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Abstract
In this paper, we consider a convex quadratic multiobjective optimization problem, where
both the objective and constraint functions involve data uncertainty. We employ a deter-
ministic approach to examine robust optimality conditions and find robust (weak) Pareto
solutions of the underlying uncertain multiobjective problem. We first present new neces-
sary and sufficient conditions in terms of linear matrix inequalities for robust (weak) Pareto
optimality of the multiobjective optimization problem. We then show that the obtained opti-
mality conditions can be alternatively checked via other verifiable criteria including a robust
Karush–Kuhn–Tucker condition. Moreover, we establish that a (scalar) relaxation problem
of a robust weighted-sum optimization program of the multiobjective problem can be solved
by using a semidefinite programming (SDP) problem. This provides us with a way to numer-
ically calculate a robust (weak) Pareto solution of the uncertain multiobjective problem as
an SDP problem that can be implemented using, e.g., MATLAB.
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1 Introduction

Multiobjective (or multiple objective/multicriteria/vector) optimization problems refer to
mathematical optimization models that can handle the multiple decision making problems
and have been found in applications in various areas of real life and work such as defence,
engineering, economics and logistics (Nguyen and Cao, 2019; Ehrgott, 2005; Jahn, 2004;
Miettinen, 1999; Steuer, 1986; Luc, 1989). Multiobjective optimization problems are often
involved in the presence of trade-offs between two or more conflicting objectives from a set
of feasible choices. Consequently, identifying Pareto fronts or Pareto solutions that are trade-
offs among the conflicting objectives of a nontrivial multiobjective optimization program
is generally hard by its natural structure (Wiecek, 2007; Boţ et al. 2009,; Chinchuluun and
Pardalos, 2007; Zhou et al., 2011; Niebling and Eichfelder, 2019).

A decision making problem that arises in defence, for example, may contain parameters
that are unknown at the time when decision must be made, e.g., future technology, threats,
costs and environments and these parameters are often obtained by prediction or estimation.
Unknown environment factors of a defence force problem such as land surface, air and
sea surroundings or weather would be shown up when a defence system is operating in
a new terrain. The land combat vehicle (LCV) system (Nguyen and Cao, 2017, 2019) is
formulated as a multiobjective optimization problem that contains uncertainty data caused
by incomplete and noisy information or by unknown environment factors, and also by the
interdependencies between LCV system configurations. Force Design (FD) is ultimately
about selecting a portfolio of thousands of strategic investment projects in future Australian
Defence Force (ADF) capabilities (Peacock et al., 2019). The challenge is to optimise the
combination of invested projects that give government the overall capability it requires to
achieve multiple effects (objectives) across a range of scenarios, whilst achieving the budget
constraints.

This paper is the first step in extending some earlier approaches successfully used for
evaluating and optimising defence problems such as the LCV system specifications and
configurations for Australian Army, to more complex problems with higher dimensions
that are relevant to force design (Nguyen and Cao, 2019; Nguyen et al., 2016; Nguyen
and Cao, 2017) by considering a class of uncertain multiobjective optimization problems
where the objectives and constraints are continuous functions and uncertain parameters also
influence its search space.Robust approaches (or, robust optimization) (see e.g., Ben-Tal et al.,
2009; Bertsimas et al., 2011; Ehrgott et al., 2014; Kuroiwa and Lee, 2012) have emerged as
promising and efficient framework for solving mathematical programming problems under
data uncertainty, and so a robust optimisation approach will be used instead of the heuristic
methods from the previous work to handle this class of uncertain multiobjective optimization
problems. It is worth mentioning that the robust approach of (scalar) uncertain programs was
first considered in Soyster (1973). This is based on the principle that the robust counterpart
of an uncertain program that enforced for all possible parameter realizations within the
underlying uncertainty sets admits feasible solutions that are immunized against uncertainty
data.

Nowadays, the robust approach has been deployed in real-world multiobjective optimiza-
tion problems involving uncertain data (Ehrgott et al., 2014; Kuroiwa and Lee, 2012) as the
robust multiobjective models better satisfy future performance demands in practical scenar-
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ios, see e.g., Zhou-Kangas and Miettinen (2019), Ide and Schobel (2016), Doolittle et al.
(2018). The concept of minmax robustness from Ben-Tal et al. (2009) was extended to the
setting ofmultiobjective optimization in Ehrgott et al. (2014),Kuroiwa andLee (2012).More-
over, one can see in Ehrgott et al. (2014) how robust solutions of an uncertain multiobjective
optimization problem are calculated, and in Kuroiwa and Lee (2012) how optimality condi-
tions of robustmultiobjective optimization problems are established. Over the years, different
and various research aspects of robustmultiobjective optimization have been intensively stud-
ied and developed by many researchers. For example, Goberna et al. (2014) provided dual
characterizations of robust weak Pareto solutions of a multiobjective linear semi-infinite
programs under constraint data uncertainty (i.e, the problem involves uncertain parameters
only in its constraints). Georgiev et al. (2013) established a necessary and sufficient condi-
tion and provided formulas to compute the radius of robustness of a linear multiobjective
programming problem. In a nonsmooth and nonlinear setting, Zamani et al. (2015) provided
formulas for calculating such radius of robustness. These results were further developed for
semi-infinite multiobjective programs in Rahimi and Soleimani-damaneh (2018a) and for
general robust vector optimization problems in Rahimi and Soleimani-damaneh (2018b).

By considering the objectives of an uncertain multiobjective optimization problem as
set-valued functions, Eichfelder et al. (2020) proposed a numerical algorithm to calculate
the optimal solutions of an unconstrained multiobjective optimization problem in which the
objective functions are twice continuously differentiable. Engau and Sigler (2020) established
a complete characterization of an alternative efficient set hierarchy based on different ordering
relations with respect to the multiple objectives and scenarios. Lee and Lee (2018) examined
optimality conditions and duality relations for weak efficient solutions of robust semi-infinite
multiobjective optimization problems, where the related functions are continuously differ-
entiable. Employing advanced techniques of variational analysis, Chuong (2020) obtained
robust optimality conditions and robust duality for an uncertain nonsmooth multiobjective
optimization problem under arbitrary uncertainty nonempty sets.

One of the recent research trends in robust multiobjective optimization has focused on
exploiting special structures of the objective and constraint functions or the uncertainty
sets to provide verifiable optimality conditions and calculate robust (weak) Pareto solutions
by using semidefinite programming (SDP) (see e.g., Blekherman et al., 2012) problems.
Chuong (2017) provided a characterization for weak Pareto solution of a robust linear mul-
tiobjective optimization problem based on a robust alternative theorem. In the setting of
sum of squares (SOS)-convex polynomials (Helton and Nie, 2010), Chuong (2018) exam-
ined optimality conditions and duality by means of linear matrix inequalities for robust
multiobjective SOS-convex polynomial programs, while Lee and Jiao (2021) employed an
approximate scalarization technique to find robust Pareto solutions for a multiobjective opti-
mization problem under the constraint data uncertainty. The interested reader is referred
to a very recent work (Chuong and Jeyakumar, 2021) for calculating robust (weak) Pareto
solutions for uncertain linear multiobjective optimization problems in terms of two-stage
adjustable variables.

To the best of our knowledge, there are no results establishing verifiable optimality condi-
tions and finding numerically robust (weak) Pareto solutions of an uncertain convex quadratic
multiobjective optimization problem, where uncertain parameters involve in both the objec-
tive and constraint functions and reside in structured uncertainty sets such as spectrahedra
(see e.g., Ramana and Goldman, 1995). The examination of such an uncertain multiobjective
optimization problem is often complicated due to the challenges posed in dealingwith the data
uncertainty of both the objective and constraint functions. In this work, we consider a con-
vex quadratic multiobjective optimization problem, where both the objective and constraint
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functions involve data uncertainty. In our model, the uncertain parameters in the objective
and constraint functions are allowed to vary affinely in the corresponding uncertainty sets,
which are spectrahedra (cf. Ramana and Goldman, 1995).

To handle the proposed uncertain multiobjective optimization problem, we employ the
robust deterministic approach (see e.g., Ben-Tal et al., 2009; Bertsimas et al., 2011; Ehrgott
et al., 2014; Kuroiwa and Lee, 2012) to examine robust optimality conditions and find robust
(weak) Pareto solutions of the underlying uncertain multiobjective problem. More precisely,
we first present necessary and sufficient conditions in terms of linear matrix inequalities
for robust (weak) Pareto optimality of the multiobjective optimization problem. We then
show that the obtained optimality conditions can be alternatively checked via other verifi-
able criteria including a robust Karush-Kuhn-Tucker condition. To achieve these goals, we
employ a special variable transformation combined with a classical minimax theorem (see
e.g., Sion, 1958) and a commonly used alternative theorem in convex analysis (cf. Rockafel-
lar, 1970).Moreover, we establish that a (scalar) relaxation problem of a robust weighted-sum
optimization program of the multiobjective problem can be solved by using a semidefinite
programming (SDP) problem. This provides us with a way to numerically calculate a robust
(weak) Pareto solution of the uncertain multiobjective problem as an SDP problem that can
be implemented using, e.g., MATLAB.

It is worth mentioning here that Chuong (2018) examined a robust multiobjective opti-
mization problemwith a general class of SOS-convex polynomials but it contained uncertain
parameters only on the constraints (i.e., the objective functions of the problem do not have
uncertain parameters). Our problem deals with convex quadratic functions, where both the
objective functions and constrained functions involve uncertain parameters. Due to the uncer-
tainty data of both the objective and constraint functions, optimality conditions for robust
(weak) Pareto solutions obtained in this paper would not be derived from the correspond-
ing conditions in Chuong (2018). Even in a special framework, where there is no uncertain
parameters in the objective functions of the underlying problem, we would not obtain such
necessary optimality conditions by applying the results in Chuong (2018). This is because
Theorem 2.3(i) of Chuong (2018) is formulated under the (classical) Slater condition, while
the necessary optimality condition of the current paper (see Theorem 3.1 below) is estab-
lished under a more general qualification of closedness of characteristic cone which can be
regarded as the weakest regularity conditions guaranteeing strong duality in robust convex
programming (Jeyakumar and Li, 2010). Tomake use of the closedness of characteristic cone
condition in establishing necessary optimality conditions, we employ novel dual techniques
based on the epigraphical convex optimization approach. Moreover, our paper proposes a
scheme (see Theorem 4.1 below) to calculate a robust (weak) Pareto solution of the uncertain
multiobjective problem by solving an SDP reformulation. A scheme to identify robust (weak)
Pareto solutions of an uncertain multiobjective optimization problem was not available in
Chuong (2018), where one only found weighted-sum efficient values for the underlying mul-
tiobjective problem.

The organization of the paper is as follows. Section 2 presents some notation and the
definitions of uncertain and robust multiobjective optimization problems as well as their
solution concepts thatwill be studied. Section3 establishes necessary and sufficient optimality
conditions along with other equivalent verifiable conditions for the underlyingmultiobjective
optimization problem. In Sect. 4, we show that a (scalar) relaxation problem of a robust
weighted-sum optimization program of the multiobjective problem can be solved by using
an SDP problem. Section 5 summarizes the obtained results and provides some potential
perspectives for a further study. Appendix presents numerical examples that show how we
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can employ the obtained SDP reformulation scheme to find robust (weak) Pareto solutions
of uncertain convex quadratic multiobjective optimization problems.

2 Preliminaries and robust multiobjective programs

Let us start with some notation and definitions. The notationRm signifies the Euclidean space
whose norm is denoted by ‖ · ‖ for each m ∈ N := {1, 2, . . .}. The inner product in R

m is
defined by 〈y, z〉 := yT z for all y, z ∈ R

m . The origin of any space is denoted by 0 but we
may use 0m to denote the origin of Rm for the sake of clarification. The nonnegative orthant
of Rm is denoted by R

m+ := {(x1, . . . , xm) ∈ R
m | xi ≥ 0, i = 1, . . . ,m}. For a nonempty

set � ⊂ R
m, conv� denotes the convex hull of � and cl� (resp., int �) stands for the closure

(resp., interior) of �, while coneco� := R+conv� stands for the convex conical hull of
� ∪ {0m}, where R+ := [0,+∞) ⊂ R. As usual, the symbol Im ∈ R

m×m stands for the
identity (m × m) matrix. Let Sm be the space of all symmetric (m × m) matrices. A matrix
A ∈ Sm is said to be positive semidefinite, denoted by A 
 0, whenever xT Ax ≥ 0 for all
x ∈ R

m . If xT Ax > 0 for all x ∈ R
m \ {0m}, then A is called positive definite, denoted by

A � 0. The trace of a square (m × m) matrix A is defined by Tr(A) = ∑m
i=1 aii , where aii

is the entry in the i th row and i th column of A for i = 1, . . . ,m.
For a closed convex subset � ⊂ R

m , its indicator function δ� : Rm → R := R∪{+∞} is
defined as δ�(x) := 0 if x ∈ � and δ�(x) := +∞ if x /∈ �. Given an extended real-valued
function ϕ : Rm → R, the domain and epigraph of ϕ are defined respectively by

domϕ := {x ∈ R
m | ϕ(x) < +∞}, epiϕ := {(x, μ) ∈ R

m × R | μ ≥ ϕ(x)}.
The conjugate function of ϕ, denoted by ϕ∗ : Rm → R, is defined by

ϕ∗(v) = sup {vT x − ϕ(x) | x ∈ dom ϕ}, v ∈ R
m .

