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Abstract
The present paper addresses a novel two-echelonmulti-product Location-Allocation-Routing
problem (LARP). It also considers the integration of issues such as disruption, environmental
pollution, and energy-efficient vehicles as currently critical issues in a Supply Chain Network
(SCN) that includes production plants, central warehouses, and retailers. The aim of this
study is tominimize the total cost, which involves costs related to the establishment, shipment
processes, environmental pollution, travelling, vehicle usage, and fuel consumption, in a way
to cover the total demand of retailers. The problem is NP-hard; thus, to solve it approximately,
we developed Grey Wolf Optimization (GWO) and Particle Swarm Optimization (PSO)
algorithms. The numerical analysis showed that the proposed algorithms yielded high-quality
results in a short computational timewhere the average gaps ofGWOandPSOagainstCPLEX
are 0.78% and 0.9%, respectively. Then, a case study of a dairy factory in Iran is conducted to
evaluate the applicability of the proposed methodology and find the optimal policy. Finally,
a set of sensitivity analyses is carried out to suggest managerial insights and decision aids.

Keywords Two-echelon hierarchical location-allocation-routing · Environmental
pollution · Fuel consumption · Particle swarm optimization · Grey wolf optimization

1 Introduction

Location-Allocation-Routing problem (LARP) (Drexl & Schneider, 2015; Karakostas et al.,
2019) consists of three sub-problems, namely Facility Location Problem (FLP) (Das & Roy,
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2019; Friedrich et al., 2018; Karatas &Yakıcı, 2018), Allocation Problem (AP) (Abyazi-Sani
& Ghanbari, 2016; Mokhtar et al., 2019), and Vehicle Routing Problem (VRP) (Rodríguez-
Martín et al., 2019; Tilk et al., 2019). The combination of VRP and FLP is known as the
Location-Routing Problem (LRP) (Capelle et al., 2019; Dukkanci et al., 2019). LRP emerged
in the late 1970s and early 1980s. It consists of two well-known problems in which locating
vehicle depot centers is one of the most challenging issues in designing and configuring a
Supply Chain Network (SCN), which needs to be done simultaneously with determining the
optimal distribution routes of the vehicles. However, these two problems are usually inves-
tigated and solved in two separate phases. The distinction between these two issues results
in increased costs and scheduling time. Therefore, the main aim of LRP is to simultaneously
make the location and routing decisions in designing supply chain distribution networks with
a wide range of applications (Farham et al., 2018a).

SupplyChainManagement (SCM) comprises decisions at two levels (Sampat et al., 2017):

(1) Strategic decisions on the sources of production, distribution, and sales.
(2) Tactical decisions about providing network planning through the flow of materials over

the network.

LRP combines strategic and tactical decisions in an SCN (Garcia&You, 2015). In the field
of operations research, location problems have attracted much attention in recent decades
considering other applicable problems simultaneously. These problems are diverse in terms
of objective functions, which include minimizing fixed costs of establishments, total travel
time, total traveled distance, or other related costs (Tamannaei & Rasti-Barzoki, 2019). On
the other hand, VRPwas first presented byDantzig, Ramser (Dantzig&Ramser, 1959) as one
of the most important optimization problems aiming at designing an optimal set of routes for
a fleet of vehicles with a major intention of serving a certain number of customers observing
different side constraints such as vehicle capacity, time windows, pickup, and delivery (Al
Chami et al., 2019). Obviously, LRP is correlated with the problems of classical location and
vehicle routing (Veenstra et al., 2018).

Two-Echelon LRP (2E-LRP) was introduced as an applicable extension of LRP (Zhou
et al., 2019). In this problem, the location of facilities, including plants and warehouses, is
addressed considering potential locations in addition to the allocation of demand points to
warehouses and vehicle routing. The 2E-LRP assumes that these facilities can be used for a
short time, which can be established by considering their establishment costs for the possible
locations. Each echelon consists of three levels; the first level includes plants, the second
includes intermediate facilities like warehouses, and the third level consists of the retailers
or customers (Wang et al., 2018). The first and second levels construct the 1st echelon, and
the second and third levels construct the 2nd echelon. In this case, warehouses/customers’
demands can be met with one or more shipments through a series of vehicles. In this distribu-
tion system, there are two types of vehicles; the first-type vehicles (with larger capacity) are
related to the first echelon, while the second-type vehicles (with lower capacity) are related
to the second echelon (Zhao et al., 2017).

Environmental issues in SCM include manufacturing process, material selection and pro-
curement, product design, final product delivery, product management after consumption,
and the useful life of the product that leads to generating a green supply chain. By increas-
ing concerns about the need for environmental sustainability, companies have started to
take effective actions through the pressure of governments, customers, investors, and other
stakeholders (Li & Ramanathan, 2018; Pahlevan et al., 2021). Environmental studies have
dramatically increased across the world, leading to an increase in the number of pertinent
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laws and regulations (Sarkodie & Strezov, 2018). Additionally, public pressure on this sub-
ject has forced companies to pay special attention to environmental issues over the past two
decades (Chang et al., 2018). Moreover, production operation at the plant level with the least
pollution has been known as a critical issue for the development and production of green
products. Environmental activities of the supply chain can be measured by environmental
efforts and performance of its players such as suppliers, manufacturers, and distributors (Jena
et al., 2016).

According to statistics, the fuel consumption cost, as a great part of energy costs in logis-
tics, accounts for 50% of the total operational cost for each distribution system, and it has the
potential of surging with the increase of international oil price (Yao et al., 2015). Therefore,
minimizing fuel consumption is viewed as an essential approach to cost-saving, environ-
ment protection, and reduction of distribution cost. The efficient location and routing, which
can result finally in low fuel consumption, have received considerable attention in distribu-
tion systems. Due to the importance of decreasing the environmental pollution and disruption
occurrences, we propose a novelmathematical model capable of optimizing the Two-Echelon
Hierarchical Location-Allocation-Routing Problem (2EH-LARP) in an SCN design with the
aim of reducing the total cost of production, environmental pollution, and fuel consumption
of vehicles. Two algorithms of Grey Wolf Optimization (GWO) and Particle Swarm Opti-
mization (PSO) are then designed to tackle the problem on large scale. Furthermore, the
applicability and performance of the offered methodology are evaluated by a real case study
in a dairy factory located in Iran.

The remainder of the paper is structured as follows. Section 2 reviews the most relevant
research works. Section 3 describes the problem and our developed mathematical model.
Section 4 describes the proposed methodology of the research, including the PSO and GWO
algorithms. Section 5 discusses the numerical results of the proposed model, validation of the
algorithms and sensitivity analyses related to the case study problem. Section 6 provides the
conclusion and recommendations for future studies. Figure 1 illustrates the overall framework
of the research.

