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Abstract
Pandemic events, particularly the current Covid-19 disease, compel organisations to re-
formulate their day-to-day operations for achieving various business goals such as cost
reduction. Unfortunately, small and medium enterprises (SMEs) making up more than 95%
of all businesses is the hardest hit sector. This has urged SMEs to rethink their operations
to survive through pandemic events. One key area is the use of new technologies pertaining
to digital transformation for optimizing pandemic preparedness and minimizing business
disruptions. This is especially true from the perspective of digitizing asset management
methodologies in the era of Industry 4.0 under pandemic environments. Incidentally, human-
centric approaches have become increasingly important in predictive maintenance through
the exploitation of digital tools, especiallywhen theworkforce is increasingly interactingwith
new technologies such asArtificial Intelligence (AI) and Internet-of-Things devices for condi-
tion monitoring in equipment maintenance services. In this research, we propose an AI-based
human-centric decision support framework for predictive maintenance in asset management,
which can facilitate prompt and informed decision-making under pandemic environments.
For predictive maintenance of complex systems, an enhanced trust-based ensemble model is
introduced to undertake imbalanced data issues. A human-in-the-loop mechanism is incor-
porated to exploit the tacit knowledge elucidated from subject matter experts for providing
decision support. Evaluations with both benchmark and real-world databases demonstrate
the effectiveness of the proposed framework for addressing imbalanced data issues in pre-
dictive maintenance tasks. In the real-world case study, an accuracy rate of 82% is achieved,
which indicates the potential of the proposed framework in assisting business sustainability
pertaining to asset predictive maintenance under pandemic environments.
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1 Introduction

Pandemic events (also known as “Black Swan” events) can cause drastic effects to an organ-
isation. Covid-19 is the most recent Black Swan event, where it has affected organisations
on a global scale (Elluru et al. 2019; von Winterfeldt 1988; Kilpatrick and Barter 2020). The
impact of Covid-19 has resulted in detrimental effects; ranging fromplacing organisations out
of business to significant cost-reduction activities for businesses to survive and remain com-
petitive (Akeem 2017). The detrimental effects of pandemic events have been more adverse
on small and medium-sized enterprises (SMEs) (Beglaryan and Shakhmuradyan 2020) as
many organisations are forced to operate with reduced resources; for example, business pro-
cedures and workforce practices are dramatically altered due to social distancing regulations
(Kilpatrick and Barter 2020; Sheng et al. 2020). Unfortunately, although SMEs represent
more than 95% of all businesses across the globe; they are more vulnerable to pandemics
than conglomerates as the hardest hit sector (Thukral 2021). This is due to reasons such
as less reserve cash to substitute for affected revenue streams, and their heavy reliance on
supply chains (Beglaryan and Shakhmuradyan 2020). As a result, organisations are actively
identifying key areas where capital investments should be focused (Magazine 2020), and are
revisiting their day-to-day operations and supply chain activities, in order to progress out
of the Covid-19 pandemic and be better prepared for the next Black Swan event, whether
another global disease, a trade war or natural disasters. Unsurprisingly, one of the key areas
where organisations are exploiting for addressing uncertainties is digital transformation (Kil-
patrick and Barter 2020; Magazine 2020; Akter and Wamba 2019), in line with the era of
Industry 4.0. This is in accordancewith a top priority policy of theOrganisation for Economic
Co-operation and Development (OECD) to promote digitisation in SMEs (OECD 2021).

Over the past year, the insurgence of Covid-19 has provided a real need for organisations to
invest in digital transformation to meet the challenges of a pandemic by leaning towards data-
driven operations decisions (Magazine 2020; Sheng et al. 2020; Akter and Wamba 2019).
One of the main digital transformation initiatives is big data analytics, which incorporates the
utilisation of real-time analytics to better understand both positive and negative effects of an
event and for proactive preparations (Kilpatrick and Barter 2020; Sheng et al. 2020). In this
respect, Artificial Intelligence (AI) has progressed to undertake the uncertainties associated
with probable pandemics imperatives to an organisation’s business model. This is achieved
through the implementation of AI-driven systems and tools that allow an organisation’s
data to be analysed for decision support purposes (Sheng et al. 2020). The importance of
AI is incentized through the new normal of Covid-19, where the collection of digital data
and footprints is becoming more prominent through digital devices and altered work forces
(Sheng et al. 2020). Predictive analytics has also been deployed for condition monitoring and
fault prevention (Tranter 2020).

The use of AI for decision support has been popular in areas such as healthcare during
Covid-19 due to the lack of resources, where front-line workers are empowered with human–
machine teaming platforms (Debnath et al. 2020; Ndiaye et al. 2020). In an era of pandemic
where innovations are becoming a necessity, the design of human-centric systems is now
more important than ever (Macdonald et al. 2020). This is because new business paradigms
shift through initiatives such as digital transformation must incorporate the perspectives of
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humans (or users). In this respect, human-centricity ensures user acceptance of AI-based
innovative tools, allowing humans to present their opinions to intelligent systems during the
reasoning and decision-making processes to address the needs of the business (Griffith et al.
2019). Ultimately, human-centric innovations introduced into the business operations lead
to a successful deployment for addressing uncertainties during Black Swan events, and to
enable SMEs to see through extended times of business hardship.

The concept of human-centricity is further reinforced as the demands of Industry 4.0
on future workforces consist of both humans and non-human (e.g. intelligent machines)
(Marnewick andMarnewick 2020; Shehadeh et al. 2017). Non-human inputs will be required
as part of decision-making processes, while human inputs serve as an integral part of knowl-
edge transfer whereby domain experts are engaged to utilise their domain expertise to make
business decisions and actions (Marnewick and Marnewick 2020; Kagermann and Helbig
2013). With Industry 4.0 resulting in an excess of IoT (Internet-of-Things) devices (Ndiaye
et al. 2020) enabling industries such as predictive maintenance, business environments now
become heavily evolved around autonomous and complex systems that empower both digital
capabilities and domain experts (Shehadeh et al. 2017). One key consequence of complex
systems is that collaboration between humans and robotic systems are becoming critical. The
human-AI/robotic corporation structure, and its effectiveness potentially remains a critical
gap in research to enable coherent human-AI/robotic co-existence in Industry 4.0 (Shehadeh
et al. 2017). As a result of the importance of human-in-the-loop requirements, we propose
an integrated decision support framework incorporating both tacit knowledge from domain
experts and reasoning and inference capabilities of AI models to achieve business competi-
tiveness.