Lettingϕ1 andϕ2 be proper lower semicontinuous convex functions, it is well known (see e.g.,
Zalinescu, 2002;Burachik and Jeyakumar, 2005;Rockafellar, 1970) that epi(λϕ1)

∗ = λepiϕ∗
1

for any λ > 0 and

epi(ϕ1 + ϕ2)
∗ = cl(epiϕ∗

1 + epiϕ∗
2 ), (2.1)

where the closure operation is superfluous if one of ϕ1, ϕ2 is continuous at some point
x0 ∈ domϕ1 ∩ domϕ2.

In this paper, we consider a convex quadratic multiobjective optimization problem under
data uncertainty that can be captured as the following model:

min
x∈Rn

{(
f1(x, u

1), . . . , f p(x, u
p)

) | gl(x, vl) ≤ 0, l = 1, . . . , k
}
, (UP)

where ur , r = 1, . . . , p ∈ N and vl , l = 1, . . . , k ∈ N are uncertain parameters and they
reside, respectively, in the uncertainty sets �r ⊂ R

m and �l ⊂ R
s , and fr : Rn × R

m →
R, gl : Rn × R

s → R are bi-functions.
Throughout this paper, the uncertainty sets �r , r = 1, . . . , p and �l , l = 1, . . . , k are

assumed to be spectrahedra (see e.g., Ramana and Goldman, 1995) given by

�r := {ur := (ur1, . . . , u
r
m) ∈ R

m | Ar +
m∑

i=1

uri A
r
i 
 0},
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�l := {vl := (vl1, . . . , v
l
s) ∈ R

s | Bl +
s∑

j=1

vlj B
l
j 
 0} (2.2)

with given symmetric matrices Ar , Ar
i , i = 1, . . . ,m ∈ N and Bl , Bl

j , j = 1, . . . , s ∈ N,
while the bi-functions fr , r = 1, . . . , p and gl , l = 1, . . . , k are convex quadratic functions
given by

fr (x, u
r ) :=xT Qr x + (ξ r )T x + βr +

m∑

i=1

uri
(
(ξ ri )T x + βr

i

)
, x ∈ R

n,

ur :=(ur1, . . . , u
r
m) ∈ �r ,

gl(x, v
l) :=xT Ml x + (θ l)T x + γ l +

s∑

j=1

vlj
(
(θ lj )

T x + γ l
j

)
, x ∈ R

n,

vl :=(vl1, . . . , v
l
s) ∈ �l (2.3)

with Qr 
 0, ξ r ∈ R
n, ξ ri ∈ R

n, βr ∈ R, βr
i ∈ R, i = 1, . . . ,m and Ml 
 0, θ l ∈ R

n, θ lj ∈
R
n, γ l ∈ R, γ l

j ∈ R, j = 1, . . . , s fixed.
The spectrahedral data uncertainty sets in (2.2) encompass all important popular data

uncertainty sets used in practical robust models such as box uncertainty set, ball uncertainty
set or ellipsoidal uncertainty set (see e.g., Vinzant, 2014). Moreover, spectrahedra admit the
special structures of linear matrix inequalities that empower us to employ variable transfor-
mations and express optimality conditions in terms of linear matrix inequalities. We assume
that the uncertainty sets in (2.2) are nonempty and compact.

To treat the uncertain multiobjective problem (UP), we associate with it a robust coun-
terpart that can be formulated as

min
x∈Rn

{(
max
u1∈�1

f1(x, u
1), . . . , max

u p∈�p
f p(x, u

p)
) | gl(x, vl) ≤ 0,∀vl ∈ �l , l = 1, . . . , k

}
.

(RP)

In this model, the uncertain parameters of the objective and constraint functions are
enforced for all possible realizations within the corresponding uncertainty sets, and so the
robust counterpart problem (RP) aims at locating a (weak) Pareto solution which is immu-
nized against the data uncertainty. It is worth mentioning that by taking the maximum on
each uncertainty set to all possible realizations of the corresponding objective, the under-
lying problem becomes a multiobjective problem with nonsmooth objective functions. The
transformed problem is a nonsmoothmultiobjective problem involving an infinite number of
constraints, and so solving this problem is in general computationally intractable for general
compact convex uncertainty sets by using the duality approach as in Chuong (2020).

The following solution concepts are in the sense of minmax robustness (see e.g., Ehrgott
et al., 2014; Kuroiwa and Lee, 2012) for multiobjective optimization.

Definition 2.1 (Robust Pareto and weak Pareto solutions) Let x̄ ∈ C := {x ∈ R
n |

gl(x, vl) ≤ 0,∀vl ∈ �l , l = 1, . . . , k
}
.

(i) We say that x̄ is a robust Pareto solution of problem (UP) if it is a Pareto solution of
problem (RP), i.e., there is no other point x ∈ C such that

max
ur∈�r

fr (x, u
r ) ≤ max

ur∈�r
fr (x̄, u

r ), r = 1, . . . , p and

max
ur∈�r

fr (x, u
r ) < max

ur∈�r
fr (x̄, u

r ) for some r ∈ {1, . . . , p}.
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(ii) We say that x̄ is a robust weak Pareto solution of problem (UP) if it is a weak Pareto
solution of problem (RP), i.e., there is no other point x ∈ C such that

max
ur∈�r

fr (x, u
r ) < max

ur∈�r
fr (x̄, u

r ), r = 1, . . . , p.

3 Robust optimality conditions

In this section, we present necessary as well as sufficient conditions for robust (weak) Pareto
optimality of the uncertain multiobjective problem (UP).

Theorem 3.1 Let x̄ ∈ R
n be a robust feasible point of problem (UP), i.e., x̄ ∈ C := {x ∈

R
n | gl(x, vl) ≤ 0,∀vl ∈ �l , l = 1, . . . , k

}
.

(i) (Necessary optimality) Assume that the characteristic cone K := coneco{(0n, 1) ∪
epi g∗

l (·, vl), vl ∈ �l , l = 1, . . . , k} is closed. If x̄ is a robust weak Pareto solution of
problem (UP), then there exist (α1, . . . , αp) ∈ R

p
+\{0}, αi

r ∈ R, r = 1, . . . , p, i = 1, . . . ,m

and λl ≥ 0, λ j
l ∈ R, j = 1, . . . , s, l = 1, . . . , k such that

⎛

⎜
⎜
⎜
⎝

p∑

r=1
αr Qr +

k∑

l=1
λl Ml 1

2

( p∑

r=1
(αr ξ

r +
m∑

i=1
αi
r ξ

r
i ) +

k∑

l=1
(λlθ

l +
s∑

j=1
λ
j
l θ

l
j )

)

1
2

( p∑

r=1
(αr ξ

r +
m∑

i=1
αi
r ξ

r
i ) +

k∑

l=1
(λlθ

l +
s∑

j=1
λ
j
l θ

l
j )

)T p∑

r=1
(αrβ

r +
m∑

i=1
αi
rβ

r
i ) +

k∑

l=1
(λlγ

l +
s∑

j=1
λ
j
l γ

l
j ) −

p∑

r=1
αr Fr (x̄)

⎞

⎟
⎟
⎟
⎠


 0,

(3.1)

αr A
r +

m∑

i=1

αi
r A

r
i 
 0, r = 1, . . . , p, λl B

l +
s∑

j=1

λ
j
l B

l
j 
 0, l = 1, . . . , k, (3.2)

where Fr (x̄) := max
ur∈�r

fr (x̄, ur ) for r = 1, . . . , p.

(ii) (Sufficiency for robust weak Pareto solutions) If there exist (α1, . . . , αp) ∈ R
p
+ \

{0}, αi
r ∈ R, r = 1, . . . , p, i = 1, . . . ,m and λl ≥ 0, λ j

l ∈ R, j = 1, . . . , s, l = 1, . . . , k
such that (3.1) and (3.2) hold, then x̄ is a robust weak Pareto solution of problem (UP).

(iii) (Sufficiency for robust Pareto solutions) If there exist (α1, . . . , αp) ∈ intRp
+, αi

r ∈
R, r = 1, . . . , p, i = 1, . . . ,m and λl ≥ 0, λ j

l ∈ R, j = 1, . . . , s, l = 1, . . . , k such that
(3.1) and (3.2) hold, then x̄ is a robust Pareto solution of problem (UP).

Proof Denote Fr (x) := max
ur∈�r

fr (x, ur ), r = 1, . . . , p and Gl(x) := max
vl∈�l

gl(x, vl), l =
1, . . . , k for x ∈ R

n . It is easy to see that Fr , r = 1, . . . , p and Gl , l = 1, . . . , k are convex
functions finite on R

n .
(i) Let the cone K be closed, and let x̄ be a robust weak Pareto solution of problem (UP).

We see that
{x ∈ C | Fr (x) − Fr (x̄) < 0, r = 1, . . . , p} = ∅,

where C := {x ∈ R
n | gl(x, vl) ≤ 0,∀vl ∈ �l , l = 1, . . . , k

}
is the robust feasible set of

problem (UP). Invoking a classical alternative theorem in convex analysis (cf. Rockafellar,
1970, Theorem 21.1), we find (α1, . . . , αp) ∈ R

p
+ \ {0} such that

p∑

r=1

αr Fr (x) ≥
p∑

r=1

αr Fr (x̄) for all x ∈ C .
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This shows that

inf
x∈C

{ p∑

r=1

αr max
ur∈�r

{
xT Qr x + (ξ r )T x + βr +

m∑

i=1

uri
(
(ξ ri )T x + βr

i

)}} ≥
p∑

r=1

αr Fr (x̄),

(3.3)

where ur := (ur1, . . . , u
r
m), r = 1, . . . , p. Let � := 

p
r=1�r ⊂ R

pm . We see that � is a
convex compact set and (3.3) becomes the following inequality

inf
x∈C max

(u1,...,u p)∈�

{ p∑

r=1

αr

(
xT Qr x + (ξ r )T x + βr +

m∑

i=1

uri
(
(ξ ri )T x + βr

i

))}
≥

p∑

r=1

αr Fr (x̄).

(3.4)

Let H : R
n × R

pm → R be defined by H(x, u) :=
p∑

r=1
αr

(
xT Qr x + (ξ r )T x + βr +

m∑

i=1
uri

(
(ξ ri )T x + βr

i

))
for x ∈ R

n and u := (u1, . . . , u p) ∈ R
pm . Then, H is an affine

function in variable u and a convex function in variable x and so, we invoke a classical
minimax theorem (see e.g., Sion, 1958, Theorem 4.2) and (3.4) to claim that

max
u∈�

inf
x∈C H(x, u) = inf

x∈C max
u∈�

H(x, u) ≥
p∑

r=1

αr Fr (x̄).

Therefore, we can find ū := (ū1, . . . , ū p), where ūr := (ūr1, . . . , ū
r
m) ∈ �r , r = 1, . . . , p,

such that inf
x∈C H(x, ū) ≥

p∑

r=1
αr Fr (x̄). This shows that

(
0n,−

p∑

r=1

αr Fr (x̄)
) ∈ epi

(
H(·, ū) + δC

)∗
.

Due to the continuity of H(·, ū) on Rn , by taking (2.1) into account, we arrive at

(
0n,−

p∑

r=1

αr Fr (x̄)
) ∈ epi H∗(·, ū) + epi δ∗

C .

Moreover, we have (cf. Jeyakumar and Li, 2010, Page 3390 or Jeyakumar, 2003, p. 951)
that epi δ∗

C = cl K = K , where the last equality holds as the cone K := coneco{(0n, 1) ∪
epi g∗

l (·, vl), vl ∈ �l , l = 1, . . . , k
}
is assumed to be closed. Consequently,

(
0n,−

p∑

r=1

αr Fr (x̄)
) ∈ epi H∗(·, ū) + K ,

which means that there exist (w, λ) ∈ epi H∗(·, ū) and v̄lt := (v̄lt1 , . . . , v̄lts ) ∈ �l ,
(w̄lt , λ̄lt ) ∈ epi g∗

l (·, v̄lt ), ᾱ ≥ 0, ᾱlt ≥ 0, l = 1, . . . , k, t = 1, . . . , sl such that

0n = w +
k∑

l=1

sl∑

t=1

ᾱlt w̄lt , −
p∑

r=1

αr Fr (x̄) = λ + ᾱ +
k∑

l=1

sl∑

t=1

ᾱlt λ̄lt . (3.5)
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Observe by (w̄lt , λ̄lt ) ∈ epi g∗
l (·, v̄lt ), l = 1, . . . , k, t = 1, . . . , sl that, for each x ∈ R

n , one
has λ̄lt ≥ (w̄lt )T x−gl(x, v̄lt ). This together with (3.5) and the relation (w, λ) ∈ epi H∗(·, ū)

implies that, for each x ∈ R
n ,

H(x, ū) ≥ w�x − λ ≥ −
k∑

l=1

sl∑

t=1

ᾱlt gl(x, v̄
lt ) +

p∑

r=1

αr Fr (x̄). (3.6)

Letting αi
r := αr ūri , r = 1, . . . , p, i = 1, . . . ,m, we assert that

αr A
r +

m∑

i=1

αi
r A

r
i = αr

(
Ar +

m∑

i=1

ūri A
r
i

)

 0, r = 1, . . . , p. (3.7)

To see this, recall that αr ≥ 0 and ūr ∈ �r (and so Ar +
m∑

i=1
ūri A

r
i 
 0) for r = 1, . . . , p.

