and the sphere of radius ‖x − x∗‖ centered at x∗. Note also that d1 is minimum
approaching but not descent, while d3 is descent but not minimum approaching.

In the following, taking any subgradient g ∈ ∂ f (x), we will indicate by d = −g an
anti–subgradient direction, possibly normalized by setting d = − g

‖g‖ .
The property of the anti–subgradient directions of being minimum approaching ones

is crucial for ensuring convergence of the constant stepsize method based on the iteration
scheme (10), as we show in the following theorem (Shor 1985).

Theorem 1 Let f be convex and assume that M∗, the set of minima of f , is nonempty. Then,
for every ε > 0 and x∗ ∈ M∗ there exist a point x̄ and an index k̄ such that

‖x̄ − x∗‖ <
t

2
(1 + ε)
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Fig. 1 Descent and/or minimum
approaching directions

and

f (xk̄) = f (x̄).

Proof Let Uk = {x | f (x) = f (xk)} and Lk = {x | g�
k (x − xk) = 0} be, respectively,

the contour line passing through xk and the supporting hyperplane at xk to the level set
Sk = {x | f (x) ≤ f (xk)}, with normal gk .

Consider now, see Fig. 2, ak(x∗) = ‖x∗ − x∗
P‖, the distance of any point x∗ ∈ M from

its projection x∗
P onto Lk , and observe that ak(x∗) ≥ bk(x∗) = ‖x∗ − x∗

L‖. Note also that
bk(x∗) is an upper bound on dist(x∗,Uk), the distance of x∗ from contour lineUk . It is easy
to verify that

ak(x∗) = g�
k (xk − x∗)

‖gk‖ ,

and, as a consequence, that

dist(x∗, Lk) ≤ bk(x∗) ≤ ak(x∗) = g�
k (xk − x∗)

‖gk‖ . (13)

Now, observe that from (10) and (13) it follows that

‖xk+1 − x∗‖2 = ‖xk − x∗ − t
gk

‖gk‖‖2

= ‖xk − x∗‖2 + t2 − 2t
g�
k (xk − x∗)

‖gk‖
= ‖xk − x∗‖2 + t2 − 2tak(x∗)

≤‖xk − x∗‖2 + t2 − 2tbk(x∗). (14)

Next, suppose for a contradiction that bk(x∗) ≥ t(1 + ε)/2 for every k. Denoting by x1 the
starting point of the algorithm, and repeatedly applying the inequality (14), we have that for
every k it holds
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Fig. 2 Convergence of the subgradient method

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − εt2

...

≤ ‖x1 − x∗‖2 − εkt2,

which contradicts ‖xk+1 − x∗‖2 ≥ 0 for all k. ��

Remark 2 Note that the above theorem does not ensure that the method generates a point
arbitrarily close to a minimum. In fact, it only allows to guarantee that a contour line is
reached whose distance from any minimizer is arbitrarily small.

The constant stepsize subgradient method is interesting from the historical point of view
but its numerical performance is strongly affected by the choice of t . Classic subgradient
method (SM in the following), instead, is based on adjustable stepsize and works according
to the iterative scheme

xk+1 = xk − tk
gk

‖gk‖ , (15)

where gk ∈ ∂ f (xk) and tk > 0. The following theorem guarantees standard convergence of
SM under appropriate conditions on the stepsize tk (Shor 1985).

Theorem 2 Let f be convex and assume that M∗ is bounded and nonempty, with f ∗ = f (x∗).
If the stepsize sequence {tk} in (15) satisfies the conditions

lim
k→∞ tk = 0 and

∞∑

k=1

tk = ∞, (16)

then either there exists an index k∗ such that xk∗ ∈ M∗ or limk→∞ f (xk) = f ∗.

Remark 3 Apossible choice of tk satisfying (16) is tk = c/k, where c is any positive constant.
The choice

tk = f (xk) − f ∗

‖gk‖ , (17)
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known as Polyak stepsize (see Polyak 1987 for an alternative proof of convergence) is par-
ticularly popular in the area of application of nonsmooth convex optimization to solution of
Integer Linear Programming (ILP) problems via Lagrangian relaxation (Gaudioso 2020). In
the fairly common case when f ∗ is unknown, it is usually replaced in (17) by any lower
bound on the optimal objective function value.

The followingproposition provides an evaluation of the convergence speedof the subgradi-
ent method and an estimate of the number of iterations, under some simplifying assumptions.
Detailed discussions can be found in Goffin (1977), Shor (1985).

Proposition 1 Assume that

(i) f admits a sharp minimum, i.e., there exists μ > 0 such that f (x) ≥ f ∗ + μ‖x − x∗‖,
for every x ∈ R

n, and
(ii) the minimum value f ∗ is known, so that the Polyak stepsize (17) can be calculated.

Then, the subgradient method has linear convergence rate q =
√
1 − μ2

c2
, where c is any

upper bound on the norm of gk . Moreover an ε-approximate solution is achieved in O( 1
ε2

)

iterations.

Proof Note first that convexity of f implies

0 ≥ f ∗ − f (xk) ≥ g�
k (x∗ − xk) ∀k. (18)

From (15), by adopting the Polyak stepsize (17) and taking into account (18), it follows that

‖xk+1 − x∗‖2 = ‖xk − x∗ − tk
gk

‖gk‖‖2

= ‖xk − x∗‖2 + t2k − 2tk
g�
k (xk − x∗)

‖gk‖
≤‖xk − x∗‖2 − ( f (xk) − f ∗)2

‖gk‖2 , (19)

hence that

‖xk+1 − x∗‖ ≤ ‖x1 − x∗‖ ∀k.
The latter inequality implies boundedness of the sequence {xk}, which in turn implies bound-
edness of the corresponding sequence of subgradients {gk}, say ‖gk‖ ≤ c, for every k, for
some positive constant c. Taking into account assumption i) we rewrite (19) as

‖xk+1 − x∗‖2
‖xk − x∗‖2 ≤ 1 − μ2

c2
= q2,

which proves first part of the Proposition. Next, let f ∗
k = min1≤i≤k f (xi ), the best objective

function value obtained up to iteration k, let R = ‖x1 − x∗‖, and observe that

0 ≤ f ∗
k − f ∗ ≤ f (xi ) − f ∗.

From iterated application of inequality (19), for i = 1, . . . , k, since ‖xk+1 − x∗‖ ≥ 0 and
‖gi‖ ≤ c, we obtain that

0 ≤ ‖x1 − x∗‖2 −
k∑

i=1

( f (xi ) − f ∗)2

‖gi‖2
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≤ R2 −
k∑

i=1

( f (xi ) − f ∗)2

c2

≤ R2 − k( f ∗
k − f ∗)2

c2

hence that

f ∗
k − f ∗ ≤ Rc√

k
.

The latter inequality implies that an ε-optimal solution is obtained in a number of iterations

k ≥ R2c2

ε2
and the proof is complete. ��

Remark 4 We observe that monotonicity of the sequence { f (xk)} is not ensured, while the
minimum approaching nature of the anti-subgradient direction is apparent from (19). On the
other hand, we note that the convergence rate q can be arbitrarily close to 1.

Slow convergence of the subgradientmethod has stimulated several improvement attempts
in more recent years. Starting from observation that the method is a black box one, as no
problem structure is exploited, the newly introduced approaches have been designed for
classes ofweakly structured problems, still covering most of convex nonsmooth optimization
programs of practical interest.

Here, we recall Nesterov’s smoothing method (Nesterov 2005), where the bound on the
number of iterations improves from O( 1

ε2
) to O( 1

ε
). Denoting by S1 and S2 two convex and

compact subsets of Rn and Rm , respectively, the problem addressed in Nesterov (2005) is of
type

min
{
f (x) : x ∈ S1 ⊂ R

n}, (20)

with

f (x) = max
{
x�A�u − φ(u) : u ∈ S2 ⊂ R

m}
, (21)

where A is a matrix of appropriate dimension, and φ : Rm → R is a convex function. Note
that f is convex, being the pointwise maximum of (an infinite number of) convex functions,
and nonsmoothness of f occurs at those point x where the maximum is not unique. In fact,
smoothing of f is pursued in Nesterov (2005) by forcing such maximum to be unique. In
particular, the following perturbation fμ of f is introduced

fμ(x) = max
{
x�A�u − φ(u) − μω(u) : u ∈ S2 ⊂ R

m}
,

where μ > 0 is the perturbation parameter, and ω : Rm → R is a strongly convex continu-
ously differentiable function, i.e., for every v ∈ R

m it satisfies the condition

ω(u) ≥ ω(v) + ∇ω(v)�(u − x) + σ‖u − v‖2 ∀u ∈ R
m,

for some σ > 0. Minimization of the smooth function fμ(x) is then pursued via a gradient-
type method (see also Frangioni et al. 2018 for a discussion on tuning of the smoothing
parameter μ.)

TheMirrorDescentAlgorithm (MDA)Nemirovski andYudin (1983) is yet anothermethod
inspired by SM. We give here its basic elements, following the presentation of Beck and
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Teboulle (2003), and confine ourselves to treatment of the unconstrained problem (1). Con-
sider the following iteration scheme for passing from xk to xk+1, once an oracle has provided
both f (xk) and gk ∈ ∂ f (xk),

xk+1 = argmin

{
f (xk) + g�

k (x − xk) + 1

2γk
‖x − xk‖2 : x ∈ R

n
}

, (22)

where γk > 0. Simple calculation provides

xk+1 = xk − γkgk,

which coincides with (15) when γk = tk‖gk‖ . Note that xk+1 is obtained as the minimizer
of the linearization of f rooted at xk , augmented by a proximity term which penalizes long
steps away from xk , on the basis of the proximity parameter γk . Now consider, as in previous
Nesterov’s method, any strongly convex continuously differentiable function ω : Rn → R

and let

αk(x) = ω(x) − ω(xk) − ∇ω(xk)�(x − xk). (23)

Function αk(x) measures the error at x associated to the linearization of ω rooted at xk , and
resumes information about the curvature of ω along the direction (x− xk). Moreover αk can
be considered as a distance-like function, since strong convexity of ω implies αk(x) > 0
for x �= xk . On the basis of the definition of αk the iterative scheme (22) is generalized by
setting:

xk+1 = argmin

{
f (xk) + g�

k (x − xk) + 1

γk
αk(x) : x ∈ R

n
}

. (24)

Note that, letting ω(x) = 1
2‖x‖2, it is easy to verify that

αk(x) = 1

2γk
‖x − xk‖2,

and the two iterative schemes (22) and (24) coincide.Hence,we conclude that the SM iteration
scheme (22) is a special case of (24) which is, in fact, MDA (see Beck and Teboulle 2003).
The function αk is usually referred to as a Bregman-like distance generated by function ω.

5 Methods based onmulti-point models

As previously mentioned, here we deal with those iterative methods for NSO where the next
iterate xk+1 is calculated on the basis of information related to both the current iterate xk and
to several other points (e.g., previous estimates of an optimal solution).

The fundamental leverage in constructing such class of methods is that a convex function
is the pointwise supremum of affine ones, namely, for any convex function f : Rn → R and
every x ∈ R

n it holds that

f (x) = sup
{
f (y) + g(y)�(x − y) : y ∈ R

n},

where g(y) ∈ ∂ f (y), see (Hiriart-Urruty and Lemaréchal (1993), Th. 1.3.8). The latter for-
mula has some relevant consequences. In fact, taking any finite set of points x1, x2, . . . , xk ∈
R
n , letting

�i (x) � f (xi ) + g�
i (x − xi )
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for every i ∈ {1, . . . , k}, with gi ∈ ∂ f (xi ), and defining

fk(x) � max
{
�i (x) : i ∈ {1, . . . , k}} (25)

it holds that

fk(x) ≤ f (x) ∀x ∈ R
n, (26)

fk(x) = f (xi ) ∀i ∈ {1, . . . , k}, (27)

gi ∈ ∂ fk(xi ) ∀i ∈ {1, . . . , k}. (28)

Thus, function fk is a global approximation of f , as it minorizes f everywhere, while
interpolating it at points x1, . . . , xk . Note, in addition, that fk is convex and piecewise affine,
being the pointwise maximum of the affine functions �i (x), the linearizations of f rooted
at x1, . . . , xk . We observe in passing that, even for the same set of points x1, . . . , xk , the
model function fk can be not unique, since the subdifferential ∂ f (·) is a multifunction. In the
following, we will refer to fk as to the cutting plane function, a term which deserves some
explanation.