2 Related work

The first study on the location theory was conducted by Weber (Weber, 1909) indicating
that an industry should be located where costs of raw materials transportation and final
products can be minimized. Gendron, Semet (2009) presented two Mixed-Integer Linear
Programming (MILP)models for locating and distributingmulti-echelon supply chains. They
introduced a liberalization solution method for these problems. In their research, different
models of liberalization, including linear liberation and binary liberation, have been tested
and compared with existing models.

Nguyen et al. (2012) focused on innovative ways of locating and distributing two-echelon
chains. Theyproposed three greedy algorithms for these problems to generate initial solutions.
They used the Generic seaRch Algorithm for the Satisfiability Problem (GRASP) algorithm
Marques-Silva, Sakallah (1999) to improve the generated solutions. They compared the
proposed method with the Genetic Algorithm (GA) and showed the desirable performance
of this innovative method.

Shahabi et al. (2013) offered a mathematical model for locating facilities and distributing
products considering inventory control in a four-echelon SCN. They defined hubs in the
proposed network to deliver products. They mentioned that using hubs in the supply chain
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Fig. 1 Framework of the study

distribution system can reduce the distribution costs. They applied a variety of solvers in
the Guide to Available Mathematical Software (GAMS) to solve the mathematical model.
Yu et al. (2015) offered a multi-product integrated location-production–distribution planning
model to design an SCN. The goal was to simultaneously determine the location of plants, the
production amount of each product, and the amount sent to distribution centers and customers
in a way to finally minimize the total cost. They treated their proposed problem using LINGO
software.

Eitzen et al. (2017) presented a multi-objective model for the multi-commodity heteroge-
neous vehicle 2E-LRP.An urban goodsmovement contextwas evaluated using their proposed
mathematical model. Zhao et al. (2018) designed a logistic network to joint delivery alliances
by implementing a 2E-LRP in the parcel delivery industry. The goal was to find the best loca-
tions of depots and the allocation of city logistics terminals to minimize the total cost. Finally,
a new approximation algorithm was designed and a comparative analysis was performed
accordingly.

Wang et al. (2018) applied a customer clustering-based technique to solve the 2E-LRPwith
time windows. In their proposed model, a two objective mathematical model was formulated
to concurrently minimize the total cost and maximize the customer satisfaction level. They
implemented a modified Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) to tackle
the problem. Farham et al. (2018b) developed a branch and price algorithm based on a set-
partitioning approach to solve the LRP with time windows in a supply chain. They could
solve the pricing problem using a dynamic programming method. They achieved superior
performance for the suggested technique on a set of small and medium-sized benchmarks.

Toro et al. (2017) designed a bi-objective MILP model for optimizing the Greenhouse
Gas (GHG) emission in an LRP with considering fuel consumption minimization. They took
into account a set of novel constraints with a concentration on maintaining problem con-
nectivity requirements. They solved the proposed mathematical problem using the classical
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ε-constraint method. Eydi, Alavi (2019) investigated VRP in reverse logistics with the aim
of fuel consumption optimization. They assumed that the fuel cost of vehicles was dependent
on the traveled route and load, and customers could have split delivery. They implemented
a Simulated Annealing (SA) algorithm to deal with the problem. Alinaghian et al. (2021)
proposed an augmented Tabu Search (TS) to optimize an inventroy-routing problem with
time windows with the aim of fuel consumption minimization along with vehicle and driver
costs. They evaluated the performance of their algorithm against Differential Evolution (DE)
algorithm.

Recently, Validi et al. (2021) offered a bi-objective three-echelon LRP model to concur-
rently minimize the total cost and total CO2 emission from the burnt fuel of vehicles. They
applied three metaheuristic algorithms of Multi-Objective Genetic Algorithm II (MOGA-II),
Multi-Objective Particle SwarmOptimization (MOPSO) andNSGA-II to tackle the problem.

On the other hand, some researchers have worked on the application of transportation-
location problemswithin SCNs considering the application of heuristic algorithms (Das et al.,
2020a, 2020b) and sustainability and environmental issues (Das et al., 2020c, 2021). Table 1
represents the latest studies conducted between 2003 and 2021 related to the subject of this
research.

A review of the literature clearly shows that to well contribute to the body of knowl-
edge, this research needs to consider the disruption of warehouses and the minimization of
environmental pollution and fuel consumption in a two-echelon, multi-product 2EH-LARP.
Considering the lack of lifelong operation of the facility and the possibility of their disrup-
tion, the realization of an energy-efficient 2EH-LARP in the supply chain becomes more and
more realistic.

3 Problem statement

This study considers a two-echelon supply chain with three different levels: plants, ware-
houses, and retailers (customers). Themain aim is to find a strategic planning and operational
decisions simultaneously over a unique planning horizon that is assumed to be similar in each
period. In other words, the main parameters of the problem (e.g., demand parameter) are
defined for a time period, which is repeated in the next time periods. The strategic planning
includes finding the best possible locations for plants and warehouses in the first and second
levels of the first echelon. The operational decisions determine the best routes for vehicles in
both echelons to have theminimumpossible total cost. The total cost includes total fixed costs
of the establishment of plants and central warehouses as well as the total transportation costs
between plants and central warehouses (in the first echelon) and between central warehouses
and retailers (in the second echelons).

The main assumptions of the model are listed as follow:

• There are three levels of facilities: plants in level 1, warehouses in level 2, and retailers in
level 3.

• Each plant and warehouse has a different establishment cost.
• Different types of products are considered in the supply chain.
• The demands of warehouses are considered as the main variable that is determined by the
retailers’ demands.

• Vehicles of type 1 are defined to cover the demands in the first echelon. Warehouses would
receive their demands for different products from plants.
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• Vehicles of type 2 are defined to cover the demands in the second echelon. Retailers would
receive their demands for different products from warehouses.

• Vehicles belonging to each type have their own capacity and usage cost.
• The capacity of plants/warehouses is fixed for each type of product.
• All demands should be satisfied in each echelon. All demand facilities can receive their
demands for different products from different supplying facilities.

• Split deliveries by vehicles are not allowed.
• Disruptions are defined for warehouses with a specific percentage.
• The number of established plants and warehouses is limited.
• Fixed fuel consumption rates are taken into account for each typeof vehicle,which is depen-
dent on the amount of traveled distance. This assumption denotes the energy-efficiency
concept.

• CO2 emissions are considered in terms of imposed costs for transportations of vehicles.

3.1 Mathematical model

In this section, a novel mathematical model including the objectives, limitations, and assump-
tions of the problem is developed. The main superiority of the proposed model is because of
its hierarchal structure which connects different levels efficiently. Furthermore, we refer the
reader to Appendix A for a list of the notations used in the proposed model.