Similarly, by letting λl :=
sl∑

t=1
ᾱlt ≥ 0, λ j

l :=
sl∑

t=1
ᾱlt v̄ltj , l = 1, . . . , k, j = 1, . . . , s, we see

that

λl B
l +

s∑

j=1

λ
j
l B

l
j =

sl∑

t=1

[
ᾱlt (Bl +

s∑

j=1

v̄ltj B
l
j

)] 
 0, l = 1, . . . , k

due to ᾱlt
(
Bl +

s∑

j=1
v̄ltj B

l
j

) 
 0, l = 1, . . . , k, t = 1, . . . , sl . Consequently, (3.2) holds.

Now, we deduce from (3.6) that

xT
( p∑

r=1

αr Q
r +

k∑

l=1

λl M
l
)
x +

( p∑

r=1

(αr ξ
r +

m∑

i=1

αi
r ξ

r
i ) +

k∑

l=1

(λlθ
l +

s∑

j=1

λ
j
l θ

l
j )

)T
x

+
p∑

r=1

(αrβ
r +

m∑

i=1

αi
rβ

r
i ) +

k∑

l=1

(λlγ
l +

s∑

j=1

λ
j
l γ

l
j ) −

p∑

r=1

αr Fr (x̄) ≥ 0 for all x ∈ R
n .

This is equivalent to (cf. Ben-Tal andNemirovski, 2001, Simple lemma, p. 163) the following
matrix inequality
⎛

⎜
⎜
⎜
⎝

p∑

r=1
αr Qr +

k∑

l=1
λl Ml 1

2

( p∑

r=1
(αr ξ

r +
m∑

i=1
αi
r ξ

r
i ) +

k∑

l=1
(λlθ

l +
s∑

j=1
λ
j
l θ

l
j )

)

1
2

( p∑

r=1
(αr ξ

r +
m∑

i=1
αi
r ξ

r
i ) +

k∑

l=1
(λlθ

l +
s∑

j=1
λ
j
l θ

l
j )

)T p∑

r=1
(αrβ

r +
m∑

i=1
αi
rβ

r
i ) +

k∑

l=1
(λlγ

l +
s∑

j=1
λ
j
l γ

l
j ) −

p∑

r=1
αr Fr (x̄)

⎞

⎟
⎟
⎟
⎠


 0,

showing that (3.1) is also established and so the assertion in (i) has been justified.
(ii) Let (α1, . . . , αp) ∈ R

p
+ \ {0}, αi

r ∈ R, r = 1, . . . , p, i = 1, . . . ,m and λl ≥ 0, λ j
l ∈

R, j = 1, . . . , s, l = 1, . . . , k be such that (3.1) and (3.2) hold.
Consider any r ∈ {1, . . . , p}. By the compactness of�r , we assert by (3.2) that if αr = 0,

then αi
r = 0 for all i = 1, . . . ,m. Suppose, on the contrary, that αr = 0 but there exists

ĩ ∈ {1, . . . ,m} with α ĩ
r �= 0. In this case, we get by (3.2) that

m∑

i=1
αi
r A

r
i 
 0. Let ūr :=

(ūr1, . . . , ū
r
m) ∈ �r . It follows by definition that Ar +

m∑

i=1
ūri A

r
i 
 0 and

Ar +
m∑

i=1

(ūri + λαi
r )A

r
i =

(

Ar +
m∑

i=1

ūri A
r
i

)

+ λ

m∑

i=1

αi
r A

r
i 
 0 for all λ > 0.
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This guarantees that ūr + λ(α1
r , . . . , α

m
r ) ∈ �r for all λ > 0, which contradicts the fact that

(α1
r , . . . , α

m
r ) �= 0m and �r is a bounded set. Thus, our claim must be true.

Now, take ûr := (ûr1, . . . , û
r
m) ∈ �r and define ũr := (ũr1, . . . , ũ

r
m) with

ũri :=
{
ûri if αr = 0,
αi
r

αr
if αr �= 0,

i = 1, . . . ,m.

This shows that ũr ∈ �r . Then, for any x ∈ R
n, we have

αr x
T Qr x + (αr ξ

r +
m∑

i=1

αi
r ξ

r
i )T x + αrβ

r +
m∑

i=1

αi
rβ

r
i

= αr

(
xT Qr x + (ξ r )T x + βr +

m∑

i=1

ũri
(
(ξ ri )T x + βr

i

)) = αr fr (x, ũ
r ), (3.8)

where we remind that if αr = 0, then αi
r = 0 for all i = 1, . . . ,m as said above. Similarly,

by (3.2), we can find ṽl := (ṽl1, . . . , ṽ
l
s) ∈ �l , l = 1, . . . , k such that

λl x
T Ml x + (λlθ

l +
s∑

j=1

λ
j
l θ

l
j )
T x + λlγ

l +
s∑

j=1

λ
j
l γ

l
j

= λl

(
xT Ml x + (θ l)T x + γ l +

s∑

j=1

ṽlj
(
(θ lj )

T x + γ l
j

)) = λl gl(x, ṽ
l), l = 1, . . . , k

(3.9)

for each x ∈ R
n .

Arguing as in the proof of (i), (3.1) can be equivalently rewritten as

p∑

r=1

αr
(
xT Qr x + (ξ r )T x + βr ) +

p∑

r=1

m∑

i=1

αi
r

(
(ξ ri )T x + βr

i

)

+
k∑

l=1

λl
(
xT Ml x + (θ l)T x + γ l) +

k∑

l=1

s∑

j=1

λ
j
l

(
(θ lj )

T x + γ l
j

)

−
p∑

r=1

αr Fr (x̄) ≥ 0 for all x ∈ R
n,

and so, by (3.8) and (3.9), we arrive at

p∑

r=1

αr fr (x, ũr ) +
k∑

l=1

λl gl(x, ṽ
l) −

p∑

r=1

αr Fr (x̄) ≥ 0 for all x ∈ R
n . (3.10)

Next, let x̂ ∈ R
n be a robust feasible point of problem (UP). Then, it shows that gl(x̂, ṽl) ≤

0 for ṽl ∈ �l , l = 1, . . . , k. Estimating (3.10) at x̂ , we obtain that
p∑

r=1
αr fr (x̂, ũr ) ≥

p∑

r=1
αr Fr (x̄) and so,

p∑

r=1

αr Fr (x̂) ≥
p∑

r=1

αr Fr (x̄) (3.11)
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due to the fact that αr ≥ 0 and Fr (x̂) ≥ fr (x̂, ũr ) for r = 1, . . . , p.
By (α1, . . . , αp) ∈ R

p
+ \ {0}, (3.11) guarantees that there is no other robust feasible point

x̂ ∈ R
n such that

Fr (x̂) < Fr (x̄), r = 1, . . . , p,

and so x̄ is a robust a weak Pareto solution of problem (UP).
(iii) Let (α1, . . . , αp) ∈ intRp

+, αi
r ∈ R, r = 1, . . . , p, i = 1, . . . ,m and λl ≥ 0, λ j

l ∈
R, j = 1, . . . , s, l = 1, . . . , k be such that (3.1) and (3.2) are valid. Proceeding similarly as
in the proof of (ii), we arrive at the conclusion in (3.11). This, together with (α1, . . . , αp) ∈
intRp

+, ensures that x̄ is a robust a Pareto solution of problem (UP). The proof of the theorem
is complete. ��

Remark 3.2 Note that the closedness of the characteristic cone K in Theorem 3.1 is fulfilled
if at least one of the following conditions is valid: a) (see e.g., Chuong and Jeyakumar, 2017)
gl(·, vl), vl ∈ �l , l = 1, . . . , k are linear functions and �l , l = 1, . . . , k are polytopes; b)
(see e.g., Jeyakumar and Li, 2010, Proposition 3.2) the Slater constraint qualification holds,
i.e., there exists x̃ ∈ R

n such that

gl(x̃, v
l) < 0,∀vl ∈ �l , l = 1, . . . , k. (3.12)

The following example illustrates that the optimality conditions in (3.1) and (3.2) may go
awry if the closedness of the characteristic cone K imposed in Theorem 3.1 is violated.

Example 3.3 (The importance of the closedness regularity) Consider a robust convex
quadratic multiobjective optimization problem of the form:

min
x :=(x1,x2)∈R2

{
( max
u:=(u1,u2)∈�

{x22 + x1 + u1}, max
u:=(u1,u2)∈�

{x22 + 3x1 − u2}) | v1x1 (EP1)

+ (v2 + 1)x2 ≤ 0,∀v := (v1, v2) ∈ �
}
,

where � := {u := (u1, u2) ∈ R
2 | u21

2 + u22
3 ≤ 1} and � := {v := (v1, v2) ∈ R

2 | v21 + v22 ≤
1}. The problem (EP1) can be expressed in terms of problem (RP), where �1 := �2 := �

and �1 := � are described respectively by

Ar :=
⎛

⎝
2 0 0
0 3 0
0 0 1

⎞

⎠ , Ar
1 := B1

1 =
⎛

⎝
0 0 1
0 0 0
1 0 0

⎞

⎠ , Ar
2 := B1

2 =
⎛

⎝
0 0 0
0 0 1
0 1 0

⎞

⎠ ,

B1 := I3, r = 1, 2,

and fr , r = 1, 2, g1, are given respectively by Qr :=
(
0 0
0 1

)

, ξ1 := (1, 0), ξ2 :=
(3, 0), ξ r1 := ξ r2 := 02, βr := β1

2 := β2
1 := 0, β1

1 := 1, β2
2 := −1, r = 1, 2 and

M1 := 02×2, θ
1 := (0, 1), θ11 := (1, 0), θ12 := (0, 1), γ 1 := γ 1

1 := γ 1
2 := 0.

By direct computation, we see that the feasible set of problem (EP1) is given by

C := {x ∈ R
2 | g1(x, v) ≤ 0,∀v ∈ �} = {0} × (−∞, 0].

Moreover, it can be checked that x̄ := (0, 0) is a Pareto solution of the robust problem (EP1).
However, we assert that the conditions in (3.1) and (3.2) are not valid at x̄ for this setting. To
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see the conclusion, assume on the contrary that there exist (α1, α2) ∈ R
2+ \ {0}, αi

r ∈ R, r =
1, 2, i = 1, 2, λ1 ∈ R+, λ

j
1 ∈ R, j = 1, 2 such that

⎛

⎜
⎜
⎜
⎝

2∑

r=1
αr Qr + λ1M1 1

2

( 2∑

r=1
(αr ξ

r +
2∑

i=1
αi
r ξ

r
i ) + λ1θ

1 +
2∑

j=1
λ
j
1θ

1
j

)

1
2

( 2∑

r=1
(αr ξ

r +
2∑

i=1
αi
r ξ

r
i ) + λ1θ

1 +
2∑

j=1
λ
j
1θ

1
j

)T 2∑

r=1
(αrβ

r +
2∑

i=1
αi
rβ

r
i ) + λ1γ

1 +
2∑

j=1
λ
j
1γ

1
j −

2∑

r=1
αr Fr (x̄)

⎞

⎟
⎟
⎟
⎠


 0,

(3.13)

αr A
r +

2∑

i=1

αi
r A

r
i 
 0, r = 1, 2, λ1B

1 +
2∑

j=1

λ
j
1B

1
j 
 0, (3.14)

where F1(x̄) := max
u∈�

f1(x̄, u) = √
2 and F2(x̄) := max

u∈�
f2(x̄, u) = √

3. Note that (3.14)

amounts to the following inequalities

(α1
r )

2

2
+ (α2

r )
2

3
≤ (αr )

2, r = 1, 2, (3.15)

(λ11)
2 + (λ21)

2 ≤ (λ1)
2. (3.16)

We deduce from (3.13) that

(α1 + α2)x
2
2 + (α1 + 3α2 + λ11)x1 + (λ1 + λ21)x2 + α1

1 − α2
2 − √

2α1 − √
3α2 ≥ 0

for all x1 ∈ R and all x2 ∈ R. This entails that

(α1 + 3α2 + λ11)x1 + α1
1 − α2

2 − √
2α1 − √

3α2 ≥ 0 for all x1 ∈ R, (3.17)

(α1 + α2)x
2
2 + (λ1 + λ21)x2 + α1

1 − α2
2 − √

2α1 − √
3α2 ≥ 0 for all x2 ∈ R, (3.18)

On the one hand, we get by (3.17) that α1 + 3α2 + λ11 = 0 and

α1
1 − α2

2 − √
2α1 − √

3α2 ≥ 0.

On the other hand, it holds that α1
1 − √

2α1 ≤ |α1
1 | − √

2α1 ≤ 0, where the last inequality
holds by virtue of (3.15). Similarly, we have −α2

2 − √
3α2 ≤ |α2

2 | − √
3α2 ≤ 0, and so

α1
1 − √

2α1 − α2
2 − √

3α2 ≤ 0.