Consider the epigraph of f , namely, the subset of Rn+1 defined as

epi f � {(x, v) : x ∈ R
n, v ∈ R, v ≥ f (x)},

and define the set of halfspaces Hi ⊂ R
n+1, for every i ∈ {1, . . . , k}:

Hi �
{
(x, v) : x ∈ R

n, v ∈ R, v ≥ �i (x)
}
.

Observing that for every x ∈ R
n there holds

f (x) ≥ �i (x) ∀i ∈ {1, . . . , k},
and that

epi fk �
{
(x, v) : x ∈ R

n, v ∈ R, v ≥ fk(x)
} =

k⋂

i=1

Hi ,

it is easy to see that
(
x, f (x)

) ∈ ⋂k
i=1 Hi and, consequently, that

epi f ⊆ epi fk .

Now take any point xk+1 such that f (xk+1) > fk(xk+1), define the corresponding halfs-
pace

Hk+1 = {
(x, v) : x ∈ R

n, v ∈ R, v ≥ �k+1(x)
}
,

and the new approximation

fk+1(x) = max
{
�i (x) : i ∈ {1, . . . , k + 1}}.

Observe that, while
(
xk+1, fk(xk+1)

) ∈ epi fk , we have
(
xk+1, fk(xk+1)

)
/∈ epi fk+1 and

epi f ⊆ epi fk+1 ⊂ epi fk . (29)

In other words, the hyperplane

Lk+1 = {
(x, v) : x ∈ R

n, v ∈ R, v = �k+1(x)
}

separates point
(
xk+1, fk(xk+1)

)
from epi fk+1, thus it represents a cut for epi fk . Note that

the bigger is the difference f (xk+1) − fk(xk+1), the deeper is the cut defined by Lk+1, see
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Fig. 3 Adding cuts

f(x1)

f(x3)
f(x2)

Fig. 3. The definition of the cutting plane function fk provides a natural way to select the
next trial point by setting

xk+1 = argmin
{
fk(x) : x ∈ R

n} , (30)

which is exactly the iteration scheme of the classic cutting plane method, see (Cheney and
Goldstein 1959; Kelley 1960). Problem (30) is still nondifferentiable, but it is equivalent to
the following linear program, defined in R

n+1, thanks to the introduction of the additional
scalar variable w

min
{
w : w ≥ f (xi ) + g�

i (x − xi ) ∀i ∈ {1, . . . , k}, x ∈ R
n, w ∈ R

}
, (31)

whose optimal solution is denoted by (xk+1, wk), with wk = fk(xk+1). Note that, since the
feasible region is the nonempty set epi fk , boundedness of (31) requires feasibility of its dual
which, denoting by λ ∈ R

k the vector of dual variables, can be formulated as the following
program

max

{
k∑

i=1

λi ( f (xi ) − g�
i xi ) :

k∑

i=1

λi = 1,
k∑

i=1

λigi = 0, λ ≥ 0

}

. (32)

We observe that feasibility of (32) is equivalent to the condition

0 ∈ conv
{
gi : i ∈ {1, . . . , k}}. (33)

Hence, the boundedness of problem (31), which allows to calculate xk+1, requires a kind
of hard-to-test qualification of points x1, . . . , xk , expressed in terms of the corresponding
subgradients. We show in Fig. 4 an example where the cutting plane function is unbounded
since the derivatives f ′(x1) and f ′(x2) are both negative, thus 0 /∈ [ f ′(x1), f ′(x2)]).

To avoid the difficulties related to possible unboundedness of the cutting plane function,
we put the original problem (1) in an (artificial) constrained optimization setting. In fact, we
consider the problem

min
{
f (x) : x ∈ Q ⊂ R

n}, (34)

where Q is a nonempty compact convex subset of Rn . One would think of Q as a set
defined by simple constraints (e.g., box constraints) and sufficiently large to contain M∗. We
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Fig. 4 Unbounded cutting plane
function

f(x1)

f(x2)

further assume that for each x ∈ Q both the objective function value f (x) and a subgradient
g ∈ ∂ f (x) can be computed. We also let LQ denote the Lipschitz constant of f on Q. Thus,
the cutting-plane iteration becomes

xk+1 = argmin
{
fk(x) : x ∈ Q

}
, (35)

whose well-posedness is guaranteed by the continuity of fk , together with compactness of
Q. Moreover, we note that, since by convexity fk(x) ≤ f (x) for every x ∈ Q, the optimal
value f ∗

k of fk(x) provides a lower bound on f ∗, the optimal value of f . In addition, since

fk+1(x) = max
{
fk(x), f (xk+1) + g�

k+1(x − xk+1)
} ≥ fk(x) ∀x ∈ Q,

the sequence { f ∗
k } ismonotonically nondecreasing and thus the lower boundbecomes increas-

ingly better.
We state now the convergence of a slightly more general cutting plane-like method, pre-

sented in Algorithm 1, which comprises the classic version where the iteration scheme (35)
is adopted, see (Polyak 1987).

Algorithm 1 General cutting plane method (GCPM)
Input: a starting point x1 ∈ R

n , a stopping tolerance parameter ε > 0
Output: an ε-optimal solution x∗ ∈ R

n

1: Calculate g1 ∈ ∂ f (x1), build f1(x), and set k = 1 � Initialization
2: Calculate xk+1 ∈ S∗

k � {x : x ∈ Q, fk (x) ≤ f ∗} �= ∅ � Select the new iterate point
3: if f (xk+1) − fk (xk+1) < ε then � Stopping test
4: set x∗ = xk+1 and exit � Return x∗
5: else
6: Calculate gk+1 ∈ ∂ f (xk+1) and build fk+1(x) � Improve the cutting-plane function
7: set k = k + 1 and go to 2 � Make a new iteration
8: end if

We note that fk(x) ≤ f (x), for every x ∈ R
n , ensures that selection of xk+1 as in (35)

perfectly fits with the condition xk+1 ∈ S∗
k at Step 2 of GCPM. The rationale of the definition

of S∗
k is to take xk+1 well inside into the level set of fk . This allows to accommodate, at least

in principle, possible inexact solution of the program
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min
{
w : w ≥ f (xi ) + g�

i (x − xi ) ∀i ∈ {1, . . . , k}, x ∈ Q, w ∈ R

}
, (36)

which is still linear provided Q has a polyhedral structure. GCPM with xk+1 selected as in
(35) will be simply referred in the following as Cutting Plane Method (CPM).

Remark 5 GCPM is an intrinsically nonmonotone method as no objective function decrease
is guaranteed at each iteration

The proof of the convergence of Algorithm 1 is rather simple and relies on convexity of f
and on compactness of Q.

Theorem 3 GCPM terminates at an ε-optimal point.

Proof We observe first that, since fk(xk+1) ≤ f ∗, satisfaction of the stopping condition at
Step 3 of GCPM implies that

f (xk+1) − f ∗ < ε,

i.e., that the point xk+1 is ε-optimal. Now, assume for a contradiction that the stopping
condition is not satisfied for infinitely many iterations and, consequently, that

f (xk+1) − fk(xk+1) ≥ ε (37)

holds for every k. Convexity of f , along with (37) and (25), ensure that the following inequal-
ities hold for every i ∈ {1, . . . , k}

f (xi ) ≥ f (xk+1) + g�
k+1(xi − xk+1)

≥ fk(xk+1) + ε + g�
k+1(xi − xk+1)

≥ f (xi ) + g�
i (xk+1 − xi ) + ε + g�

k+1(xi − xk+1),

which imply

0 ≥ ε − 2LQ‖xk+1 − xi‖ ∀i ∈ {1, . . . , k}. (38)

A consequence of (38) is that the sequence of points generated by the algorithm does not
have an accumulation point, which contradicts compactness of Q. ��

While cutting plane method represents an elegant way to handle convex optimization, it
exhibits some major drawbacks. We observe first that the convergence proof is based on the
hypothesis of infinite storage capacity. In fact, the size of the linear program to be solved
increases at each iteration as consequence of the introduction of a new constraint. A second
drawback of the method is related to its numerical instability. In fact, not only monotonicity
of the sequence { f (xk)} is not ensured (this being a fairly acceptable feature of the method,
though) but it may happen that after the iterate sequence gets to points very close to the
minimizer, some successive iterate points might roll very far away from it, as we show in the
following simple example.

Example 1 Consider the one-dimensional quadratic program min{ 12 x2 : x ∈ R}, whose
minimizer is x∗ = 0. Assume that k = 2, let x1 = −1 and x2 = 0.01, with point x2 being
rather close to theminimizer. It is easy to verify that x3 = argmin{ f2(x) : x ∈ R} = −0.495,
with the algorithm jumping to a point whose distance from the minimizer is much bigger
than 0.01. Illustrative examples of such poor behavior of the method can be found in (Hiriart-
Urruty and Lemaréchal (1993), Chapter XV.1).
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5.1 Bundlemethods (BM)

Bundle methods are a family of algorithms originating from the pioneering work by
Lemaréchal (1975). They can be considered as a natural evolution of CPMwhich provides an
effective answer to the previously mentioned drawbacks. The term bundle is meant to recall
that, similarly to CPM, at each iteration a certain amount of cumulated information about
points scattered throughout the function domain is necessary to create a model-function,
whose minimization delivers the new iterate. In particular, we denote by Bk the bundle
of the cumulative information available at iteration k, where Bk is the following set of
point/function/subgradient triplets

Bk �
{(
xi , f (xi ), gi

) : gi ∈ ∂ f (xi ), i ∈ {1, . . . , k}} .

In bundle methods, however, one among points xi is assigned the special role of stability
center. One may think of such point as the best in terms of objective function value, but this
is not strictly necessary. In the following, we will denote by xk the current stability center,
singled out from the set of iterates {x1 . . . xk}. Adopting a term commonly used in discrete
optimization, it will be referred to as the incumbent, f (xk) being the incumbent value.

Once the stability centerxk has beenfixed, the change of variablesx = xk+d is introduced.
It expresses every point of function domain in terms of its displacement d ∈ R

n with respect
to the stability center, and allows to rewrite the cutting plane function fk(x) in the form of
difference function as

fk(xk + d) − f (xk) = max
{
g�
i d − αi : i ∈ {1, . . . , k}} (39)

where αi , for every i ∈ {1, . . . , k}, is the linearization error, see (23), associated to the affine
expansion �i (x) at xk , and is defined as

αi � f (xk) − (
f (xi ) + g�

i (xk − xi )
)
. (40)

Note that convexity of f guarantees nonnegativity of the linearization error. Moreover, for
every x ∈ R

n and i ∈ {1, . . . , k}, since gi ∈ ∂ f (xi ), it holds that

f (x) ≥ f (xi ) + g�
i (x − xi )

= f (xk) − f (xk) + f (xi ) + g�
i (x − xk + xk − xi )

= f (xk) + g�
i (x − xk) − αi , (41)

i.e.,

gi ∈ ∂ f (xi ) ⇒ gi ∈ ∂αi f (xk). (42)

The latter property, often referred to as subgradient transport, is both conceptually and
practically important; it indicates that even points which are far from the stability center
provide approximate information on its differential properties.

Note also that points xi do not play any role in the difference function (39), thus the bundle
Bk , instead of triplets, can be considered as made up of couples as follows

Bk �
{(
gi , αi

) : gi ∈ ∂αi f (xk), i ∈ {1, . . . , k}} .

Note that the definition of the linearization errors is related to the current stability center. In
case a new one is selected, say xk+1, the αi need to be updated. In fact, denoting by α+

i , for
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each i ∈ {1, . . . , k}, the new linearization errors updated with respect to xk+1, it is easy to
obtain the following update formula

α+
i = f (xk+1) − f (xi ) − g�

i (xk+1 − xi )

= f (xk+1) + f (xk) − f (xk+) − f (xi ) − g�
i (xk+1 − xk + xk − xi )

= αi + f (xk+1) − f (xk) + g�
i (xk+1 − xk) (43)

which is independent of the explicit knowledge of points xi .
Under the transformation of variables introduced above, problem (31) becomes

min
{
v : v ≥ g�

i d − αi ∀i ∈ {1, . . . , k}, d ∈ R
n, v ∈ R

}
(44)

whose optimal solution (dk, vk) is related to the optimal solution (xk+1, wk) of (31) by the
relations:

dk = xk+1 − xk, and vk = wk − f (xk) = fk(xk+1) − f (xk).