Minimize Z =
∑

i∈I

∑

p∈P

Yip fip +
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cg′
jkm2

z′jkm2

+ γ

⎛

⎝
∑

i∈I

∑

j∈J

∑

m1∈M1

∑

m2∈M2

∑

k∈K
di j zi jm1 + d ′

jk z
′
jkm2

)

⎞

⎠

+
∑

i∈I

∑

m1∈M1

CVm1Uim1 +
∑

t∈T

∑

m2∈M2

CV ′
m2 U

′
jm2

+ γ ′
⎛

⎝
∑

i∈I

∑

j∈J

∑

m1∈M1

(
f am1 + f bm1 La jpm1

)
di j zi jm1 +

∑

i∈I

∑

j∈J

∑

m1∈M1

f am1d ji z jim1

⎞

⎠

+ γ ′
⎛

⎝
∑

j∈J

∑

k∈K

∑

m2∈M2

(
f a′

m2
+ f b′

m2
Lbkpm2

)
d ′
jk z

′
jkm2

+
∑

j∈J

∑

k∈K

∑

m2∈M2

f a′
m2

d ′
k j z

′
k jm2

⎞

⎠

(1)

Equation (1) represents the objective function indicating thtal cost minimization. It has
seven terms: establishment costs of plants and warehouses, processing costs of shipments
in the 1st and 2nd echelons, environmental pollution costs, traveling costs of vehicles, usage
costs of vehicles, and fuel consumption costs of vehicles.

∑

i∈I
Xi jp = 1 ∀ j ∈ J ,∀p ∈ P, (2)

∑

j∈J

X ′
jkp = 1 ∀k ∈ K ,∀p ∈ P, (3)
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Equations (2) and (3) express that the total demand for each warehouse and retailer should
be met for the established facilities, respectively.

∑

p∈P

Yip ≤ |P|∀i ∈ I , (4)

∑

p∈P

Y ′
j p ≤ |P|∀ j ∈ J , (5)

Equations (4) and (5) state that each plant can produce amaximum of all types of products,
and each central warehouse can provide a maximum of all types of products, respectively.

∑

j∈J

Xi jp ≤ npYip∀i ∈ I ,∀p ∈ P, (6)

∑

k∈K
X ′

jkp ≤ nwY ′
j p∀ j ∈ J ,∀p ∈ P, (7)

Equations (6) and (7) indicate that in accordance with the requirements of the central
warehouse, the central warehouse should be at least equal to the potential number of plant
establishments, while the retailers’ requests should be equal to the potential number of central
warehouses.

Djp =
∑

k∈K
D′
kp X

′
jkp ∀ j ∈ J ,∀p ∈ P, (8)

Equation (8) specifies the amount of demand for each central warehouse.
∑

j∈J

D jp Xi jp ≤ SipYip∀i ∈ I ,∀p ∈ P, (9)

∑

k∈K
D′
kp X

′
jkp ≤ (

1 − α j p
)
S′
j pY

′
j p∀ j ∈ J ,∀p ∈ P, (10)

Equations (9) and (10) represent the capacity constraints of the plant and the central
warehouse, respectively. In Eq. (9), the disruption of the warehouse is investigated. If a
disruption occurs, a percentage of the capacity will be unusable.

∑

m1∈M1

∑

i∈I
zi jm1 = 1∀ j ∈ J , (11)

∑

m2∈M2

∑

j∈J

z′jkm2
= 1 ∀k ∈ K , (12)

Equations (11) and (12) ensure that all demands of each warehouse and retailer should be
satisfied by relevant vehicles, respectively.

∑

j∈J

zi jm1 =
∑

j∈J

z jim1∀m1 ∈ M1, i ∈ I , (13)

∑

k∈K
z′jkm2

=
∑

k∈K
z′k jm2

∀m2 ∈ M2, j ∈ J , (14)

Equations (13) and (14) indicate that inner flows should be equal to outer flows for all
nodes within the 1st echelon and 2nd echelon (flow balance), respectively. In other words, if
a vehicle arrives at a node, it should exit that node.

∑

j∈J

zi jm1 ≤ MUim1∀m1 ∈ M1, i ∈ I , (15)
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∑

j∈J

z′jkm2
≤ MU ′

jm2
∀m2 ∈ M2, j ∈ J , (16)

Equations (15) and (16) express that each vehicle in each echelon would be used when its
usage cost has been paid, respectively for the 1st echelon and 2nd echelon. In other words,
if a vehicle is not determined to be used, it cannot construct any route.

∑

j∈J

∑

i∈I
D jpzi jm1

≤ Cappm1
∀m1 ∈ M1, p ∈ P, (17)

∑

j∈J

∑

k∈K
D′
kpz

′
jkm2

≤ Cap′
pm2

∀m2 ∈ M2, p ∈ P, (18)

Equations (17) and (18) are related to the capacity constraints of the first and second
echelons’ vehicles, respectively.

Oj − Oj ′ + Mzi jm1 ≤ M − 1 ∀m1 ∈ M1,∀ j, j ′ ∈ J , (19)

O ′
k − O ′

k′ + Mz′jkm2
≤ M − 1 ∀m2 ∈ M2,∀k, k′ ∈ K , (20)

Equations (19) and (20) are related to the elimination of sub-tours for the 1st and 2nd

echelons’ vehicles, respectively.
∑

h∈I∪J
zihm1 +

∑
h∈T N

z jhm1 ≤ 1 + �Xi jp�∀i ∈ I , j ∈ J , p ∈ P,m1 ∈ M1, (21)

∑

h∈J∪K

z′jhm2
+

∑

h∈J∪K

zkhm1 ≤ 1 + X ′
jkp ∀ j ∈ J , k ∈ K , p ∈ P,m2 ∈ M2, (22)

Equations (21) and (22) connect allocating and routing components in the 1st and 2nd

echelons, respectively. These constraints link the related variables of allocation and routing
to each other.

(La jpm1 − Djp − La j ′pm1)z j j ′m1 = 0 ∀ j, j ′ ∈ J ; j 	= j ′,∀p ∈ P,m1 ∈ M1, (23)

(Lbkpm2 − D′
kp − Lbk′pm2) zkk′m2

= 0 ∀k, k′ ∈ K ; k 	= k′,∀p ∈ P,m2 ∈ M2, (24)

Equations (23) and (24) calculate the load amount of each product for vehicles in the 1st

and 2nd echelons, respectively.

0 ≤ Xi jp ≤ 1, 0 ≤ X ′
jkp ≤ 1; Yip ∈ {0, 1}, Y ′

j p ∈ {0, 1}
∀i ∈ I ,∀p ∈ P,∀ j ∈ J , ∀k ∈ K

(25)

zi jm1 , z
′
jkm2

,Uim1 ,U
′
jm2

∈ {0, 1}; Oj , O
′
k ∈ Z+; Djp, La jm1 , Lbkm2 ≥ 0

∀i ∈ I ,∀p ∈ P,∀ j ∈ J , ∀k ∈ K ,∀m1 ∈ M1,∀m2 ∈ M2
(26)

and Eqs. (25) and (26) specify the types of location and rog, respectively.
The linearization of the proposed model is provided in Appendix B.

