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Abstract
Supply chains are customarily associated with multiple interconnected risks originated from
supply side, demand side, or from the unanticipated background uncertainties faced by a
firm. Also, effective functioning of supply chain hinges on sourcing decisions of inputs (raw
materials). Therefore, there is a striking need to analyse the risk preference of the decision
maker while going for optimal sourcing decision under varying degree of interconnected
supply chain risks. This study addresses this issue by analysing the comparative static effects
under interconnected supply chain risks for a risk averse decision-maker, manufacturing and
selling products in a regulated market under perfect competition. The decision-maker faces
not only supply-side risk (due to random input material prices) but also interconnected risks
arising out of background risk (setup costs risk) and demand-side risk (output prices risk).
With preferences defined over the mean and standard deviation of the uncertain final profit,
this study illustrates the effects of the changes in the pairwise correlations between the three
above mentioned risks on the optimum input choice of the manufacturer. To contextualise
this study, an India-based generic drug manufacturer cum seller has been considered as a
case in the parametric example of our model. Adaptation of the mean–variance framework
helps obtaining all the results in terms of the relative trade-off between risk and return, with
simple yet intuitive interpretations.
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1 Introduction

Supply Chains (SCs) of firms are intrinsically pregnable to risk. While involvement of mul-
tiple supply chain components has added to the complexity of SCs over the years, the
practitioners and academicians witness intense SC incidences due to interconnected nature
of components in SC (Sheffi, 2007; Waters, 2011). Although interconnectedness has been
long understood, researchers have not yet arrived at a holistic understanding of the concept
that connects the supply chain risk components (Harland, 2021) i.e., interconnected risk
structure in which actions taken to resolve one risk affects other dependent risks. The sum-
mative intensity of disastrous events due to interconnected components affecting SCs by far
exceeds that of the significant natural hazards like the Japanese Tsunami or the US hurricane
Katrina. Therefore, there is a need to arrive at a connected and integrated perspective to the
phenomenon. Especially in case of sourcing decision of a firmwhere an array of SC risks (see
for example, Peck, 2006; Wagner & Bode, 2006; Pettit et al., 2013; Ho et al., 2015) and asso-
ciated interconnectivity among the different risk sources add to the complexity (Kayis and
Karningsih, 2012). We cite below a few examples of interconnected risks related challenges
faced by firms.

The interconnection between dollar value and sales of cars leads toVolvo´s loss of revenue,
which affected its raw material sourcing decisions. Similarly, disruption in chip supply and
sourcing issue leads to Ericsson´s USD 0.4 billion losses (Tang & Musa, 2011). Part of
the reason for Toyota’s product recall crisis is due to SC complexity that emerges from
interconnected supply components (Bode & Wagner, 2015). Chevron corporations, one of
the largest oil company of the USA, witnessed production shutdown followed by a loss of
400 million USD owing to natural disasters. The hurricanes, Gustav and Ike in the Gulf of
Mexico adversely affected the oil production subsequently leading to rise in crude oil price
in the region (Wagner et al., 2014). In 2009, over 670,000 suppliers in China closed their
doors due to interconnected SC risks like uncertain demand, late payments, and restricted
credit markets (Liu &Cruz, 2012). The rapid growth of Cisco Systems, Inc. was fuelled by an
outsourcing strategy that significantly increased the interconnectedness and SC complexity.
However, the capacity of Cisco Systems, Inc. to organise its SC and responding to a quickly
evolving telecommunication market was eventually overwhelmed by the SC complexity. As
a result, when the market crashed in early 2000, Cisco Systems, Inc. was unable to adjust,
resulting in a 300% increase in inventory a $2.25 billion write-down (Hearnshaw &Wilson,
2013). Hence, interconnected SC risks must be considered by firms as seriously as any other
business risk while developing a sourcing plan (Elkins et al., 2005; Heckmann et al., 2015;
Wagner & Bode, 2009). Notably, focusing on the strength of this interconnectedness among
risk sources—tightly and (or) loosely coupled—could help in developing sourcing plans
critical to SC risks (Guertler & Spinler, 2015; Liu & Cruz, 2012; McNerney et al., 2011;
Skilton & Robinson, 2009).

Analysis of interconnected risks helps in understanding of complex interactions in a sys-
tem that could be integrated into decision making process (Pescaroli & Alexander, 2018).
Interconnectivity in a system has been addressed in the literature using two broad perspec-
tives i.e., dependency structure of risks and decision-making under interconnected risks. A
recent review by Pournader et al. (2020) suggested that uncertainty within the SC network has
been addressed using expected utility approach considering newsvendor’s decision problems
(e.g., Kazaz & Webster, 2015; Li and Ki, 2021). On the other hand, studies have explored
the dependency structure of risks using complex adaptive system (Phillips & Ritala, 2019;
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Sweetman & Conboy, 2018) and complex network (Skilton & Robinson, 2009; Giannoc-
caro and Iftikhar, 2020). Of which, complex network is becoming more popular because it
can assist in understanding the underlying dependency structure of SC systems (Pournader
et al., 2020). Therefore, understanding the dependency structure can better assist the decision
maker to arrive at optimal solutions to a number of SC network problems (Bombelli et al.,
2020; Hearnshaw & Wilson, 2013), especially sourcing decision where sources of risks are
interconnected (Wagner et al., 2014). But the uncertainties arising out of the varying degrees
of interconnectedness among different sources of risks in a complex SC network and the
optimal sourcing decision have been recognised as the most challenging task (Govindan
et al., 2017; Shen, 2013).

To arrive at an optimal sourcing decision, it is essential for a decision maker to under-
stand multiple sources of risks, where categorization of these sources of risks could help
to gain better understanding about the dependency structure. In this regard, Supply Chain
Risk Management Council (2011) has categorised SC risks into two types i.e., internal- and
external- disruption risks. Subsequently, another class of literature (e.g., Christopher & Peck,
2004) described SC risks as internal to the firm (i.e., risks related to process of setting up an
operational activity and setup cost risk), and external to the firm but internal to the supply
chain network (i.e., supply and demand-side risks). Following this we have categorized the
sources of risks into three types: viz., demand side risks, supply side risks, and background
risks. Considering these three types of risks, several authors (e.g., Kumbhakar & Tsionas,
2010; Rodríguez-Puerta&Álvarez-López, 2016) have evaluated the optimal choice of a deci-
sion maker in the presence of either demand- or supply-side risks. For instance, Kumbhakar
and Tsionas (2010) considered von Neumann–Morgenstern (hereafter vNM) expected util-
ity (hereafter EU) approach to analyse only supply-side risk for a risk averse manufacturer.
Rodríguez-Puerta and Álvarez-López (2016), on the other hand, in an EU framework, have
considered only demand-side risk to decide optimal production allocation of a fixed amount
of output to the two possible destinations: one with certain price and another with uncertain
price. However, due to the inherent complexity of the classical EUmodels, it is almost impos-
sible to analyse the implications of changes in dependence structure or interconnectedness
among multiple risks on the risk preference pattern driving the optimal sourcing decision
within a SC network system.

Notably, the literature is strikingly silent about the risk preference of the decision maker,
while going for optimal sourcing decision, with respect to varying degrees of interconnectiv-
ity—tightly (or loosely) coupled—among different sources of risks, viz., supply-side risks,
demand-side risks, and background risks. Especially, in the case of a risk aversemanufacturer
where the optimal level of sourcing (or input choice) varies with change in the interconnect-
edness (Fischl et al., 2014) between the background risks and the supply-side risks under a
regulated market condition, which has not been investigated in the literature till date. More-
over, when the demand-side risks arise out of varying government policies in a decentralised
market condition, the change in interconnectedness between the demand-side risks and back-
ground risk also lack substantial investigation in terms of the risk-taking behaviour of the
manufacturer. This glaring question has also not been addressed in the extant literature so far.1

Thus, to address the above research gap, this paper aims to answer the following questions:

• What will be the optimal sourcing decision under varying degree of interconnectedness
between the supply side (input price) and background risks, ceteris paribus?

