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Abstract
Range anxiety of electric vehicles (EVs) still poses a major barrier in their adoption in the
logistics operations despite the advancements in the battery technology. The need for recharg-
ing the battery during the day brings additional complexities to the operational planning of
commercial EVs in last mile deliveries. The driving range of an EV may vary according
to different factors including ambient temperature, weight, speed, acceleration/deceleration,
and the road profile. In this study, we revisit the well-known electric vehicle routing problem
with time windows by taking into account the weight of the load carried. Cargo weight may
play a crucial role in the operational efficiency of the EVs since it may affect the energy
consumption significantly. We first present two alternative mathematical formulations of the
problem and test their performances on small-size instances that can be solved using a com-
mercial solver. Next, we develop a matheuristic approach that integrates an optimal repair
procedure in the large neighbourhood search method and validate its performance. Then,
we present an extensive numerical study to investigate the influence of load on the routing
decisions. Our results show that cargo weight may create substantial changes in the route
plans and fleet size, and neglecting it may cause severe disruptions in service and increase
the costs.

Keywords Electric vehicle routing · Time windows · Load-dependent · Energy consumption

1 Introduction

There has been a growing demand in the developed countries for reducing the adverse effects
of transport activities on nature and human life, and liberating city centers from emissions.
Governments have started encouraging the adoption of alternative fuel vehicles (AFVs) by
offering new incentives (Wyman, 2018) or by restricting the sales of internal combustion

B Sina Rastani
srastani@sabanciuniv.edu

1 Industrial and Systems Engineering Department, Yeditepe University, Istanbul, Turkey

2 Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey

3 Smart Mobility and Logistics Lab, Sabanci University, Istanbul, Turkey

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-021-04320-9&domain=pdf
http://orcid.org/0000-0002-2742-1433


762 Annals of Operations Research (2023) 324:761–793

engine vehicles (ICEVs) to eliminate them in the future (Edelstein, 2016; Khan, 2016).
Consequently, the utilization of AFVs has become an emerging trend in the transport sector.
The electric vehicles (EVs), in particular, have attracted great attention in logistics operations
as they cut dependency on fossil fuels, hence lessen the air pollution. In addition to zero-
emission and noise, the main operational and financial advantages of EVs over ICEVs are
low electricity prices compared to fossil fuels, high efficiency of the electric motor and
transmission system, regenerative breaking, and reducedmaintenance costs (Wu et al., 2015).
On the other hand, operating EVs in logistics poses several challenges such as limited battery
capacity and short driving range, scarcity of recharging stations, and long recharging times
(Keskin & Çatay, 2018). Because of these additional complexities, route planning of EVs
has recently gained popularity in the vehicle routing problem (VRP) literature, coining the
name the electric VRP (EVRP).

EVRP is an extension of VRP where an EV fleet is utilized instead of ICEV. Conrad and
Figliozzi (2011) introduced an EVRP where the EVs are allowed to recharge their battery
at selected customer locations during the delivery service. The recharge duration is assumed
constant. Schneider et al. (2014) addressed EVRPwith time window (EVRPTW) by relaxing
this assumption but adopting a full-recharge strategy. The full-recharge assumption was later
relaxed by Bruglieri et al. (2015) and Keskin and Çatay (2016) and partial recharges at any
quantity were allowed, which constitutes the realistic and practical case.

In this paper, we address the load-dependent EVRPTW (LD-EVRPTW) with partial
recharges by taking into consideration the energy consumption related to the weight of the
cargo carried on the vehicle. LD-EVRPTW is expected to offer more realistic route plans as
compared to other routing models for companies that carry heavy goods such as appliances,
machinery, hardware, liquids (Zachariadis et al., 2015), which comprises themainmotivation
of our study. Similar to the literature on EVRPTW, we adopt a hierarchical objective function
where the primary objective is to minimize the fleet size whereas the secondary objective is
to minimize the total energy consumption. We model this problem using two different math-
ematical programming formulations, one is linear whereas the other is non-linear. Since the
large-size problems are not tractable, we propose a large neighbourhood search (LNS)-based
matheuristic approach to solve them effectively. Our LNS method benefits from an optimal
repair procedure which employs a commercial solver to solve the non-linear model. Finally,
we analyse the influence of the cargo load on the routing decisions through an extensive
numerical study.

The contributions of this study can be summarized as follows:

– We extend EVRPTW by considering the load weight which varies throughout the journey
of the EV and introduce the LD-EVRPTW.