4 Methodology

Due to the complexity of optimization problems, a lot of researchers have been working on
a variety of optimization problems and applications of computers to figure out the best opti-
mization tools. In different kinds of research studies, it has been demonstrated that the LRP is
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an NP-hard problem (Şahin et al., 2007). Due to this, it is critical to implement approximate
solution techniques to treat the problem in large sizes within a reasonable computational
time. In this regard, GWO algorithm is employed to solve the problem as one of the novel
metaheuristic algorithms and its performance is assessed compared to the PSO algorithm
and CPLEX. Both algorithms are known as two fast and efficient solution methods in the
literature (Suman et al., 2021). First, it is critical to choose the best way of encoding the
solution of the mathematical model. In the following section, the solution representations of
the algorithms are first described, and then their operational mechanisms are introduced.

4.1 Solution representation and initial solutions

Asolution of the problem includes twomain parts. In the first part, the locations ofwarehouses
and plants are determined, and in the second part, the state of the transportation routes
between supply chain members is determined. For the first part of the string structure, the
solution is in the form of vectors with values between 0 and 1. The values of more than 0.5
represent the establishment of a plant or warehouse and a minimum value of 0.5 represents
the failure to establish a plant or warehouse. The last column of the solution representation
shows the vehicle index. This index represents that which vehicle should visit each plant
of warehouses. For example, consider 2 potential plants, 3 potential warehouses, 6 product
types, and 2 vehicles in the first echelon and 3 vehicles in the second one; a sample of the
first part of the solution is shown in Table 2.

As it is clear in Table 2, each row belongs to a plant or warehouse. Each column also
represents a product type. In the first plant, the values for products 1, 2, and 6 are greater
than 0.5, which shows the establishment of plant 1 for the production of these products. Plant
2 is also established to produce products 3, 4, 5, and 6. In the case of warehouses, the first
warehouse will be established for storing products 1, 3, and 5. The third warehouse will be
established to store products 1, 2, 4, and 6. Additionally, all values for the second warehouse
are less than 0.5, which means that the warehouse will not be established.

In the last column, the vehicle index is shown. As we have two vehicles in the first echelon
(flows from plants to warehouses), the indices less than 0.5 represent the first vehicle and
the others represent the second one. The exampled solution representation illustrates that
two plants use vehicle 2 for covering the warehouses. In the second echelon (flows from
warehouses to retailers), we have three vehicles. Thus, indices less than 0.33 represent the
first vehicle, while indices between 0.33 and 0.67 represent the second vehicle, and greater
than 0.67 represent the third vehicle. As a result, in the above example, the first and second
warehouses use vehicle 2, while the third warehouse uses vehicle 1.

Table 2 Solution representation example

Products/vehicles p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 Vehicle index

Plants 0.60 0.7 0.37 0.06 0.37 0.95 0.6

0.39 0.145 0.75 0.59 0.92 0.51 0.95

Warehouses 0.64 0.01 0.52 0.31 0.77 0.37 0.42

0.16 0.37 0.40 0.09 0.24 0.43 0.51

0.92 0.53 0.46 0.77 0.27 0.99 0.05
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After determining the vehicles’ assignment, their routes can be constructed using a heuris-
tic method. This approach is applied to construct a low-cost routing. To this end, the 2-opt
method is used as a best-known route generation heuristic (Goli et al., 2018). After determin-
ing the used vehicles and the constructed route for each one, the amount of fuel consumption
and emission costs can be calculated.

The second part of the solution shows the rate of sending each product from plants to
warehouses and from warehouses to retailers. In many cases, only one plant produces a
particular product type; therefore, warehouses must receive their entire demand from it. In
the example given in Table 2, except product 6, the rest products are produced only by one
plant. Moreover, in some cases, only warehouse 1 stores a special product. In that example,
products 2, 4, and 6 are only stored in warehouse 3. In such a situation, the entire demand
of warehouses and retailers will be provided only by a single plant. Also, the retailers who
demand product 4 must receive it from warehouse 3 and warehouse 3 must also receive
its demand from plant 2. However, in many cases, there are several options for sending
products from plants to warehouses and from warehouses to retailers. In such a situation, the
total amount of shipments is planned with respect to the environmental aspects in different
echelons in order to supply the entire demand.

For generating feasible solutions, constraints are observed in each step. For example,
consider that warehouse 3 is responsible for supplying product 6. This warehouse can supply
the product from plant 1 or plant 2. In such a situation, the total cost of shipments and
environmental pollution is calculated from plants 1 or 2 to warehouse 6, and the one with
the lowest cost is selected (suppose that the minimum amount is caused by plant 2). If the
capacity of plant 2 is less than the total demand of product 6, then the total capacity of plant
2 will be used and the remained demand will be provided by plant 1 that has been already
established.

After determining the locations of warehouses and plants, shipment planning is imple-
mented. Between different members of the supply chain, the capacity constraints of
warehouses, plants, or vehicles may be violated. Therefore, a penalty approach is defined
to be applied to the objective function. In the event of a capacity constraint violation in the
objective function, a penalty is considered to be equal toM. It should be noted that destruction
affects the amount of supply capacity in the plants and warehouses. Furthermore, pollution is
considered in the objective function that affects total costs. Therefore, disruption and pollu-
tion are major issues for proposed meta-heuristics to find feasible and near-optimal solutions,
respectively, to them.

4.2 Grey wolf optimization algorithm

GWO algorithm is a nature-inspired meta-heuristic algorithm that emulates the behavior of
grey wolves and the hierarchy of leadership and their hunting method. The GWO algorithm
was first introduced by Mirjalili et al. (2014) with special attention to the collective hunting
of grey wolves. Grey wolf belongs to the Canadian wolf family, which is at the top of the
food chain and prefers to live in groups. On average, the group consists of a family of 5–11
animals. Interestingly, they have a strict social rule in such a way that the wolf alpha is the
ruler wolf in the group and his orders must be obeyed by the group. Alphas are responsible
for deciding when the group can hunt, sleep, move, etc. The second level is the wolf beta.
Beta is the wolf under the command of alpha; it helps alpha in decision-making and other
group activities. Wolf beta is likely the best candidate for alpha and plays the role of a vice
president for alpha and the moderator. The lowest degree is dedicated to omega grey wolf.
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Omega wolves perform sacrificial works for the other members of the group. They should
eat food after the others. If a wolf is not categorized as alpha, beta or omega, it is called
delta. Delta wolves follow alpha and beta and rule on omegas (Mirjalili et al., 2014). For
mathematical modeling, the wolf social rule designates the most desirable solution of α when
developing the GWO.