1 This usually involves a reduction in price-support measures, which may, in turn, alter the price distribution.
Our model allows for price variability, and thus offers a better approximation of the context in which producers
make decisions.
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• What will be the optimal sourcing decision under ceteris paribus changes in the degree of
interconnectedness between the demand side (output price) and background risks?

• What will be the optimal sourcing decision under varying degree of interconnectedness
between the demand side and the supply side (input price) risks, ceteris paribus?

To contextualise the above research questions, we have considered the decision problem of
a perfectly competitive single-product manufacturer in a regulated environment. As an exam-
ple of this class of decision-makers, we consider the context of a generic drugmanufacturer of
a pharmaceutical industry, wherein a representative firm operates in a perfectly competitive
framework under regulated environment. However, it faces three sources of risks. The first
is a price risk that results from the price volatility that the firm receives either from domestic
sales or from foreign sales. The second is risk in input material costs. These two sources
of risk are termed as ‘endogenous risk’, directly affecting the firm’s final profit and optimal
sourcing decision. However, there are other randomness that can also passively affect output
by altering the set-up costs of production, for example, technical breakdowns, infrastructure,
worker issues, policy and environmental regulations, and legal suits. These uncertainties are
usually not diversifiable and can be termed as ‘background risk’. In summary, this study
analyses the sourcing decision of raw material for a risk averse generic drug manufacturer
of India not only under randomness of supply-side risk (input prices) and background risk
originated from supply-side (setup cost), but also under randomness in demand-side risk
(output prices). All the risks mentioned above are interconnected hence the implications of
varying interactions among them on the optimal sourcing decision are analysed.

To answer the three research questions mentioned above, we have used a two-moment
(or equivalently, a mean–standard deviation) decision-theoretic approach (see, for example,
Eichner&Wagener, 2003, 2009, 2012; Alghalith et al., 2017; Broll &Mukherjee, 2017; Broll
et al., 2019; Padhi & Mukherjee, 2021). In such decision-theoretic modelling approach, the
preferences over random distributions of the objective function are represented by the utility
function, which is defined over only the mean and the variance (or standard deviation) of the
objective function. The key determinants for the properties of a risk averse manufacturer’s
preference towards uncertainties turn out to be the relative trade-off between risk and return
(also known as “elasticity of risk aversion”). Irrespective of the multidimensional risks or
choice variables suchmodel continues to be two-dimensional. This approach facilitates direct
modelling of such decision problemwithout assuming anything pertaining to the higher-order
and cross-derivatives of the preference functional (while the latter would almost inevitably
arise under the EU approach). Perhaps, this is the first study applying the two-moment
decision model to the literature of interconnected SC risk within a SC network.

The paper further is structured as follows: A review of the relevant literature looks at
interconnected risks in SC following the systems theory approach. Subsequently, it explains
the methods to find the risk averse manufacturer’s optimum input choice decision under
interconnected risks followed by a numerical case of a generic drug manufacturer cum seller.
Finally, a detailed simulation exercise is carried out to investigate the impact of mitigation
measures on SC risks and illustrates the analytical and practical applications in the conclusion
section.
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2 Literature review

When investigating risks and the impact of sourcing decisions on SCs, there are two areas
of academic literature that support the research questions: (1) Sourcing decision under SC
risks, and (2) Interconnected SC risks.

2.1 Sourcing decision under SC risks

SC Risk is an essential research domain in SC (Heckmann et al., 2015; Tang & Musa, 2011;
Thun &Hoenig, 2011; Turner, 2011). As firms have to operate safely and in compliance with
government regulations meeting targets for efficiency and effectiveness at the same time,
the need to eliminate their exposure to uncertainties by managing the risks in the SC is also
paramount. This includes the identification and assessment of anticipated risks as well as
the materialization of appropriate sourcing decisions to steer and monitor them (Chopra &
Sodhi, 2004; Sodhi et al., 2012). Ho et al. (2015) reviewed 224 journal articles to provide
a comprehensive list of risk factors and risk types. Majority of the papers have discussed
endogenous (or internal) and exogenous (or external) risk types which is in line with the
Supply Chain Risk Management Council (2011) categorization. Fahimnia et al. (2019) have
classified SC risk literature into eight types which can further be deduced to three major
types such as supply side, demand side, and background risks which is in line with the
other researchers (e.g., Christopher & Peck, 2004). Similarly, Jüttner et al. (2003) have also
categorized risk sources into external and internal SC risks, and network related risks. Thus,
following the above classification, this study investigates the SC risks in further details.

The supply-side risk arises because of poor logistics performance of suppliers; supplier
quality issues; financially distressed supplier; insufficient supply capacity of supplier(s); and
variability of replenishment lead time, etc. (Samvedi et al., 2013; Shekarian and Parast,
2020). According to Faisal (2009) Supply-side risks can influence input price risk of raw
materials because of the interconnectedness of other sources of risks. Subsequently, back-
ground risk can include catastrophe, change in the government policies, and information
mismatch (Faisal, 2009). Kumbhakar and Tsionas (2010) argued that input choices also
affect variability of output (commonly termed as “production risk”). For example, uncer-
tainties related to capacity utilization, inventory management, worker issues, infrastructure,
etc. hence, might be augmenting as background risk. Background risk can influence the
setup cost during the production. Finally, unanticipated demand, insufficient information
from consumers regarding orders, unusual delay in the payment, market shifts, and forecast-
ing errors are some of the factors that leads to demand side risks. These risks ultimately
influence the firm’s output price because of the potential gap between actual and expected
demand, as well as potential disruptions in the flow of products and information within the
supply network. Moreover, in competitive markets, extended operational lags are also often
imposed by randomness in output prices (principally owing to the inelastic demands). This
is because output prices are unknown when operational/manufacturing decisions are made.
Such ex-ante operational decisions may thus differ from choices that would have been made
had manufacturers known ex-post output prices. As a result, price uncertainty widens the
gap between the anticipated ex-post profit and the profit that would have made under elastic
demand and full information about the market regulations and industry-specific or fiscal poli-
cies are available. Models conversed about behaviour under output price uncertainty were
examined by Sandmo (1971), Chung (1990), Rodríguez-Puerta and Álvarez-López (2016),
Guo et al. (2021), among others.
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Each SC has its attributes and needs a specific set of measure. These measures must
always adapt to the circumstances of a particular firm (Chopra & Sodhi, 2004; Hendricks &
Singhal, 2005; Kleindorfer & Saad, 2005; Ritchie & Brindley, 2007). Otherwise, measures
that mitigate one risk can end up exacerbating the other connected risks (Chopra & Sodhi,
2004). Following the network system approach, we propose that the causes of uncertainty in
any SC network are due to tightly or loosely interconnected network of these risks (Giannakis
& Papadopoulos, 2016).

The complexity of the network emerges from multiple arrays of interconnected risks
primarily comprising of three types of risks as shown in Fig. 1. Thus, to analyse the optimal
sourcing decision of raw material in the presence of three types of risks, we have used
randomness of input prices, randomness in output prices, and randomness in setup cost as
the surrogate measure for the supply side risk, the demand-side risk, and the background risk
originated from supply-side, respectively. This interconnectedness among each of the risks
independently and in cohesion follow multivariate normality, hence these risks can linearly
interact with the decision variable.

Notably, in the literature the most popular analytical approaches to analyse interconnected
SC risks aremixed integer linear programming, followed byEUbased newsvendormodel and
simulation approaches (Ho et al., 2015). However, the significant gap in the extant literature
is the absence of interconnected risks’ assessment and optimal sourcing decision. Although
a few studies (e.g., Hachicha & Elmsalmi, 2014; Venkatesh et al., 2015) have applied struc-
tural modelling technique to identify risk inter-connectedness the extant literature that is
still limited to empirically modelling responses to interconnected risks in SC (Faisal, 2009).
However, literature is silent towards the optimal decision choice of the risk averse behaviour
of a manufacturer. Where the manufacturer experiences multiple interconnected risks when
sourcing input raw materials from a supplier to manufacture a generic product and subse-
quently selling the product in a price-regulated market (Fischl et al., 2014). The aim is to
identify the potential risks and propose sourcing decisions that can reduce the expected risk
(Hong & Lee, 2013) for a risk averse manufacturer.