Note that fromnonnegativity of the linearization errors it follows that the point (d, v) = (0, 0)
is feasible in (44), hence vk ≤ 0 represents the predicted reduction returned by the model at
point xk+1 = xk + dk .

Bundle methods elaborate on CPM as they ensure:

(i) Well-posedness of the optimization subproblem to be solved at each iteration;
(ii) Stabilization of the next iterate.

Aconceptual andvery general schemeof a bundlemethod is nowgiven, aiming at highlighting
the main differences with CPM.

Algorithm 2 Conceptual BM
Input: a starting point x1 ∈ R

n

Output: an approximate ε-optimal solution x∗ ∈ R
n

1: Calculate g1 ∈ ∂ f (x1), set x1 = x1, and α1 = 0
2: Set B1 = {(g1, α1)} and k = 1
3: Solve an appropriate variant of subproblem (44)
4: if solution of (44) certifies approximate optimality of point xk then
5: Set x∗ = xk and exit
6: else
7: Adopt dk as a tentative displacement from the current stability center xk
8: Test the quality of the current cutting plane model (39) by comparing expected and actual reduction in

the objective function at a testing point xk+1 = xk + tdk for t = 1, or possibly for t ∈ (0, 1]
9: if a sufficient decrease in the objective function is achieved at xk+1 then
10: Update the stability center xk+1 = xk+1
11: Calculate gk+1 ∈ ∂ f (xk+1), and set αk+1 = 0
12: Update the linearization errors according to (43)
13: Update the bundle Bk+1 = Bk ∪ {(gk+1, αk+1)}, set k = k + 1 and go to 3
14: else
15: Leave the stability center unchanged xk+1 = xk
16: Calculate gk+1 ∈ ∂ f (xk+1)

17: Set αk+1 = f (xk+1) − (
f (xk+1) + g�

k+1(xk+1 − xk+1)
)

18: Update the bundle Bk+1 = Bk ∪ {(gk+1, αk+1)}, set k = k + 1 and go to 3
19: end if
20: end if

The schema of Algorithm 2 provides just the backbone of most bundle methods, as it
leaves open a number of algorithmic decisions that can lead to fairly different methods. In
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Table 1 Instability of the
standard CPM

Δ 1e+4 1e+2 1e+0 1e−2 1e−4 1e−5 1e−6

NΔ
i t

Nit
1.07 1.12 0.86 0.77 0.56 0.19 0.04

fact, the body of literature devoted to BM is huge, as a vast number of variants have been
proposed over time by many scientists, in order to implement such decisions. We postpone
to Sect. 9 some bibliographic notes.

We give in the following a general classification of bundle methods, mainly based on the
different variants of the subproblem (44) to be solved at Step 3, in order to satisfactorily
deal with the aforementioned issues of well-posedness and stabilization. The approaches are
substantially three:

– Proximal BM;
– Trust region BM;
– Level BM.

They share the same rationale of inducing some limitation on the distance between two
successive iterates xk+1 and xk gathering, at the same time, well-posedness and stability
with respect to CPM. As it will be clarified in the following, the actual magnitude of such
limitation is controlled by an approach-specific parameter (to be possibly updated at each
iteration). Its appropriate tuning is the real crucial point affecting numerical performance of
all BM variants.

For a better understanding of the impact on the performance of the stabilization strategies,
we report the results of an instructive experiment described in Frangioni (2020). For a given
nonsmooth optimization problem, the Lagrangian dual of a Linear Program, the minimizer
x∗ has been first calculated by standard CPM. Then, such an optimal point has been given as
the starting point both to standard CPM and to a variant of CPM equipped with a constraint
of the type ‖xk + d− x∗‖∞ ≤ Δ, for different values of Δ. In Table 1, for decreasing values
ofΔ, the ratio between the number of iterations upon termination of the modified CPM, NΔ

i t ,
and that of the standard CPM, Nit , is reported. The impressive effect of making more and
more stringent the constraint on distance of two successive iterates is apparent.

5.1.1 Proximal BM (PBM)

The proximal point variant of BM is probably the one that attracted most of the research
efforts. It has solid theoretical roots in both the properties of the Moreau-Yosida Regular-
ization (Hiriart-Urruty and Lemaréchal 1993) and Rockafellar’s Proximal Point Algorithm
(Rockafellar 1976). In such class of methods the variant of subproblem (44), to be solved at
Step 3 of Algorithm 2, is

min

{
v + 1

2
γk‖d‖2 : v ≥ g�

i d − αi ∀i ∈ {1, . . . , k}, d ∈ R
n, v ∈ R

}
(45)

where γk > 0 is the adjustable proximity parameter. The latter problem can be rewritten,
taking into account (39), in an equivalent unconstrained form as

min

{
fk(xk + d) + 1

2
γk‖d‖2 − fk(xk) : d ∈ R

n
}

, (46)

hence it has a uniqueminimizer as a consequence of strict convexity of the objective function.

123



Annals of Operations Research (2022) 314:213–253 231

It is worth observing that in PBM the subproblem (45) is a quadratic program (QP), whose
solution can be found either by applying any QP algorithm in Rn , or by working in the dual
space Rk . In fact, the standard definition of Wolfe’s dual for problem (45) is

max

{
v + 1

2
γk‖d‖2 −

k∑

i=1

λi
(
v − g�

i d + αi
) : γkd +

k∑

i=1

λigi = 0, e�λ = 1,

λ ≥ 0, d ∈ R
n, v ∈ R, λ ∈ R

k
}

(47)

where λ = (λ1, . . . , λk)
� is the vector of dual variables (or multipliers), and e is a vector of

ones of appropriate size. Taking into account that

d = − 1

γk

k∑

i=1

λigi ,

it is possible to eliminate d and to restate the dual of problem (45) as follows:

min

{
1

2γk
‖

k∑

i=1

λigi‖2 +
k∑

i=1

λiαi : e�λ = 1, λ ≥ 0, λ ∈ R
k

}

(48)

Letting (dk, vk) and λ(k) be, respectively, optimal solutions to (45) and (48), the following
relations hold:

dk = − 1

γk

k∑

i=1

λ
(k)
i gi (49)

and

vk = − 1

γk
‖

k∑

i=1

λ
(k)
i gi‖2 −

k∑

i=1

λ
(k)
i αi , (50)

which allow to equivalently solve either problem (45) or problem (48) at Step 3 of the
Conceptual BM. Note that dk is the opposite of a (scaled) convex combination of the gi s,
and it reduces to the anti-subgradient with stepsize 1

γk
in case the bundle is the singleton

{(gk, 0)}, where gk ∈ ∂ f (xk).
Working in the dual space is, in general, preferred for both practical and theoretical reasons.

In fact, problem (48) has a nice structure, being the minimization of a convex quadratic
function over the unit simplex, for which powerful ad hoc algorithms are available in the
literature (e.g., Kiwiel 1986; Monaco 1987; Frangioni 1996). On the other hand, relations
(49)-(50) provide the theoretical basis for possibly certifying (approximate) optimality of the
current stability center at Step 4 of Conceptual BM. Let g(λ) = ∑k

i=1 λ
(k)
i gi and suppose

the following holds

vk ≥ −ε,

for some small ε > 0. Thus, from (49)–(50) it follows that

‖g(λ)‖ ≤ √
γkε (51)
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and

k∑

i=1

λ
(k)
i αi ≤ ε. (52)

Moreover, condition (52), taking into account (42), implies that

g(λ) ∈ ∂ε f (xk),

i.e., g(λ) is in the ε-subdifferential of f at xk . On the other hand, condition (51) provides
an upper bound on the norm of g(λ) and hence, taking into account the inequality (4) and
letting δ = √

γkε we obtain

f (x) ≥ f (xk) + g(λ)�(x − xk) − ε ≥ f (xk) − δ‖x − xk‖ − ε, ∀x ∈ R
n, (53)

which can be interpreted as an approximate optimality condition at point xk , provided that δ
is not too big. Note, however, that the magnitude of δ, once ε has been fixed, depends on the
adjustable proximity parameter γk and, consequently, (53) is a sound approximate optimality
condition only if the sequence {γk} is bounded from above. Such condition is intuitively
aimed at avoiding shrinking of the model around xk , which would lead to both a very small
dk and to an artificial satisfaction of the condition vk ≥ −ε. A complementary reasoning
suggests to keep the sequence {γk} bounded away from zero, in order for the algorithm to
avoid behaving in a way very similar to standard CPM.

We have described, so far, the two possible outcomes from solving at Step 3 ofAlgorithm 2
problem (45) or, better, problem (48). In fact, in the PBM approach a significant displacement
dk is obtained if vk < −ε, while termination occurs in the opposite case when vk ≥ −ε.

Now suppose that Step 6 has been reached, the point xk +dk being available as a possible
candidate to become the new stability center. The predicted reduction at such point is vk ,
which is to be comparedwith the actual reduction f (xk+dk)− f (xk). Reasonable agreement
between the two values indicates that the current cutting planemodel is of good quality. Since
at this stage vk < −ε, the agreement test at Step 8 is generally aimed at verifying that the
actual reduction is just a fixed fraction of the predicted one, as shown in the following
inequality

f (xk + dk) − f (xk) ≤ mvk, (54)

where m ∈ (0, 1) is the sufficient decrease parameter. Hence, (54) also plays the role of the
sufficient decrease condition to be checked at Step 9. In fact, if condition (54) is fulfilled,
the algorithm can proceed through Steps 10 to 13, where the stability center is updated by
setting xk+1 = xk + dk and a new iteration starts after updating the bundle. Such an exit is
usually referred to as Serious Step. If, instead, there is poor agreement between actual and
predicted reduction (i.e., a sufficient decrease has not been attained), it holds

f (xk + dk) − f (xk) > mvk,

and two possible implementations of the Conceptual BM are available, depending onwhether
or not a line search strategy is adopted.

In case no line-search approach is embedded in the algorithm, Conceptual BM proceeds
to Steps 15 to 18, as the attempt to find a better stability center failed, and the stability
center remains unchanged (i.e., a Null Step has occurred). Letting xk+1 = xk + dk , the
new couple (gk+1, αk+1) is joined to the bundle, where gk+1 ∈ ∂ f (xk+1), and αk+1 =
f (xk) − f (xk+1) + g�

k+1dk .
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In case a line-search strategy is adopted, the algorithm remains at Step 8, dk is taken as
a search direction and a line search (LS) is executed by checking at points xk + tdk , with
t ∈ (0, 1], the objective function sufficient decrease condition

f (xk + tdk) − f (xk) ≤ mtvk, (55)

skipping to Step 15 as soon as t falls below a given threshold η ∈ (0, 1). Checks are performed
for decreasing values of t , starting from t = 1, according to classic Armijo’s rule (Armijo
1966).

Detailed presentation of nonsmooth LS algorithms (that is, the minimization of a nons-
mooth function of one variable) is beyond the scope for this paper.Wewish, however, to point
out the fundamental difference between the smooth and the nonsmooth case. In the former
case, once at any point x a search direction d is given within a descent algorithm, a trusted
model, constituted by the negative directional derivative along d is available. It ensures that
there exists a positive threshold t̄ such that f (x + td) < f (x), for every t ∈ (0, t̄). In the
nonsmooth framework, instead, the cutting plane model is “untrusted”, to recall the evocative
term used in Frangioni (2020). In fact, in the Conceptual BM the directional derivative at xk
along dk is not necessarily known, since vk is just an approximation. Thus, the possibility
that dk is not a descent direction has to be accommodated by the algorithm.

We have now completed the discussion on the two possible implementations of Step 8
within the proximal version of Conceptual BM. We observe that null step is a result which
can occur in both cases. It corresponds to the fact that the cutting plane has revealed a
poor approximation of the objective function. Consequently, whenever a null step occurs,
the stability center remains unchanged, and a new couple subgradient/linearization-error is
added to the bundle, with the aim of improving themodel. As for the latter, some explanations
are in order. Consider, for an example, the null-step occurring when

f (xk + dk) − f (xk) > mvk, (56)

with no line search performed. In such a case, after generating the new iterate xk+1 =
xk + dk , the couple

(
gk+1, αk+1

)
is appended to the bundle, where gk+1 ∈ ∂ f (xk+1) and

αk+1 = f (xk) − f (xk+1) + g�
k+1dk . The updated model in terms of difference function, see

(39), becomes

fk+1(xk + d) − f (xk) = max
{
g�
i d − αi : i ∈ {1, . . . , k + 1}

}

= max

{
fk(xk + d) − f (xk), g�

k+1d − αk+1

}
(57)

Observe that, for d = dk there hold

g�
k+1dk − αk+1 = g�

k+1dk − f (xk+1) + f (xk) − g�
k+1dk

= f (xk+1) − f (xk) > mvk > vk (58)

and

fk(xk + dk) − f (xk) = vk, (59)

which combined means that the updated model provides a more accurate estimate of the
objective function f , at least around point xk+1. Perfectly analogous considerations can be
made in case a line search scheme is adopted at Step 8.