As a result, the 2nd and 3rd best solutions are called β and δ wolves, respectively. The
remained solutions are supposed to be ω. Thus, the GWO algorithm is led by α,β, and δ, and
the ω wolves follow these three classes. The prey is encircled by grey wolves during their
hunting.

For mathematical modeling, Eqs. (27) and (28) are proposed for this encircling.

−→
D =

∣∣∣
−→
C .

−→
XP (t) − −→

X (t)
∣∣∣ (27)

−→
X (t + 1) = XP (t) − −→

A .
−→
D (28)

where t denotes the number of iterations, A andC are the vector coefficient,
−→
X P is the vector

of the hunting position, and X stands for the position vector of a grey wolf.
Equations (29) and (30) calculate the vectors of A and C:

−→
A = 2−→a .

−→r1 − −→a (29)

−→
C = 2.−→r2 (30)

where the −→a elements are linearly reduced from 2 to 0 under the flow of iterations, and r1
and r2 denote random vectors that take values within [0, 1].

Grey wolves can detect the position of the prey and encircle it. Hunting is principally
conducted by alpha. Moreover, beta and delta may be occasionally involved in hunting.
Therefore, in an absolute search space, we do not have any strategy about the optimal posi-
tion (hunting). For the mathematical simulation of grey wolf hunting behavior, we assume
that alpha (best candidate solution), beta, and delta have enough knowledge about potential
hunting positions. Hence, the first three best-generated solutions are saved and we force other
search factors (omegas) to update their position in accordance with the location of the best
search factors (Medjahed et al., 2016). These operations are implemented according to Eqs.
(31) to (33).

−→
Dα =

∣∣∣
−→
C1.

−→
Xα − �X

∣∣∣,
−→
Dβ =

∣∣∣
−→
C2.

−→
Xβ − �X

∣∣∣,
−→
Dδ =

∣∣∣
−→
C3.

−→
Xδ − �X

∣∣∣, (31)

�X1 = −→
Xα − −→

A1.
( �Dα

)
, �X2 = −→

Xβ − −→
A1.

( �Dβ

)
, �X3 = −→

Xδ − −→
A1.

( �Dδ

)
, (32)

−→
X (t + 1) =

−→
X 1 + −→

X 2 + −→
X 3

3
(33)

All in all, the GWO algorithm starts its search with the creation of a randomly-generated
population of grey wolves or candidate solutions. The probable position of the prey is then
estimated by alpha, beta and delta wolves during the iteration. Candidate solutions update
their distances to the prey. The parameter “a” will be reduced from 2 to 0 to strengthen the
prey identification process and attack to it.When |A|> 1, the candidate solutions are divergent,
and when |A|< 1, the candidate solutions are converging. The pseudo-code of the suggested
GWO algorithm is depicted in Fig. 2.
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Fig. 2 Pseudo-code of the GWO
algorithm (Medjahed et al., 2016)

Table 3 An example of the GWO procedure

X(t) 0.60 0.95 0.37 0.06 0.37 0.70 0.60

A 0.32 0.15 0.42 0.15 0.00 0.83 0.45

C 0.38 0.38 0.98 0.34 1.00 0.11 0.96

D 0.37 0.59 0.01 0.04 0.00 0.62 0.03

X(t + 1) 0.48 0.86 0.37 0.05 0.37 0.18 0.59

To implement these structures in this research, Eqs. (27)–(33) are calculated for each row
of each solution representation matrix. An example for this calculation is presented in Table
3.

The GWO algorithm has three main parameters: the maximum number of iteration
(N_iter), number of search agents (N_search), and position determination factor (a), which
can affect the quality of the results. In this research, GWO parameters are specified using
a trial and error method on extensive examples. Finally, these parameters are set with the
values of N_iter = 500, N_search = 30, and a = 2 − 2t

N_iter , where t represents the number
of iterations.

4.3 Particle swarm optimization algorithm

PSO algorithm was suggested by Eberhart, Kennedy (Eberhart & Kennedy, 1995), which
is based on the motion of particle swarm and inspired by the collective behavior of birds
in nature. Since the application of this algorithm requires only a few primitive computing
operators, the implementation of this algorithm is cost-effective. This algorithm performs as
follows: if a swarm of particles is distributed as optimization variables in the search space, it is
obvious that some particles will have a superior position to the other particles. Consequently,
according to the forward behavior of the particles, other particles try to get to the position
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of the better particles, while the positions of the better particles are also changing. It should
be noted that the changes made to the positions of particles are according to the experience
of the particles in previous movements and the experience of neighboring particles. In other
words, each particle is aware of its own superiority or non-superiority over the neighboring
particles as well as the whole group.

The main steps to run this algorithm are as follow:
Step 1 Creating a random population.
Step 2 Determining the best particle and the best personal memories of each particle.
Step 3 Updating the speed and positions of all particles.
Step 4 Determining the best particle and the best personal memories of each particle.
Step 5 Going to Step 3 if the stopping conditions are not met; otherwise, the algorithm is

terminated.
The first population of the particles is randomly initialized. In each iteration, the particles

are assessed using a fitness function. The fitness function represents the objective of the
proposed mathematical model. If the generated particle fitness value is the best one, this
particle stores it as the personal best (Pbest). The particle with the best fitness value is
chosen as a global best (Gbest) at the end of each iteration. In each iteration, each particle
changes its position regarding the Pbest and Gbest. At the end of the algorithm, the Gbest is
set as the best solution (AbuNaser et al., 2015). Figure 3 represents the pseudo-code of the
suggested PSO algorithm.

According to Fig. 3, in each iteration, Pbest and Gbest are specified and then the velocity
of each particle (V(t)) is calculated by Eq. (34). Then, the position of each particle (X(t)) is
updated to X(t+1) using Eq. (35).

V(t) = V(t−1) + C1 × Rand × (
Pbest − X(t)

) + C2 × Rand × (Gbest − X(t)) (34)

X(t+1) = X(t) + V(t) (35)

In this research, all cells of a solution should be between 0 and 1. On the other hand,
according to Eq. (35), no constraint is applied to ensure this condition. Thus, in this research,
we modify X(t+1) using Eqs. (36) and (37).

X(t+1) = max{X(t+1), 0} (36)

Fig. 3 The pseudo-code of the
PSO algorithm (Kennedy &
Eberhart, 1995)
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Table 4 An example of the PSO procedure

X(t) 0.60 0.95 0.37 0.83 0.37 0.70 0.60

Pbest 0.04 0.14 0.50 0.14 0.54 0.67 0.79

Gbest 0.34 0.54 0.43 0.24 0.66 0.70 0.17

V(t) 0.21 − 0.74 1.12 − 1.00 0.15 0.98 0.18

x(t + 1) 0.81 0.21 1.49 − 0.17 0.52 1.68 0.78

Modified x(t + 1) 0.81 0.21 1.00 0.00 0.52 1.00 0.78

Table 5 The best values for PSO
parameters Name Symbol Best value

Pbest weight C1 2

Gbest weight C2 1.7

Number of particles NP 50

Maximum number of iteration NI 300

X(t+1) = min{X(t+1), 1} (37)

The procedure of the PSO algorithm is described for each row of the proposed solution
representation. An example is given in Table 4.