Therefore, α1
1 − α2

2 − √
2α1 − √

3α2 = 0. This and (3.18) guarantee that λ1 + λ21 = 0.
Substituting now λ11 = −α1−3α2 and λ21 = −λ1 into (3.16), we arrive at (α1+3α2)

2 ≤ 0,
which is absurd due to the fact that (α1, α2) ∈ R

2+ \ {0}. Consequently, the conclusion of (i)
in Theorem 3.1 does not hold for this setting. The reason is that the characteristic cone

K := coneco{(02, 1) ∪ epi g∗
1(·, v), v ∈ �}

= coneco
{
(0, 0, 1), (v1, v2 + 1, 0) | v21 + v22 ≤ 1

}

is not closed for this problem. To see this, we select a sequence cm := (1, 1
m , 0) =

m( 1
m , 1

m2 , 0) ∈ K for all m ∈ N. Clearly, it holds that cm → c0 := (1, 0, 0) as m → ∞ but
c0 /∈ K .

In the next proposition, we show how the optimality conditions obtained in (3.1) and (3.2)
can be alternatively checked via verifiable criteria including a robust Karush-Kuhn-Tucker
(KKT) condition. To this end, let x̄ ∈ R

n be a robust feasible point of problem (UP). One says
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(see e.g., Chuong, 2020 for amore general nonsmooth setting) that the robust (KKT) condition
of problem (UP) holds at x̄ if there exist (α1, . . . , αp) ∈ R

p
+ \ {0}, ūr ∈ �r , r = 1, . . . , p

and (λ1, . . . , λk) ∈ R
k+, v̄l ∈ �l , l = 1, . . . , k such that

p∑

r=1

αr∇1 fr (x̄, ū
r ) +

k∑

l=1

λl∇1gl(x̄, v̄
l) = 0, λl gl(x̄, v̄

l) = 0, l = 1, . . . , k, (3.19)

p∑

r=1

αr fr (x̄, ū
r ) =

p∑

r=1

αr Fr (x̄), (3.20)

where ∇1 f denotes the derivative of f (·, ·) with respect to the first variable. Note that in
the particular case, where there are no uncertain parameters in the objective functions of
problem (UP), the condition (3.20) is redundant and in this case, its corresponding robust
(KKT) condition was examined in Chuong (2018) for an SOS-convex polynomial setting.
It is worth noticing further that the robust (KKT) condition of problem (UP) holds at x̄ is
equivalent to saying that the (classical) (KKT) condition of robust problem (RP) holds at x̄ .

Proposition 3.4 (Optimality characterizations via verifiable criteria) Let x̄ ∈ R
n be a robust

feasible point of problem (UP). The following statements are equivalent:
(i) The optimality conditions in (3.1) and (3.2) are valid.
(ii) The robust (KKT) condition of problem (UP) holds at x̄ .
(iii) There exist (α1, . . . , αp) ∈ R

p
+ \ {0}, αi

r ∈ R, r = 1, . . . , p, i = 1, . . . ,m and

λl ≥ 0, λ j
l ∈ R, j = 1, . . . , s, l = 1, . . . , k μ0

j ∈ R+, μi
j ∈ R, j = 1, . . . , q, i = 1, . . . , s

such that

p∑

r=1

αr
(
2Qr x̄ + ξ r

) +
p∑

r=1

m∑

i=1

αi
r ξ

r
i +

k∑

l=1

λl
(
2Ml x̄ + θ l

) +
k∑

l=1

s∑

j=1

λ
j
l θ

l
j = 0, (3.21)

λl
(
x̄ T Ml x̄ + (θ l)T x̄ + γ l) +

s∑

j=1

λ
j
l

(
(θ lj )

T x̄ + γ l
j

) = 0, l = 1, . . . , k, (3.22)

p∑

r=1

αr
(
x̄ T Qr x̄ + (ξ r )T x̄ + βr ) +

p∑

r=1

m∑

i=1

αi
r

(
(ξ ri )T x̄ + βr

i

) =
p∑

r=1

αr Fr (x̄), (3.23)

αr A
r +

m∑

i=1

αi
r A

r
i 
 0, r = 1, . . . , p, λl B

l +
s∑

j=1

λ
j
l B

l
j 
 0, l = 1, . . . , k, (3.24)

where Fr (x̄) := max
ur∈�r

fr (x̄, ur ) for r = 1, . . . , p.

Proof [(i) �⇒ (ii)] Assume that there exist (α1, . . . , αp) ∈ R
p
+ \ {0}, αi

r ∈ R, r =
1, . . . , p, i = 1, . . . ,m and λl ≥ 0, λ j

l ∈ R, j = 1, . . . , s, l = 1, . . . , k such that (3.1)
and (3.2) hold. Following the proof of Theorem 3.1(ii), we first assert that there exist
ũr ∈ �r , r = 1, . . . , p and ṽl ∈ �l , l = 1, . . . , k such that

h(x) :=
p∑

r=1

αr fr (x, ũ
r ) +

k∑

l=1

λl gl(x, ṽ
l) −

p∑

r=1

αr Fr (x̄) ≥ 0 for all x ∈ R
n, (3.25)
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where Fr (x̄) := max
ur∈�r

fr (x̄, ur ) for r = 1, . . . , p. Substituting x := x̄ into (3.25), we obtain

that
p∑

r=1

αr fr (x̄, ũ
r ) +

k∑

l=1

λl gl(x̄, ṽ
l) ≥

p∑

r=1

αr Fr (x̄). (3.26)

As x̄ is a robust feasible point of problem (UP), it holds that λl gl(x̄, ṽl) ≤ 0, l = 1, . . . , k
and so,

p∑

r=1

αr fr (x̄, ũ
r ) +

k∑

l=1

λl gl(x̄, ṽ
l) ≤

p∑

r=1

αr fr (x̄, ũ
r ) ≤

p∑

r=1

αr Fr (x̄), (3.27)

where the last inequality holds due to the fact that αr ≥ 0 and Fr (x̄) ≥ fr (x̄, ũr ) for
r = 1, . . . , p. Combining (3.26) and (3.27) gives us

p∑

r=1

αr fr (x̄, ũ
r ) =

p∑

r=1

αr Fr (x̄),
k∑

l=1

λl gl(x̄, ṽ
l) = 0. (3.28)

Note that the last equality in (3.28) means that λl gl(x̄, ṽl) = 0 for l = 1, . . . , k.
Observe now by (3.28) and (3.25) that h(x) ≥ 0 = h(x̄) for all x ∈ R

n; i.e., x̄ is a
minimizer of h on Rn . This entails that ∇h(x̄) = 0, and so we arrive at

p∑

r=1

αr∇1 fr (x̄, ũ
r ) +

k∑

l=1

λl∇1gl(x̄, ṽ
l) = 0, λl gl(x̄, ṽ

l) = 0, l = 1, . . . , k,

p∑

r=1

αr fr (x̄, ũ
r ) =

p∑

r=1

αr Fr (x̄),

which shows that the robust (KKT) condition of problem (UP) holds at x̄ .
[(ii) �⇒ (iii)] Assume that the robust (KKT) condition of problem (UP) holds at x̄ . This

means that there exist (α1, . . . , αp) ∈ R
p
+ \{0}, ūr := (ūr1, . . . , ū

r
m) ∈ �r , r = 1, . . . , p and

(λ1, . . . , λk) ∈ R
k+, v̄l := (v̄l1, . . . , v̄

l
s) ∈ �l , l = 1, . . . , k such that (3.19) and (3.20) are

valid. The relation ūr := (ūr1, . . . , ū
r
m) ∈ �r means that Ar +

m∑

i=1
ūri A

r
i 
 0 for r = 1, . . . , p.

By letting αi
r := αr ūri , r = 1, . . . , p, i = 1, . . . ,m, we obtain that αr Ar +

m∑

i=1
αi
r A

r
i =

αr

(
Ar +

m∑

i=1
ūri A

r
i

)

 0, r = 1, . . . , p and that

αr fr (x, ū
r ) = αr

(
xT Qr x + (ξ r )T x + βr ) +

m∑

i=1

αi
r

(
(ξ ri )T x + βr

i

)
, r = 1, . . . , p.

(3.29)

Similarly, by letting λ
j
l := λl v̄

l
j , l = 1, . . . , k, j = 1, . . . , s, we get by v̄l := (v̄l1, . . . , v̄

l
s) ∈

�l , l = 1, . . . , k that λl Bl +
s∑

j=1
λ
j
l B

l
j 
 0, l = 1, . . . , k and that

λl gl(x, v̄
l) = λl

(
xT Ml x + (θ l)T x + γ l) +

s∑

j=1

λ
j
l

(
(θ lj )

T x + γ l
j

)
, l = 1, . . . , k. (3.30)
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Substituting now (3.29) and (3.30) into (3.19) and (3.20), we arrive at the conclusion of (iii).
[(iii)�⇒ (i)] Assume that there exist (α1, . . . , αp) ∈ R

p
+\{0}, αi

r ∈ R, r = 1, . . . , p, i =
1, . . . ,m and λl ≥ 0, λ j

l ∈ R, j = 1, . . . , s, l = 1, . . . , k such that (3.21), (3.22), (3.23) and
(3.24) hold. Proceeding similarly as in the proof of Theorem 3.1(ii), we assert from (3.24)
that there exist ũr ∈ �r , r = 1, . . . , p and ṽl ∈ �l , l = 1, . . . , k such that

αr fr (x, ũ
r ) = αr

(
xT Qr x + (ξ r )T x + βr ) +

m∑

i=1

αi
r

(
(ξ ri )T x + βr

i

)
, r = 1, . . . , p, ∀x ∈ R

n,

(3.31)

λl gl(x, ṽ
l) = λl

(
xT Ml x + (θ l)T x + γ l) +

s∑

j=1

λ
j
l

(
(θ lj )

T x + γ l
j

)
, l = 1, . . . , k, ∀x ∈ R

n .

(3.32)

Consider the function h : R
n → R given as above, i.e., h(x) :=

p∑

r=1
αr fr (x, ũr ) +

k∑

l=1
λl gl(x, ṽl) −

p∑

r=1
αr Fr (x̄), x ∈ R

n . We conclude by (3.21), (3.22) and (3.32) that

∇h(x̄) = 0 and that λl gl(x̄, ṽl) = 0, l = 1, . . . , k. This, together with the convexity of
h, implies that

h(x) ≥ h(x̄) =
p∑

r=1

αr fr (x̄, ũ
r ) −

p∑

r=1

αr Fr (x̄) = 0, ∀x ∈ R
n,

where the last equality holds by virtue of (3.23) and (3.31). Therefore, taking (3.31) and
(3.32) into account, we deduce from h(x) ≥ 0 for all x ∈ R

n that

xT
( p∑

r=1

αr Q
r +

k∑

l=1

λl M
l
)
x +

( p∑

r=1

(αr ξ
r +

m∑

i=1

αi
r ξ

r
i ) +

k∑

l=1

(λlθ
l +

s∑

j=1

λ
j
l θ

l
j )

)T
x

+
p∑

r=1

(αrβ
r +

m∑

i=1

αi
rβ

r
i ) +

k∑

l=1

(λlγ
l +

s∑

j=1

λ
j
l γ

l
j ) −

p∑

r=1

αr Fr (x̄) ≥ 0 for all x ∈ R
n .

This amounts to the matrix inequality in (3.1) (cf. Ben-Tal and Nemirovski, 2001, Simple
lemma, p. 163). Consequently, the assertion of (i) is valid, which completes the proof. ��
Robust linear multiobjective optimization. Let us now consider a robust linear multiob-
jective optimization problem as

min
x∈Rn

{(
max
u1∈�1

L1(x, u
1), . . . , max

u p∈�p
L p(x, u

p)
) | hl(x, vl) ≤ 0,∀vl ∈ �l , l = 1, . . . , k

}
,

(RL)

where Lr , r = 1, . . . , p and hl , l = 1, . . . , k are affine functions given by

Lr (x, u
r ) :=(ξ r )T x + βr +

m∑

i=1

uri
(
(ξ ri )T x + βr

i

)
, x ∈ R

n, ur := (ur1, . . . , u
r
m) ∈ �r ,

hl(x, v
l) :=(θ l)T x + γ l +

s∑

j=1

vlj
(
(θ lj )

T x + γ l
j

)
, x ∈ R

n, vl := (vl1, . . . , v
l
s) ∈ �l
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with ξ r ∈ R
n, ξ ri ∈ R

n, βr ∈ R, βr
i ∈ R, i = 1, . . . ,m and θ l ∈ R

n, θ lj ∈ R
n, γ l ∈ R, γ l

j ∈
R, j = 1, . . . , s fixed. Here, the uncertainty sets �r , r = 1, . . . , p and �l , l = 1, . . . , k are
given as in (2.2).

The following corollary presents necessary/sufficient optimality conditions for (weak)
Pareto solutions of problem (RL).

Corollary 3.5 (Optimality for robust linear optimization) Let x̄ ∈ R
n be a feasible point of

problem (RL), i.e., x̄ ∈ {x ∈ R
n | hl(x, vl) ≤ 0,∀vl ∈ �l , l = 1, . . . , k

}
.