We have presented, so far, some general ideas on how the Conceptual BM works in case
the proximal approach is adopted. We do not enter into the details of convergence proofs,
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which depend on the different strategies adopted at various steps. We only wish to sketch
how a typical convergence proof works, under the assumptions that f has a finite minimum,
that the proximity parameter γk stays within a range 0 < γmin ≤ γk ≤ γmax , possibly being
adjusted upon modification of the stability center only. As already mentioned, such tuning is
a crucial issue in view of granting numerical efficiency to the method.

The proof is based on the following three facts:

(a) The objective function reduction, every time the stability center is updated, is bounded
away fromzero. This is a consequence of vk < −ε and of the sufficient decrease condition
(54), in case no line search strategy is adopted. Whenever, instead, a line search is
performed, objective function reduction is still bounded away fromzero as a consequence,
again, of vk < −ε, of condition (55), and of the lower bound η on the stepsize length t .

(b) Since it has been assumed that the function has finite minimum, from a) it follows that
only a finite number of stability center updates may take place.

(c) The Conceptual BM cannot loop infinitely many times through Step 18, that is an infinite
sequence of null steps cannot occur. To prove this fact it is necessary to observe that, being
the proximity parameter constant by assumption, the sequence {vk} is monotonically
increasing, see (58), and bounded from above by zero, hence it is convergent. The core of
the proof consists in showing that {vk} → 0 and, consequently, the stopping test vk ≥ −ε

is satisfied after a finite number of null steps.

5.1.2 Trust region BM (TBM)

The approach consists in solving at Step 3 of the Conceptual BM the following variant of
problem (44), obtained through the addition of a trust region constraint

min
{
v : v ≥ g�

i d − αi ∀i ∈ {1, . . . , k}, ‖d‖ ≤ Δk, d ∈ R
n, v ∈ R

}
, (60)

where Δk > 0. Well-posedness is a consequence of continuity of the objective function,
problem (60) being in fact a finite min-max, and compactness of the feasible region.

A first issue about the statement of problem (60) is the choice of the norm in the trust
region constraint. It is in general preferred to adopt the �1 or the �∞ norm, so that (60) is
still a Linear Program. A second relevant point is the setting of the trust region parameter.
Intuitively,Δk must not be too small, whichwould result in slow convergence due to shrinking
of the next iterate close to the stability center. On the other hand, a too large Δk would kill
the stabilizing effect of the trust region. A simple approach is to provide two thresholdsΔmin

andΔmax , lettingΔk ∈ [Δmin,Δmax ]. Such choice is necessary to guarantee convergence of
the algorithm, but the type of heuristics adopted for tuning Δk within the prescribed interval
strongly affects both convergence and the overall performance of the algorithm (see the
discussion about the effect of the proximity parameter γk in PBM).

Also for the trust region approach the two classes of variants, with or without line search,
can be devised. Moreover, the interplay serious-step/null-step is still embedded into the
conceptual scheme.

5.1.3 Proximal level BM (PLBM)

The level set approach to BM stems from the general setting of CPM we gave earlier in this
section, where point xk+1 calculated at Step 2 of GCPM was not necessarily a minimizer of
fk , convergence being ensured provided it was sufficiently inside the level set of function fk
at point xk .
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The approach consists in finding the closest point to the current stability centerxk where the
difference function (39) takes a sufficiently negative value. In fact, problem (44) is modified
as follows

min

{
1

2
‖d‖2 : g�

i d − αi ≤ −θk ∀i ∈ {1, . . . , k}, d ∈ R
n
}

(61)

where the adjustable parameter θk > 0 indicates the desired reduction in the cutting plane
function. In fact, letting, as usual, the stability center xk be the incumbent, and denoting by
dk the optimal solution of (61), the point xk+1 = xk + dk belongs to the following level set

Sk(θk) = {x : fk(x) ≤ fk(xk) − θk}.
of the cutting plane function fk . Note that an appropriate choice of θk provides the required
stabilization effect, as a small value of θk results in small ‖dk‖.

The approach is known as Proximal Level Bundle Method (PLBM) and indeed the setting
of θk is the key issue to address. To this aim, the optimal value of the model function fk ,
say f ∗

k , is required. Consequently, we stay in the same constrained context (34) adopted in
stating CPM, so that problem

f ∗
k = min

{
fk(x) : x ∈ Q ⊂ R

n}

is well posed, being the convex set Q nonempty and compact. Since the incumbent value
fk(xk) and f ∗

k are, respectively, an upper and a lower bound on f ∗, it is quite natural to set
θk on the basis of the gap

Γ (k) = fk(xk) − f ∗
k , (62)

which is a nonincreasing function of the bundle size k. A possible choice is to set θk = μΓ (k),
for some μ ∈ (0, 1), but modifications of such criterion are to be accommodated on the basis
of comparison with the previous value of the gap. Note that Γ (k) ≤ ε provides an obvious
stopping criterion for PLBM, since from fk(xk) = f (xk) it follows that f (xk)− f ∗ ≤ Γ (k).
In terms of theConceptualBM,Step 8 is neglected, and the test at Step 9, for possibly updating
the stability center, is based on the simple reduction of the incumbent value. As for method
implementation, further observations are in order.

– Compared to PBM and TBM, setting of θk appears definitely more amenable than choos-
ing γk and Δk , respectively, as it simply refers to function values, while γk and Δk are
meant to capture some kind of second order behavior of f , an ambitious and fairly hard
objective.

– Unlike PBM and TBM, two distinct optimization subproblems are to be solved at each
iteration: the quadratic problem (61), which consists in projecting xk onto Sk(θk), and
(62), which is a linear program, in case Q has a simple structure (e.g., it is a hyper-
interval).

The following theoretical result, see (Lemaréchal et al. (1995), Th. 2.2.2), provides a
bound on the number of iterations needed to get an ε-approximate solution.

Theorem 4 Let LQ be the Lipschitz constant of f on Q, denote by D the diameter of Q, and
by c a constant depending on parameter μ. For any given ε > 0 it holds that

k > c

(
LQD

ε

)2

⇒ f (xk) − f ∗ ≤ ε.
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5.2 Making BM implementable

The algorithms we have described in this section suffer from a major drawback. They are all
based on unlimited accumulation of information, in terms of number of generated lineariza-
tion or, equivalently, of bundle size. Convergence properties we have discussed are in fact
valid under such hypothesis. This makes such methods, at least in theory, not implementable.
In the sequel, focusing in particular on PBM, we briefly review two strategies to overcome
such difficulty, introduced in Kiwiel (1983), Kiwiel (1985), named subgradient selection and
aggregation, respectively.

The strategies are both based on thorough analysis of the dual formulation (48) of the
problem to be solved at Step 3 of Conceptual BM. Observe, in fact, that strict convexity
of problem (45) ensures that the optimal solution dk is unique and it is a (scaled) convex
combination of the gi s, see (49). Note also that the optimal solution of the dual (48) is not
necessarily unique, but there exists (by Carathéodory’s Theorem) a set of at most n + 1
optimal dual multipliers λ

(k)
i > 0, i ∈ Ik , |Ik | ≤ n + 1 such that

dk = − 1

γk

∑

i∈Ik
λ

(k)
i gi .

They can be calculated, in fact, by finding an optimal basic solution of the following linear
program

min

{
k∑

i=1

λiαi :
k∑

i=1

λigi = −γkdk, e�λ = 1, λ ≥ 0, λ ∈ R
k

}

, (63)

which is characterized by (n + 1) constraints.
On the basis of previous observation there is an obvious possibility, once such set of

subgradients has been detected, to select the corresponding bundle couples and to cancel
the remaining ones, while the solutions of (48) and (45) remain unchanged. In this way the
bundle size can be kept finite, without impairing overall convergence. It is worth noting that
ad hoc algorithms for solving (48) are designed to automatically satisfy the condition that
no more than (n + 1) subgradients are “active” in the definition of dk , so that solution of
problem (63) is not necessary for subgradient selection purposes.

In many practical cases, however, n + 1 is still too large in view of the need of solving
at each iteration the quadratic program (48) of corresponding size. In such a case, a very
strong reduction in bundle size can be obtained by means of the subgradient aggregation
mechanism. Once the optimal solution λ(k) to (48) has been found, the aggregate couple
(ga, αa) is obtained by letting

ga =
k∑

i=1

λ
(k)
i gi and αa =

k∑

i=1

λiα
(k)
i .

In addition, define the single-constraint aggregate quadratic program

min

{
v + 1

2
γk‖d‖2 : v ≥ g�

a d − αa, d ∈ R
n, v ∈ R

}
, (64)

and observe that it is equivalent to the simple unconstrained quadratic problem

min

{
1

2
γk‖d‖2 + g�

a d − αa : d ∈ R
n
}

.
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Hence, the optimal solution (da, va) to (64) coincides with the solution to (48) since it can
be obtained in closed form as

da = − 1

γk
ga = − 1

γk

k∑

i=1

λ
(k)
i gi = dk

and

va = g�
a da − αa = − 1

γk
‖

k∑

i=1

λ
(k)
i gi‖2 −

k∑

i=1

λ
(k)
i αi = vk .

Summing up, the aggregate problem (64) retains the fundamental properties of (48), so
that, when point xk+1 is generated, all past bundle couples (gi , αi ) can be replaced by the
unique (ga, αa), and the new couple (gk+1, αk+1), with gk+1 ∈ ∂ f (xk+1) is added to the
bundle. Under such aggregation scheme, with the bundle containing just two elements, it
is possible to show convergence. Such version of proximal BM is sometimes referred to
as the “poorman” bundle. Of course many other selection-aggregation schemes have been
discussed in the literature. Their treatment is, however, beyond the scope of this paper.

6 Miscellaneous algorithms

In Sect. 5 we have mostly discussed about bundle methods, a family of NSO algorithms
related to cutting plane, which is a model function grounded on information coming from
many points spread throughout the objective function domain. Such a feature keeps bundle
methods somehowapart from the smooth optimizationmainstream,wheremost of the popular
iterative methods (Gradient type, Conjugate Gradient, Newton, quasi–Newton etc.) are based
on information on the objective function related to the current iterate or, sometimes, also to
the previous one. Several scientists have thus tried to convey to NSO, and in particular to
cutting-plane based area, some ideas coming from smooth optimization, upon appropriate
modifications to cope with nonsmoothness. In this section we briefly survey some of such
attempts.

6.1 Variable metric

In discussing the proximal BMwe have already observed that tuning of the proximity param-
eter γk in problem (45) has a strong impact on the numerical performance of such class of
algorithms. The problem has been addressed by many authors (see, e.g., Kiwiel 1990) and
several heuristic techniques are available. More in general, setting of γk is related to the
attempt of capturing some kind of second order approximation of the objective function.
After all, the quadratic term 1

2γk‖d‖2, in case f is twice differentiable, would be seen as a
single–parameter positive definite approximation γk I of the Hessian at point xk , I being the
identity matrix1.

Thus, the simplest idea, see (Lemaréchal 1978), is to replace (45) with the following
problem

min

{
v + 1

2
d�Bkd : v ≥ g�

i d − αi ∀i ∈ {1, . . . , k}, d ∈ R
n, v ∈ R

}
, (65)

1 Given the features of the adopted machinery, we keep on denoting the current iterate (i.e., the estimate of a
minimizer) by xk , although the methods involved in this class are not necessarily of the bundle type.
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where Bk is a positive definite matrix in R
n×n to be updated any time the stability center

changes, according to some rule inspired by theQuasi–Newton updates for smoothminimiza-
tion. We recall that in all Quasi–Newton methods the Hessian (or its inverse) approximation
is updated, in correspondence to the iterate xk , on the basis of the following differences in
points and gradients between two successive iterates

sk = xk − xk−1 and qk = ∇ f (xk) − ∇ f (xk−1).