From the perspective of predictivemaintenance,which is an area drastically revolutionized
by Industry 4.0 (Marnewick and Marnewick 2020; Kagermann and Helbig 2013), effective
strategies that permit predictive planning not only become a competitive advantage, but criti-
cal for success in pandemic environments (Kilpatrick and Barter 2020;Williams and Holland
2020).An accurate prediction into the future enables proactive planning that is instrumental in
areas such as supply chain risk management and downtime reduction (Kilpatrick and Barter
2020; Tranter 2020). However, decision support systems empowered by AI in predictive
maintenance demand a high-level of trust pertaining to user acceptance, in order to promote
utilisation, generate throughput and autonomy (Chen et al. 2019). As stated in Nahavandi
(2017), autonomy can be broadly divided into human-in-the-loop (HITL) and human-on-
the-loop (HOTL) strategies. HITL covers systems/machines that require human commands
in their operations, while HOTL encompasses systems/machines that execute tasks indepen-
dently but with human supervision who can interfere when anomalies occur. In this respect,
transitioning from HITL to HOTL requires sustainable trust between humans and machines,
in order to fully realise the benefits of autonomous systems. Additionally, in Nahavandi
(2019), it is postulated that autonomous systems would become an integral part of human
daily activities, which is inevitable as evidenced by the penetration of industrial robots into
production floors. Correspondingly, establishing faith by humans toward autonomous robots
would be rooted in predictability, dependability, and extended experience with the robots.
To ensure AI-based decision support systems obtain the necessary traction to yield business
benefits, a key factor of achieving human-centricity is to effectively foster human–machine
trust, especially under pandemic environments where uncertainty is prevalent. Unfortunately,
not all data samples collected from the real world are usable and useful for AI deployment.
Specifically, within predictive maintenance where good asset management practices intrinsi-
cally lead into imbalanced data issues, which would likely generate poor performing models
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with low level of human–machine trust, hence compromising business outputs (Chen et al.
2019).

The recognised challenges of transitioning into predictive maintenance within asset man-
agement under pandemic environments denotes the key motivations for this research. The
aims and objectives of this paper are to derive an effective decision support framework with
supporting machine learning applications, and to evaluate its effectiveness within real-world
environments in pandemic environments. The significance of such research will provide
theoretical and realistic outcomes that can be implemented or investigated further as part
theoretical research or within an SMEs transition to more advance maintenance strategies in
asset management. The occurrence of Covid-19 has further highlighted the value of SME
organisations to be better prepared under pandemic environments, which is a key motivation
of this project.

In this paper, we propose an AI-based decision support framework and demonstrate its
applicability to predictive maintenance in asset management under pandemic environments.
The AI-based decision support framework is based on a human-centric approach to ensure
its user acceptance in the asset management domain where domain experts govern busi-
ness actions. The framework exploits an enhanced trust-based Behaviour Knowledge Space
(T-BKS) ensemble model to tackle issues related to imbalanced data, which is a common
challenge in asset maintenance. As an extension of the standard BKSmodel (Huang and Suen
1993), T-BKS is compared with its baseline method and a recent state-of-the-art ensemble
method (Chen et al. 2019) through benchmark data sets. Additionally, a real-world case study
from a medium enterprise company will be utilised. This real-world case study incorporates
domain expert knowledge pertaining to the outputs of the decision support system in predic-
tive maintenance. Under the pandemic environments, AI-powered predictive maintenance
tools with human-in-the-loop strategies are critical to survival (Williams and Holland 2020;
Tranter 2020). The human–machine interaction is critical within model maintenance and
enabling output as part of a predictive maintenance framework (Samatas et al. 2021), in
which the proposed predictive maintenance framework fosters this notion. The results posi-
tively demonstrate that AI-based human-centric tools are highly applicable to the context of
addressing uncertainties associated with pandemic preparedness, facilitating a paradigm shift
through digital innovation for the day-to-day operations of an organisation under a dynamic,
challenging environment.

2 Literature review

The importance of condition monitoring and predictive maintenance of complex systems for
business to operate efficiently and effectively in pandemic environments has been widely
recognised. As a result, new approaches to predictive maintenance have been developed. In
this section,we review the literature onmethods for conditionmonitoring andpredictivemain-
tenance. In general, condition monitoring and fault diagnostics exploit data extracted from
machines, processes or systems for failure detection or prediction purposes (Tiddens 2018).
However, transforming highly unstructured data into human interpretable results requires an
effective methodology, particularly in the era of Industry 4.0 where voluminous data can be
acquired through digital devices easily. Since Industry 4.0 is associated with the mega trend
of big data and AI, numerous research studies have explored different data-based AI mod-
els to develop advanced diagnostic and prognostic capability for condition monitoring and
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predictive maintenance in radically changing (Bengtsson 2004; Tiddens 2018; Vachtsevanos
and Wang 2001; Lebold et al. 2003).

Bengtsson (2004) examined feature classification within a condition-based maintenance
system. A case library containing previously classified measurements and features was
designed. All newly classified features (data measurements) were automatically added into
the case library for reasoning by users when receiving a new case. Themajor advantage of this
approach was the ability to capture the tacit knowledge of domain experts for incorporation
into the condition monitoring system.

Vachtsevanos andWang (2001) developed a conditionmonitoring framework that focused
on diagnostic and prognostic tasks. The framework stressed the necessity of human inter-
vention (similar to Bengtsson 2004) through a domain expert. In diagnostic applications,
the domain expert identified component failures whereas in prognostic application, a case
(work order) on the component through data analysis was developed. A ‘predictor’ module
was proposed to utilise a dynamic wavelet neural network for feature classification. The
domain expert was involved with the initial development of diagnostic and prognostic pro-
cedures as well as cost-benefit analysis, but the human-in-the-loop mechanism was absent,
compromising acceptance of the outcome by users.