(i) Assume that the characteristic cone K := coneco
{(
0n, 1

)
,
(
θ l +

s∑

j=1
vljθ

l
j ,−γ l −

s∑

j=1
vljγ

l
j

)
, vl := (vl1, . . . , v

l
s) ∈ �l , l = 1, . . . , k

}
is closed. If x̄ is a weak Pareto solution of

problem (RL), then there exist (α1, . . . , αp) ∈ R
p
+\{0}, αi

r ∈ R, r = 1, . . . , p, i = 1, . . . ,m

and λl ≥ 0, λ j
l ∈ R, j = 1, . . . , s, l = 1, . . . , k such that

p∑

r=1

(αr ξ
r +

m∑

i=1

αi
r ξ

r
i ) +

k∑

l=1

(λlθ
l +

s∑

j=1

λ
j
l θ

l
j ) = 0, (3.33)

p∑

r=1

(αrβ
r +

m∑

i=1

αi
rβ

r
i ) +

k∑

l=1

(λlγ
l +

s∑

j=1

λ
j
l γ

l
j ) −

p∑

r=1

αr Fr (x̄) ≥ 0, (3.34)

αr A
r +

m∑

i=1

αi
r A

r
i 
 0, r = 1, . . . , p, λl B

l +
s∑

j=1

λ
j
l B

l
j 
 0, l = 1, . . . , k, (3.35)

where Fr (x̄) := max
ur∈�r

fr (x̄, ur ) for r = 1, . . . , p.

(ii) If there exist (α1, . . . , αp) ∈ R
p
+ \ {0}, αi

r ∈ R, r = 1, . . . , p, i = 1, . . . ,m and

λl ≥ 0, λ j
l ∈ R, j = 1, . . . , s, l = 1, . . . , k such that (3.33), (3.34) and (3.35) hold, then x̄

is a weak Pareto solution of problem (RL).
(iii) If there exist (α1, . . . , αp) ∈ intRp

+, αi
r ∈ R, r = 1, . . . , p, i = 1, . . . ,m and

λl ≥ 0, λ j
l ∈ R, j = 1, . . . , s, l = 1, . . . , k such that (3.33), (3.34) and (3.35) hold, then x̄

is a Pareto solution of problem (RL).

Proof Observe first that the problem (RL) is a particular case of problem (RP) with Qr :=
Ml := 0n×n, r = 1, . . . , p, l = 1, . . . , k. In this setting, we see that epi h∗

l (·, vl) = (
θ l +

s∑

j=1
vljθ

l
j ,−γ l −

s∑

j=1
vljγ

l
j

) + {0n} × R+ for vl := (vl1, . . . , v
l
s) ∈ �l , l = 1, . . . , k and so,

K : = coneco
{(
0n, 1

)
,
(
θ l +

s∑

j=1

vljθ
l
j ,−γ l −

s∑

j=1

vljγ
l
j

)
,

vl := (vl1, . . . , v
l
s) ∈ �l , l = 1, . . . , k

}

= coneco{epi h∗
l (·, vl) | vl ∈ �l , l = 1, . . . , k}.

Now, our desired conclusions are followed by invoking Theorem 3.1. ��
Remark that the assertions (i) and (ii) in Corollary 3.5 develop optimality characteriza-

tions for robust weak Pareto solutions given in Chuong (2017, Theorem 3.1) by using a
robust alternative approach and in Chuong (2018, Corollary 2.4) by using an SOS-convex
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polynomial approach, where there were no uncertain parameters on the objective functions
Lr , r = 1, . . . , p. The interested reader is referred to Chuong and Jeyakumar (2021) for
related optimality conditions in terms of two-stage linear multiobjective approach.

We now consider the uncertain multiobjective optimization problem (UP), where�r , r =
1, . . . , p and �l , l = 1, . . . , k in (2.2) are replaced by the following ball uncertainty sets:

�r := {ur ∈ R
m | ||ur || ≤ 1}, �l := {vl ∈ R

s | ||vl || ≤ 1}. (3.36)

In this case, we obtain necessary/sufficient optimality conditions for robust (weak) Pareto
solutions of problem (UP) under ball uncertainty.

Corollary 3.6 (Robust optimality with ball uncertainty) Consider the problem (UP) with �r

and �l given by (3.36), and let x̄ ∈ R
n be a robust feasible point of problem (UP).

(i) Assume that the characteristic cone K := coneco{(0n, 1)∪ epi g∗
l (·, vl), vl ∈ �l , l =

1, . . . , k} is closed. If x̄ is a robust weak Pareto solution of problem (UP), then there exist
(α1, . . . , αp) ∈ R

p
+ \ {0}, αi

r ∈ R, r = 1, . . . , p, i = 1, . . . ,m and λl ≥ 0, λ j
l ∈ R, j =

1, . . . , s, l = 1, . . . , k such that

⎛

⎜
⎜
⎜
⎝

p∑

r=1
αr Qr +

k∑

l=1
λl Ml 1

2

( p∑

r=1
(αr ξ

r +
m∑

i=1
αi
r ξ

r
i ) +

k∑

l=1
(λlθ

l +
s∑

j=1
λ
j
l θ

l
j )

)

1
2

( p∑

r=1
(αr ξ

r +
m∑

i=1
αi
r ξ

r
i ) +

k∑

l=1
(λlθ

l +
s∑

j=1
λ
j
l θ

l
j )

)T p∑

r=1
(αrβ

r +
m∑

i=1
αi
rβ

r
i ) +

k∑

l=1
(λlγ

l +
s∑

j=1
λ
j
l γ

l
j ) −

p∑

r=1
αr Fr (x̄)

⎞

⎟
⎟
⎟
⎠


 0,

(3.37)
(

αr Im αr

(αr )T αr

)


 0, r = 1, . . . , p,

(
λl Is λl

(λl )T λl

)


 0, l = 1, . . . , k, (3.38)

where Fr (x̄) := max
ur∈�r

fr (x̄, ur ), αr := (α1
r , . . . , α

m
r ) and λl := (λ1l , . . . , λ

s
l ).

(ii) If there exist (α1, . . . , αp) ∈ R
p
+ \ {0}, αi

r ∈ R, r = 1, . . . , p, i = 1, . . . ,m and

λl ≥ 0, λ j
l ∈ R, j = 1, . . . , s, l = 1, . . . , k such that (3.37) and (3.38) hold, then x̄ is a

robust weak Pareto solution of problem (UP).
(iii) If there exist (α1, . . . , αp) ∈ intRp

+, αi
r ∈ R, r = 1, . . . , p, i = 1, . . . ,m and

λl ≥ 0, λ j
l ∈ R, j = 1, . . . , s, l = 1, . . . , k such that (3.37) and (3.38) hold, then x̄ is a

robust Pareto solution of problem (UP).

Proof Let Ar and Ar
i , r = 1, . . . , p, i = 1, . . . ,m be (m + 1) × (m + 1) matrices given by

Ar := Im+1, Ar
i :=

(
0 ei
eTi 0

)

,

where ei ∈ R
m is a vector whose i th component is one and all others are zero. For each

r ∈ {1, . . . , p}, we have

{
ur := (ur1, . . . , u

r
m) ∈ R

m | Ar +
m∑

i=1

uri A
r
i 
 0

}

= {
ur := (ur1, . . . , u

r
m) ∈ R

m |
(

Im ur

(ur )T 1

)


 0
}

= {
ur := (ur1, . . . , u

r
m) ∈ R

m | 1 − (ur )T Imu
r ≥ 0

} = �r ,
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which means that�r in (3.36) lands in the form of the spectrahedral sets in (2.2). In this way,
we can verify that, for each r ∈ {1, . . . , p},

αr A
r +

m∑

i=1

αi
r A

r
i 
 0 ⇔

(
αr Im αr

(αr )T αr

)


 0,

where αr ≥ 0 and αr := (α1
r , . . . , α

m
r ) with αi

r ∈ R, i = 1, . . . ,m. Similarly, let Bl and
Bl
j , l = 1, . . . , k, j = 1, . . . , s be (s + 1) × (s + 1) matrices given by

Bl := Is+1, Bl
j :=

(
0 e j
eTj 0

)

,

where e j ∈ R
s is a vector whose j th component is one and all others are zero. We can show

that �l in (3.36) lands in the form of the spectrahedral sets in (2.2) and that

λl B
l +

s∑

j=1

λ
j
l B

l
j 
 0 ⇔

(
λl Is λl

(λl)T λl

)


 0,

where λl ≥ 0, l = 1, . . . , k and λl := (λ1l , . . . , λ
s
l ) with λ

j
l ∈ R, j = 1, . . . , s. Now,

invoking Theorem 3.1, we arrive at the desired result. ��
Let us now consider the uncertain multiobjective optimization problem (UP), where

�r , r = 1, . . . , p and�l , l = 1, . . . , k in (2.2) are replaced by the following box uncertainty
sets:

�r := {
ur := (ur1, . . . , u

r
m) ∈ R

m | |uri | ≤ 1, i = 1, . . . ,m
}
,

�l := {
vl := (vl1, . . . , v

l
s) ∈ R

s | |vlj | ≤ 1, j = 1, . . . , s
}
. (3.39)

In this case, we obtain necessary/sufficient optimality conditions for robust (weak) Pareto
solutions of problem (UP) under box uncertainty.

Corollary 3.7 (Robust optimality with box uncertainty) Consider the problem (UP) with �r

and �l given by (3.39), and let x̄ ∈ R
n be a robust feasible point of problem (UP).

(i) Assume that the characteristic cone K := coneco{(0n, 1)∪ epi g∗
l (·, vl), vl ∈ �l , l =

1, . . . , k} is closed. If x̄ is a robust weak Pareto solution of problem (UP), then there exist
(α1, . . . , αp) ∈ R

p
+ \ {0}, αi

r ∈ R, r = 1, . . . , p, i = 1, . . . ,m and λl ≥ 0, λ j
l ∈ R, j =

1, . . . , s, l = 1, . . . , k such that
⎛

⎜
⎜
⎜
⎝

p∑

r=1
αr Qr +

k∑

l=1
λl Ml 1

2

( p∑

r=1
(αr ξ

r +
m∑

i=1
αi
r ξ

r
i ) +

k∑

l=1
(λlθ

l +
s∑

j=1
λ
j
l θ

l
j )

)

1
2

( p∑

r=1
(αr ξ

r +
m∑

i=1
αi
r ξ

r
i ) +

k∑

l=1
(λlθ

l +
s∑

j=1
λ
j
l θ

l
j )

)T p∑

r=1
(αrβ

r +
m∑

i=1
αi
rβ

r
i ) +

k∑

l=1
(λlγ

l +
s∑

j=1
λ
j
l γ

l
j ) −

p∑

r=1
αr Fr (x̄)

⎞

⎟
⎟
⎟
⎠


 0,

(3.40)

αr ≥ |αi
r |, i = 1, . . . ,m, r = 1, . . . , p, λl ≥ |λ j

l |, j = 1, . . . , s, l = 1, . . . , k, (3.41)

where Fr (x̄) := max
ur∈�r

fr (x̄, ur ).

(ii) If there exist (α1, . . . , αp) ∈ R
p
+ \ {0}, αi

r ∈ R, r = 1, . . . , p, i = 1, . . . ,m and

λl ≥ 0, λ j
l ∈ R, j = 1, . . . , s, l = 1, . . . , k such that (3.40) and (3.41) hold, then x̄ is a

robust weak Pareto solution of problem (UP).
(iii) If there exist (α1, . . . , αp) ∈ intRp

+, αi
r ∈ R, r = 1, . . . , p, i = 1, . . . ,m and

λl ≥ 0, λ j
l ∈ R, j = 1, . . . , s, l = 1, . . . , k such that (3.40) and (3.41) hold, then x̄ is a

robust Pareto solution of problem (UP).
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Proof Let Ar and Ar
i , r = 1, . . . , p, i = 1, . . . ,m be (2m × 2m) matrices given by

Ar := I2m, Ar
i :=

(
Ei 0
0 −Ei

)

,

where Ei is an (m × m) diagonal matrix with one in the (i, i)th entry and zeros elsewhere.
Then, we have

{
ur := (ur1, . . . , u

r
m) ∈ R

m | Ar +
m∑

i=1

uri A
r
i 
 0

}

= {
ur := (ur1, . . . , u

r
m) ∈ R

m | 1 + uri ≥ 0, 1 − uri ≥ 0, i = 1, . . . ,m
} = �r ,

which means that � in (3.39) lands in the form of the spectrahedral sets in (2.2). In this way,
we can verify that, for each r ∈ {1, . . . , p},

αr A
r +

m∑

i=1

αi
r A

r
i 
 0 ⇔ αr ≥ |αi

r |, i = 1, . . . ,m,

whereαr ≥ 0 andαi
r ∈ R, i = 1, . . . ,m. Similarly, let Bl and Bl

j , l = 1, . . . , k, j = 1, . . . , s
be (2s × 2s) matrices given by

Bl := I2s, Bl
j :=

(
E j 0
0 −E j

)

,

where E j is an (s × s) diagonal matrix with one in the ( j, j)th entry and zeros elsewhere.
We can show that �l in (3.36) lands in the form of the spectrahedral sets in (2.2) and that

λl B
l +

s∑

j=1

λ
j
l B

l
j 
 0 ⇔ λl ≥ |λ j

l |, j = 1, . . . , s,

where λl ≥ 0, l = 1, . . . , k and λ
j
l ∈ R, j = 1, . . . , s. Now, invoking Theorem 3.1, we

arrive at the desired result. ��

4 Finding robust Pareto solutions via semidefinite programming

In this section, we provide a way to find robust (weak) Pareto solutions for the uncertain
multiobjective optimization problem (UP) by solving a related semidefinite programming
(SDP) problem. Since the underlying problems are convex, our approach is based on com-
monly used weighted-sum scalarizarion methods that allow one to find both robust weakly
Pareto solutions and robust Pareto solutions. This is done by defining robust weighted-sum
scalarizarion optimization problems of (RP) as follows.