A straightforward and practical way to adopt a Quasi-Newton approach in the nonsmooth
environmentwould be to use any classic variablemetric algorithmbasedonupdating formulae
(e.g., DFP, BFGS, etc.), with qk defined as difference of subgradients instead of gradients.
Note, in passing, that due to possible discontinuities in derivatives, largeqk may correspond to
small sk . This, however, is not a reportedly serious drawback in terms of practical applications
(see classic Lemaréchal 1982 and Vlček and Luksǎn 2001 for an accurate analysis).

As a consequence of previous observation, research has focused on the definition of some
differentiable object, related to f , thus suitable for application of Quasi-Newton methods.
Such an object, theMoreau-Yosida regularization of f , is the function φρ : Rn → R, defined
as

φρ(x) � min
{
f (y) + ρ

2
‖y − x‖2 : y ∈ R

n
}

, (66)

for some ρ > 0, whose minimizer is denoted by

pρ(x) = argmin
{
f (y) + ρ

2
‖y − x‖2 : y ∈ R

n
}

and referred to as the proximal point of x, see (Rockafellar 1976). Function φρ enjoys the
following properties:

– The sets of minima of f and φρ coincide;
– φρ is differentiable (see Hiriart-Urruty and Lemaréchal 1993);
– ∇φρ(x) = ρ(x − pρ(x)) ∈ ∂ f (pρ(x)), since at pρ(x) it is 0 ∈ ∂h(y), where h(y) =

f (y) + ρ
2 ‖y − x‖2 is a strictly convex function.

The latter properties allow to find aminimumof f by solving the following (smooth) problem

min
{
φρ(x) : x ∈ R

n} . (67)

Here, we note that smoothness is not gathered for free, as calculation of the new objective
function φρ requires solution of a convex (nonsmooth) optimization problem.

Straightforward application of any Quasi-Newton paradigm (equipped with a line search)
to minimize φρ leads to the following iteration scheme:

xk+1 = xk − tk B
−1
k ∇φρ(xk), (68)

where Bk is the classic approximation of the Hessian, and a line search is accommodated
into the iteration scheme to fix the stepsize tk > 0 along the Quasi–Newton direction dk =
−B−1

k ∇φρ(xk)
Matrix Bk comes from updating of Bk−1 (usually choosing B1 = I ), by means of one of

the effective Quasi–Newton formulae. A popular one is BFGS, according to which it is

Bk = Bk−1 − Bk−1sks�k Bk−1

s�k Bk−1sk
+ qkq�

k

q�
k sk
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with sk = xk − xk−1 and qk = ∇φρ(xk)−∇φρ(xk−1). In fact, matrix Bk satisfies the secant
equation

Bksk = qk .

A (simplified) algorithmic scheme is reported in Algorithm 3.

Algorithm 3 Quasi–Newton Scheme (QN)
1: At point xk , let φρ(xk ), ∇φρ(xk ), and a p.d. matrix Bk be available. � Outer loop

Calculate xk+1 as in (68).
2: Calculate φρ(xk+1) by solving (66) � Inner loop
3: Check a stopping condition. � Termination test

Calculate Bk+1 as a Quasi–Newton update of Bk .
Set k = k + 1 and return to the outer loop.

The QN scheme of Algorithm 3 leaves open several relevant issues. We note first that
the inner loop deals with minimization of a (strictly) convex nonsmooth function. Thus, it
is quite natural to apply in such framework the machinery we have discussed in previous
sections (e.g., any bundle-type algorithm would be in order). On the other hand, the idea of
exactly solving at each iteration a problem of the same difficulty as the original one does
not appear viable in terms of computation costs. In fact, it is appropriate to settle for an
approximate solution of problem (66) in the inner loop, which results in inexact calculation
of xk+1 as, instead of the exact optimality condition ρ(xk+1 − pρ(xk+1)) ∈ ∂ f (pρ(xk+1),
the approximate one ρ(xk+1 − pρ(xk+1)) ∈ ∂ε f (pρ(xk+1), for some ε > 0, is enforced.
We note in passing that the Quasi–Newton framework is one of the areas that have solicited
the development of a convergence theory for NSO algorithms with inexact calculation of
function and/or subgradient (see Sect. 7).

The need of accommodating for inexact calculation of the Moreau-Yosida regularization
φρ (consider that also tuning of ρ is a significant issue), has also an impact on the implemen-
tation of the choice of xk+1 in the outer loop, irrespective of whether a line search is executed,
as evoked by formula (68), or the constant stepsize tk = 1 is adopted. We do not enter into
the technicalities of the above mentioned issues. Possible choices are relevant in establishing
the theoretical convergence rate of QN type algorithms. Discussion on such topics can be
found in Bonnans et al. (1995), Lemaréchal and Sagastizábal (1997), Chen and Fukushima
(1999).

6.2 Methods of centers (MoC)

We have already seen how fecund was the cutting plane idea of using many linearizations,
generated all over the function domain, in order to obtain a global, not just local, model
of the objective function. Yet another approach deriving from cutting plane is a class of
methods known as Methods of Centres, whose connection with interior methods for Linear
Programming is apparent. To explain the basic ideas it is convenient to assume a set-oriented
viewpoint instead of a function-oriented one.

In solving the (constrained) problem (34), the same framework as CP (or BM) is adopted.
Given the cutting plane function fk , available at iteration k, we denote by Fk(zk) the following
subset of Rn+1

Fk(zk) = {(x, v) : x ∈ Q, fk(x) ≤ v ≤ zk} ,
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where zk is any upper bound on the optimal value of fk (e.g., the value of f calculated at any
feasible point). The set Fk(zk), next referred to as the localization set, is contained in epi fk ,
being obtained by horizontally cutting epi fk , and it contains the point (x∗, f ∗).

The basic idea of MoC is to construct a nested sequence of sets Fk(zk) shrinking as fast as
possible around the point (x∗, f ∗), by introducing a cut at each iteration. To obtain substantial
volume reduction in passing from Fk(zk) to Fk+1(zk+1), one looks for a central cut, i.e., a
cut generated on the basis of some notion of center of Fk(zk). Several proposals in this
context can be found in the literature, stemming from Levin’s “Center of Gravity” method
(Levin 1965), which is based on the property that for a given convex set C with nonempty
interior, any hyperplane passing through the center of gravity generates a cut which reduces
the volume of C by a factor of at least (1 − e−1). However, such substantial reduction in
the volume of Fk can only be obtained by solving the hard problem of locating the center of
gravity.

Next we particularly focus on amore practical proposal, theAnalytic Center Cutting Plane
Method (ACCPM), see (Goffin et al. 1992, 1997; Ouorou 2009), which is based on the notion
of “analytic center” introduced in Sonnevend (1985) as a point that maximizes the product
of distances to all faces of Fk(zk).

Thus, in the ACCPM the required central point of the localization set is calculated as the
unique maximizer of the potential function

ψk(x, v) = log(zk − v) +
k∑

i=1

log[v − f (xi ) − g�
i (x − xi )].

Once the analytic center

(xk+1, vk+1) = argmax
{
ψk(x, v) : (x, v) ∈ Fk(zk)

}

has been obtained, function fk is updated thanks to the new cut generated at xk+1, and the
value zk is possibly updated. A stopping condition is tested, which is based on the difference
between the upper bound and a lower bound obtained by minimizing fk+1 over Q, and the
procedure possibly iterated. Calculation of the analytic center can be performed by adapting
interior point algorithms for Linear Programming based on the use of potential functions
(see, e.g., de Ghellinck and Vial 1986). Complexity estimates of the method, with possible
embedding of a proximal term in calculating the analytic center, are presented in Nesterov
(1995)

Yet another possibility is to adopt, instead of the analytic center, the Chebyshëv center,
defined as the center of the largest sphere contained in Fk(zk). The approach, originally
proposed in Elzinga and Moore (1975), has been equipped with a quadratic stabilizing term
in Ouorou (2009).

An original approach somehow related to this area can be finally found in Bertsimas and
Vempala (2004).

6.3 Gradient sampling

The fundamental fact behind most of NSO method is that satisfaction of an angle condition,
that of forming an obtuse angle with a subgradient, is not enough for a direction to be a
descent one. The angle condition, in fact, must be robust, that is the direction has to make
an obtuse angle with many subgradients around the point. Based on this observation, and
considering that for most practical problems the objective function is differentiable almost
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everywhere, gradient sampling algorithms have been introduced, see Kiwiel (2007), whose
key feature is the evaluation of subgradient (i.e., gradient with probability 1) on a set of
random points close to the current iterate. All such gradients are then used to obtain a search
direction.

A sketch of an iteration of gradient sampling algorithm is reported in Algorithm 4, see
(Burke et al. 2005, 2020).Wedonot report, for simplicity of notation, the iteration counter and
thus we indicate by x the current iterate. The algorithm works on the basis of two couples of
stationarity/sampling-radius tolerances, the overall (η, ε) and the iteration–dependent (θ, δ),
respectively.

Algorithm 4 Gradient Sampling Scheme (GS)
1: Let x be the current iterate, where function f is differentiable;

Compute the gradient g0 = ∇ f (x);
Sample independently m ≥ n + 1 points y1, . . . , ym uniformly random � Sampling
in the ball of radius δ centered at x;
Obtain at each of such points a gradient, say gi = ∇ f (yi ), i ∈ {1, . . . ,m};

2: Obtain a direction d, if any, that forms an obtuse angle with all m + 1 gradients;
It can be obtained (see (45) or (48)-(49) for γk = 1 and αi = 0 for every i)
as d = −g∗ = − argmin{ 12 ‖g‖2 : g ∈ conv{g0, . . . , gm }}; � Direction finding

3: Stop in case ‖d‖ < η and δ < ε (overall tolerances met); � Termination test
In case ‖d‖ < θ , reduce by constant reduction factors both θ and δ; � Parameter update

4: Perform an Armijo-type line search along d and calculate a sufficient � Line search
decrease stepsize t ;
Move to the new point x + td if at such point f is differentiable or, if this
is not the case, to a point close to x + td where sufficient decrease is still
achieved and f is differentiable.

It can be proved that an algorithm based on the above iteration scheme provides a sequence
of points {xk} converging to a Clarke stationary point with probability 1, unless f (xk) →
−∞. A necessary assumption is that the set of points where f is continuously differentiable
is open, dense and full measure inRn , while no convexity assumption is required for ensuring
convergence.

7 Inexact calculation of function and/or subgradient

We have already seen a case where it is advisable to dispose of a method for minimizing a
convex function without requiring its exact calculation, see Sect. 6.1. This is a typical case
in the wide application field of Lagrangian relaxation for hard ILP problems.

Next we briefly recall some basic facts, see (Gaudioso 2020). Suppose the following ILP
problem is to be solved

zI = max
{
c�x : Ax = b, Bx = d, x ≥ 0, x ∈ Z

n
}

(69)

with c ∈ R
n , A ∈ R

m×n , B ∈ R
p×n , b ∈ R

m , d ∈ R
p , and Z

n denoting the set of
n-dimensional vectors. We assume that the problem is feasible and that the set

X = {
x ∈ Z

n : Bx = d, x ≥ 0
}

is finite, that is X = {x1, x2, . . . , xK } andK = {1, 2, . . . , K } is the corresponding index set.
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Assume also that constraints are partitioned into two families, those defined through
Ax = b being the complicating ones. A Lagrangian relaxation of (69) is obtained by relaxing
complicating constraints as follows

z(λ) = max
{
c�x + λ�(b − Ax) : x ∈ X

}
, (70)

where λ ∈ R
m . Problem (70), which is still an ILP, provides an upper bound for problem

(69), namely,

z(λ) ≥ zI .

Moreover, denoting by x(λ) ∈ {x1, x2, . . . , xK } the optimal solution of (70), it holds that

z(λ) = c�x(λ) + λ�(
b − Ax(λ)

)

= max
{
c�xk + λ�(b − Axk) : k ∈ {1, . . . , K }

}
, (71)

z(λ) being often referred to as the dual function. We note that, in case x(λ) is feasible (i.e.,
Ax(λ) = b), then it is also optimal for (69).