Traini et al. (2019) proposed an Industry 4.0 predictive maintenance framework for con-
dition monitoring of equipment degradation and wear in milling operations. Specifically, the
key objectives of the proposed framework, e.g., preventing unexpected breakdowns, optimis-
ing processes and improving human–machine interaction, were explained. The framework
proposed a data pre-possessing step prior to feature engineering and multi-modelling pro-
cedures for utilising machine learning in prognostic tasks. The framework did not include a
human–machine cooperation procedure, although notably a major output highlighted of the
framework aimed to enhance human–machine interaction. The effectiveness of the proposed
framework was evaluated using a real milling data set. The results indicated good levels of
modelling performance through numerous regression and classification techniques, as well
as improved human–machine collaboration within a production environment. However, the
input and feedback to the proposed framework of knowledge workers was not presented.

Kiangala and Wang (2020) proposed an effective predictive maintenance framework for
condition monitoring of conveyor motors. The framework consisted of a convolutional neu-
ral network for image classification. Detailed algorithmic and machine learning information
were provided. Adjustment of the model over numerous iterations was conducted automat-
ically through weight updates corresponding to classification results. The results indicated
modelling performance of up to 100% accuracy, whereby the outputs could prolong and avoid
conveyor motor breakdowns. Nevertheless, as a purely data-driven approach, the framework
did not have a human–machine interaction element.

Bouabdallaoui et al. (2021) proposed a machine learning-based framework for predictive
maintenance of building facilities. The proposed framework architecture consisted ofmultiple
chronological procedures including data collection and pre-processing, model development,
model deployment, and feedback and model improvement. A key component of the frame-
work was the feedback and model improvement procedure comprising users’ feedback to
re-train themachine learningmodels. Since the feedbackprocedurewasnot systematic, exper-
tise was required to re-train the models. The authors evaluated the predictive maintenance
framework on a real-world case study, focusing on the implementation process. Data collec-
tion challenges and asset uniqueness associated with different buildings were discussed. A
long time frame pertaining to implementation of an effective predictive maintenance strategy
was required before realising return on investments. As noted, this framework incorporated
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a human–machine feedback loop from front-line users to maintain models throughout and
implementation.

Lebold et al. (2003) proposed an open system framework for condition monitoring and
diagnostics, known as the Open System Architecture for Condition Based Maintenance
(OSA-CBM). It contained several chronological layers as part of its composition, includ-
ing data acquisition, data manipulation, condition monitor, health assessment, prognostics,
decision support and presentation (Bengtsson 2004; Lebold et al. 2003). Li et al. (2017)
proposed a systematic framework focusing on data mining methods for fault diagnostic and
predictive maintenance. It served as an extension of the OSA-CBM model to include the
latest technologies, such as cloud computing and machine-to-machine communication, for
Industry 4.0. Sensory data of multi-modes were pipelined into a data warehouse, which was
followed by diagnostics and prognostics through data mining and decision support models.
The study also stressed the need for a maintenance strategy to form part of the framework as a
‘maintenance implementation module’. The results indicated the advantage of such approach
coupled with a neural network for adaptability and generalization to tackle different failure
modes. Conversely, the major challenge identified was the framework’s inability to provide
explanatory capability to ensure user acceptance.

For a holistic view of maintenance frameworks, the related studies on predictive mainte-
nance, and the common and different key points are presented in Table 1.

In summary, it is clear that human-centric AI-based mechanism remains as an obvious
research gap in designing and developing intelligent predictive maintenance and decision
support frameworks. Categories of AI-based prognostics, condition monitoring and diag-
nostics, data pre-processing and asset data extraction are well established. Although the
well established categories are critical for a predictive maintenance strategy deployment,
the domain expert interface enabling front-line throughput through collaboration is quickly
becoming a core focus (Shehadeh et al. 2017). This highlights a necessity to further include
and investigate human-AI cooperation in complex systems within Industry 4.0.

2.1 Imbalanced data

The issue of imbalanced data has been recognised as one of top ten machine learning chal-
lenges (Yang and Wu 2006). The phenomenon of imbalanced data occurs when there are
exceedingly more data samples associated with a particular class. Learning from imbalanced
data sets incurs great complexity in achieving high accuracy. This is due to the skewed class
distribution leading to under-represented information associated with the minority class(es)
(He and Garcia 2009). Examples of imbalanced data problems include sentiment analysis
(Xu et al. 2015), natural language processing and text mining (Li et al. 2010), software fault
detection (Malhotra 2015),medical diagnosis including cancer identification (Krawczyk et al.
2016), credit risk and loan defaults (Birla et al. 2016), and fault diagnostic in condition-based
maintenance (Lee et al. 2016). Evidently, the wide range of industries where imbalanced data
challenges are applicable further emphasises the importance of addressing this issue in the
context of decision support to ensure better preparedness for uncertainties during Black Swan
events.

In the realm of predictive maintenance, failure events realistically only cover a small
fraction of the overall operation of the processes/systems. From a data perspective, this
causes a highly imbalanced data set. Hence, it is essential to realise the consequences of
false-positives in terms of predicting a false event and missing out on incoming catastrophic
failures. In an ideal machine learning model, the training and test data sets are appropri-
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Table 2 Sampling methodologies Sampling method Brief description

Random over-sampling (Cer-
nuda 2019; Maheshwari et al.
2011; Sun et al. 2011)

Arbitrary instances of the
minority data set are
selected at random

Synthetic Minority Oversam-
pling Technique (SMOTE)
(Wagner et al. 2016; Mahesh-
wari et al. 2011)

Arbitrary instances of
minority class through kNN

Random undersampling (Cer-
nuda 2019; Sun et al. 2011)

Instances of the majority data
set are removed at random

Hart’s condensed nearest
neighbour rule (CNN) (Wag-
ner et al. 2016)

Selection of a correctly
classified set of majority
class through a 1-kNN

Wilson’s edited nearest neigh-
bour rule (ENN) (Wagner et al.
2016)

Removal of majority class
data points through a
3-kNN approach

ately split. Researchers have placed effort in identifying effective methods to undertake
imbalanced data problems. In tackling the issue of imbalanced data, the 3-level approaches
incorporating different methods are recognised as established methods (Sun et al. 2011).
These 3-level approaches include data-level approach, algorithm approach and cost-sensitive
learning. Within the context of predictive maintenance, data-level approaches are the most
practical as algorithm-level and cost-sensitive learning requires fault contextual information
of the condition-monitored equipment which is not always obvious or available (Wagner
et al. 2016).