For each α := (α1, . . . , αp) ∈ R
p
+ \{0},we consider a robust weighted-sum optimization

problem of the form:

inf
x∈Rn

{ p∑

r=1

αr max
ur∈�r

fr (x, u
r ) | gl(x, vl) ≤ 0,∀vl ∈ �l , l = 1, . . . , k

}
, (RPα)

where fr , r = 1, . . . , p and gl , l = 1, . . . , k are bi-functions given as in (2.3), and �r , r =
1, . . . , p and �l , l = 1, . . . , k are uncertainty sets given as in (2.2).
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We propose a semidefinite programming (SDP) reformulation problem for the prob-
lem (RPα) as follows:

inf
(w,W ,λr ,tl ,Z̃ r ,Zl )

{ p∑

r=1

αr
(
λr + Tr(Z̃ r Ar )

) |
(
1 wT

w W

)


 0, w ∈ R
n,W ∈ Sn, (RP∗

α)

βr + (ξ r )Tw + Tr(WQr ) − λr = 0, r = 1, . . . , p,

βr
i + (ξ ri )Tw + Tr(Z̃ r Ar

i ) = 0, i = 1, . . . ,m, r = 1, . . . , p,

t l + Tr(Zl Bl) ≤ 0, l = 1, . . . , k,

γ l + (θ l)Tw + Tr(WMl) − t l = 0, l = 1, . . . , k,

γ l
j + (θ lj )

Tw + Tr(Zl Bl
j ) = 0, j = 1, . . . , s, l = 1, . . . , k,

λr ∈ R, t l ∈ R, Z̃ r 
 0, Zl 
 0, r = 1, . . . , p, l = 1, . . . , k
}
.

We are now ready to establish solution relationships between the robust multiobjective
optimization problem (RP) and the (scalar) semidefinite programming (SDP) reformulation
problem (RP∗

α), which is a relaxation problem of the corresponding robust weighted-sum
optimization problem (RPα). This result provides us a way to find robust (weak) Pareto
solutions of the uncertain multiobjective optimization problem (UP) by solving the (scalar)
SDP reformulation problem (RP∗

α).

Theorem 4.1 (Robust (weak) Pareto solutions via SDP) Let the characteristic cone K :=
coneco{(0n, 1) ∪ epi g∗

l (·, vl), vl ∈ �l , l = 1, . . . , k} be closed, and assume that there exist
ũr := (ũr1, . . . , ũ

r
m) ∈ R

m, r = 1, . . . , p and ṽl := (ṽl1, . . . , ṽ
l
s) ∈ R

s, l = 1, . . . , k such
that

Ar +
m∑

i=1

ũri A
r
i � 0, Bl +

s∑

j=1

ṽlj B
l
j � 0. (4.1)

Then, the following assertions hold:
(i) If x̄ is a robust weak Pareto solution of problem (UP), then there exist α ∈ R

p
+ \ {0}

and Z̃r
0 
 0, Zl

0 
 0, r = 1, . . . , p, l = 1, . . . , k such that (x̄, W̄ , λ̄r , t̄ l , Z̃ r
0, Z

l
0, r =

1, . . . , p, l = 1, . . . , k) is an optimal solution of problem (RP∗
α), where W̄ := x̄ x̄ T , λ̄r :=

x̄ T Qr x̄ + (ξ r )T x̄ + βr and t̄l := x̄ T Ml x̄ + (θ l)T x̄ + γ l .

(ii) (Finding robust weak Pareto solutions) Let α ∈ R
p
+ \ {0} be such that the prob-

lem (RPα) admits an optimal solution. If (w̄, W̄ , λ̄r , t̄ l , Z̃ r
0, Z

l
0, r = 1, . . . , p, l = 1, . . . , k)

is an optimal solution of problem (RP∗
α), then w̄ is a robust weak Pareto solution of prob-

lem (UP).
(iii) (Finding robust Pareto solutions) Let α ∈ intRp

+ be such that the problem (RPα)
admits an optimal solution. If (w̄, W̄ , λ̄r , t̄ l , Z̃ r

0, Z
l
0, r = 1, . . . , p, l = 1, . . . , k) is an

optimal solution of problem (RP∗
α), then w̄ is a robust Pareto solution of problem (UP).

Proof (SDP reformulation with optimal solutions for (RP∗
α)) Let α := (α1, . . . , αp) ∈ R

p
+ \

{0} be such that the problem (RPα) admits an optimal solution and assume that x̄ is an
optimal solution of problem (RPα). Denote by val(RPα) and val(RP∗

α) the optimal values of
problems (RPα) and (RP∗

α)), respectively.
We first show that there exist Z̃ r

0 
 0, Zl
0 
 0, r = 1, . . . , p, l = 1, . . . , k such that

(x̄, W̄ , λ̄r , t̄ l , Z̃ r
0, Z

l
0, r = 1, . . . , p, l = 1, . . . , k), where λ̄r := x̄ T Qr x̄+(ξ r )T x̄+βr , t̄ l :=
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x̄ T Ml x̄ + (θ l)T x̄ + γ l and W̄ := x̄ x̄ T , is an optimal solution of problem (RP∗
α)) and

val(RPα) = val(RP∗
α) =

p∑

r=1

αr
(
λ̄r + Tr(Z̃ r

0A
r )

)
. (4.2)

Let Fr (x̄) := max
ur∈�r

fr (x̄, ur ) for r = 1, . . . , p.As x̄ is an optimal solution of problem (RPα),

we obtain that

val(RPα) =
p∑

r=1

αr Fr (x̄), (4.3)

and that

max
vl :=(vl1,...,v

l
s )∈�l

{x̄ T Ml x̄ + (θ l)T x̄ + γ l +
s∑

j=1

vlj
(
(θ lj )

T x̄ + γ l
j

)} ≤ 0, l = 1, . . . , k,

which can be equivalently expressed as

[vl := (vl1, . . . , v
l
s) ∈ R

s, Bl +
s∑

j=1

vlj B
l
j 
 0] ⇒ t̄ l +

s∑

j=1

vlj t̄
l
j ≤ 0, l = 1, . . . , k, (4.4)

where t̄ l := x̄ T Ml x̄+ (θ l)T x̄+γ l and t̄ lj := (θ lj )
T x̄+γ l

j . The condition (4.1) shows that the
strict feasibility condition holds for (4.4). Hence, invoking a strong duality in semidefinite
programming (cf. Blekherman et al., 2012, Theorem 2.15), we find Zl

0 
 0, l = 1, . . . , k
such that

t̄ l + Tr(Zl
0B

l) ≤ 0, l = 1, . . . , k,

t̄ lj + Tr(Zl
0B

l
j ) = 0, j = 1, . . . , s, l = 1, . . . , k.

Similarly, by max
ur :=(ur1,...,u

r
m )∈�r

{x̄ T Qr x̄ + (ξ r )T x̄ +βr +
m∑

i=1
uri

(
(ξ ri )T x̄ +βr

i

)} = Fr (x̄), r =
1, . . . , p, we have

[ur := (ur1, . . . , u
r
m) ∈ R

m, Ar +
m∑

i=1

uri A
r
i 
 0] ⇒ λ̄r +

m∑

i=1

uri λ̄
r
i ≤ Fr (x̄), r = 1, . . . , p,

where λ̄r := x̄ T Qr x̄ + (ξ r )T x̄ + βr and λ̄ri := (ξ ri )T x̄ + βr
i . Therefore, we can find

Z̃ r
0 
 0, r = 1, . . . , p such that

λ̄r + Tr(Z̃ r
0A

r ) ≤ Fr (x̄), r = 1, . . . , p,

λ̄ri + Tr(Z̃ r
0A

r
i ) = 0, i = 1, . . . ,m, r = 1, . . . , p. (4.5)

Now, letting W̄ := x̄ x̄ T , we see that (x̄, W̄ , λ̄r , t̄ l , Z̃ r
0, Z

l
0, r = 1, . . . , p, l = 1, . . . , k) is a

feasible point of problem (RP∗
α)), and it also entails that

val(RP∗
α) ≤

p∑

r=1

αr
(
λ̄r + Tr(Z̃ r

0A
r )

) ≤
p∑

r=1

αr Fr (x̄) = val(RPα), (4.6)

where the second inequality holds by noting (4.5) and the fact that αr ≥ 0, r = 1, . . . , p,
while the equality holds by (4.3).
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Next, we show that val(RPα) ≤ val(RP∗
α). To do this, let (w,W , λr , t l , Z̃ r , Zl , r =

1, . . . , p, l = 1, . . . , k) be a feasible point of problem (RP∗
α). Then, w ∈ R

n,W ∈ Sn, λr ∈
R, t l ∈ R, Z̃ r 
 0, Zl 
 0, r = 1, . . . , p, l = 1, . . . , k and

(
1 wT

w W

)


 0, (4.7)

βr + (ξ r )Tw + Tr(WQr ) − λr = 0, r = 1, . . . , p,

βr
i + (ξ ri )Tw + Tr(Z̃ r Ar

i ) = 0, i = 1, . . . ,m, r = 1, . . . , p,

t l + Tr(Zl Bl) ≤ 0, l = 1, . . . , k, (4.8)

γ l + (θ l)Tw + Tr(WMl) − t l = 0, l = 1, . . . , k, (4.9)

γ l
j + (θ lj )

Tw + Tr(Zl Bl
j ) = 0, j = 1, . . . , s, l = 1, . . . , k. (4.10)

Note, for any vl := (vl1, . . . , v
l
s) ∈ �l , l = 1, . . . , k, that Tr

[
Zl(Bl +

s∑

j=1
vlj B

l
j )

] ≥ 0, l =

1, . . . , k due to Zl 
 0 and Bl +
s∑

j=1
vlj B

l
j 
 0. Then, we deduce from (4.8) and (4.9) that,

for given vl := (vl1, . . . , v
l
s) ∈ �l , l = 1, . . . , k,

γ l + (θ l)Tw + Tr(wwT Ml) −
s∑

j=1

vljTr(Z
l Bl

j ) ≤ γ l + (θ l)Tw + Tr(wwT Ml) + Tr(Zl Bl)

= t l + Tr(Zl Bl) − Tr
(
(W − wwT )Ml) ≤ 0, l = 1, . . . , k,

where we should note that Tr
(
(W−wwT )Ml

) ≥ 0 due toMl 
 0 and, by (4.7),W−wwT 

0. Therefore, by (4.10), for given vl := (vl1, . . . , v

l
s) ∈ �l , l = 1, . . . , k,

gl(w, vl) = γ l + (θ l)Tw + Tr(wwT Ml) −
s∑

j=1

vljTr(Z
l Bl

j ) ≤ 0, l = 1, . . . , k.

This shows that w is a feasible point of problem (RPα), and so

val(RPα) ≤
p∑

r=1

αr Fr (w), (4.11)

where Fr (w) := max
ur∈�r

fr (w, ur ), r = 1, . . . , p.

Similarly, for given ur := (ur1, . . . , u
r
m) ∈ �r , r = 1, . . . , p, we have

βr + (ξ r )Tw + Tr(wwT Qr ) −
m∑

i=1

uri Tr(Z̃
r Ar

i ) ≤ λr + Tr(Z̃ r Ar ), r = 1, . . . , p,

which entails that

Fr (w) = max
ur :=(ur1,...,u

r
m )∈�r

{
βr + (ξ r )Tw + Tr(wwT Qr ) −

m∑

i=1

uri Tr(Z̃
r Ar

i )
}

≤ λr + Tr(Z̃ r Ar ), r = 1, . . . , p.
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This together with (4.11) shows that val(RPα) ≤
p∑

r=1
αr

(
λr +Tr(Z̃ r Ar )

)
, and so val(RPα) ≤

val(RP∗
α) inasmuch as (w,W , λr , t l , Z̃ r , Zl , r = 1, . . . , p, l = 1, . . . , k) was arbitrarily

taken.
Now, taking (4.6) into account, we arrive at the conclusion that

val(RPα) = val(RP∗
α) =

p∑

r=1

αr
(
λ̄r + Tr(Z̃ r

0A
r )

)
,

which further ensures that (x̄, W̄ , λ̄r , t̄ l , Z̃ r
0, Z

l
0, r = 1, . . . , p, l = 1, . . . , k) is an optimal

solution of problem (RP∗
α)). In other words, (4.2) has been established.