The trial and error technique is employed to determine the best values of PSO. Table 5
provides the PSO parameters and their best values.

5 Numerical results

This section presents the computational and analytical results provided by the suggested
solution techniques. First, to validate the proposed mathematical model and evaluate the
solution methods, several random instance problems are generated in different sizes. The
input information of these problems and the values of the parameters are given in Tables 6
and 7, respectively. Table 8 provides the obtained results by different solution methods.
After testing the validation of the proposed mathematical model by the exact method and
comparing the algorithms in different problems, a case study of Kaleh Dairy Industries
Company in Iran is analyzed to test the applicability of the methodology. Then, the optimal
policies are obtained and analyzed using the sensitivity analysis performed on the retailers’
demand and warehouses’ disruption parameters.

5.1 Testing the validation of the proposedmathematical model

The mathematical model is validated using GAMS optimization software version 24.1.2 and
solved by CPLEX solver. Furthermore, the proposed algorithms are coded in the MATLAB
2014 software package using a system with 2.60 GHz processor of core i7, and 12.00 GB of
RAM.
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Table 6 The input data of the generated problems

Problems np nw |p| |k|

P1 2 3 2 4

P2 3 5 2 7

P3 5 6 3 9

P4 6 7 3 10

P5 8 10 4 15

P6 9 12 5 17

P7 10 15 6 20

P8 15 20 8 30

P9 25 35 10 50

P10 40 60 20 100

Table 7 Input data related to the model’s parameters

Parameters Values Parameters Values Parameters Values

Djp Uniform (80,200) d ′
jk Uniform (2,5) ci jp Uniform

(2,4)

D′
kp Uniform (10,40) CVm1 Uniform

(20,50)
c′ jkp Uniform

(1,2)

Sip Uniform
(8000,10,000)

CV ′
m2 Uniform

(10,15)
cgi jp Uniform

(4,6)

S′
j p Uniform

(1500,3000)
Cappm1 Uniform

(500,800)
cg′

jkp Uniform
(3,4)

fi p Uniform
(2000,5000)

γ 1 γ ′ 1.2

f ′
j p Uniform

(200,300)
α j p Uniform

(0.05,0.1)
Cap′

pm2 Uniform
(100,200)

f am1 0.05 f bm1 0.12 f a′
m2 0.03

f b′
m2 0.1 di j Uniform

(10,15)
– –

According to the results given in Table 8, The CPLEX was able to solve 8 out of 10
problems considering 3600 s runtime limitation. It was able to solve the first 7 problems
optimally and was unable to solve P8 optimally within 3600 s. Additionally, as the results
show, the GWOalgorithm outperformed the PSO algorithm, comparedwith the exact method
in all instance problems with an average gap of 0.78%, while the PSO algorithm showed the
average gap of 0.90% in the first 8 problems.

Furthermore, the average runtime of the CPLEX in the 8 initial problems is about 981.97 s.
Meanwhile, the average runtimes of the PSO and GWO algorithms are 49.13 and 65.17 s,
respectively. Both algorithms could solve the problems in less than 300 s. By considering
these acceptable runtimes, the average gaps of the proposed algorithms can be ignored.
Finally, it can be mentioned that based on the results obtained and the importance degree of
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Table 8 Computational results

Problems CLPEX PSO PSO
Gap
(%)

GWO GWO
Gap
(%)Runtime

(s)
Objective
Value (×
102)

Runtime
(s)

Objective
Value (×
102)

Runtime
(s)

Objective
Value (×
102)

P1 0.64 85.15 0.4 85.15 0.00% 0.6 85.15 0.00%

P2 2.32 135.46 0.93 135.46 0.00% 1.31 135.46 0.00%

P3 63.28 795.16 3.78 795.16 0.00% 4.71 795.16 0.00%

P4 152.4 986.22 6.48 993.51 0.74% 8.91 990.94 0.48%

P5 625.1 1625.03 8.91 1662.23 2.29% 10.13 1659.71 2.13%

P6 1426.49 1971.12 16.13 1993.12 1.12% 21.22 1992.08 1.06%

P7 1985.6 2435.96 32.19 2510.28 3.05% 45.44 2498.44 2.56%

P8 3600 4163.54 55.18 4106.91 0.00% 72.15 4095.12 0.00%

P9 3600 – 156.94 10,195.68 – 190.19 9994.31 –

P10 3600 – 210.44 23,653.06 – 297.06 22,004.46 –

Ave 981.97 – 49.13 – 0.90% 65.17 – 0.78%

runtime against the objective gap, the GWO algorithm acted better than the PSO algorithm;
therefore, it was chosen for solving the case study problem.

To illustrate the obtained runtimes schematically, the comparison of the computational
runtimes is displayed in Fig. 4. Briefly, the results show that the PSO and GWO algorithms
obtain the optimal solution in small and medium sizes within a very short runtime.
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Fig. 4 Comparison of runtime of different solution methods
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5.2 Case study

In this section, a case study of a dairy supply chain is considered with a distribution of 22
different dairy products in a given network with 26 retailers. The goal is to find the optimal
locations for central warehouses to be linked with a pre-established source plant that can
supply all these products. The manager wants to specify the optimal policy for potential
development plans. The proposed model was modified according to the input information.
For example, Eq. (4) changes as

∑
p∈P Yip = 22,∀i = 1. The values of parameters are based

on historical data and expert forecasts, which have been gathered for a 5-year planning. It
should be noted that α j = 0.02 is considered in each period. Other parameter values are
provided by historical data that existed in Kaleh Dairy Industries Company.

The case is solved using the superior algorithm, i.e., the GWO algorithm, and the obtained
result is depicted in Fig. 5. The obtained objective value is 10,5462,24,613 monetary units.

As it is shown in Fig. 5, three central warehouses are chosen to be established and located
with the numbers 3, 4, and 5. Eight retailers are assigned to the central warehouse 3. Nine
retailers are assigned to central warehouse 4, and nine remaining retailers are assigned to
central warehouse 5 such that all of these warehouses are supplied only by one plant. The
warehouses cover all demands of retailers for each product. This hierarchy is formed accord-
ing to Fig. 5.

The optimal routes and the number of required vehicles are presented in Table 9.
According to Table 9, two and five vehicles have been used in the plant and warehouses,

respectively. In addition, the optimal routes are shown with the sequence of serving in each
echelon.
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Fig. 5 The schematic solution of the case
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Table 9 The optimal routes of vehicles

First echelon Second echelon

Vehicle
no.