A widely recognised data-level approach to imbalanced data is data sampling. There
are two general sampling methods: removing samples from the majority class containing
non-failure data (under-sampling), or over-sampling the minority class to subsidise minimal
training data (Sun et al. 2011; Cernuda 2019). A list of sampling methods (over or under
sampling) (Cernuda 2019; Wagner et al. 2016; Sun et al. 2011; Maheshwari et al. 2011) is
presented in Table 2.

The algorithm level approaches incorporate classifier models to boost learning by intro-
ducing appropriate biases (regularisation) for the minority classes. This is dependent on the
model chosen and whether the data set consists of one-class or multi-class problems. For
the one-class case, the popular learning models include neural networks and support vector
machines (SVMs), whereas for the multi-class case, many established algorithms can be
utilized (Sun et al. 2011). Boosting is a common method of the algorithm level approach
(Wagner et al. 2016; Carbery et al. 2018)

The role of cost-sensitive learning is to minimise a cost function to learn from incorrectly
classified data. Such learning approach is able to consolidate the context to compensate for
imbalanced data. This can be viewed as an assignment of a penalty to incorrectly classi-
fied data. In theory, this technique employs a cost matrix during the model building phase,
where the lowest cost model is selected. Sun et al. (2011) explained three main categories of
cost-sensitive learning to imbalanced data: updating the weights with cost items, optimising
the learning algorithms to include a misclassification cost to be minimised, and utilising
probability (e.g. Bayesian theory) to classify data into the ‘lowest risk class’. The use of
cost-sensitive learning with an appropriate cost function in Spiegel et al. (2018) proved to be
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Fig. 1 AI-based human-centric decision support framework

effective in combining sets of information to create a business-orientated predictive mainte-
nance strategy.

3 AI-based human-centric decision support framework

3.1 Proposed framework

Under dynamic business environments, it is essential that organisations remain adaptive to
changes. This requirement transcends the importance of adopting a decision support frame-
work for predictive maintenance that promotes adaptivity to reduce uncertainties. Within an
asset, changes occur over time due to various internal and external factors, e.g. wear and tear
of different parts, influence of weather conditions, and accidents. These challenges further
increase the adversity of uncertainty in dynamic environments. As well as being adaptive, it
is crucial that such decision support framework establishes a strong human–machine team-
ing component to ensure user acceptance within real-world environments; allowing business
actions and informed decision to be made promptly. Figure 1 depicts the proposed AI-based
human-centric decision support framework for predictive maintenance.

The proposed framework is divided into the following key interconnected components:

1. Assets: In essence, an asset under monitoring needs to be an IoT-enabled entity with
sensory data extraction capabilities, and from which data samples are collected from.

2. Asset Knowledge: Asset knowledge embedded within this decision support framework
promotes the compilation and adoption of tacit knowledge from domain experts. This
component is continually updated to provide the latest knowledge and guidelines to the
users (both experts and non-experts) for them to maintain and gain knowledge in their
respective field as well as adapt to business changes. Within this framework, the tacit
knowledge solicited from domain experts is transformed into well-defined business rules.
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These business rules are complemented by intrinsic patterns mined from data samples
using AI models, leading to a knowledge base that aims to bridge human–machine trust
in using the decision support framework. The knowledge base includes statistical features
that dictate when the data samples captured from the asset under scrutiny is perform-
ing normally or is failing. Bridging human–machine trust enables business actions to be
undertaken. Another relevant implication includes a precaution solution for highly unpre-
dictable fault diagnostics which can be validated by business rules, machine learning
inference, and/or domain experts.

3. Machine learning for imbalanced data: The issue of imbalanced data is profound in
predictive maintenance, rendering learning to be unconventional as machine learning
models tend to better learn the representation of the majority class, i.e. more non-failure
data are available for training. As such, we propose a new trust-based BKS (T-BKS)
ensemble model is to undertake issues related to imbalanced data with machine learning
models. The human-feedback loop of this proposed framework enables re-assessment of
machine learning predictions in the event when conflicts between machine predictions
and human knowledge pertaining to the asset under monitoring occur.

4. Predictive maintenance (under pandemic environments):Central to thisAI-based decision
support framework is that feedback from domain experts are taken into consideration
within the machine learning process. When a discrepancy between the business rule
and machine learning prediction occurs, domain experts are involved in reviewing and
validating the outcome. The validated outcome is then used to update themachine learning
models. As a result, under the scenario of class imbalance, the machine learning models
are able to yield predictions that are formulated in line with the knowledge of domain
experts. This leads to building a trust-based relationship between humans and machines.
As predictive maintenance under pandemic environments constitutes to the bottom line
of a business, a high-level of trust is required.

The core element of the AI-based framework is the domain expert, in which a human–
machine teaming cycle is initiated to foster trust from users towards the predictions from
machine learning models. Indeed, the framework design hinges on human-centricity, which
is inspired through the notion that business processes require domain expert intervention to
resolve complex operational issues efficiently and effectively under pandemic environments.
The human-centricity involves the amalgamation of asset knowledge and machine learning
for imbalanced data analytics. This involves a comparison step where statistical features of
asset knowledge and the machine learning features are contrasted by the domain expert. A
trust score can be developed if required to assist with a statistical feature comparison. Notable
similarity calculation methods can include Euclidean distance or cosine similarity.

3.2 Trust-based behaviour knowledge space ensemblemodel

Introduced in Huang and Suen (1993), the BKS is a decision combinationmethod that creates
a reference table (akin to a pivot table) to combine the predictions from a pool of classifiers.
Specifically, it consists of a K-dimensional space corresponding to K classifiers, where each
dimension corresponds to the prediction of one classifier. Improvements on the modelling
procedure of the BKS have been proposed (Zhang et al. 2001; Yang and Zhang 2006), while
the applications of the BKS to image processing have been demonstrated (Souvannavong
and Huet 2006; Monson and Kumar 2017).

The BKS method involves two stages: knowledge modelling and operation (Huang and
Suen 1993). In the first stage, the K-dimensional space is constructed. GivenM target classes,
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each dimension is discretized to (M + 1) number of grids corresponding to the prediction
of a classifier, with the (M + 1)th grid being a “I don’t know” prediction. The BKS forms a
pivot table where the combination of predictions from K classifiers points to a BKS cell that
records the number of samples coming from the target classes (Huang and Suen 1993).