Outbound logistics risk

Supply Side Risk

Quality of supply risk

Liquidity risk

Supply capacity risk

Supply lead time risk
Change in policy 

Demand Side Risk

Market shift

Payment delay

Information mismatch

Forecasting error

Infrastructure risk

Background Risk

Location risk

Capacity utilization

Inventory risk

Fig. 1 Complex network of supply chain risks
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2.2 Interconnected SC risks

In general, risks are interconnected (Bluhm&Krahnen, 2014; Correa-Henao et al., 2013). As
an illustration, managers face multiple risks depending on their relative stance. A financially
distressed supplier holds the risk of getting bankrupt, but at the same time, it may also cause
stock-outs or deliver inferior product in terms of quality. Similarly, natural disasters can affect
not only the operation of a firm but also the operation of its suppliers and third-party logistics
providers. Subsequently, impact and the required recovery time will be much higher than that
forecasted for the firm itself. Hence, it reveals the need formodels to take inter-connectivity of
risks into account. Such a perspective has to go beyond adding losses, delays, or similar per-
formance indicators for each potential risk. According to network theory, relatively localised
damage in one system may lead to failure in another, generating a disruptive avalanche of
cascading and increasing impact on the entire SC network (Vespignani, 2010). Complexity
of SC-risk inter-connectivity is the degree of the interdependency of risks occurring at the
same level or different levels of a SC as shown in Fig. 2. Risks, even at the same level of a
SC, are correlated; for instance, supplier default risk can be connected with supplier quality
risk or supplier capacity risk.

The interconnectedness of SC risks has increased the complexity and uncertainty levels of
any supply chain (Mizgier et al., 2013). To assess interconnected SC network risks Ledwoch
et al. (2016) have applied Katz centrality, hub centralities, and betweenness centrality metrics
to the systemic risk concept. Wagner et al. (2014) have used numerical simulations on tightly
coupled exogenous SC risks to develop a decision support system. Subsequently, Ivanov
(2018) have used a simulation approach to mitigate the ripple effect and increase the sus-
tainability of an interconnected SC. Earnest and Wilkinson (2018) have used an agent-based
simulation using Kauffman’s NK models to study performance of a SC network. Further-
more, authors have studied interconnected risks using multi-risk assessment models like

Fig. 2 The first order condition (F.O.C.)
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elementary bricks model (Zuccaro et al., 2018), design structure matrix (Baldwin and Clark,
2000), RiskRank as a hierarchical network (Mezei & Sarlin, 2018), causal network model
(Cavallo & Ireland, 2014), Structural Equation Model (Shahbaz et al., 2020). These studies
have focused only on the dependence structure or interconnectivity among different types
of risks to understand the complexity of a SC system through analyzing the transmission of
risks in a system. Starting points for interconnected risks along the SC can be found in the
literature on risk correlations (Han & Huang, 2007; Wallace et al., 2004) or copula functions
(Babich et al., 2007; Wagner et al., 2009). Rodríguez-Puerta and Álvarez-López (2016) have
considered supply side risks (output price and production quantity) to decide optimal pro-
duction allocation. However, literature is silent about the behavior of the decision maker and
his optimal choices with respect to varying degrees of interconnectivity among three differ-
ent sources of risks. Therefore, this paper focuses on modelling the attitude of a risk averse
manufacturer to obtain optimal supply decision under tightly versus loosely interconnected
risks utilising the two-moment (i.e., mean–standard deviation) decision theoretic approach.
This modelling approach has also been applied by Eichner &Wagener, 2003, 2009; Alghalith
et al., 2017; Broll & Mukherjee, 2017; Broll et al., 2019; Huang & Jiang, 2020; Padhi &
Mukherjee, 2021; among a few of the many. In such decision-theoretic modelling approach,
the preferences over random distributions of the objective function are represented by the
utility function, which is defined over only the mean and standard deviation of the objec-
tive function. Multiple sources of risk can be accommodated easily within a quasi-linear
objective function as a linear combination of multiple random variables, all of which are
multivariate normally distributed within a location-scale family (Chamberlain, 1983; Owen
& Rabinovitch, 1983; Eichner & Wagener, 2009; Alghalith, 2017; Huang & Jiang, 2020;
Padhi & Mukherjee, 2021).

3 Themodel

Consider a single-output competitive generic drug firm’s profit function under supply uncer-
tainty brought about by input price risks as shown in Fig. 3.

End-of-period

Perfect Competition 

Random output price

Random input costs + 
Random set-up costs

Fig. 3 Sourcing decision of a manufacturer under interconnected risks
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Therefore, we are considering only a partial equilibrium modelling approach, where the
supply side (downstream) demand is deterministic. In this context, we consider a planning
horizon with two periods i.e., t � 0 (Initial period) and t � 1 (Final period). To begin with,
we assume t � 0, the manufacturer decides to produce and sell a single product based on its
known unit price, while the realizations of all the random input prices and the background
risk take place at t � 1. Without any loss of generality, we consider the manufacturer as risk
averse.

px is the regulated product price of the finally manufactured drug, X . The distribution

of p̃v follows an objective cumulative distribution function over
[

pv, pv

]

, denoting random

per-unit price of input v to produce output x . The production function X � F(v) � Av, with
A > 0. We assume that the operational cost of production is

˜C(v) � p̃vv + Z̃

There is a random component of the operational cost to procure the input, denoted by Z̃ .
which is also a random variable over

[

Z , Z
]

. Z̃ can be categorized as the background risk
that influences the manufacturer’s input choice decision over which the manufacturer has no
control, by affecting the total operational cost of input usage. As an example of such risk
affecting the (operational) cost of production, one may look at Mukherjee et al. (2021).2 In
the present context, this follows from the sourcing decision approach to interconnected risks
in a SC system.

Hence, the profit function of the manufacturer is denoted as:

π̃ � px F(v) − ˜C(v) � px Av −
(

p̃vv + Z̃
)

(1)

However, the following three standard assumptions to make the modelling approach
comparable with the EU models and required analytical simplicity. Firstly, all feasible dis-
tributions of any random variable (either input price or the background risk) differ only with
respect to the location (mean) and the scale (standard deviation) parameters. The location-
scale condition in our context implies the set of possible profits that can be obtained by

the decision maker’s input choices contains only random variables
(

p̃v, Z̃
)

, whose distribu-

tions vary from one another by location and scale parameters (i.e., by means and standard
deviations). Secondly, both sources of uncertainty must interact linearly with the decision
variable (see Meyer, 1987 for the validity of this assumption). In particular, both price risk
and the background risk, are multivariate normally distributed for the location-scale con-
dition (which is engrained in the literature, for example, Chamberlain, 1983; Eichner, 2008;
Eichner & Wagener, 2003, 2009, 2012; Owen & Rabinovitch, 1983). Furthermore, given
that the final profit is linear in both random variables, correlation (or covariance) serves as
the most fitting parameter to characterize the interconnectedness between the two different
sources of supply risks. In this context, the readers may see Embrechts et al. (2002); and
Eichner and Wagener (2012).

μ represents the expected profit, where μ � E(π̃) � px Av − (μvv + μZ ).

σ represents the profit-risk, where σ �
√

σ 2
v v2 + σ 2

Z + 2vcov
(

p̃v, Z̃
)

.

2 According to Mukherjee et al. (2021), variations in firm size, age and uncertain changes in the industry-
specific policies over time (due to changes in management regimes) are going to affect the fixed operational
cost of production (in the context of Mukherjee et al., 2021, for exportable) at the firm-level, over which the
firm has no control.
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Here σv , σZ and cov
(

p̃v, Z̃
)

are respectively the standard deviation of input price risk, the

standard deviation of background risk, and the correlation (i.e., connectivity of risks in a SC
system) between both sources of risk. Without any loss of generality, we are assuming that
(

p̃v, Z̃
)

are multivariate normally distributed with means (μv, μZ ), variance–covariance

structure
(

σv, σZ , cov
(

p̃v, Z̃
))

.