(i) Let x̄ be a robustweakPareto solution of problem (UP).Under the closedness of the cone
K , we invoke Theorem 3.1(i) to assert that there exist α := (α1, . . . , αp) ∈ R

p
+ \ {0}, αi

r ∈
R, r = 1, . . . , p, i = 1, . . . ,m and λl ≥ 0, λ j

l ∈ R, j = 1, . . . , s, l = 1, . . . , k such that
⎛

⎜
⎜
⎜
⎝

p∑

r=1
αr Qr +

k∑

l=1
λl Ml 1

2

( p∑

r=1
(αr ξ

r +
m∑

i=1
αi
r ξ

r
i ) +

k∑

l=1
(λlθ

l +
s∑

j=1
λ
j
l θ

l
j )

)

1
2

( p∑

r=1
(αr ξ

r +
m∑

i=1
αi
r ξ

r
i ) +

k∑

l=1
(λlθ

l +
s∑

j=1
λ
j
l θ

l
j )

)T p∑

r=1
(αrβ

r +
m∑

i=1
αi
rβ

r
i ) +

k∑

l=1
(λlγ

l +
s∑

j=1
λ
j
l γ

l
j ) −

p∑

r=1
αr Fr (x̄)

⎞

⎟
⎟
⎟
⎠


 0

(4.12)

αr A
r +

m∑

i=1

αi
r A

r
i 
 0, r = 1, . . . , p, λl B

l +
s∑

j=1

λ
j
l B

l
j 
 0, l = 1, . . . , k. (4.13)

Denoting byC the robust feasible set of problem (UP), it holds thatC is also the feasible set of
the corresponding robust weighted-sum optimization problem (RPα). Proceeding similarly
as in the proof of Theorem 3.1(ii), we conclude by (4.12) and (4.13) that

p∑

r=1

αr Fr (x) ≥
p∑

r=1

αr Fr (x̄) for all x ∈ C,

which shows that x̄ is an optimal solution of problem (RPα). Then, as shown above, there
exist Z̃ r

0 
 0, Zl
0 
 0, r = 1, . . . , p, l = 1, . . . , k such that (x̄, W̄ , λ̄r , t̄ l , Z̃ r

0, Z
l
0, r =

1, . . . , p, l = 1, . . . , k) is an optimal solution of problem (RP∗
α)), where λ̄r := x̄ T Qr x̄ +

(ξ r )T x̄ + βr , t̄ l := x̄ T Ml x̄ + (θ l)T x̄ + γ l and W̄ := x̄ x̄ T .
(ii) (Finding a robust weak Pareto solution of (UP) via (RP∗

α)) Let α := (α1, . . . , αp) ∈
R

p
+ \{0} be such that the problem (RPα) admits an optimal solution. Then, as shown by (4.2),

it holds that

val(RPα) = val(RP∗
α). (4.14)

Now, let (w̄, W̄ , λ̄r , t̄ l , Z̃ r
0, Z

l
0, r = 1, . . . , p, l = 1, . . . , k) be an optimal solution of prob-

lem (RP∗
α)). Then, w̄ ∈ R

n, W̄ ∈ Sn, λ̄r ∈ R, t̄ l ∈ R, Z̃ r
0 
 0, Zl

0 
 0, r = 1, . . . , p, l =
1, . . . , k and

val(RP∗
α) =

p∑

r=1

αr
(
λ̄r + Tr(Z̃ r

0A
r )

)
, (4.15)

(
1 w̄T

w̄ W̄

)


 0, (4.16)

βr + (ξ r )T w̄ + Tr(W̄ Qr ) − λ̄r = 0, r = 1, . . . , p, (4.17)
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βr
i + (ξ ri )T w̄ + Tr(Z̃ r

0A
r
i ) = 0, i = 1, . . . ,m, r = 1, . . . , p, (4.18)

t̄ l + Tr(Zl
0B

l) ≤ 0, l = 1, . . . , k, (4.19)

γ l + (θ l)T w̄ + Tr(W̄ Ml) − t̄ l = 0, l = 1, . . . , k, (4.20)

γ l
j + (θ lj )

T w̄ + Tr(Zl
0B

l
j ) = 0, j = 1, . . . , s, l = 1, . . . , k. (4.21)

Arguing as above, we can conclude from (4.16), (4.19), (4.20) and (4.21) that w̄ is a feasible
point of problem (RPα), and so w̄ is also a robust feasible point of problem (UP). Similarly,
we get by (4.16), (4.17) and(4.18) that

Fr (w̄) ≤ λ̄r + Tr(Z̃ r
0A

r ), r = 1, . . . , p. (4.22)

We claim that w̄ is a robust weak Pareto solution of problem (UP). Assume on the contrary
that there exists another robust feasible point x̂ of problem (UP) such that

Fr (x̂) < Fr (w̄), r = 1, . . . , p,

where Fr (w) := max
ur∈�r

fr (w, ur ), r = 1, . . . , p. Note here that x̂ is also a feasible point of

problem (RPα). Then, by (4.22) and (4.15), we have

val(RPα) ≤
p∑

r=1

αr Fr (x̂) <

p∑

r=1

αr Fr (w̄) ≤ val(RP∗
α),

which contradicts (4.14). Consequently, w̄ is a robust weak Pareto solution of problem (UP).
(iii) (Finding a robust Pareto solution of (UP) via (RP∗

α)) Let α := (α1, . . . , αp) ∈
intRp

+ be such that the problem (RPα) admits an optimal solution and assume that
(w̄, W̄ , λ̄r , t̄ l , Z̃ r

0, Z
l
0, r = 1, . . . , p, l = 1, . . . , k) is an optimal solution of problem (RP∗

α).
Clearly, the assertions in (4.14)–(4.22) are valid for this case. Arguing similarly as in the
proof of (ii), we can show that there is no other robust feasible point x̂ of problem (UP) such
that

Fr (x̂) ≤ Fr (w̄), r = 1, . . . , p and Fr (x̂) < Fr (w̄) for some r ∈ {1, . . . , p},
where Fr (w) := max

ur∈�r
fr (w, ur ), r = 1, . . . , p. Therefore, w̄ is a robust Pareto solution of

problem (UP). ��
Remark 4.2 If the uncertainty sets �r , r = 1, . . . , p and �l , l = 1, . . . , k in (2.2) have
nonempty interiors, we can find ũr := (ũr1, . . . , ũ

r
m) ∈ R

m, r = 1, . . . , p and ṽl :=
(ṽl1, . . . , ṽ

l
s) ∈ R

s, l = 1, . . . , k such that (4.1) holds.
Under the closedness of the cone K and the validation of (4.1), assume that the prob-

lem (RPα) admits an optimal solution for each α := (α1, . . . , αp) ∈ R
p
+ \ {0}. Then,

Procedure 1 below presents the above SDP scheme for finding robust (weak) Pareto solutions
of problem (UP).

Procedure 1 SDP scheme to find robust (weak) Pareto solutions of (UP)
Input: An uncertain convex quadratic multiobjective problem of the form (UP).
Step 1. Take α := (α1, . . . , αp) ∈ intRp

+ (or α := (α1, . . . , αp) ∈ R
p
+ \ {0}).

Step 2. Solve the SDP problem (RP∗
α) to find its optimal solution.

Step 3. If there is no optimal solution of (RP∗
α), go back to Step 1;

otherwise, find an optimal solution of (RP∗
α) as (w̄, W̄ , λ̄r , t̄ l , Z̃r0, Z

l
0, r = 1, . . . , p, l = 1, . . . , k).

Step 4. Extract w̄ from the optimal solution of (RP∗
α).

Output: w̄ is a robust (weak) Pareto solution of (UP).
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5 Conclusion and perspectives

In this paper, we have considered a convex quadratic multiobjective optimization problem,
where both the objective and constraint functions involve data uncertainty. To handle the pro-
posed uncertainmultiobjective program,we have employed the robust deterministic approach
to examine robust optimality conditions and find robust (weak) Pareto solutions of the under-
lying uncertainmultiobjective problem.More specifically, necessary conditions and sufficient
conditions in termsof linearmatrix inequalities for robust (weak)Pareto optimality of themul-
tiobjective optimization problem have been established. It has been shown that the obtained
optimality conditions can be verified byway of checking alternatively other criteria including
a robust Karush-Kuhn-Tucker condition. In addition, we have proved that a (scalar) relaxation
problem of a robust weighted-sum optimization program of the multiobjective optimization
problem can be solved by using a semidefinite programming (SDP) problem. This result
has demonstrated that the obtained SDP scheme can be employed to numerically calculate
a robust (weak) Pareto solution of the uncertain multiobjective problem that is implemented
in MATLAB.

It would be interesting to know how we can employ another approach such as the primal
reformulation/relaxation as in Ben-Tal et al. (2015) to find (weak) Pareto solutions of a
robust convex quadratic multiobjective optimization problem and perform a comparison with
the results obtained in this paper. Besides, a land combat vehicle system or other defence
systems (cf. Nguyen et al., 2016; Nguyen and Cao, 2017, 2019) can be expressed in terms
of multiobjective optimization problems that contain uncertainty data due to the incomplete,
error estimation or noisy information. For example, unknown environment factors such as
land surface, air and sea surroundings or weather would be shown up when a defence system
is operating in a new terrain. The different types of operation scenarios and physical links
between defence system components pose a challenge to the decision maker in providing the
“best" combination (solution) of defence system configuration. For a force design problem,
this would have to be scaled up to what is the “best" combination of defence systems to
achieve multiple objectives under various threats and scenarios assumptions. It would be
of great interest to see how we can employ our obtained SDP scheme to develop a suit of
efficient algorithms, which allow end-users to easily elicit the decision maker’s preferences
and perform a good visualization in large scale defence scenarios for uncertain force design
problems.

Acknowledgements The authors are grateful to the associate editor and referees for their constructive com-
ments and valuable suggestions which have contributed to the final version of the paper.

Appendix: Numerical examples

The following examples show how we can employ the SDP reformulation scheme obtained
in Theorem 4.1 (Procedure 1) to find robust (weak) Pareto solutions of uncertain convex
quadratic multiobjective optimization problems.

The first example is dealt with a family of uncertain convex quadratic multiobjective
problems of (EUc) by specifying the value c of the objectives, while the second example is
concerned with a family of uncertain convex quadratic multiobjective problems of (EUn) by
specifying the dimension n of the decision variables.
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Example 6.1 (Calculating Pareto solutions via SDP) Let us consider a family of uncertain
convex quadratic multiobjective problems:

min
x∈R2

{(
f1(x, u), f2(x, u), f3(x, u), f4(x, u)

) | gl(x, v) ≤ 0, l = 1, 2, 3, 4, 5, 6
}
, (EUc)

where c ∈ [0,+∞) is a given parameter, u := (u1, u2) ∈ � and v := (v1, v2) ∈ � are
uncertain parameters and fr , r = 1, 2, 3, 4 and gl , l = 1, 2, 3, 4, 5, 6 are bi-functions given
by

f1(x, u) := x21 + x22 − cx1 + 1 + u1 + u2, f2(x, u) := x22 + 1 − u1 + u2,

f3(x, u) := x22 + 2x2 + u1, f4(x, u) := x21 + 4x22 − cx1 + x2 − u2,

g1(x, v) := x22 − x1 + v1x2 + v2x1 − 2c − 4, g2(x, v) := −x1 + v1 − 3,

g3(x, v) := −x2 − v2 − 3, g4(x, v) := x21 + x22 − v1x1 − v2x2 − c2 − 2c − 5,

g5(x, v) := x2 − 4, g6(x, v) := x1 − c − 4, x := (x1, x2) ∈ R
2.

Here, the uncertainty sets � and � are given by

� := {u := (u1, u2) ∈ R
2 | u21 + u22 ≤ 1}, � := {v := (v1, v2) ∈ R

2 | v21

4
+ v22

9
≤ 1}.

(6.1)

Now, we consider the robust convex quadratic multiobjective problem of (EUc) as follows:

min
x∈R2

{(
max
u∈�

f1(x, u),max
u∈�

f2(x, u),max
u∈�

f3(x, u), (ERc)

max
u∈�

f4(x, u)
) | gl(x, v) ≤ 0, l = 1, 2, 3, 4, 5, 6, ∀v ∈ �

}
.

Note that the problem (ERc) can be expressed in terms of problem (RP), where �r :=
�, r = 1, 2, 3, 4, �l := �, l = 1, 2, 3, 4, 5, 6 are described respectively by

Ar := I3, B
l :=

⎛

⎝
4 0 0
0 9 0
0 0 1

⎞

⎠ , Ar
1 := Bl

1 =
⎛

⎝
0 0 1
0 0 0
1 0 0

⎞

⎠ , Ar
2 := Bl

2 =
⎛

⎝
0 0 0
0 0 1
0 1 0

⎞

⎠

and fr , r = 1, 2, 3, 4, gl , l = 1, 2, 3, 4, 5, 6 are given respectively by Q1 := I2, Q2 :=
Q3 :=

(
0 0
0 1

)

, Q4 :=
(
1 0
0 4

)

, ξ1 := (−c, 0), ξ2 := 02, ξ3 := (0, 2), ξ4 :=
(−c, 1), ξ ri := 02, r = 1, 2, 3, 4, i = 1, 2, β1 := β2 := 1, β3 := β4 := 0, β1

1 :=
β1
2 := β2

2 := β3
1 := 1, β2

1 := β4
2 := −1, β3

2 := β4
1 := 0 and M1 :=

(
0 0
0 1

)

,

M2 := M3 := M5 := M6 := 02×2, M4 := I2, θ1 := θ2 := (−1, 0), θ3 :=
(0,−1), θ4 := 02, θ5 := (0, 1), θ6 := (1, 0), θ11 := (0, 1), θ12 := (1, 0), θ21 := θ22:= θ31 := θ32 := θ51 := θ52 := θ61 := θ62 := 02, θ41 := (−1, 0), θ42 = (0,−1), γ 1 := −2c − 4,
γ 2 := γ 3 := −3, γ 4 := −c2 − 2c − 5, γ 5 := −4, γ 6 := −c − 4, γ 1

1 := γ 1
2 := γ 2

2 := γ 3
1:= γ 4

1 := γ 4
2 := γ 5

1 := γ 5
2 := γ 6

1 := γ 6
2 := 0, γ 2

1 := 1, γ 3
2 := −1.