The second stage involves the BKS operation, where a combined prediction pertaining to
the output class with respect to the current input sample is made. This combined prediction
indicates the best representative class. Given a knowledge space BKS(e(1), e(2), . . . , e(K ))
is notated as Re(1),e(2)...e(k). The decision rule to calculate Re(1),e(2)...e(k):

E(x) =

⎧
⎪⎨

⎪⎩

Re(1),e(2)...e(k), when Te(1),e(2)...e(k) > 0 and when
ne(1),e(2)...e(k)(Re(1),e(2)...e(k))

Te(1),e(2)...e(k)
≥ γ1

M + 1, otherwise

(1)

The proposed T-BKS ensemble model explicates on the standard BKS method to incor-
porate a trust element against each individual classifier to reflect its level of confidence in
yielding a correct prediction. The T-BKS ensemble model is an algorithm level to better treat
the biases involved with training on highly imbalanced data. This is different from the stan-
dard BKSmethod that relies purely on counting the data samples belonging to different target
classes and recording them in each cell; which is likely to be skewed to the majority class
under class imbalanced scenarios. To solve this limitation, T-BKS elucidates a performance
measure for each individual classifier as well as exploits the records in the BKS cells prior
to reaching a final prediction of the output class.

The design of T-BKS for a binary classification problem involves two stages; (1) derive
the BKS for K classifiers through the standard BKS procedure (Huang and Suen 1993)
and record the sensitivity and specificity of each classifier using a validation data set (size
determined by ratio ω); (2) compute the ’trust’ variable for each decision combination Cn

(Cn = (e(1), e(2), . . . , e(K )) of the K classifiers. During evaluation, the final classification
of T-BKS is determined by the larger ‘trust’ score with respect to a particular decision
combination Cn pertaining to a given test data sample.

In the first stage, the sensitivity and specificity metrics of each K-classifier are established
through a validation procedure. They can be computed using the confusionmatrix, as in Eqns.
(8) and (9) respectively. This is conducted in parallel with the knowledge-space development.
By the end of stage one, a knowledge space of a given data set for a pool of K classifiers
(denoted as E) along with the sensitivity and specificity metrics of each classifier are formed.

In the second stage, the ‘trust’ measure for each decision combination Cn is elucidated.
The ’trust’ variable for a binary classification problem is computed as follows. Let Cn denote
a decision combination of K classifiers such that [e1(x) = j1, e2(x) = j2, . . . , eK (x) = jK ]
and n ε [1, K !]. Then for a given BKS cell, let∑ BK Sm(Cn) = ne(1),e(2),...,e(K )(m) (notation
in Huang and Suen (1993)) be the cell count pertaining to a given classification m from Cn .
For an imbalanced binary classification problem, let N represent majority classification and
F as minority classification, i.e. two possible decision values m ε {N , F}. Then T-BKS
can be expressed as a duple (T-BKSm ε {T-BKSN ,T-BKSF }) prior to assigning E(x) =
Re(1),e(2),...,e(K ) = j from the classifier pool E (Huang and Suen 1993).

T-BKSN = w1

∑
BKSN (Cn)

∑
BKSN (Cn) + ∑

BKSF (Cn)

+w2Pe1(T
+|−|D+|−) + w3Pe2(T

+|−|D+|−)
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+ · · · · · · + wK PeK−1(T
+|−|D+|−)

+wK+1PeK (T +|−|D+|−) (2)

T-BKSF = w1

∑
BKSF (Cn)

∑
BKSN (Cn) + ∑

BKSF (Cn)

+w2Pe1(T
+|−|D+|−) + w3Pe2(T

+|−|D+|−)

+ · · · · · · + wK PeK−1(T
+|−|D+|−)

+wK+1PeK (T +|−|D+|−) (3)

where Pei (T
+|D+) represents the sensitivity and Pei (T

−|D−) represents the specificity rate
associatedwith a given classifier ei . Depending on the classification of a ei ( ji = N or ji = F)
within a decision combination, the "importance" of each classifier can either be its sensitivity
or specificity metric. As an example, if classifier e(1) predicts a majority classification for
one test data sample, then only Pe1(T

−|D−) is used forw2 in calculating both trust measures
before a final classification is reached. The relevant equations are as follows:

Pei (T
+|D+) = TP ji =N | ji =F

TP ji =N | ji =F + FP ji =N | ji =F
= TP ji =m

TP ji =m + FP ji =m
(4)

Pei (T
−|D−) = FP ji =N | ji =F

TP ji =N | ji =F + FP ji =N | ji =F
= TP ji =m

TP ji =m + FP ji =m
(5)

where wz represents an associated weight assigned by prediction ji of ei and variable
T-BKSm :

wz=2,3,...,K+1 =
{
0 ei (x) = ji s.t ji �= (m ε T-BKSm)
1
y s.t. y = K + 1 − ∑[ei (x) = ji �= (m ε T-BKSm)]

∀ Cn (6)

The weights are assigned to abide
∑K+1

z (wz) = 1, achieving normalisation for the
weights with respect to a given T-BKSm . As w1 is not associated with a classifier ei , w1

cannot be 0. Hence, the standard BKS method is always involved in calculating T-BKSm

The best classification of T-BKS can be obtained by selecting the higher of T-BKSN and
T-BKSF :

E(x) = Re(1),e(2),...,e(K ) =
{
Maj T-BKSN > T-BKSF

Min T-BKSF ≥ T-BKSN

∀ Cn (7)

4 Results and discussion

4.1 Experimental study

To validate the effectiveness of the proposed T-BKS ensemble model, an evaluation study
with benchmark and real-world data is conducted. A methodology to encompass an effective
knowledge space method in imbalanced data classification environments is developed. The
results are compared with those of standard BKS, majority voting (MV) and a recent state-
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Table 3 Details of imbalanced
datasets

ID Dataset FT IR Min Maj Samples

1 glass015vs2 10 9.12 17 155 172

2 yeast0359vs78 9 9.12 50 456 506

3 glass016vs2 10 10.29 17 175 192

4 glass0146vs2 10 11.06 17 188 205

5 glass2 10 11.59 17 197 214

6 yeast1vs7 8 14.30 30 429 459

7 abalone918 9 16.40 42 689 731

8 yeast1458vs7 9 22.10 30 663 693

9 yeast2vs8 9 23.10 20 462 482

10 yeast1289vs7 9 30.57 30 917 947

11 yeast5 9 32.37 44 1440 1484

12 ecoli0137vs26 8 39.14 7 274 281

13 yeast6 9 41.40 9 35 1449

14 krvsk0vs8 6 53.07 27 1443 1460

15 poker89vs6 10 58.40 25 1460 1485

FT Features, IR imbalanced ratio

of-the-art ensemble method proposed for imbalanced data classification. Specifically, the
comparison covers:

(i) T-BKS ensemble versus MV: The aim is to determine the comparative performances
of T-BKS against the well-known and basic ensemble method of MV.