For two symmetrically normally distributed random variables
(

p̃v, Z̃
)

, with

cov
(

p̃v, Z̃
)

� ρσvσZ , the Pearson coefficient of correlation ρ is a copula-based measure

of concordance (or association) between these two normally distributed random variables
(see, e.g., Embrechts et al., 2002; Eichner & Wagener, 2009). Therefore, increasing the

cov
(

p̃v, Z̃
)

, keeping σv and σZ constant implies that the two random variables are becom-

ing more concordant.
Since variability in ex-post profits depend upon the distributions of p̃v and Z̃ , changes in

the covariances between random input price and the background risk, keeping the individual
standard deviations constant, will definitely affect the optimal choice by altering the slopes of
both the “indifference curve” (i.e., locus of equal utility, where the utility function is defined
over the mean and standard deviation of the ex-post profit) and that of the opportunity frontier
in the risk-return plane.

We aremaking the following assumption regarding themanufacturer’s preference function
defined over risk and return, where the preference function means the manufacturer’s utility
function that maps the manufacturer’s choice over profit-risk (σ ) versus return (μ) in R+.
Here our preference function is U (σ ,μ), which follows the assumptions (1)-(4) mentioned
below.

(1) For any random W̃ (where W̃ ∈
{

π̃ , p̃v, Z̃
}

), the utility function U (σ , μ) is, at least

four times continuously differentiable.
(2) We have, the marginal utility with respect to (w.r.t. hereafter) μW as positive while the

marginal utility w.r.t. σW as negative i.e., ∂U (σ , μ)/∂μ > 0, ∂U (σ , μ)/∂σ < 0. In
other words, we are assuming that the manufacturer’s preferences towards risk satisfy
non-satiation (increasing in μ) and the manufacturer is risk averse (decreasing in σ ).3

(3) U (σ ,μ) is strictly quasi-concave in (σ , μ). Hence,
[−(∂U (σ , μ)/∂σ)2

(

∂2U (σ , μ)/∂μ2)− (∂U (σ , μ)/∂μ)2
(

∂2U (σ , μ)/∂σ 2)

+2(∂U (σ , μ)/∂μ)(∂U (σ , μ)/∂σ )
(

∂2U (σ , μ)/∂μ∂σ
)]

> 0

The corresponding indifference curves (ICs hereafter) in (σ , μ)-plane are positively
sloped and strictly convex. Hence,

(

∂2U (σ , μ)/∂σ 2
)

< 0,
(

∂2U (σ , μ)/∂μ2
)

< 0.
Therefore, from the above inequality for the quasi-concavity of the preference function,
given assumption (2), we obtain

(

∂2U (σ , μ)/∂μ∂σ
)

> 0.
(4) The ICs enter the μ-axis with zero slope i.e., exhibiting risk-neutrality for very small

risks.

The above-mentioned assumptions restrict this study to a risk averse manufacturer only,
with monotonic and strictly quasi-concave preferences. Therefore, the manufacturer is worse
off receiving an additional background risk Z̃ , starting from an already uncertain end-of-
period profit with random input prices. In other words, the compensation that is required for

3 While the usefulness and validity of marginal utilities to describe the risk preference pattern in an EU
framework has been discussed in Meyer (2010); for the equivalence of the same in two-moment models, one
can look at Eichner and Wagener (2003, 2005, 2009).

123

Annals of Operations Research (2022) 313:1243–12681252



facing background risk, in addition to the risk originating from the uncertain input prices, is
higher than the compensation required for facing the risk owing to the uncertain input prices
only.

Literature defines the marginal rate of substitution (MRS) between risk and return as the
slope of the indifference curve in a two-dimensional plane i.e., in a σ − μ plane:

S(σ (v), μ(v)) � −∂U (σ (v), μ(v))/∂σ (v)

∂U (σ (v), μ(v))/∂μ(v)
.

S(.) > 0 is the two-parameter equivalent to Arrow–Pratt measure of absolute risk aversion
(or equivalently, risk attitude). This represents the decision-maker’s willingness to pay for a
reduction in risk.

Before proceeding to the comparative static exercises, we are defining a few concepts
below.

Definition 1 The elasticity of the MRS between risk and return with respect to the standard
deviation of the manufacturer’s random final profit is.

εσ (v) ≡ εσ (σ (v), μ(v)) � ∂S(σ (v), μ(v))

∂σ (v)

σ (v)

S(σ (v), μ(v))
,with σ(v) > 0.

The elasticity εσ (v) represents the proportional change in MRS over the proportional
change in standard deviation of final profit, keeping the expected profit constant.

Definition 2 We define the elasticity of the MRS between risk and return with respect to the
expected ex-post profit,

εμ(v) � εμ(σ (v), μ(v)) � ∂S(σ (v), μ(v))

∂μ(v)

μ(v)

S(σ (v), μ(v))
.

i.e., elasticity εμ(v) represents the proportion change in MRS over the proportion change
in expected final profit, keeping the standard deviation of the ex-post profit constant.

With these definitions in hand, let us begin with the first set of comparative static exercises,
i.e., the decision of optimal input usage only concerning the alteration in the distribution of
the input prices.

The major comparative static exercise we explore is how much the manufacturer opti-
mally uses input (and, consequently, how much can he optimally manufacture) while facing
uncertainties regarding the dependence structure or connectivity among differentmultivariate
normally distributed risks.

The risk averse manufacturer solves the below mentioned problem,

max
(v ≥ 0)

U (σ (v), μ(v)). (2)

Subject to,

μ(v) � px Av − (μvv + μZ )

σ (v) �
√

σ 2
v v2 + σ 2

Z + 2vcov
(

p̃v, Z̃
)

When we consider “interior solutions” to this decision problem (corner solution would
fetch the possibility of v∗ � 0, which is not the focus of this study: since the manufacturer
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is risk averse), we determine the first-order condition (F.O.C.) for optimum solution as:

Apx − μv −
(

∂σ (v∗)
∂v

)

S
(

σ
(

v∗), μ
(

v∗)) � 0 (3)

Now, we have
(

∂σ(v∗)
∂v

)

�
[

σ 2
v v∗ + cov

(

p̃v, Z̃
)]

1
σ(v∗) � [Apx − μv]/S(σ ∗, μ∗) > 0,

since for a risk averse decision-maker, the expected risk premium (i.e. Apx − μv) must be
positive, implying that v∗ > 0: we are dealing with the “interior solution” of the F.O.C. in
(3). Asterisk represents the optimum. Hence, S(σ ∗, μ∗) ≡ S(σ (v∗), μ(v∗)) ≡ S(v∗) > 0 at

the optimum. Also, this implies cov
(

p̃v, Z̃
)

> −σ 2
v v∗.

The comparative static responses depend on the relative willingness-to-pay for a reduction
in risk towards the changes in the expectation and variability of the final profit. The left-hand
side (L.H.S) of the F.O.C. as described in Eq. 3 represents the slope of the “opportunity
frontier” whereas the right-hand side (R.H.S) depicts the slope of the indifference curve.

Point O in Fig. 2 corresponds to the F.O.C. in (3): depicting the optimal v.
With this backdrop, let us trace out the influence on the decision of optimum input choice

(v∗) owing to the change in the dependence structure (in relative terms) between random input
prices ( p̃v) and the random fixed set-up cost (i.e., the background risk component, Z̃ ). This
comparative static exercise addresses the following research question: under what condition,
a risk aversemanufacturer optimally chooses lower vwhen the two risks (background risk and

input price risks) become more concordant, (i.e., owing to a small increase in cov
(

p̃v, Z̃
)

,

given the individual standard deviations of the two risks)?
Focusing on the changes in the covariance of background risk, implicit differentiation of

(3) w.r.t. cov
(

p̃v, Z̃
)

yields

sgn
(

∂v∗/∂cov
(

p̃v, Z̃
))

� − sgn

[(

∂2σ(v∗)
/

∂v∂cov
(

p̃v, Z̃
)

)

S
(

v∗)

+

(

∂σ (v∗)
∂v

)(

∂σ (v∗)
/

∂cov
(

p̃v, Z̃
)

)

{

∂S
(

v∗)/∂σ
(

v∗)}
]

(4)

where

σ
(

v∗)
(

∂2σ(v∗)
/

∂v∂cov
(

p̃v, Z̃
)

)

+

(

∂σ (v∗)
/

∂cov
(

p̃v, Z̃
)

)(

∂σ (v∗)
∂v

)

� −A; (5.1)
(

∂σ (v∗)
/

∂cov
(

p̃v, Z̃
)

)

� −[Av∗/σ
(

v∗)] (5.2)
(

∂2σ(v∗)
/

∂v∂cov
(

p̃v, Z̃
)

)

� [Av∗/σ 2(v∗)]
(

∂σ (v∗)
∂v

)

− A/σ
(

v∗)

� A/σ
(

v∗)[{v∗(∂σ (v∗)/
∂v

)}

/σ
(

v∗)− 1
]

(6)

Now we are going to demonstrate below that
{

v∗
(

∂σ (v∗)/
∂v

)}

/σ(v∗) ∈ (0, 1).