Wenowuse the SDP reformulation, obtained inTheorem4.1, to find a robust (weak) Pareto
solution of problem (EUc). Taking x̃ := (c, 1),we see that gl(x̃, v) < 0 for all v ∈ � and l =
1, 2, 3, 4, 5, 6. Thus, the characteristic cone K := coneco{(02, 1) ∪ epi g∗

l (·, v), v ∈ �, l =
1, 2, 3, 4, 5, 6} is closed by virtue of Remark 3.2.Moreover, by taking ũ := ṽ := (0, 0) ∈ R

2,
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it holds that Ar +
2∑

i=1
ũi Ar

i � 0, r = 1, 2, 3, 4 and Bl +
2∑

j=1
ṽ j Bl

j � 0, l = 1, 2, 3, 4, 5, 6.

Namely, all the assumptions of Theorem 4.1 are fulfilled in this setting.
Let α := (1, 1, 1, 1) ∈ intR4+, and consider a corresponding robust weighted-sum opti-

mization problem of (ERc) as follows:

inf
x∈R2

{ 4∑

r=1

max
u∈�

fr (x, u) | gl(x, v) ≤ 0, l = 1, 2, 3, 4, 5, 6, ∀v ∈ �
}
. (Ec)

Note that the (scalar) weighted-sum problem (Ec) has optimal solutions as its objective
function is a continuous function and its feasible set is a compact set.

The SDP reformulation problem of (Ec) is given by

inf
(w,W ,λr ,tl ,Z̃ r ,Zl )

{ 4∑

r=1

(
λr + Tr(Z̃ r Ar )

) |
(
1 wT

w W

)


 0, w ∈ R
2,W ∈ S2, (E∗

c )

βr + (ξ r )Tw + Tr(WQr ) − λr = 0, r = 1, 2, 3, 4,

βr
i + (ξ ri )Tw + Tr(Z̃ r Ar

i ) = 0, i = 1, 2, r = 1, 2, 3, 4,

t l + Tr(Zl Bl) ≤ 0, l = 1, 2, 3, 4, 5, 6,

γ l + (θ l)Tw + Tr(WMl) − t l = 0, l = 1, 2, 3, 4, 5, 6,

γ l
j + (θ lj )

Tw + Tr(Zl Bl
j ) = 0, j = 1, 2, l = 1, 2, 3, 4, 5, 6,

λr ∈ R, t l ∈ R, Z̃ r 
 0, Zl 
 0, r = 1, 2, 3, 4, l = 1, 2, 3, 4, 5, 6
}
.

Using the Matlab toolbox CVX (see e.g., Grant and Boyd, 2014), we solve the prob-
lem (E∗

c ) with (for instance) c := 4 and the solver returns the weighted-sum optimal value as
−1.17157 and an optimal solution of problem (E∗

c ) with c := 4 as (w̄, W̄ , λ̄r , t̄ l , Z̃ r
0, Z

l
0, r =

1, 2, 3, 4, l = 1, 2, 3, 4, 5, 6), where w̄ = (2.0000,−2.9400e-08) ≈ (2, 0). By Theo-
rem 4.1(iii), we conclude that w̄ = (2, 0) is a robust (weak) Pareto solution of problem (EUc)
with c := 4. (In this setting, we can re-check directly that w̄ is a (weak) Pareto solution of
problem (ERc) with c := 4.)

Similarly, we test with some other values of c (see Table 1). These the numerical tests are
conducted on a computer with a 1.90GHz Intel(R) Core(TM) i7-8650U and 16.0GB RAM,
equipped withMATLABR2018b. In Table 1, “Robust Pareto Solutions” are optimal decision
variables x := (x1, x2) of (EUc) and “Weighted-sumValues” are optimal values of (E∗

c ) with
the corresponding values of c.

Example 6.2 (Calculating Pareto solutions with higher dimensional decision variables) Let
us consider a family of uncertain convex quadratic multiobjective problems:

min
x∈Rn

{(
f1(x, u), f2(x, u), f3(x, u), f4(x, u), f5(x, u)

) | gl(x, v) ≤ 0, l = 1, 2, 3
}
,

(EUn)

where n ∈ N, n ≥ 3, is a given parameter, u := (u1, u2) ∈ � and v := (v1, v2, v3) ∈ � are
uncertain parameters and fr , r = 1, 2, 3, 4, 5 and gl , l = 1, 2, 3 are bi-functions given by

f1(x, u) := x21 + x22 − nxn + 1 + u1 − u2, f2(x, u) := x22 − x1 − . . . − xn + 1 − u1 + u2,

f3(x, u) := x22 + 2x2 − xn + u1 + u2, f4(x, u) := x21 + 4x22 − x1 + nxn − u2,
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Table 1 Robust Pareto solutions for (EUc) with other values of c

c Robust Pareto solutions Weighted-sum values CPU time (s)

1 (0.5000, 0) +6.32843 0.50

5 (2.5000, 0) −5.67157 0.44

10 (5.0000, 0) −43.1716 0.41

25 (12.5000, 0) −305.672 0.56

32 (16.0000, 0) −505.172 0.47

60 (30.0000, 0) −1793.17 0.44

100 (50.0001, 0) −4993.17 0.35

210 (105.0000, 0) −22043.2 0.53

301 (150.5000, 0) −45293.7 0.50

f5(x, u) := x1 + x2 + . . . + xn − u1 + u2,

g1(x, v) := x22 − x1 + v1x2 + v2x1 − 2n, g2(x, v) := x21 + x22 + . . . + x2n − n + v1 − v3,

g3(x, v) := x21 + x22 − v1x1 − v2x2 − xn − n + v3, x ∈ R
n .

Here, the uncertainty sets � and � are given by

� := {u := (u1, u2) ∈ R
2 | u21 + 1

2
u22 ≤ 1, u1 ≥ 0},

� := {v := (v1, v2, v3) ∈ R
3 | v21 + v22 + v23 ≤ 1}.

Now, we consider the robust convex quadratic multiobjective problem of (EUn) as follows:

min
x∈Rn

{(
max
u∈�

f1(x, u),max
u∈�

f2(x, u),max
u∈�

f3(x, u),max
u∈�

f4(x, u),max
u∈�

f5(x, u)
) | gl(x, v) ≤ 0,

(ERn)

l = 1, 2, 3, ∀v ∈ �
}
.

Note that the problem (ERn) can be expressed in terms of problem (RP), where �r :=
�, r = 1, 2, 3, 4, 5, �l := �, l = 1, 2, 3 are described respectively by

Ar :=

⎛

⎜
⎜
⎝

1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 0

⎞

⎟
⎟
⎠ , Ar

1 :=

⎛

⎜
⎜
⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 1

⎞

⎟
⎟
⎠ , Ar

2 :=

⎛

⎜
⎜
⎝

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞

⎟
⎟
⎠ ,

Bl := I4, B
l
1 :=

⎛

⎜
⎜
⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞

⎟
⎟
⎠ , Bl

2 :=

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

⎞

⎟
⎟
⎠ , Bl

3 :=

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

⎞

⎟
⎟
⎠
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and fr , r = 1, 2, 3, 4, 5, gl , l = 1, 2, 3 are given respectively by

Q1 :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 · · · 0
0 1 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, Q2 := Q3 :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 · · · 0
0 1 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, Q4 :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 · · · 0
0 4 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

Q5 := 0n×n, ξ
1 := (0, 0, . . . , 0,−n), ξ2 := (−1,−1, . . . ,−1), ξ3 := (0, 2, 0, . . . , 0,−1),

ξ4 := (−1, 0, . . . , 0, n), ξ5 := (1, 1, . . . , 1), ξ ri := 0n, r = 1, 2, 3, 4, 5, i = 1, 2, β1 :=
β2 := 1, β3 := β4 := β5 := 0, β1

1 := β2
2 := β3

1 := β3
2 := β5

2 := 1, β1
2 := β2

1 := β4
2 :=

β5
1 := −1, β4

1 := 0 and M1 := Q3, M2 := In, M3 := Q1, θ1 := (−1, 0, . . . , 0), θ2 :=
0n, θ3 := (0, . . . , 0,−1), θ11 := (0, 1, 0, . . . , 0), θ12 := (1, 0, . . . , 0), θ13 := 0n, θ21 :=
θ22 := θ23 := 0n, θ31 := (−1, 0, . . . , 0), θ32 = (0,−1, 0, . . . , 0), θ33 := 0n, γ 1 :=
−2n, γ 2 := γ 3 := −n, γ 1

1 := γ 1
2 := γ 1

3 := γ 2
2 := γ 3

1 := γ 3
2 := 0, γ 2

1 := γ 3
3 :=

1, γ 2
3 := −1.
Wenowuse the SDP reformulation, obtained inTheorem4.1, to find a robust (weak) Pareto

solution of problem (EUn). Taking x̃ := 0n, we see that gl(x̃, v) < 0 for all v ∈ � and l =
1, 2, 3. Thus, the characteristic cone K := coneco{(0n, 1) ∪ epi g∗

l (·, v), v ∈ �, l = 1, 2, 3}
is closed by virtue of Remark 3.2. Moreover, by taking ũ := ( 12 , 0) ∈ R

2, ṽ := 03 ∈ R
3, it

holds that Ar +
2∑

i=1
ũi Ar

i � 0, r = 1, 2, 3, 4, 5 and Bl +
3∑

j=1
ṽ j Bl

j � 0, l = 1, 2, 3. Namely,

all the assumptions of Theorem 4.1 are fulfilled in this setting.
Let α := (1, 1, 1, 1, 1) ∈ intR5+, and consider a corresponding robust weighted-sum

optimization problem of (ERn) as follows:

inf
x∈Rn

{ 5∑

r=1

max
u∈�

fr (x, u) | gl(x, v) ≤ 0, l = 1, 2, 3, ∀v ∈ �
}
. (En)

Note that the (scalar) weighted-sum problem (En) has optimal solutions as its objective
function is a continuous function and its feasible set is a compact set.

The SDP reformulation problem of (En) is given by

inf
(w,W ,λr ,tl ,Z̃ r ,Zl )

{ 5∑

r=1

(
λr + Tr(Z̃ r Ar )

) |
(
1 wT

w W

)


 0, w ∈ R
n,W ∈ Sn, (E∗

n)

βr + (ξ r )Tw + Tr(WQr ) − λr = 0, r = 1, 2, 3, 4, 5,

βr
i + (ξ ri )Tw + Tr(Z̃ r Ar

i ) = 0, i = 1, 2, r = 1, 2, 3, 4, 5,

t l + Tr(Zl Bl) ≤ 0, l = 1, 2, 3,

γ l + (θ l)Tw + Tr(WMl) − t l = 0, l = 1, 2, 3,

γ l
j + (θ lj )

Tw + Tr(Zl Bl
j ) = 0, j = 1, 2, 3, l = 1, 2, 3,

λr ∈ R, t l ∈ R, Z̃ r 
 0, Zl 
 0, r = 1, 2, 3, 4, 5, l = 1, 2, 3
}
.

Using the Matlab toolbox CVX (see e.g., Grant and Boyd, 2014), we solve the prob-
lem (E∗

n) with (for instance) n := 5 and the solver returns the weighted-sum optimal value as
+7.56512 and an optimal solution of problem (E∗

n) with n := 5 as (w̄, W̄ , λ̄r , t̄ l , Z̃ r
0, Z

l
0, r =
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Table 2 Robust Pareto solutions for (EUn ) with other values of n

n Robust Pareto solutions Weighted-sum values CPU time (s)

3 (0.2079,−0.1350, 1.2346) +8.20822 0.55

8 (0.2277,−0.1390, 0, . . . , 0, 2.5524) +6.88761 0.73

20 (0.2363,−0.1405, 0, . . . , 0, 4.3023) +5.13695 0.74

40 (0.2403,−0.1412, 0, . . . , 0, 6.2055) +3.2336 0.75

100 (0.2439,−0.1418, 0, . . . , 0, 9.9250) −0.486061 0.78

201 (0.2457,−0.1421, 0, . . . , 0, 14.1246) −4.68571 1.02

500 (0.2472,−0.1424, 0, . . . , 0, 22.3272) −12.8883 1.58

850 (0.2479,−0.1425, 0, . . . , 0, 29.1291) −19.6902 3.33

1000 (0.9844,−0.5689, 0, . . . , 0, 63.1906) −54.5551 5.57

1, 2, 3, 4, 5, l = 1, 2, 3), where w̄ = (0.2206,−0.1376, 0, 0, 1.8757). By Theorem 4.1(iii),
we conclude that w̄ = (0.2206,−0.1376, 0, 0, 1.8757) is a robust (weak) Pareto solution
of problem (EUn) with n := 5. (In this setting, we can re-check directly that w̄ is a (weak)
Pareto solution of problem (ERn) with n := 5.)

Similarly, we test with some other values of n (see Table 2). These the numerical tests are
conducted on a computer with a 1.90GHz Intel(R) Core(TM) i7-8650U and 16.0GB RAM,
equipped withMATLABR2018b. In Table 2, “Robust Pareto Solutions” are optimal decision
variables x := (x1, . . . , xn) of (EUn) and “Weighted-sumValues” are optimal values of (E∗

n)
with the corresponding values of n.
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