(ii) T-BKS ensemble versus standard ensemble BKS: The aim is to determine the compar-
ative performances against standard BKS of which T-BKS is designed from.

(iii) T-BKSensemble versusDBE-DCR(Distance-basedBalancingEnsemblewithDistance-
based Combination Rule) method (a recent state-of-the-art ensemble method) proposed
in Chen et al. (2019). The aim is to evaluate the effectiveness of T-BKS against that of
a recent ensemble method with excellent performance under class imbalance.

A number of imbalanced data sets from the KEEL repository (Alcala-Fdez et al. 2011) are
used for evaluation, as detailed in Table 3. To ensure a fair comparison, the method in Chen
et al. (2019) is adopted in the experimental study. A 10-fold cross-validation procedure is
used. Additionally, for each fold, the Synthetic Minority Oversampling Technique (SMOTE)
method is used to synthetically add more samples to the minority class (Chawla et al. 2002).
Note that SMOTE is applied to training and validation samples, but not test samples, in
order to preserve the actual data characteristics for evaluating the performance of BKS and
T-BKS pertaining to their efficacy in real environments. For the K-classifiers, we select the
one-class support vector machines (OC-SVM) as the underlying algorithm with the radial
basis function (RBF) as the kernel (Cristianini and Shawe-Taylor 2000). To obtain a robust
comparison outcome, a statistical test is used to determine significance in performances of
the different ensemble methods against T-BKS. Specifically, the pairwise signed test method
is adopted (Dixon and Mood 1946). For statistical significance to occur at 95% confidence
(i.e. α < 0.05) for our evaluation, a minimum of 12 wins out of 15 is required.

Accuracy (Acc), sensitivity (Sens), specificity (Spec) are used for the performance com-
parison studies (i) and (ii) while the AUC (area under the receiver operating characteristic
(ROC) curve) are used in all three performance comparison studies. The results are calcu-
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Table 4 Confusion matrix Predicted true Predicted false

Actual true TP FN

Actual false FP TN

TP True positive, FN false negative, TN true negative, FP false positive

lated by taking the average of 10 iterations and 10-fold cross-validation (i.e. total aggregate
of 100 outputs). From the confusion matrix, the Acc, Sens, and Spec rates can be obtained,
i.e. (Table 4)

Sensitivity = TPR = T P

T P + F N
(8)

Specificity = FPR = T N

T N + F P
(9)

Accuracy = T P + T N

T P + T N + F P + F N
(10)

Table 5 depicts the performance results of T-BKS and the baseline methods. Referring
to AUC, it is evident that MV is a weak performer across all imbalance ratios. At lower
imbalance ratios, the results achieved by all methods depict less fluctuation. To obtain a
quantitative result of the benchmark comparison studies across all 4 metrics, the statistical
test results are presented in Table 6.

Comparing between T-BKS and the majority voting methods, the former yields signifi-
cantly better AUC and Sens results, based on the signed test. This indicates the effectiveness
of the rules introduced in T-BKS in combining the predictions with respect to the data sam-
ples from the “minority” category, contributing to better sensitivity and, subsequently, AUC
results. Comparing between T-BKS and BKS, the former yields significantly better Acc and
Spec outcomes, based on the signed test. This indicates the effectiveness of the rules intro-
duced in T-BKS for combining the predictions with respect to the data samples from the
“majority” category, contributing to better specificity and, subsequently, accuracy results.

Table 7 depicts the AUC results of T-BKS and those in [16], where only AUC results
are reported. The SVM sub-classifier results from Chen et al. (2019) only contains AUC
performance results. The SVM sub-classifier results from Chen et al. (2019) are used for
comparison purposes. Both data processing methods of DBE-DCR results have been used
for comparison; namely data splitting from clustering (C\DBE-DCR) and data splitting by
random (S\DBE-DCR). The results have been computed by following the iterative and cross-
validation procedure of Chen et al. (2019), in order to ensure fairness in comparison. Based
on the AUC scores and the statistical test outputs presented in Table 8, T-BKS demonstrates
a competitive performance as the DBE-DCR model that has been designed specifically to
tackle imbalanced data problems.

Overall, by taking into consideration the respective Sens and Spec results of individ-
ual members in the decision combination heuristic rules formulated in T-BKS, an effective
ensemble model to undertake imbalanced classification problems is introduced. This is evi-
denced in this comparison with the 15 benchmark imbalanced data sets; namely T-BKS
outperforms MV in AUC and sensitivity, T-BKS outperforms BKS in accuracy and speci-
ficity, and T-BKS achieves comparable results with those of DBE-DCR (Chen et al. 2019),
which is a recent state-of-the-art ensemble model, from the statistical signed test outcomes.