Aiming for the best among the upper bounds (i.e., the one closest to zI ), we define the
Lagrangian dual problem as

zLD = min

{
z(λ) : λ ∈ R

m
}

= min

{
max

{
c�xk + λ�(b − Axk) : k ∈ {1, . . . , K }

}
: λ ∈ R

m
}
, (72)

zLD being the best upper bound obtainable through Lagrangian relaxation.
Problem (72) consists in the minimization of a convex function defined as the pointwise

maximum of K affine functions of λ, one for each feasible point in X . In fact, it is a convex
nonsmooth optimization problems which can be tackled by means of any of the methods
described in previous sections.

Very often, once the complicating constraints have been removed, the Lagrangian relax-
ation is easy to solve. If this is not the case, however, any iterative NSO method which
requires at each iteration its exact solution may lead to prohibitive computation time. Now
suppose we are able to solve approximately the Lagrangian relaxation (70), that is, we are
able to obtain for any given λ̄ an approximation of z(λ̄), say z̃(λ̄) = z(λ̄)−ε, for some ε ≥ 0.
Suppose, in particular, that

z̃(λ̄) = c�x̃(λ̄) + λ̄
�(

b − Ãx(λ̄)
)

for some x̃(λ̄) ∈ {x1, x2, . . . , xK }. Hence, for every λ ∈ R
m the following inequality holds

z(λ) ≥ c�x̃(λ̄) + λ�(
b − Ãx(λ̄)

)

= c�x̃(λ̄) + λ�(
b − Ãx(λ̄)

) + λ̄
�(

b − Ãx(λ̄)
) − λ̄

�(
b − Ãx(λ̄)

)

= z(λ̄) − ε + (λ − λ̄)�
(
b − Ãx(λ̄)

)
, (73)

which indicates that
(
b − Ãx(λ̄)

) ∈ ∂εz(λ̄).
Lagrangian relaxation and corresponding solution of the (convex and nonsmooth)

Lagrangian dual problem is a very common example of the general case where, in mini-
mizing a convex function f , at any point x we have at hand both an approximate value of
the function f̃ (x) = f (x) + ε f , and an approximate subgradient g̃(x) ∈ ∂εg f (x), for some
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positive ε f and εg . Convergence analysis of algorithms based on such an approximation
has been extensively used both in subgradient (see Kiwiel 2004; D’Antonio and Frangioni
2009; Astorino et al. 2019) and in bundle methods (see Hintermüller 2001; Kiwiel 2006; de
Oliveira et al. 2014; van Ackooij and Sagastizábal 2014). In particular, in de Oliveira et al.
(2014) a taxonomy of possible kinds of inexactness in function and/or subgradient evaluation
is provided, together with a classification of the methods. It is relevant, in fact, the distinction
between cases where ε f and εg are completely unknown and those where such errors can be
estimated or, sometimes, even controlled.

8 Nonconvex NSO: a bundle view

The extension of the cutting plane idea and, consequently, of bundle methods to (local) min-
imization of nonconvex functions is not straightforward. In fact, in such a case it is still
possible to define the convex piecewise affine function fk , exactly as in (25), provided that
vectors gi are now elements of Clarke’s subdifferential ∂C f (x). Nevertheless, two funda-
mental properties valid in the convex framework get lost:

– it is no longer ensured that fk is a lower approximation of f ;
– fk does not necessarily interpolates f at points xi , i ∈ {1, . . . , k}.

If we adopt the stability center viewpoint and rewrite fk , see (39), as

fk(xk + d) = f (xk) + max
{
g�
i d − αi : i ∈ {1, . . . , k}

}

it may happen that fk does not even interpolate f at point xk , in case some αi takes a
negative value, which is likely to occur since f is nonconvex. Note that such drawback is
independent of the nonsmoothness assumption. Several authors, see (Kiwiel 1996; Mäkelä
and Neittaanmäki 1992; Schramm and Zowe 1992), have handled it by embedding into a
standard bundle scheme possible downward shifting of one or more of the affine pieces
which give rise to the cutting plane function. This can be obtained by replacing the definition
(40) of the linearization error αi with

αi = max
{
f (xk) − f (xi ) − g�

i (xk − xi ), σ‖xk − xi‖2
}

≥ 0,

for some σ > 0. Such modification, although somehow arbitrary, ensures the interpolation
fk(xk) = f (xk).
An alternative way to handle possibly negative linearization errors is based on the idea

of bundle splitting, see (Fuduli et al. 2004; Gaudioso and Gorgone 2010). It is based on the
distinction between affine pieces that exhibit a kind of convex or nonconvex behavior relative
to the stability center. The approach requires a slightly different definition of the elements of
the bundle, which is now

Bk �
{(
xi , f (xi ), gi , αi , ai

) : gi ∈ ∂C f (xi ), ai = ‖xk − xi‖, i ∈ {1, . . . , k}
}
.

Letting I = {1, . . . , k} be the index set of Bk , we introduce the partition I = I+ ∪ I− with
I+ and I− defined as follows

I+ = {i ∈ I : αi ≥ 0} and I− = {i ∈ I : αi < 0}. (74)

The bundles defined by the index sets I+ and I− are related to points that somehow exhibit,
respectively, a “convex behavior” and a “concave behavior” with respect to xk . We observe
that I+ is never empty as at least the element (xk, f (xk), gk, 0, 0) belongs to the bundle.
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The basic idea is to treat differently the two bundles in the construction of a piecewise
affine model. The following two piecewise affine functions are thus defined

Δ+(d) � max
{
g�
i d − αi : i ∈ I+

}

and

Δ−(d) � min
{
g�
i d − αi : i ∈ I−

}
.

FunctionΔ+(d) is intended as an approximation to the difference function f (xk+d)− f (xk),
and interpolates it at d = 0 as it is Δ+(0) = 0, being k ∈ I+. On the other hand, Δ−(d)

is a locally pessimistic approximation of the same difference function, since at d = 0 it is
Δ−(0) = min {−αi : i ∈ I−} > 0. Summing up, around d = 0 (i.e., around the stability
center xk) it is

Δ+(0) < Δ−(0). (75)

Consequently, it appears reasonable to consider significant the difference function approx-
imation Δ+(d) as far as condition (75) is fulfilled. Thus, we come out with a kind of trust
region model Sk defined as

Sk = {
d ∈ R

n : Δ+(d) ≤ Δ−(d)
}

.

As in all bundle methods, the building block of the double–bundle approach is the sub-
problem to be solved in order to find a (tentative) displacement dk from the stability center
xk . Under the trust region constraint d ∈ Sk , the choice in Fuduli et al. (2004) is to solve

min
{
Δ+(d) : d ∈ Sk

}

which, by introducing also in this case the classic proximity term, can be put in the form

min
{
v + γk

1

2
‖d‖2 : v ≥ g�

i d − αi ∀i ∈ I+, v ≤ g�
i d − αi ∀i ∈ I−, d ∈ R

n, v ∈ R

}
.

We do not enter into the (rather technical) details on how subproblem above can be cast into
a working bundle scheme. Implementations of the algorithm described in Fuduli et al. (2004)
have been fruitfully used in many nonconvex optimization applications.

9 Bibliography, complements, and reading suggestions

We discuss, without the ambition of being exhaustive, a number of bibliographic references,
some already cited throughout the paper, on various topics touched in this survey. We also
open some windows on certain research sub-areas, that it has been impossible to treat for the
sake of brevity. From time to time we draw the reader’s attention to some contributions we
feel of particular interest.

Mathematical background Convex analysis is the well-grounded theoretical basis of numer-
ical NSO. Cornerstone references are the (unpublished but well known) 1951 Lecture notes
by W. Fenchel at Princeton Fenchel (1951), the Moreau paper Moreau (1965), Rockafellar’s
“Convex Analysis” Rockafellar (1970), the book by Hiriart-Urruty and Lemaréchal (1993),
which covers both theoretical and algorithmic aspects, and the books by Bertsekas (1995,
2009) and Mordukhovich (2006).
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Historical Contributions Some books provide a complete view of the well advanced state of
the art of numerical NSO,mainly in former Soviet Union, during the 70s of last century.Most
of the successive developments have their roots there. We cite Demyanov and Malozemov
book on minmax problems (Demyanov and Malozemov 1974), the book by Pshenichnyi and
Danilin (1975) which covers both smooth and nonsmooth optimization, Shor’s book (Shor
1985) on subgradient method and its variants, Polyak’s complete presentation (Polyak 1987),
both in deterministic and in stochastic setting, and Nemirovski and Yudin book (Nemirovski
and Yudin 1983), where the complexity and efficiency issues are treated in depth. A real
milestone in the development of numerical NSO was the workshop held in spring 1977 at
IIASA, in Laxenburg, near to Wien, were for the first time scientists from both sides of
what, at that time, was named the iron curtain had the opportunity of a long and fruitful
debate. In particular, the meeting represented the starting point of a rapid development of the
NSO area in western countries. The Proceedings of the workshop (Lemaréchal and Mifflin
1978) contain a number of fine contributions. To our knowledge, the term bundle method
was coined by Lemaréchal in that occasion (Lemaréchal 1978) and it is very interesting to
note that similar ideas, independently developed, were present in other contributions, see
(Pshenichnyi 1978).

Comprehensive books and surveys Among books which give a complete overview of both
theory and practice of NSO, apart the already mentioned (Hiriart-Urruty and Lemaréchal
1993), we recall here (Kiwiel 1985; Mäkelä and Neittaanmäki 1992; Shor 1998; Bagirov
et al. 2020).We suggest, in particular, (Bagirov et al. 2014) for its admirable clarity. Excellent
surveys areLemaréchal (1989),Mäkelä (2002), Frangioni (2020).We also suggest the reading
of Ben-Tal and Nemirovski (2001) for the original approach to convex optimization.

Subgradient methods The methods discussed in Sect. 4 were, to our knowledge, introduced
in a note by N.Z. Shor (1962). From the very beginning several other scientists gave their
contributions (Ermoliev 1966; Eremin 1967; Polyak 1978). As far as the classic approach is
concerned, reference books, whose reading is strongly suggested, are Shor (1985), Polyak
(1987). In more recent years, the interest in subgradient–type methods was renewed, thanks
to the Mirror Descent Algorithm introduced by Nemirowski and Yudin (see also Beck and
Teboulle 2003), and to some papers by Nesterov (2005, 2009a, b) (see also the variant Fran-
gioni et al. 2018). Very recent developments are in Dvurechensky et al. (2020). Apart from
subgradient methods, we recall that also the concept of ε-subdifferential has been at the basis
of some early algorithms (see, e.g., Bertsekas and Mitter 1973; Nurminski 1982).

Cutting plane and bundle methods The cutting plane method stems, as already mentioned,
from the seminal papers by Kelley (1960) and Cheney and Goldstein (1959), where the
reader finds much more than just the description of the algorithm. A similar approach was
independently devised by Levitin and Levitin and Polyak (1966). As for bundle method,
fundamental references are the papers by Lemaréchal (1975) and by Wolfe (1975). The
approach known as Method of Linearisations also embedding the proximity concept was
independently proposed at about the same time by Pshenichnyi, see (Pshenichnyi 1970) and
(Pshenichnyi and Danilin (1975), Chapter 3, §5). Since the beginning of the 80s the interest
towards bundle methods has flourished within the mathematical programming community,
and a large number of papers has appeared in outstanding journals. It is impossible to provide
a complete list. We just mention the early papers (Lemaréchal et al. 1981; Mifflin 1982;
Fukushima 1984). As examples of the use of the three stabilizing strategies described in
Sect. 5.1 we recall Kiwiel’s paper (Kiwiel 1990) for a deep view on the proximal point BM;
trust region BM is analysed in Schramm and Zowe (1992), with possible application also to
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nonconvex functions and, finally, the level bundle variant of BM, somehow already evoked in
Pshenichnyi (1978), is presented in Lemaréchal et al. (1995), Brännlund et al. (1995). Apart
from the three main classes of BM described in Sect. 5.1, we wish to mention some other
proposals.

– Methods based on possible decomposition of function domain into a subspace where
the function is smooth, while nonsmoothness is confined into the orthogonal subspace,
see (Mifflin and Sagastizábal 2005). Such approach is usually referred to as VU decom-
position. A fine historical note about it (and much more) is in Mifflin and Sagastizábal
(2012).

– Methods which adopt different stabilization strategies. We cite, in particular, the Gener-
alized BM Frangioni (2002), the use of Bregman distance (Kiwiel 1999), and the doubly
stabilized BM de Oliveira and Solodov (2016).