{

v∗(∂σ (v∗)/
∂v

)}

/σ
(

v∗) �
[

σ 2
v v∗2 + v∗cov

(

p̃v, Z̃
)] 1

σ 2(v∗)

�
σ 2

v v∗2 + v∗cov
(

p̃v, Z̃
)

σ 2
v v∗2 + σ 2

Z + 2v∗cov
(

p̃v, Z̃
)
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�
⎡

⎣1 −
⎛

⎝

σ 2
Z + v∗cov

(

p̃v, Z̃
)

σ 2
v v∗2 + σ 2

Z + 2v∗cov
(

p̃v, Z̃
)

⎞

⎠

⎤

⎦

∈ (0, 1)

Hence, G(v∗) �
{

v∗
(

∂σ (v∗)/
∂v

)}

/σ(v∗) ∈ (0, 1).

Therefore, equivalently,

G
(

v∗)/
{

1 + G
(

v∗)} �
[

1/

{

1 +
1

G(v∗)

}]

< 0.5 (6.1)

From (4), after substituting values from (5.1)–(6) and then with some manipulations it
can be verified that.

∂v∗/∂cov
(

p̃v, Z̃
)

< 0, iff
(

∂σ(v∗)
∂v

)(

∂σ(v∗)
/

∂cov
(

p̃v, Z̃
)

)

{

∂S
(

v∗)/∂σ
(

v∗)} > −
(

∂2σ(v∗)
/

∂v∂cov
(

p̃v, Z̃
)

)

S
(

v∗)

Using (5.1), we obtain, ∂v∗/∂cov
(

p̃v, Z̃
)

< 0, iff

(

∂σ (v∗)
∂v

)(

∂σ (v∗)
/

∂cov
(

p̃v, Z̃
)

)

{

∂S
(

v∗)/∂σ
(

v∗)}

+

(

∂σ (v∗)
/

∂cov
(

p̃v, Z̃
)

)(

∂σ (v∗)
∂v

)

1

σ(v∗)
> −A/σ

(

v∗)

Substituting back from (5.2) into above inequality, we obtain,

−A
[{

v∗(∂σ (v∗)/
∂v

)}

/σ
(

v∗)][{∂S
(

v∗)/∂σ
(

v∗)}σ
(

v∗) + 1
]

> −A

or,

G
(

v∗)[{∂S
(

v∗)/∂σ
(

v∗)}σ
(

v∗) + 1
]

> 1

or,
[{

∂S
(

v∗)/∂σ
(

v∗)}σ
(

v∗) + 1
]

>
(

1/G
(

v∗)) > 1

or,
{

∂S
(

v∗)/∂σ
(

v∗)}σ
(

v∗) > 0 (7.1)

Hence, (7.1) is equivalent to stating that
{

∂2S
(

v∗)/∂σ
(

v∗)2}σ
(

v∗) +
{

∂S
(

v∗)/∂σ
(

v∗)} > 0 (7.2)

Eichner and Wagener (2003, 2009); Eichner () show that convexity of the slope of
(σ , μ)-indifference curves with respect to σ(.), i.e.,

{

∂2S(.)/∂σ (.)2
}

> 0, together with
{∂S(.)/∂σ (.)} > 0 demonstrate the “variance vulnerable” behaviour of the manufacturer,
when s/he experiences greater interconnectedness between the input price risk and the back-

ground risk. It can be easily verified from (7.1) and Definition 1 that ∂v∗/∂cov
(

p̃v, Z̃
)

< 0

iff {∂S(v∗)/∂σ (v∗)} > 0 (i.e., “variance vulnerability”), or, equivalently, εσ (v∗) > 0.
This result shows that the risk averse manufacturer might be inclined to supply less when

there is a high concurrence between the input price risk and the background risk (i.e., the input
price risk and the background risk are tightly coupled), contrary to the scenario when the
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correlation between the two sources of risk is low (i.e., when both risks are loosely coupled).
However, this will happen if and only if (often abbreviated in the paper as ‘iff’) εσ (v∗) > 0.
We summarize the findings in the following proposition.

Proposition 1 . If the input price risk and the background risk are become tightly (loosely)
coupled, the manufacturer might behave in more (less) risk averse fashion, if and only if
εσ (.) > 0.

4 Analysis with output price risk

Let’s now assume that the manufacturer is now facing a random price-shock in the out-
put (product) market as well. With output price risk, the inter-connected background risk
will make the manufacturer more vulnerable towards price risk and thereby influence the
manufacturer’s optimal risk-taking. This is because

μ � μp Av − (μvv + μZ )

σ �
[

σ 2
p A

2v2 +
(

σ 2
v v2 + σ 2

Z + 2vcov
(

p̃v, Z̃
))

− 2Av
[

vcov( p̃v, p̃x ) + cov
(

p̃x , Z̃
)]] 1

2

Aμp − μv −
(

∂σ (v∗)
∂v

)

S
(

σ ∗, μ∗) � 0 (8)
(

∂σ (v∗)
∂v

)

� 1

σ

[

σ 2
p A

2v∗ +
{

σ 2
v v∗ + cov

(

p̃v, Z̃
)}

− Av∗cov( p̃v, p̃x )

−A
[

v∗cov( p̃v, p̃x ) + cov
(

p̃x , Z̃
)]]

(9)

For a risk averse manufacturer with S(σ ∗, μ∗) > 0 and positive risk premium, we have,
(

μp/μv

)

> 1/A. Hence,
(

∂σ(v∗)
∂v

)

> 0. Along with this, the quasi-concavity of U (σ , μ)

and multivariate normal distribution between the risks ensure that we have the second-order
condition for maximum is satisfied with interior solution for v∗.

Multiple sources of risk enter our objective function (here ex-post profit of the man-
ufacturer) as a linear combination of multiple random variables, wherein we assume that
all of them are multivariate normally distributed for the location-scale condition (which
is engrained in the literature, for example, Chamberlain, 1983; Eichner, 2008; Eichner &
Wagener, 2003, 2009, 2012; Owen & Rabinovitch, 1983). Without any loss of generality, we

are assuming that the vector comprising the random variables
(

p̃x , p̃v, Z̃
)

would be multi-

variate normally distributed withmeans (μx , μv, μZ ) and the variance–covariance structure
(

σx , σv, σZ , cov( p̃x , p̃v), cov
(

p̃v, Z̃
)

, cov
(

p̃x , Z̃
))

. Hence, covariances between the pairs

of these random variables fully encapsulate the dependence structure between them. We

further assume that for two symmetrically normally distributed random variables
(

p̃x , Z̃
)

,

with cov
(

p̃x , Z̃
)

� ρx ZσxσZ (and similarly for the other two pairs), the Pearson coeffi-

cient of correlation ρx Z is a copula-based measure of concordance (or association) between
these two normally distributed random variables (see, e.g., Embrechts et al., 2002; Eich-

ner & Wagener, 2009). Therefore, increasing the cov
(

p̃x , Z̃
)

, keeping σx and σZ and other

parameters constant implies that these two random variables are becoming more concordant.
Since variability in ex-post profits depend upon the distributions of p̃x and Z̃ , changes in the
covariances between random product price and the background risk, keeping the individual

123

Annals of Operations Research (2022) 313:1243–12681256



standard deviations constant, will definitely affect the optimal choice by altering the slopes
of both the indifference curve and that of the opportunity frontier in the risk-return plane.