The theoretical implication of T-BKS verification’s outlining the proposed ensemble
model’s capability to tackle imbalanced data implies it’s fit-for-purpose within predictive
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Table 6 Pairwise sign test for baseline benchmark (significance at α > 0.05)

T-BKS AUC Acc Sens Spec

MV BKS MV BKS MV BKS MV BKS

Wins (+) 13 7 8 12 12 6 5 12

Loses (−) 2 8 7 3 3 8 10 3

Draws 0 0 0 0 0 1 0 0

Significance α > 0.05 Nil Nil > 0.05 > 0.05 Nil Nil > 0.05

Acc Accuracy, Sens Sensitivity, Spec Specificity

Table 7 Detailed AUC results for state-of-the-art ensemble benchmark

AUC results Method

Dataset C\DBE-SCR (Chen et al. 2019) S\DBE-SCR (Chen et al. 2019) T-BKS

abalone918 77.21 72.76 76.55

glass2 72.76 71.92 73.00

glass015vs2 62.48 72.35 72.58

glass016vs2 69.85 72.37 73.50

glass0146vs2 69.71 76.717 73.94

yeast2vs8 82.11 87.40 69.40

yeast0359vs78 79.56 77.78 73.48

yeast1vs7 79.07 84.89 75.46

yeast1458vs7 68.41 71.72 56.81

yeast1289vs7 75.07 77.72 67.00

yeast6 94.61 93.71 87.83

yeast5 98.42 98.72 79.86

poker89vs6 86.88 63.07 89.73

xkrvsk0vs8 100 100 98.27

ecoli0137vs26 95.06 95.79 88.99

Table 8 Pairwise sign test for state-of-the-art ensemble benchmark (significance at α > 0.05)

T-BKS AUC

C\DBE-SCR (Chen et al. 2019) S\DBE-SCR (Chen et al. 2019)

Wins (+) 4 4

Loses (−) 11 11

Draws 0 0

Significance Nil Nil

maintenance in asset management. As mentioned in Sect. 1, imbalanced data issues chal-
lenge front-line throughput which is critical within a Human-AI cooperation system. As a
result, T-BKS will be utilised within the real-world case study presented in Sect. 4.2.
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Table 9 Detailed performance
results for all methods

Ensemble method AUC Acc Sens Spec

MV 94.92 94.34 95.77 94.07

BKS 94.96 93.90 96.37 93.69

T-BKS 95.72 94.33 97.76 93.54

4.2 Real-world case study

To verify the effectiveness of the AI-based human-centric decision support framework in
predictive maintenance under pandemic environments, a real-world case study is presented.
This case study involves a critical component in an asset from Company.X. Each component
contains data acquisition and IoT capabilities. Additionally, a volunteer domain expert is
also included in the research, who has over 5 years of experience in the maintenance and
engineering of the asset. There are excessive numbers of these components collectively across
all assets and are deemed critical to day-to-day operations. As a result, these components have
been recognised to be highly important, but possess uncertainties with respect to their time-
to-failure predictions; contributing to the adverse effects on business operations. To combat
this, we undergo this study by deploying the framework to achieve predictive maintenance
under pandemic environments. All non-asset related information (i.e. operational data) is
intrinsically utilised through the domain expert with knowledge that is closely aligned with
business objectives and current contexts.

To deploy T-BKS, we extract statistical features from data collected from the assets. The
training data set has been obtained from historical failure data verified by business rules
pertaining to the asset knowledge. A normal operation data set has been obtained from the
same time period as the failure data set from non-failed assets. Statistical features, which
include minimum value, maximum value, median, average, kurtosis, variance, skewness
and area under the Receiver Operating Characteristic (ROC) curve of data samples were
computed. In consultancy with the domain expert, these statistical features were extracted
from certain frequency signals from the asset under monitoring. The results of machine
learning for imbalanced data of the real-world case study are presented in Table 9.

Referring to the results in Table 9 a similar performance is achieved betweenMVandBKS.
From the average of five-fold cross-validations, T-BKS outperforms the baseline benchmark
methods in AUC and Sens. This is achieved through T-BKS’s methodology of incorporating
Sens and Spec as of the classifiers as trust metrics prior to assigning the final predicted class.
These high performances depict that the proposedT-BKSensemblemethod and themodelling
approach is effective, and ascertains the practicality of machine learning for imbalanced data
in real-world scenarios.

The main objective of the AI-based human-centric framework is to combine domain
expert knowledge and machine learning to achieve predictive maintenance. Predictions from
machine learning models can be contrasted with known business rules to ensure predictions
are in-line with the domain expert’s tacit knowledge. As a result, predictive analytics enabled
through this framework permits the company to plan and conduct bettermaintenance services,
which is critical in pandemic environments. The proposed framework has been deployed into
operations within the company, where the T-BKS has been proven effective.

Given a discrepancy between the business rule and machine learning prediction, the
decision support framework presents both contrasting information to the domain expert for
assessment. The domain expert is provided with the statistical features associated with the
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machine learning prediction and the triggered business rule before making a final decision.
If the machine learning prediction meets the domain expert’s knowledge, the respective busi-
ness rule is altered. If the opposite occurs, the trust score of the machine learning model is
penalized through the updated sensitivity/specificity rates. The aim of this human-in-the-loop
approach in addressing discrepancies enables better user acceptance so that the day-to-day
operations efficiency can be maximised.

The predictions fromT-BKSon the asset component over a six-month period are compiled,
along with the evaluations of domain expert, to validate the effectiveness of the proposed
framework, as shown in Table 10. In total, 11 predictions of the component have been col-
lected. The evaluation results including the business action taken, business benefit, and the
similarity score to assist with the ease of statistical feature comparison (calculated using
cosine similarity) for the domain expert are also presented.

Across 11 iterations, it can be seen in Table 10 that the domain experts concluded 9 out of
11 “Yes” evaluations. As a confidence score in percentage, this is approximately 82% over
half a year, indicating that the similarity measure is important. A higher similarity indicator
increases the probability of an agreed domain experts evaluation and vice-versa. As the sim-
ilarity scores are compiled based on the domain experts’s knowledge and business rules, this
leads to better user acceptance for most new predictions. Furthermore, the human evaluation
results depict that the procedure of extracting domain experts knowledge into business rules
is effective in encapsulating a human-centric approach to addressing imbalanced data in pre-
dictive maintenance. As mentioned previously, the issue of imbalanced data is a bottleneck
in bridging human–machine trust; preventing timely business actions to be undertaken in
events of uncertainty under pandemic environments.