Constructed routes Vehicle
no.

Constructed routes

1 Plant- Warehouse 5- Warehouse 3-
Plant

1 Warehouse 4- 1- 2- 23- 22- Warehouse
4

2 Plant- Warehouse 4- Plant 2 Warehouse 5- 25- 24- 16–15- 14- 12-
13- 11- Warehouse 5

– – 3 Warehouse 4- 3- 7- 6- 5- 4- Warehouse
4

– – 4 Warehouse 3- 8- 9- 10- 26- 20-
Warehouse 3

– – 5 Warehouse 3- 21- 17- 18- 19-
Warehouse 3

In the following, a variety of sensitivity analyses are conducted on the retailers’ demand
and disruption parameters in order to study the behavior of the objective function against the
parameters’ fluctuations in the real world. In other words, sensitivity analysis can be utilized
as a critical tool in organizations to help managers in different situations.

Table 10 represents the obtained results of sensitivity analyses. Moreover, Figs. 6 and
7 depict the behavior of the objective function against changing the retailers’ demand and
disruption occurrence probability in warehouses, respectively.

As it is obvious from the results of sensitivity analyses, the objective function has different
fluctuations against different change intervals of the parameters. In Fig. 6, due to a 20%
increase in retailers’ demand, the problem has become infeasible, which is due to the lack of
estimation of the demand for central warehouses by the only existing plant that is determined
by the demand of all retailers for different products. However, in case of a 10% increase,
the objective increase is significant (up to 34%). In the decrease intervals of the demand
parameter, these changes are less in the objective function and with a relatively steady slope.
In Fig. 7, there is no remarkable change in the objective function for a 10% reduction of the
parameter, while the change in the objective function is noticeable for the parameter reduction
of 20%. By increasing the disruption percentages, the increase in the objective function has
been accompanied by a relatively steady slope, which can increase it up to 16.9%.

To come up with managerial insights, it should be noted that in the real world, managers
are looking for low-cost solutions. This is while many different types of costs have opposite
effects on each other which can be found in the studies of logistics systems. For example,

Table 10 The sensitivity analysis of the case

Objective
Values
(×106)

Parameter change intervals

−20% −10% 0 + 10% + 20%

D′
kp 7054.341426 8504.439550 10,546.224613 14,131.881254 Infeasible

α j 9464.149846 10,532.891864 10,546.224613 11,230.627122 12,332.702910
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Fig. 7 The sensitivity analysis of the disruption occurrence probability in central warehouses

reducing the cost of locating warehouses greatly increases the cost of distributing goods.
The approach used in this research helps logistics system managers, especially in the dairy
industry, to make the best possible decision with a comprehensive overview of all processes.
Another important point is that determining the best possible decision-making will be very
difficult and time-consuming due to the complexity of the problem, therefore, the suggested
GWO algorithm as an efficient tool will help to find the best solution in a reasonable time.

Furthermore, the outputs derived from the sensitivity analysis can be considered in the
decision-making of the organization’s management to specify the optimal policy in a way
to meet the retailers’ demand and develop the organization. In other words, managers can
handle different situations by analyzing them and evaluating the required level of resources
to move toward the minimum total cost without any failure.
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6 Conclusion

This study proposed an MILP formulation for a 2EH-LARP within an SCN of three levels:
production plants,warehouses, and retailers. The proposedmathematicalmodelwas designed
based on supply chain disruptions, environmental pollution, and fuel consumption aspects to
minimize the total cost. Two metaheuristic algorithms, i.e., the PSO algorithm and the GWO
algorithm, were used to solve the problem. Then, the results were compared with the CPLEX
solver of the GAMS software with the applied exact method. The obtained computational
results proved the validation of the developed model and compared the suggested algorithms
in terms of performing their defined task. It was found that the GWO algorithm has a clear
superiority over PSO. Finally, a case study was conducted on a dairy supply chain, and
the optimal policy was depicted schematically considering the estimated optimal total cost.
After performing a sensitivity analysis on the case study, it was found that the objective
was highly dependent on the number of retailers’ demand and the disruption parameters.
As the retailer’s demand increased by 10%, the total cost increased up to 34% and by 20%
increase in disruption percentage of the warehouse, the total cost increased up to 16.9%. The
findings can be taken into consideration by managers in managerial decision-making and
policy making of the plant development.

Regarding future studies, the following recommendations are given based on the main
limitations of the research. The study of uncertainty conditions in the mathematical model
such as utilizing fuzzy logic or robust optimization would be helpful tomake themodel closer
to real-world conditions. Other well-known metaheuristic algorithms, such as TS algorithm
or a hybrid version can be employed and compared with the proposed GWO and PSO.
Moreover, considering a monthly or annual planning period in the model is one of the useful
recommendations to create a dynamic view of the problem. Eventually, the application of
Internet-of-Things can be studied in the problem to improve the efficiency of vehicles and
finally the performance of the SCN.

Appendix A

Notation

In this section, all the notations including sets, indices, parameters, and variables are presented
for the model described in the paper.

Indices

i Index of plants

j Index of warehouses

k Index of retailers

p Index of products

j
′
, k

′
, h Auxiliary indices

m1 Index of vehicles used in the 1st echelon

m2 Index of vehicles used in the 2nd echelon

Parameters

D′
kp Demand of the k-th retailer for the p-th product
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Sip Supply capacity of the i-th plant for the p-th product

S′
j p Supply capacity of the j-th warehouse for the p-th product

fi p Establishment cost of the i-th plant for the p -th product

f ′
j p Establishment cost of the j-th warehouse for the p -th product

α j p Disruption percentage which occurs for the j-th warehouse for the p-th product

np Possible number of plants which can be established

nw Possible number of warehouses which can be established

ci jp Processing cost of shipping the p-th product from the i-th plant to the j-th warehouse

c′jkp Processing cost of shipping the p-th product from the j-th warehouse to the k-th retailer

cgi jm1
Emission cost associated with shipping the p-th product from the i-th plant to the j-th
warehouse by them1-th vehicle

cg′
jkm2

Emission cost associated with shipping the p-th product from the j-th warehouse to the
k-th retailer by them2-th vehicle

di j Distance between the i-th plant and the j-th warehouse

d′ jk Distance between the j-th warehouse and k-th retailer

CVm1 Fixed cost of using them1-th vehicle

CV ′
m2 Fixed cost of using the m2-th vehicle

Cappm1 Capacity of the m1-th vehicle for loading the p-the product

Cap′
pm2 Capacity of them2-th vehicle for loading the p-the product

γ Cost conversion factor per distance unit

γ ′ Cost conversion factor per fuel consumption unit

f am1
Fuel consumption rate of them1-th vehicle per distance unit when it is empty

f bm1
Extra fuel consumption rate of them1-th vehicle per distance unit per load unit when it
is carrying products

f a′
m2

Fuel consumption rate of the m2-th vehicle per distance unit when it is empty

f b′
m2

Extra fuel consumption rate of the m2-th vehicle per distance unit per load unit when it
is carrying products