In this case, wework out for an increase in cov
(

p̃x , Z̃
)

and in cov( p̃x , p̃v) on the optimum

v∗.
(a) Increase in cov

(

p̃x, Z̃
)

The following comparative static exercise guides us on how an increase in the covariance
(correlation) between the output price risk and background risk, keeping the variances of
these two risks and other parameters unchanged, would affect the optimal risk-taking of the
manufacturer.

sgn
(

∂v∗/∂cov
(

p̃x , Z̃
))

� − sgn

[(

∂2σ(v∗)
/

∂v∂cov
(

p̃x , Z̃
)

)

S
(

v∗)

+

(

∂σ (v∗)
∂v

)(

∂σ (v∗)
/

∂cov
(

p̃x , Z̃
)

)

{

∂S
(

v∗)/∂σ
(

v∗)}
]

(10)

where from (9), we obtain

σ
(

v∗)
(

∂2σ(v∗)
/

∂v∂cov
(

p̃x , Z̃
)

)

+

(

∂σ (v∗)
/

∂cov
(

p̃x , Z̃
)

)(

∂σ (v∗)
∂v

)

� −A; (11)

Or,

(

∂2σ(v∗)
/

∂v∂cov
(

p̃x , Z̃
)

)

� −

⎡

⎢

⎢

⎣

A +

(

∂σ (v∗)
/

∂cov
(

p̃x , Z̃
)

)

(

∂σ(v∗)
∂v

)

σ(v∗)

⎤

⎥

⎥

⎦

(12)

And,
(

∂σ (v∗)
/

∂cov
(

p̃x , Z̃
)

)

� −[Av∗/σ
(

v∗)] (13)

Therefore, substituting values from (11)–(13) back into (10), and after some simplifica-
tions, we obtain,

sgn
(

∂v∗/∂cov
(

p̃x , Z̃
))

�sgn

[

S
(

v∗)
({

A +

(

∂σ(v∗)
/

∂cov
(

p̃x , Z̃
)

)(

∂σ(v∗)
∂v

)}

/σ
(

v∗)
)

+

(

∂σ(v∗)
∂v

)(

∂σ(v∗)
/

∂cov
(

p̃x , Z̃
)

)

{

∂S
(

v∗)/∂σ
(

v∗)}
]

� sgn
[

A +
(

∂σ
(

v∗)/∂cov
(

p̃x , Z̃
))

(

∂σ
(

v∗)/∂v
){

1 +
(

∂S
(

v∗)/∂σ
(

v∗))(σ
(

v∗)/S
(

v∗))}]

� sgn
[

A +
(

∂σ
(

v∗)/∂cov
(

p̃x , Z̃
))

(

∂σ
(

v∗)/∂v
){

1 + εσ

(

σ
(

v∗), μ
(

v∗))}] (14)

From here, it is imminent that sgn
(

∂v∗/∂cov
(

p̃x , Z̃
))

> 0 if and only if

sgn

[

(

∂σ (v∗)/
∂v

)

(

∂σ (v∗)
/

∂cov
(

p̃x , Z̃
)

)

{1 + εσ (v∗)}
]

> 0; or, equivalently, εσ (v∗) >

−1 holds.

Proposition 2 . If the output price risk and the background risk become tightly (loosely)
coupled, the manufacturer might behave in less (more) risk averse fashion, if and only if
εσ (.) > −1.
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An increase in interconnectivity of the output price risk and background risk, cov
(

p̃x , Z̃
)

,

has two effects: first, for any given input choice, it decreases the variability in overall profit.
This will lead to a lessened slope of the indifference curve for ‘variance vulnerable’ prefer-
ences. Second, it declines the marginal contribution of input choice on the overall profit-risk.
This increases the firm’s relative willingness to pay, by altering the slope of the mean–stan-
dard deviation opportunity frontier.

Proposition 2 states that an increase the concordance between the output price risk and
background risk (i.e., the output price risk becomes tightly coupled with the background
risk), ceteris paribus, leads to a reduction in the profit-risk and increases v∗, if the slope of the
indifference curve responds “more strongly” than the slope of the mean–standard deviation
opportunity frontier, given by the necessary and sufficient condition that εσ (.) > −1. This
sufficiency condition ensures that the reduction in variability of ex-post profit will increase

v∗ upon increase in cov
(

p̃x , Z̃
)

.

Nowwe are going to explore howan increase in the interconnectivity (covariance) between
the output price risk and the input price risk, keeping the variances of these two risks and
other parameters unchanged, would affect the optimal risk-taking of the manufacturer.

(b) Increase in cov
(

p̃x, p̃v

)

sgn
(

∂v∗/∂cov( p̃v, p̃x )
) � − sgn

[(

∂2σ(v∗)/
∂v∂cov( p̃v, p̃x )

)

S
(

v∗)

+

(

∂σ (v∗)
∂v

)

(

∂σ (v∗)/
∂cov( p̃v, p̃x )

)

{

∂S
(

v∗)/∂σ
(

v∗)}
]

σ
(

v∗)(∂2σ(v∗)/
∂v∂cov( p̃v, p̃x )

)

+
(

∂σ (v∗)/
∂cov( p̃v, p̃x )

)

(

∂σ (v∗)
∂v

)

� −2Av∗ (15)

Given (15), we can make the following manipulation:

sgn
(

∂v∗/∂cov( p̃v, p̃x )
) � −sgn

[(

∂2σ(v∗)/
∂v∂cov( p̃v, p̃x )

)

σ
(

v∗)

+

(

∂σ (v∗)
∂v

)

(

∂σ (v∗)/
∂cov( p̃v, p̃x )

)

{

∂S
(

v∗)/∂σ
(

v∗)}σ(v∗)
S(v∗)

]

� sgn

[

2Av∗ +
(

∂σ (v∗)/
∂cov( p̃v, p̃x )

)

(

∂σ (v∗)
∂v

)

−
(

∂σ (v∗)
∂v

)

(

∂σ (v∗)/
∂cov( p̃v, p̃x )

)

εσ

(

v∗)
]

� sgn

[

2Av∗ +
(

∂σ (v∗)/
∂cov( p̃v, p̃x )

)

(

∂σ (v∗)
∂v

)

{

1 − εσ

(

v∗)}
]

(16)

whereas,
(

∂σ (v∗)/
∂cov( p̃v, p̃x )

)

� −[Av∗2/σ
(

v∗)] (17)

Therefore, substituting
(

∂σ (v∗)/
∂cov( p̃v, p̃x )

)

back from (17) into (16), we obtain,

sgn
(

∂v∗/∂cov( p̃v, p̃x )
) �sgn

[

2Av∗ − {Av∗2/σ
(

v∗)}
(

∂σ (v∗)
∂v

)

{

1 − εσ

(

v∗)}
]

� Av∗sgn
[

2 − {v∗/σ
(

v∗)}(∂σ
(

v∗)/∂v
){

1 − εσ

(

v∗)}]
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� Av∗sgn
[

1 +
(

1 − {G(v∗) + 1
}{

1 − εσ

(

v∗)})] (18)

Therefore, (∂v∗/∂cov( p̃v, p̃x )) > 0, iff 1 − {G(v∗) + 1}{1 − εσ (v∗)} > 0, or,
{1 − εσ (v∗)} <

[

1/{G(v∗) + 1}] < 1; or, equivalently, εσ (v∗) > 0.

Proposition 3 . If the output price risk and the input price risk are going to become tightly
(loosely) coupled, the manufacturer might behave in less (more) risk averse fashion, if and
only if εσ (.) > 0.

Proposition 3 illustrates the following scenario. If the output price risk becomes more
concordant with the input price risk, keeping individual variances and other parameters of the
moment distributions constant, leads to a reduction in the profit-risk and increases optimum
risk-taking, if the slope of the indifference curve responds “more strongly” than the slope
of the mean–standard deviation opportunity frontier, given by the necessary and sufficient
condition that εσ (.) > 0. This sufficiency condition ensures that the reduction in variability
of ex-post profit will increase v∗ upon increase in cov( p̃v, p̃x ). if and only if εσ (.) > 0 holds.

5 A parametric example to carry out sensitivity analysis of risk-taking
for perturbation in the dependence structure/interconnectivity
of risks.