– Methods where the condition that the model function fk is a lower approximation of f
is removed, by replacing the αi s in (45) with adjustable (non negative) parameters,see
(Gaudioso and Monaco 1982, 1992; Astorino et al. 2017).

– Methods where bundle update takes place every time a new stability center xk+1 is found,
through simultaneous moves of all points xi s towards xk+1, see (Demyanov et al. 2007).

– Methods based on piecewise quadratic approximations of the objective function, see
(Gaudioso and Monaco 1991; Astorino et al. 2011).

– Spectral BM for dealing with eigenvalue optimization and semidefinite relaxations of
combinatorial problems, see (Helmberg and Rendl 2000).

– The Volume Algorithm which is midway between subgradient and simplified bundle
methods, thus appearing suitable for large scale applications, see (Barahona and Anbil
2000; Bahiense et al. 2002).

Line searches Line searches tailored on nonsmooth (not necessarily convex) functions con-
stitute an important chapter of NSO. A line search algorithm embedded into any BMmethod
must accommodate for possible null-step. We have already mentioned in Sect. 5.1 the
Armijo’s rule (Armijo 1966). In the literature, specific line searches have been designed,
and we recall here the method due to Wolfe (1975), the Lemarechal’s survey (Lemaréchal
1981), and the Mifflin’s paper (Mifflin 1984), where a method with superlinear convergence
rate for locally Lipschitz functions is discussed.

Solving the quadratic subproblem In bundle methods a quadratic subproblem is to be solved
at each iteration and, consequently, the overall performance is strongly affected by the quality
of the correspondent quadratic solver. In particular, in proximal BM either problem (45) or
(48) are to be tackled to provide the direction dk . The special structure of the latter has
suggested the design of ad hoc algorithms. Efficient methods are described in Kiwiel (1986,
1994), Monaco (1987), Frangioni (1996).We also mention the historical paper (Wolfe 1976),
where the quadratic problem (48) is treated for the case when αi s are all equal to zero, in the
framework of classic Wolfe’s conjugate subgradient method (Wolfe 1975).

Variable metric methods As for the extension to NSO of Quasi-Newton formulae, we have
already cited Lemaréchal (1982) and Vlček and Luksǎn (2001), the latter being also able to
deal with nonconvex objective functions. A different way to embed QN ideas in the bundle
framework is presented in Luksǎn and Vlček (1998). References for QN methods based
on Moreau-Yosida regularization and bundle-QN methods are Qi and Sun (1993), Bonnans
et al. (1995), Lemaréchal and Sagastizábal (1997), Fukushima and Qi (1996), Mifflin (1996),
Mifflin et al. (1998), Rauf andFukushima (1998), Chen andFukushima (1999).An interesting
areawhereQN ideas havebeen fruitfully employed,mainly to dealwith large scaleNSO, is the
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Limited memory BMHaarala et al. (2007), Gaudioso et al. (2018c) where ideas coming from
Luksǎn and Vlček (1998), Vlček and Luksǎn (2001) have been employed in the framework
of the limited memory QN for smooth problems (Byrd et al. 1994). The method has been
extended to very large scale problems, also nonconvex, by adopting a sparse (diagonal, in
fact) form for the QN matrix (Karmitsa 2015). We wish to mention, finally, that celebrated
Shor’s subgradient with space dilatation algorithm can be viewed as a QN method with
symmetric rank-one update formula, see (Todd 1986; Burke et al. 2008).

Minmax problems A large part of NSO problems arising in practical applications are of the
minmax type, mainly in consideration that the worst case analysis, which naturally leads to
minmax (or maxmin) model, is an increasingly popular paradigm in decision making. We
recall here the already cited fundamental book (Demyanov and Malozemov 1974) and the
papers (Di Pillo et al. 1993, 1997) where minmax problems are dealt with by transformation
into smooth problems. Somebasic references areHald andMadsen (1981), Polak et al. (1991),
Nedić and Bertsekas (2001). Minmaxmin optimization is revisited in Demyanov et al. (2002)
(see also Gaudioso et al. 2018a). Inexact calculation of the max function has been considered
in both cases of finite and semi-infinite convex minmax in Gaudioso et al. (2006) and Fuduli
et al. (2014), respectively; an application to a minmax problem in a Lagrangian relaxation
setting is presented in Gaudioso et al. (2009).

Nonconvex NSO and DC programming There exist numerous bundle type algorithms appli-
cable to nonconvex functions. We recall here (Nurminski 1982; Schramm and Zowe 1992;
Qi and Sun 1994; Kiwiel 1996; Noll and Apkarian 2005; Hare and Sagastizábal 2010; Akbari
et al. 2014). Papers (Bagirov et al. 2008; Kiwiel 2010; Fasano et al. 2014) are examples of
derivative free NSO methods capable to cope with nonconvexity. In recent years the class of
DC (Difference of Convex) functions (Hiriart-Urruty 1986; Strekalovsky 1998; Tuy 2016)
has received considerable attention. A DC function f (x) is expressed in the form:

f (x) = f (1)(x) − f (2)(x),

where both f (1) and f (2) are convex. The well established algorithm DCA (An and Tao
2005) works as follows. Letting xk be the current iterate, point xk+1 is obtained as

xk+1 = argmin
{
f (1)(x) − f (2)(xk) − g(2)(xk)�(x − xk)

}
,

where g(2)(xk) ∈ ∂ f (2)(xk). In other words, the linearization of function f (2) gives rise, at
each iteration, to a convex program to be solved in order to obtain the next iterate. The bundle
philosophy has been extensively used in handling DC optimization, introducing the cutting
planemodel for f (1) and/or f (2). Some recent references areAstorino andMiglionico (2016),
de Oliveira (2019), de Oliveira (2020), Gaudioso et al. (2018b), Gaudioso et al. (2020a),
Gaudioso et al. (2020b), Joki et al. (2018).

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory

123



248 Annals of Operations Research (2022) 314:213–253

regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Akbari, Z., Yousefpour, R., & Reza Peyghami, M. (2014). A new nonsmooth trust region algorithm for locally
Lipschitz unconstrained optimization problems. Journal of Optimization Theory and Applications, 164,
733–754.

An, L. T. H., & Tao, P. D. (2005). The DC (difference of convex functions) programming and DCA revisited
with DC models of real world nonconvex optimization problems. Journal of Global Optimization, 133,
23–46.

Armijo, L. (1966). Minimization of functions having Lipschitz continuous first partial derivatives. Pacific
Journal of Mathematics, 16, 1–3.

Astorino, A., Frangioni, A., Gaudioso, M., & Gorgone, E. (2011). Piecewise quadratic approximations in
convex numerical optimization. SIAM Journal on Optimization, 21, 1418–1438.

Astorino, A., Fuduli, A., & Gaudioso, M. (2019). A Lagrangian relaxation approach for binary Multiple
Instance Classification. IEEE Transactions on Neural Networks and Learning Systems, 30, 2662–2671.

Astorino, A., Gaudioso, M., & Gorgone, E. (2017). A method for convex minimization based on translated
first-order approximations. Numerical Algorithms, 76, 745–760.

Astorino, A., & Miglionico, G. (2016). Optimizing sensor cover energy via DC programming. Optimization
Letter, 10, 355–368.

Bagirov, A.M., Gaudioso,M., Karmitsa, N.,Mäkelä,M.M., &Taheri, S. (Eds.). (2020).Numerical nonsmooth
optimization: State of the art algorithms. New York: Springer.

Bagirov, A. M., Karasözen, B., & Sezer, M. (2008). Discrete gradient method: Derivative-free method for
nonsmooth optimization. Journal of Optimization Theory and Applications, 137, 317–334.

Bagirov, A. M., Karmitsa, N., & Mäkelä, M. M. (2014). Introduction to nonsmooth optimization: Theory,
practice and software. New York: Springer.

Bahiense, L., Maculan, N., & Sagastizábal, C. (2002). The volume algorithm revisited: Relation with bundle
methods. Mathematical Programming, 94, 41–69.

Barahona, F., & Anbil, R. (2000). The volume algorithm: Producing primal solutions with a subgradient
method. Mathematical Programming, 87, 385–399.

Barzilai, J., & Borwein, J. M. (1988). Two-point step size gradient methods. IMA Journal of Numerical
Analysis, 8, 141–148.

Beck, A., & Teboulle, M. (2003). Mirror descent and nonlinear projected subgradient methods for convex
optimization. Operations Research Letters, 31, 167–175.

Ben-Tal, A., & Nemirovski, A. (2001). Lectures on modern optimization. MPS/SIAM series on optimization.
Philadelphia: SIAM.

Bertsekas, D. P. (1995). Nonlinear programming. Belmont, MA: Athena Scientific.
Bertsekas, D. P. (2009). Convex optimization theory. Belmont: Athena Scientific.
Bertsekas, D. P., & Mitter, S. K. (1973). A descent numerical method for optimization problems with nondif-

ferentiable cost functionals. SIAM Journal on Control, 11, 637–652.
Bertsimas, D., & Vempala, S. (2004). Solving convex programs by random walks. Journal of the ACM, 51,

540–556.
Bonnans, J., Gilbert, J., Lemaréchal, C., & Sagastizábal, C. (1995). A family of variable metric proximal

methods. Mathematical Programming, 68, 15–47.
Brännlund, U., Kiwiel, K. C., & Lindberg, P. O. (1995). A descent proximal level bundle method for convex

nondifferentiable optimization. Operations Research Letters, 17, 121–126.
Burke, J. V., Curtis, F. E., Lewis, A. S., Overton, M. L., & Simões, L. E. A. (2020). Gradient sampling methods

for nonsmooth optimization. In A.M. Bagirov,M.Gaudioso, N. Karmitsa,M.Mäkelä, & S. Taheri (Eds.),
Numerical nonsmooth optimization: State of the art algorithms. New York: Springer.

Burke, J. V., Lewis, A. S., & Overton, M. L. (2005). A robust gradient sampling algorithm for nonsmooth,
nonconvex optimization. SIAM Journal on Optimization, 15, 751–779.

Burke, J.V., Lewis,A. S.,&Overton,M.L. (2008). The speed of Shor’sR-algorithm. IMAJournal ofNumerical
Analysis, 28, 711–720.

Byrd, R. H., Nocedal, J., & Schnabel, R. B. (1994). Representations of quasi-Newton matrices and their use
in limited memory methods. Mathematical Programming, 63, 129–156.

Chebyshëv, P. L. (1961). Sur les questions de minima qui se rattachent a la représentation approximative des
fonctions, 1859. In Oeuvres de P. L. Tchebychef, (Vol. 1, pp. 273–378). New York: Chelsea.

123

http://creativecommons.org/licenses/by/4.0/


Annals of Operations Research (2022) 314:213–253 249

Cheney, E. W., & Goldstein, A. A. (1959). Newton’s method for convex programming and Tchebycheff
approximation. Numerische Mathematik, 1, 253–268.

Chen, X., & Fukushima, M. (1999). Proximal quasi-Newton methods for nondifferentiable convex optimiza-
tion. Mathematical Programming, 85, 313–334.

Clarke, F. H. (1983). Optimization and nonsmooth analysis (pp. 357–386). New York: Wiley.
D’Antonio,G.,&Frangioni,A. (2009).Convergence analysis of deflected conditional approximate subgradient

methods. SIAM Journal on Optimization, 20, 357–386.
de Ghellinck, G., & Vial, J.-P. (1986). A polynomial Newton method for linear programming. Algorithmica,

1, 425–453.
de Oliveira, W. (2019). Proximal bundle methods for nonsmooth DC programming. Journal of Global Opti-

mization, 75, 523–563.
de Oliveira, W. (2020). The ABC of DC programming. Set-Valued and Variational Analysis, 28, 679–706.
de Oliveira, W., Sagastizábal, C., & Lemaréchal, C. (2014). Convex proximal bundle methods in depth: A

unified analysis for inexact oracles. Mathematical Programming, 148, 241–277.
deOliveira,W.,& Solodov,M. (2016). A doubly stabilized bundlemethod for nonsmooth convex optimization.

Mathematical Programming, 156, 125–159.
Demyanov, A. V., Demyanov, V. F., &Malozemov, V. N. (2002).Minmaxmin problems revisited.Optimization

Methods and Software, 17, 783–804.
Demyanov,A.V., Fuduli,A.,&Miglionico,G. (2007).Abundlemodification strategy for convexminimization.