Variables

Xi jp Positive variable between 0 and 1, representing the fraction of the demand for the p-th
product for the central j-th warehouse, which is satisfied by the i-th plant

X ′
jkp Positive variable between 0 and 1, representing the fraction of the demand for the p-th

product and the k-th retailer to be met by the j-th warehouse

Yip Binary variable takes 1 when the i-th plant has been already established for the
production of the p-the product; otherwise, it takes 0

Y ′
jp Binary variable takes 1 when the j-th warehouse has been already established for storing

the p-the product; otherwise, it takes 0

zi jm1 Binary variable takes 1 if the m1-th vehicle moves from the i-th plant to the j-th
warehouse; otherwise it takes 0

z′jkm2 Binary variable takes 1 if them2-th vehicle moves from the j-th warehouse to the k-th
retailer; otherwise, it takes 0

Uim1 Binary variable takes 1 if them1-th vehicle is employed in thei-th plant; otherwise it
takes 0

Ujm2 Binary variable takes 1 if them2-th vehicle is employed in the j-th warehouse;
otherwise, it takes 0

Djp Demand of the j-th warehouse for the p-the product

La jpm1 Load amount of them1-th vehicle for the p-the product when it arrives at the j-th
warehouse
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Lbkpm2 Load amount of them2-th vehicle for the p-the product when it arrives at the k-th retailer

Oi Auxiliary integer variable that is used for the elimination of the 1st echelon sub-tours

O ′
i Auxiliary integer variable that is used for the elimination of the 2nd echelon sub-tours

Appendix B

Linearization

This section provides the mechanism of the linearization of Eqs. (1), (9), (17), (21), (22),
(23) and (24) to have a final MILP model.

The objective functions have three nonlinear terms (terms (b), (f), and (g)) which can be
linearized by applying the equations presented in the following. For the first term, we have
a special case that we can easily linearize it. Since the lower and upper bounds of Xi jp are
nonnegative (i.e.,0 ≤ Xi jp ≤ 1), then, Eq. (B1) can be used in term (b) by considering Eq.
(B2) in the model.

DjpXi jp = θi j p ∀i ∈ I , j ∈ J , p ∈ P, (B1)

0Djp ≤ θi j p ≤ 1Djp∀i ∈ I , j ∈ J , p ∈ P, (B2)

Moreover, for terms (f) and (g), we can apply the equations below:

La jpm1 zi jm1 = ϕi j pm1 ∀i ∈ I , j ∈ J ,∀p ∈ P,m1 ∈ M1, (B3)

Lbkpm2 z
′
jkm2

= ϕ′
jkpm2

∀ j ∈ J , k ∈ K ,∀p ∈ P,m2 ∈ M2, (B4)

ϕi j pm1 ≤ La jpm1 ∀i ∈ I , j ∈ J ,∀p ∈ P,m1 ∈ M1, (B5)

ϕi j pm1 ≤ Mzi jm1 ∀i ∈ I , j ∈ J ,∀p ∈ P,m1 ∈ M1, (B6)

ϕi j pm1 ≥ La jpm1 − M
(
1 − zi jm1

) ∀i ∈ I , j ∈ J ,∀p ∈ P,m1 ∈ M1, (B7)

ϕ′
jkpm2

≤ Lbkpm2 ∀ j ∈ J , k ∈ K ,∀p ∈ P,m2 ∈ M2, (B8)

ϕ′
jkpm2

≤ Mz′jkm2
∀ j ∈ J , k ∈ K ,∀p ∈ P,m2 ∈ M2 (B9)

ϕ′
jkpm2

≥ Lbkpm2 − M
(
1 − z′jkm2

)
∀ j ∈ J , k ∈ K ,∀p ∈ P,m2 ∈ M2, (B10)

ϕi j pm1 , ϕ
′
jkpm2

≥ 0∀i ∈ I , j ∈ J , k ∈ K ,∀p ∈ P,m1 ∈ M1,m2 ∈ M2. (B11)

For Eq. (9), we have the same special case that occurred in the objective function. Thus,
Eq. (B12) can be applied:

∑

j∈J

θi j p ≤ SipYip = ∀i ∈ I ,∀p ∈ P. (B12)

For Eq. (17), we can replace Eqs. (B13)–(B18) with Eq. (17) to linearize it.

Djpzi jm1 = δi j pm1 ∀i ∈ I , j ∈ J , p ∈ P,m1 ∈ M1, (B13)
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δi j pm1 ≤ Djp∀i ∈ I , j ∈ J , p ∈ P,m1 ∈ M1, (B14)

δi j pm1 ≤ Mzi jm1 ∀i ∈ I , j ∈ J , p ∈ P, m1 ∈ M1 (B15)

δi j pm1 ≥ Djp − M
(
1 − zi jm1

)∀i ∈ I , j ∈ J , p ∈ P,m1 ∈ M1, (B16)

δi j pm1 ≥ 0 ∀i ∈ I , j ∈ J , p ∈ P,m1 ∈ M1, (B17)
∑

j∈J

∑

i∈I
δi j pm1 ≤ Cappm1∀m1 ∈ M1, p ∈ P. (B18)

To linearize the ceiling functions presented in Eqs. (21) and (22), we can easily apply Eqs.
(B19)-(B23).

Xi jp = βi j p ∀i ∈ I , j ∈ J , p ∈ P, (B19)

Xi jp ≤ β i j p ≤ Xi jp + 0.999∀i ∈ I , j ∈ J , p ∈ P, (B20)

X ′
jkp = ω jkp ∀ j ∈ J , k ∈ K , p ∈ P, (B21)

X ′
jkp ≤ ω jkp ≤ X ′

jkp + 0.999 ∀ j ∈ J , k ∈ K , p ∈ P, (B22)

βi j p, ω jkp ∈ {0, 1}∀i ∈ I , j ∈ J , p ∈ P, k ∈ K (B23)

Finally, for linearizing Eqs. (23) and (24), we can easily implement the same method we
have done for Eqs. (1) and (7). Therefore, Eqs. (B24)-(B25) are replaced.

ϕ j j ′pm1 − δ j j ′pm1 − ϕ j ′ j pm1 = 0 ∀ j, j ′ ∈ J ; j 	= j ′,∀p ∈ P,m1 ∈ M1, (B24)

ϕ′
kk′ pm2

− D′
kpz

′
kk′m2

− ϕ′
k′kpm2

= 0

∀k, k′ ∈ K ; k 	= k′,∀p ∈ P,m2 ∈ M2
(B25)
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