We provide a parametric example to demonstrate quantitatively the validity of our primary
results for a risk averse manufacturer’s preference under mean–standard deviation approach.
For analytical simplicity we consider zero-subsidy scenario only.

Since our focus is the inter-connectivity of risks, i.e., when keeping the variances fixed,
only correlations vary and thus altering the dependence structure among these multivariate
normally distributed risks, we take A � 2, σ 2

p � σ 2
v � σ 2

Z � σ 2
c ; μp � μv � μc;μZ �

0; ρxv � cov( p̃x , p̃v)
/

σ 2
c
; ρvZ � cov

(

p̃v, Z̃
)

/

σ 2
c
; ρx Z � cov

(

p̃x , Z̃
)

/

σ 2
c
; ρxv �� ρx Z ��

ρx Z �� 0.
We employ the following flexible utility function, as pioneered in Saha (1997).

U � μa − σ b (19)

Saha (1997) termed this utility function as “Mean–Standard Deviation Utility Function”
(or ‘MSU’). The reason for adopting this special formof utility function is precisely to bring in
the equivalence of the risk preferences under expected utility set-up and the mean–standard
deviation preferences. Under the chosen MSU, one can easily categorise different kinds
of risk preferences (risk aversion, risk neutrality and risk affinity) and various degrees of
absolute and relative risk aversions. Therefore, for exemplification purpose, our parametric
representation of risk preferencesworks fine (see Eichner&Wagener, 2009;Broll et al., 2015;
Broll & Mukherjee, 2017; Broll et al., 2019; Mukherjee et al., 2021; Padhi & Mukherjee,
2021 for application of this MSU to exemplify the pattern of risk preferences in a nonlinear
mean–standard deviations framework). The F.O.C. of the manufacturer’s decision problem
suggests slope of the opportunity frontier must be equal to theMRS as in Saha (1997, p. 773).
Our optimization exercise becomes, maxU (μ, σ ) with,

μ � μcv, and σ � σc
[(

5v2 + 1
)

+ 2v{ρvZ − 2(vρvx + ρx Z )}] 12 .
The F.O.C. becomes:

μc

2σ 2
c [5v

∗ + ρvZ − 4v∗ρvx − 2ρx Z ]
� (b/a)μ1−aσ b−1
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Table 1 Optimum v for different ρvZ’s at the benchmark values of other moment-parameters, with a � 2;
μc � 3.5; σ c � 0.3;b � 3

ρvZ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ρxv 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

ρxz 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

v∗ 1.12 1.10 .08 1.06 1.04 1.02 1.00 0.98 0.96

Table 2 Optimum v for different ρvZ’s at the benchmark values of other moment-parameters, with a � 3;
μc � 3.5; σ c � 0.3;b � 4

ρvZ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ρxv 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

ρxz 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

v∗ 1.12 1.11 1.10 1.09 1.08 1.07 1.06 1.05 1.04

aμa−1μc − bσ 2
c σ ∗(b−2)[5v∗ + ρvZ − 2

(

2v∗ρvx + ρx Z
)] � 0

Alternatively,

aμa−1μc � bσ 2
c σ ∗(b−2)[5v∗ + ρvZ − 2

(

2v∗ρvx + ρx Z
)]

(20)

According to the “Definition 1” and “Definition 2”, the elasticities of risk aversion with
respect to the standard deviation and mean of the random final profit are respectively,

εσ � b − 1, εμ � 1 − a.
Taking logarithms on both sides of (11) and after some simplifications, we obtain,

a ln μ̄c − ln
(

b/
a

)

+ (a − 1) ln v∗ − b ln σc − 0.5(b − 2) ln
[

5v∗ + ρvZ − 2
(

2v∗ρvx + ρx Z
)]

− ln
[

5v∗ + ρvZ − 2
(

2v∗ρvx + ρx Z
)] � 0 (21)

Let us present a numerical example to illustrate Propositions 1–3.4

Our objective is to find optimal v (i.e., v∗) from (21) as functions of
(

a, b, μc, σc, ρvZ , ρxv, ρx Z
)

under the set of standardised values in Tables 1, 2, 3 and 4,
which is based on the time-series data of 52 months (Jan 2013 to May 2017) for an India-
based generic multi-vitamin manufacturer operating under “Pradhan Mantri Bhartiya Jan
Aushadhi Kendra”.

Simulation results demonstrate the facts established in Proposition 1–3.
Figure 4A illustrates the fact that with greater interconnectedness between the two supply-

side risks, viz., with higher covariance/correlation between the random input prices and
random set-up costs, would induce the manufacturer to opt for lower quantity of inputs at
the margin. This is precisely because keeping the standard deviations and other parameters
unchanged, an increase in ρvZ leads to a reduction in the expected ex-post profit, which
reduces input choice under the sufficiency condition of DARA preference structure (a >

4 Unfortunately, the BPPI (Bureau of Pharma Public Sector Undertakings of India) does not permit the
researchers to disclose detailed data source.
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Table 3 Optimum v for different ρxv’s at the benchmark values of other moment-parameters, with a � 2;
μc � 3.5; σ c � 0.3;b � 3

ρvZ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

ρxv 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ρxz 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

v∗ 2.1 2.3 2.4 2.5 2.7 2.9 3.1 3.4 3.7 4.1

Table 4 Optimum v for different ρxZ’s at the benchmark values of other moment-parameters, with a � 2;
μc � 3.5; σ c � 0.3;b � 3

ρvZ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

ρxv 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

ρxz 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

v∗ 2.7 2.8 2.9 3.0 3.2 3.4 3.6 4.0 4.3 4.7

Fig. 4 Sensitivity Analysis to demonstrate Propositions

1). However, increase in ρvZ also reduces the variability in the ex-post profit. ‘Variance
vulnerable’ preference (b > 2) ensures that the slope of (σ ,μ) indifference curve will
decrease, and that the reduction in the slope of indifference curve responds more strongly
than the slope of the ‘opportunity frontier’. This prompts the risk averse manufacturer to opt
for lower inputs at the optimum.

Figure 4B illustrates exactly the opposite outcomes (to that of Proposition 1, Fig. 4A)
under Propositions 2 and 3. In Fig. 4B we trace out the impact of higher interconnectedness
between the demand-side risk (viz., price-risk) and each of the two supply-side risks (viz.,
the background risk brought about by randomness in set-up costs, and the input price risk)
on the decision of optimal input choice by the risk averse manufacturer. From Fig. 4B, it
is established that with higher covariance/correlation between the random output prices and
random set-up costs (the red locus), and with higher correlation between the random output
and input prices (the blue locus), manufacturer will optimally opt for greater quantity of
inputs (in both cases). This happens (for exactly opposite line of reasoning to that of Fig. 4A)
if and only if preference follows both DARA (a > 1) and variance vulnerability (b > 2).

123

Annals of Operations Research (2022) 313:1243–1268 1261



6 Comparison with the EU approach

The first assumption made in Sect. 1 (page 3) is pertaining to the conformity of the location-
scale conditions, so that all viable distributions vary only by location and scale parameters.
We examine a choice set Y , where random variables y ∈ Y differ only in terms of location

and scale parameters. We consider X �
(

p̃x , p̃v, Z̃ , . . . , Xn

)T
is a random vector with

multivariate normal distribution and X ∈ X is a random variable, obtained by normalisation
of an arbitrary y ∈ Y . Hence, X ∼ N (0, 1), by construction.

Given the above, it follows that any y ∈ Y is symmetrical in distribution to μ + σ x ,
where μ and σ are the mean and the standard deviation respectively. We denote � �
{(

σ M , μM
) ∈ R × R+|∃y ∈ Y : (σ , μ) � (σ M , μM

)}

as the set of all possible
(

σ M , μM
)

-
pairs that can be achieved for y ∈ Y . We assume � is a convex set.