European Journal of Operational Research, 180, 38–47.
Demyanov, V. F., & Malozemov, V. N. (1974). Introduction to minimax. New York: Wiley.
Demyanov, V. F., & Rubinov, A. M. (1995). Constructive nonsmooth analysis. Berlin: Verlag Peter Lang.
Di Pillo, G., Grippo, L., & Lucidi, S. (1993). A smooth method for the finite minimax problem.Mathematical

Programming, 60, 187–214.
Di Pillo, G., Grippo, L., & Lucidi, S. (1997). Smooth transformation of the generalized minimax problem.

Journal of Optimization Theory and Applications, 95, 1–24.
Dvurechensky, P. E., Gasnikov, A. V., Nurminski, E. A., & Stonyakin, F. S. (2020). Advances in low-memory

subgradient optimization. In A. Bagirov, M. Gaudioso, N. Karmitsa, M. Mäkelä, & S. Taheri (Eds.),
Numerical nonsmooth optimization: State of the art algorithms. New York: Springer.

Elzinga, J., & Moore, T. G. (1975). A central cutting plane algorithm for the convex programming problem.
Mathematical Programming, 8, 134–145.

Eremin, I. I. (1967). The method of penalties in convex programming. Dokladi Academii Nauk USSR, 173,
748–751.

Ermoliev, Yu. M. (1966). Methods of solution of nonlinear extremal problems. Cybernetics, 2, 1–16.
Fasano, G., Liuzzi, G., Lucidi, S., & Rinaldi, F. (2014). A linesearch-based derivative-free approach for

nonsmooth constrained optimization. SIAM Journal on Optimization, 24, 959–992.
Fenchel, W. (1951). Convex cones, sets and functions. Lectures at Princeton University. Princeton: Princeton

University Press.
Frangioni, A. (1996). Solving semidefinite quadratic problems within nonsmooth optimization algorithms.

Computers and Operations Research, 23, 1099–1118.
Frangioni, A. (2002). Generalized bundle methods. SIAM Journal on Optimization, 13, 117–156.
Frangioni, A. (2020). Standard bundle methods: Untrusted models and duality. In A. M. Bagirov, M. Gau-

dioso, N. Karmitsa, M. Mäkelä, & S. Taheri (Eds.), Numerical nonsmooth optimization: State of the art
algorithms. New York: Springer.

Frangioni, A., Gendron, B., & Gorgone, E. (2018). Dynamic smoothness parameter for fast gradient methods.
Optimization Letters, 12, 43–53.

Fuduli, A., Gaudioso,M., &Giallombardo, G. (2004).Minimizing nonconvex nonsmooth functions via cutting
planes and proximity control. SIAM Journal on Optimization, 14, 743–756.

Fuduli, A., Gaudioso, M., Giallombardo, G., & Miglionico, G. (2014). A partially inexact bundle method for
convex semi-infinite minmax problems. Communications in Nonlinear Science and Numerical Simula-
tion, 21, 172–180.

Fukushima,M. (1984). A descent algorithm for nonsmooth convex optimization.Mathematical Programming,
30, 163–175.

Fukushima, M., & Qi, L. (1996). A globally and superlinearly convergent algorithm for nonsmooth convex
minimization. SIAM Journal on Optimization, 6, 1106–1120.

Gaudioso, M. (2020). A view of Lagrangian relaxation and its applications. In A.M. Bagirov, M. Gaudioso, N.
Karmitsa,M.Mäkelä,&S.Taheri (Eds.),Numerical nonsmooth optimization—State of the art algorithms.
New York: Springer.

Gaudioso, M., Giallombardo, G., & Miglionico, G. (2006). An incremental method for solving convex finite
min-max problems. Mathematics of Operations Research, 31, 173–187.

123



250 Annals of Operations Research (2022) 314:213–253

Gaudioso,M., Giallombardo, G., &Miglionico, G. (2009). On solving the Lagrangian dual of integer programs
via an incremental approach. Computational Optimization and Applications, 44, 117–138.

Gaudioso, M., Giallombardo, G., & Miglionico, G. (2018). Minimizing piecewise concave functions over
polyhedra.Mathematics of Operations Research, 43, 580–597.

Gaudioso, M., Giallombardo, G., & Miglionico, G. (2020). Essentials of numerical nonsmooth optimization.
4OR, 18, 1–47.

Gaudioso, M., Giallombardo, G., Miglionico, G., & Bagirov, A. M. (2018). Minimizing nonsmooth DC
functions via successive DC piecewise-affine approximations. Journal of Global Optimization, 71, 37–
55.

Gaudioso,M., Giallombardo, G., Miglionico, G., &Vocaturo, E. (2020). Classification in themultiple instance
learning framework via spherical separation. Soft Computing, 24(7), 5071–5077.

Gaudioso,M., Giallombardo,G.,&Mukhametzhanov,M. (2018). Numerical infinitesimals in a variablemetric
method for convex nonsmooth optimization. Applied Mathematics and Computation, 318, 312–320.

Gaudioso, M., & Gorgone, E. (2010). Gradient set splitting in nonconvex nonsmooth numerical optimization.
Optimization Methods and Software, 25, 59–74.

Gaudioso, M., Hiriart-Urruty, J.-B., & Gorgone, E. (2020). Feature selection in SVM via polyhedral k-norm.
Optimization Letters, 14(1), 19–36.

Gaudioso, M., &Monaco, M. F. (1982). A bundle type approach to the unconstrained minimization of convex
nonsmooth functions. Mathematical Programming, 23, 216–223.

Gaudioso, M., & Monaco, M. F. (1991). Quadratic approximations in convex nondifferentiable optimization.
SIAM Journal on Control and Optimization, 29, 1–10.

Gaudioso, M., & Monaco, M. F. (1992). Variants to the cutting plane approach for convex nondifferentiable
optimization. Optimization, 25, 65–75.

Goffin, J.-L. (1977). On convergence rates of subgradients optimizationmethods.Mathematical Programming,
13, 329–347.

Goffin, J.-L.,Gondzio, J., Sarkissian,R.,&Vial, J.-P. (1997). Solving nonlinearmulticommodity flowproblems
by the analytic center cutting plane method.Mathematical Programming, 76B, 131–154.

Goffin, J.-L., Haurie, A., & Vial, J.-P. (1992). Decomposition and nondifferentiable optimization with the
projective algorithm.Management Science, 38, 284–302.

Grippo, L., Lampariello, F., & Lucidi, S. (1991). A class of nonmonotone stabilization methods in uncon-
strained optimization. Numerische Mathematik, 59, 779–805.

Haarala, N., Miettinen, K., & Mäkelä, M. M. (2007). Globally convergent limited memory bundle method for
large-scale nonsmooth optimization. Mathematical Programming, 109, 181–205.

Hald, J., & Madsen, K. (1981). Combined LP and Quasi-Newton methods for minimax optimization.Mathe-
matical Programming, 20, 49–62.

Hare, W., & Sagastizábal, C. (2010). A redistributed proximal bundle method for nonconvex optimization.
SIAM Journal on Optimization, 20, 2242–2473.

Helmberg, C., & Rendl, F. (2000). A spectral bundle method for semidefinite programming. SIAM Journal on
Optimization, 10, 673–696.

Hintermüller, M. (2001). A proximal bundle method based on approximate subgradients. Computational
Optimization and Applications, 20, 245–266.

Hiriart-Urruty, J.-B. (1986). Generalized differentiability/duality and optimization for problems dealing with
differences of convex functions. Lecture notes in economic and mathematical systems (Vol. 256, pp.
37–70). New York: Springer.

Hiriart-Urruty, J. B., & Lemaréchal, C. (1993). Convex analysis and minimization algorithms (Vol. I and II).
Berlin: Springer.

Joki, K., Bagirov, A. M., Karmitsa, N., Mäkelä, M. M., & Taheri, S. (2018). Double bundle method for finding
Clarke stationary points in nonsmoothDC programming. SIAM Journal onOptimization, 28, 1892–1919.

Karmitsa, N. (2015). Diagonal bundle method for nonsmooth sparse optimization. Journal of Optimization
Theory and Applications, 166, 889–905.

Kelley, J. E. (1960). The cutting plane method for solving convex programs. Journal of SIAM, 8, 703–712.
Kiwiel, K. C. (1983). An aggregate subgradient method for nonsmooth convex minimization. Mathematical

Programming, 27, 320–341.
Kiwiel, K. C. (1985). Methods of descent for nondifferentiable optimization. Lecture notes in mathematics

(Vol. 1133). Berlin: Springer.
Kiwiel, K. C. (1986). A method for solving certain quadratic programming problems arising in nonsmooth

optimization. IMA Journal of Numerical Analysis, 6, 137–152.
Kiwiel, K. C. (1990). Proximity control in bundle methods for convex nondifferentiable minimization.Math-

ematical Programming, 46, 105–122.

123



Annals of Operations Research (2022) 314:213–253 251

Kiwiel, K. C. (1994). A Cholesky dual method for proximal piecewise linear programming. Numerische
Mathematik, 68, 325–340.

Kiwiel, K. C. (1996). Restricted step and Levenberg-Marquardt techniques in proximal bundle methods for
nonconvex nondifferentiable optimization. SIAM Journal on Optimization, 6, 227–249.

Kiwiel, K. C. (1999). A bundle Bregman proximal method for convex nondifferentiable minimization.Math-
ematical Programming, 85, 241–258.

Kiwiel, K. C. (2004). Convergence of approximate and incremental subgradient methods for convex optimiza-
tion. SIAM Journal on Optimization, 14, 807–840.

Kiwiel, K. C. (2006). A proximal bundle method with approximate subgradient linearizations. SIAM Journal
on Optimization, 16, 1007–1023.

Kiwiel, K. C. (2007). Convergence of the gradient sampling algorithm for nonsmooth nonconvex optimization.
SIAM Journal on Optimization, 18, 379–388.

Kiwiel, K. C. (2010). A nonderivative version of the gradient sampling algorithm for nonsmooth nonconvex
optimization. SIAM Journal on Optimization, 20, 1983–1994.

Lemaréchal, C. (1978). Nonsmooth optimization and descent methods. Report RR-78-4, IIASA, Laxenburg,
Austria.

Lemaréchal, C. (1974). An algorithm for minimizing convex functions. In J. L. Rosenfeld (Ed.), Proceedings
IFIP ’74 congress (pp. 20–25). Amsterdam: North-Holland.

Lemaréchal, C. (1975). An extension of Davidon methods to nondifferentiable problems.Mathematical Pro-
gramming Study, 3, 95–109.

Lemaréchal, C. (1981). A view of line-searches. In A. Auslender, W. Oettli, & J. Stoer (Eds.), Optimization
and optimal control. Lecture notes in control and information sciences (Vol. 30). Berlin: Springer.

Lemaréchal, C. (1982). Numerical experiments in nonsmooth optimization. In E. A. Nurminski (Ed.),Progress
in nondifferentiable optimization CP-82-S8 (pp. 61–84). Laxenburg: IIASA.

Lemaréchal, C., et al. (1989). Nondifferentiable optimization. In G. L. Nemhauser (Ed.), Handbooks in OR
&amp; MS (Vol. 1). New York: North-Holland.

Lemaréchal, C., & Mifflin, R. (Eds.). (1978). Nonsmooth optimization. Oxford: Pergamon Press.
Lemaréchal, C., Nemirovskii, A., & Nesterov, Y. (1995). New variants of bundle methods. Mathematical

Programming, 69, 111–147.
Lemaréchal, C., & Sagastizábal, C. (1997). Variable metrics bundle methods: From conceptual to imple-

mentable forms. Mathematical Programming, 76, 393–410.
Lemaréchal, C., Strodiot, J.-J., & Bihain, A. (1981). On a bundle algorithm for nonsmooth optimization. In O.

L. Mangasarian, R. R. Meyer, & S. M. Robinson (Eds.), Nonlinear programming 4 (pp. 245–282). New
York: Academic Press.

Levin, AYu. (1965). On an algorithm for minimization of convex functions. Soviet Mathematical Doklady, 6,
286–290.

Levitin, E. C., & Polyak, B. T. (1966). Constrained minimization methods. Journal of Computational Mathe-
matics and Mathematical Physics, 6, 787–823 ((in Russian)).
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