Referring to the AUC performance metric (Table 9), the T-BKS model is reinforced by
an domain experts confidence of approximately 82% (9 out of 11) through statistical feature
comparison assisted with a similarity score. Although such metrics (AUC and confidence)
are not exact, the retrieved confidence is considered a good outcome for a small evaluation
of 11 new predictions. It is also noted that no cases of missed faults have been identified
over the six-month period. Additionally, the business action of ’Closely Monitor’ (ID #5)
drastically decreases uncertainty of asset failing during operations due to prediction of T-
BKS that the asset performance to be anomalous, as well as removal of laborious effort and
manual time requirements needed to identify specific assets for close monitoring. For ID #11,
the asset demonstrated characteristics similar to a previous verified failure scenario and those
of false positives; resulting in rejection by the domain expert. By incorporating the domain
expert’s insightful evaluation and the model performance metrics, an informed decision can
be reached. Using this two-tier mechanism encompassing human knowledge and machine
intelligence, the acceptance of a prediction, or the occurrence of a large discrepancy can
initiate a review of either the business rules or the machine learning model.

5 Managerial implications

The importance of AI has become prominent under pandemic environments, particularly
Covid-19. Day-to-day activities of SMEs are being reviewed to ensure lean operations for
initiatives such as cost-savings as revenue streams are jeopardized. Within the realm of
predictive maintenance in asset management, supply chain and maintenance activities have
become more reliant on predictive capabilities to ensure cost-effectiveness and success in
operations. The uncertainties of asset behaviours and time-to-failure further contribute to
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Table 11 Approximate quantitative cost avoidance (%) of decision support framework and T-BKS Results

ID Downtime cost avoidance (%) Decreased asset uncertainty (%)

1 100 80

2 100 100

3 0 0

4 100 85

5 0 80

6 100 90

7 100 90

8 100 100

9 100 100

10 100 100

11 0 25

the uncertainties in pandemic environments. To combat this, we have proposed an AI-based
human-centric framework for decision support to better prepare for effective and efficient
business operations during black-swan events. To validate the effectiveness of the framework
under real-world scenarios, we elucidate the business benefits achieved for a collaborating
medium-enterprise company.

As depicted in Table 9, the business benefits include downtime cost avoidance and
decreased asset uncertainty. Correspondingly, there are many extra and associated down-
stream benefits. Firstly, downtime cost avoidance is enabled through predictive maintenance;
preventing the asset from an underlying failure during critical day-to-day operations, and any
knock-on costs to cover the downtime under pandemic environments. In the context of the
collaborating company, the associated downtime cost avoidance category includes customer,
performance and safety improvements. The cost benefits via the AI-based human-centric
decision support framework has been elucidated to achieve 100% of cost avoidance individ-
ually for the asset under scrutiny. Additionally, better scheduling and supply chain planning is
achieved, which is an important factor for tackling uncertainty under pandemic environments.

Similar to downtime cost avoidance, the benefits of decreased asset uncertainty encom-
pass elements of customers, performance, scheduling and planning as well as safety. As an
example, for the scenario of a closely monitored business action (e.g., ID #5 in Table 9), a
greater level of asset health visibility has been achieved through the proposed framework.
The associated action is important for navigating through uncertainties in pandemic environ-
ments, since the ability to predict into the future accurately becomes critical to success. A
quantitative business benefits realisation is presented in Table 11. The metrics are presented
as percentages of the maximum potential cost avoidance per incident, which provide an indi-
cation on to budgeted and un-budgeted costs avoidance of downtime and decreased asset
uncertainty associated with the assets.

As organisations are forced to operate leaner to meet financial demands and to ensure
stability, many business activities are conducted with reduced human resource support; espe-
cially within SMEs where a smaller cash reserve leads to more strict cost-control procedures.
Limited resources as the norm and in simultaneity with uncompromising asset manage-
ment demand from clients is no longer an unrealistic expectation. Positively, it has been
demonstrated in this study that the proposed decision support system enables scalability of
effective condition monitoring to achieve certainty of asset health without increasing over-
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head demand within the collaborating company. This is recognised by the company as a
significant advantage of using an AI-based decision support tool to maximise the benefits of
predictive maintenance, which is deemed a maintenance strategy fit for navigating the realm
of pandemics and Black Swan events.

Based on the results depicted in Table 9, the business benefits realisable and discussed in
Sect. 5, and Table 11, this real-world case study has shown promising results in mitigating
the pandemic environmental impacts. It is evident that the proposed AI-based human-centric
decision support system is practical in providing collaborative effects in asset management
where imbalanced data challenge the transition into predictive maintenance; a maintenance
strategy capable in reducing the adverse impacts of pandemic events such as Covid-19 for
asset management organisations.Overall, from the managerial standpoint, the justifications
for AI investment are more tangible as businesses begin to transition into digital avenues
within Industry 4.0 settings. In particular, the implementation of AI systems is best suited
during non-pandemic periods where resources are more available to be devoted to digital
innovations, in preparation for unforeseen situations.

6 Conclusion and future direction

The impact of pandemic environments on predictivemaintenance has prompted organisations
to seek investments in digital transformation initiatives. Comparing with large corporations,
the effects of pandemic environments on SMEs are more adverse due to less available
resources and more reliance on supply chains (Beglaryan and Shakhmuradyan 2020). The
main contribution of this research is the proposal of an AI-based human-centric decision
support framework enabling predictive maintenance in asset management under pandemic
environments for SMEs. On the one hand, the effectiveness of data-based AI tools is compro-
mised due to imbalanced data issues in predictive maintenance. On the other hand, the lack
of human–machine trust from the perspective of users poses another challenge. As a result,
we have designed a T-BKS ensemble model coupled with a human-centric approach to deci-
sion support in predictive maintenance in dynamic situations under pandemic environments.
Our real-world case study positively demonstrates that the proposed AI-based decision sup-
port framework has a significant advantage with the human-in-the-loop feature embedding
domain expert tacit knowledge. The advantage of digital transformation has been validated
with a collaborating company through business benefits in various aspects within predictive
maintenance such as downtime cost reduction, effective and efficient scheduling and plan-
ning, and better preservation and utilisation of knowledge worker in situations where reduced
workforces are common under pandemic environments, especially within SMEs where cost-
cutting is inevitable to survive through the challenges in pandemic periods. To distil wider
adoption, further research into AI-based human-centric frameworks within different indus-
tries that consist of domain experts would be highly beneficial. Additionally, the current
framework assumes there is only one human domain expert interaction. The notion of mul-
tiple domain experts incorporated within could yield an additional interesting research. This
includes domain expert knowledge conflicts amongst themselves and with models; such find-
ings could improve the overall trust development yieldingmore practicality within real-world
scenarios under pandemic environments.
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