Given a von-Neumann Morgenstern (vNM) utility index w : R → R, one can write
the expected utility emanating from the distribution of y using the mean and the standard
deviation of y (see Eichner & Wagener, 2003, 2009, 2012; Mukherjee et al., 2021):

Ew(y) �
∫ b

a
w(μ + σ x)dF(x) ≡ U (σ , μ) (22)

where F(.) is a distribution function of X . Identity (15) recommends structural relation-
ships between functions w and U . We assume that the regularity condition, imposed by
Chipman (1973, Theorem 1), on w(.) holds, such that (15) holds for normal distribution. We
utilise these relationships to demonstrate the comparative static results obtained in this paper
have well-known correspondences in the EU framework.

Chipman (1973) shows that the fact that X is normally distributed implies that

∂U (σ , μ)/∂σ � σ
(

∂2U (σ , μ)/∂μ2) < 0 (23)

Eichner and Wagener (2003, 2009) demonstrated that for strictly convex (σ , μ) indiffer-
ence curve, variance vulnerability property is equivalent to stating that we have

S(σ , μ) − σ(∂S(σ , μ)/∂σ ) < 0, (24)

Then, it is also equivalent to stating

(25)

− (∂U (σ ,μ) /∂μ)
[

∂U (σ ,μ) /∂σ − σ
(

∂2U (σ ,μ) /∂σ 2)]

− σ (∂U (σ ,μ) /∂σ )
(

∂2U (σ ,μ) /∂σ∂μ
)

< 0

However, from (16), it is easy to follow that
(

∂2U (σ , μ)/∂σ 2) � (∂2U (σ , μ)/∂μ2) + σ
(

∂3U (σ , μ)/∂μ2∂σ
)

(26.1)

Hence,

(27)

[

∂U (σ ,μ) /∂σ − σ
(

∂2U (σ ,μ) /∂σ 2)] � −σ 2 (∂3U (σ ,μ) /∂μ2∂σ
)

� −σ 3 (∂4U (σ ,μ) /∂μ4)

Given that ∂2U (σ , μ)/∂σ∂μ > 0, (∂U (σ , μ)/∂μ) > 0, but (∂U (σ , μ)/∂σ) <

0, for a strictly quasi-concave mean – standard deviation utility function to
exhibit risk aversion (Meyer, 1987); the inequality in (18) holds if and only if
[

∂U (σ , μ)/∂σ − σ
(

∂2U (σ , μ)/∂σ 2
)]

> 0 holds. Therefore, it is implied from (19) that
(

∂4U (σ , μ)/∂μ4
)

< 0 turns out to be necessary and sufficient for (18) to hold.
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However, as demonstrated in Eeckhoudt et al. (1996), this condition, which is tantamount
to absolute temperance, i.e., w′′′′(.) < 0, is one of the necessary conditions in the EU frame-
work to induce decision-maker to reduce her risk-taking when independent background risk
accentuates (in some specificmanner). As expected, this property is also relevant for ourmore
general dependence structures between output price risk, input price risk and background
risk.

Eichner andWagener (2009, Proposition 3) suggest εσ > 1−β is identical to the condition
that index of relative prudence is smaller than β in the EU-framework. Hence, assigning
β � 1 and 2 respectively, we obtain the sufficiency conditions εσ > 0 and εσ > −1
respectively, which correspond to the outcomes obtained by Hadar and Seo (1990) for the
case of independent risks and by Meyer and Ormiston (1994) for interconnected risks.

7 Concluding remarks, policy implications and future directions

Supply chains are invariably associated with multiple risks. However, literature reports these
risks either of the supply side, demand side, or background risk using EU approach. A
pragmatic view at SCs suggests that these risks are interconnected. Therefore, there is a
glaring need to analyse the decision makers perspective considering this interconnectedness
(Fan & Stevenson, 2018). Sourcing contributes to 50% to 80% of the SC cost. Therefore,
sourcing decision is vital to smooth functioning of the SC. Specifically when the decision
maker is risk averse in his sourcing decision under the presence of interconnected risks.

This study aims to inquire the sourcing decision of a risk averse manufacturer cum seller.
To contextualize this study, a generic drug manufacturer cum seller has been considered
which operates in a regulatory product market like other commodity markets (e.g., petrol,
gold, and other minerals). The need is to arrive at the optimal input choice for manufacturing
under two supply-side risks: namely uncertain input costs as direct/endogenous risk, and
uncertainty in set-up costs as an interconnected background risk. Later, we further extended
the model with randomness in output prices as well, reflecting the uncertainty from demand
side, on the top of two pre-existing supply-side risks. In such framework, we have evaluated
the risk averse manufacturer’s optimum supply decision in response to the changes in the
interconnectivity (represented by covariance in the manufacturer’s ex-post profit function
with linear interactions among the decision variable and the normally distributed random
variables) among each pair of these three sources of uncertainty, keeping all other parameters
and individual standard deviations unchanged.

The complexity of a SC network is not only jerked by the size of the network but also
interconnectivity among them. Thus, this study helps in understanding the optimal sourcing
decision of a risk averse decision-maker with respect to the strength of interconnected risks in
aSCnetwork anddemonstrates thatwith the increase in the strength of interconnectedness, the
optimal souring of input material decreases. This finding will be helpful for the policymakers
those anticipate the complexity is only because of the size of the network but this study
extends this to strength of the interconnected network is also needs to be considered.

The comparative static responses are contingent upon the relative trade-offs between risks
and returns i.e., the changes in the marginal willingness to sell for changes in the ex-post
profit risk brought about by the changes in the covariance between any pair of risks.

Proposition 1 attempts to answer the first RQ by analysing the decision-making process
in terms of optimum input choices of the risk averse manufacturer against the changes in the
interconnectedness (covariance) between input price risk and random set-up costs, keeping
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all the parameters (including the individual standard deviations) unchanged. Proposition 1
suggests that when the input price risk is tightly coupled with the background risk, the risk
averse decision-maker will optimally choose lesser quantity of inputs, if and only if the
relative risk-taking of the manufacturer does not deteriorate too strongly due to increase in
risk. This sufficiency condition is guaranteed by the positive values for the elasticity of risk
aversion w.r.t. the changes in profit-risk.

Propositions 2 and 3 demonstrate the decision-making process of the risk averse man-
ufacturer against the changes in interconnectedness between (i) random output price and
background risk; and (ii) between random output price and random input price, keeping all
other parameters unchanged. The results of these analyses suggest that (i) when the random
output prices become tightly coupled with the background risk, and (ii) when the random
output prices becomemore tightly coupled with input prices, manufacturer will optimally opt
for greater quantity of inputs (in both cases), if and only if risk preference follows "proper-
ness" (satisfying both DARA and variance vulnerability). This is guaranteed by the ranges
of values for the elasticity of risk aversion w.r.t. changes in profit-risk being greater than -1
and greater than 0 respectively for Propositions 2 and 3. In this manner, we provide answers
to RQ 2 and RQ 3 respectively.

The piety of themean–variance decisionmodel lies in its simplicity of interpretability—the
sufficiency conditions are based on themanufacturer’s relative sensitivity towards risks. These
conditions are more liable as empirically testable predictions; in contrast to the alternative
(such as an expected utility) approaches, which otherwise would depend on higher-order
derivatives of utility functions and their composites.

In terms of policy recommendations, our analysis confirms that degree of interconnect-
edness among SC risks impact risk averse manufacturers’ input choice decisions. This is
important for policy makers to keep in mind when designing market rules for regulated prod-
ucts. Policy makers should try to reduce at least one side of risk so that manufacturer can
increase his sourcing inputs. Policymakers can provide fixed subsidy or incentive so that
supply side or background risk can be reduced. For the demand side proper forecasting about
the market demand venturing into new markets which are risk free because of government
regulations can be another option for the manufacturer to improve its optimal sourcing strat-
egy. However, risk averse manufacturer under tightly coupled risks can take the recourse of
inventory management, multi-sourcing and hedging as alternative strategies to reduce the
supply side risk through which background risk and demand side risk can also be managed
by establishing loosely coupled supply chain risks.

The present work can be extended to several imperative directions. The most exciting
extension would be to apply this precise decision problem in the context of loss-aversion
or disappointment aversion. Consideration of multiplicative risks to analyse Complex SC
network can also be another extension. Data collection using behavioural experiments to
study the risk averse behaviour can also be considered as future scope. Also, different product
markets with different regulations can be considered in future research.
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