– We present linear and non-linear mathematical programming formulations of the problem,
and show that the non-linear model performs better in terms of solution quality and run
time.

– We develop an effective LNS-based matheuristic method to solve the LD-EVRPTW by
adapting the destroy and repair operators from the literature and introducing new ones to
tackle the more complex structure of the problem including an optimal repair mechanism.

– We validate the performance of the proposed method using the benchmark instances and
show that the route plans, hence the operational costs, may change substantially in the
load-dependent case.

The remainder of the paper is organized as follows: Sect. 2 reviews the related literature.
Section 3 introduces the problem, formulates two alternative mathematical programming
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models, and tests their effectiveness. Section 4 presents the proposed LNS-based matheuris-
tic method. Section 5 describes the experimental study and discusses the results. Finally,
concluding remarks are provided in Sect. 6.

2 Related literature

EVRP with time window (EVRPTW) was presented by Schneider et al. (2014) where a
full-recharge strategy was adopted. The authors developed the mathematical programming
formulation of the problem and proposed a hybrid variable neighbourhood search (VNS)
and tabu search (TS) algorithm to solve it. Different variants of EVRP and EVRPTW were
addressed in several studies including the cases of partial recharge (Bruglieri et al., 2015;
Keskin & Çatay, 2016), mixed fleet (Sassi et al., 2015; Goeke & Schneider, 2015; Hiermann
et al., 2016; Kopfer & Vornhusen, 2019; Hiermann et al., 2019), location routing (Li-Ying
& Yuan-Bin, 2015; Paz et al., 2018; Schiffer & Walther, 2017; Yang & Sun, 2015), different
type of chargers at the stations (Çatay & Keskin, 2017; Felipe et al., 2014; Keskin & Çatay,
2018; Li-Ying & Yuan-Bin, 2015; Sassi, et al., 2015), non-linear charging function (Froger
et al., 2019; Montoya et al., 2017), battery swapping (Hof et al., 2017; Jie, et al., 2019; Liao
et al., 2016; Masmoudi et al., 2018; Paz et al., 2018; Wang et al., 2018; Yang & Sun, 2015),
wireless charging systems along the roads (Li et al., 2018), flexible time windows (Taş,
2020), two-echelons (Breunig et al., 2019; Jie et al., 2019) and pick-up and delivery problem
(Grandinetti et al., 2016; Madankumar & Rajendran, 2018). Desaulniers et al. (2016) also
studied EVRPTW and proposed a branch-price-and-cut algorithm to solve four different
recharging strategies. Some recent studies have dealt with the availability of recharging
stations and queueing for recharging service (Froger et al., 2017; Keskin et al., 2019; Kullman
et al., 2019). A comprehensive review of the EV technology and survey of the EVRP variants
may be found in Pelletier et al. (2016), Pelletier et al. (2017), and Erdelić and Carić (2019).

Apart from distance traveled by the vehicle, there are other factors that affect the energy
consumption on the road, such as the weight of the vehicle, its speed, auxiliary equipment
(internal factors) as well as road gradient and ambient temperature (external factors). These
factors have been often neglected within the VRP literature either because they make the
problem too complex to solve or the driving range is not an issue as the vehicles will easily
refuel at a close-by gas station. To the best of our knowledge, Kara et al. (2007) is the first
study that proposed a load-dependent cost function for the capacitatedVRP (CVRP), which is
calculated by multiplying the distance of the arc with the load of the vehicle when traversing
it. Xiao et al. (2012) considered the effect of cargo load on the fuel consumption within
the context of fuel consumption CVRP (FCVRP) and developed a simulated annealing (SA)
algorithmwith a hybrid exchange rule to solve the problem. Zachariadis et al. (2015) extended
the load-dependent VRP (LDVRP) by considering simultaneous pick-ups and deliveries and
proposed a local-search algorithm to solve it.

Fukasawa et al. (2016) proposed two mixed-integer linear programming formulations
for the LDVRP and solved them using branch-and-cut and branch-cut-and-price algorithms.
Corberán et al. (2018) considered the effect of load weight on the chinese postman problem
(CPP). They introduced two formulations for the problem and solved large-size instances
using iterated local search (ILS) and VNS algorithms. Liu and Jiang (2019) addressed the
LDVRP with time windows (LDVRPTW) and proposed a constraint relaxation-based algo-
rithm.
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The internal and external factors may play a more important role in the operational effi-
ciency of the EVs as they can increase their energy consumption considerably, causing
frequent visits to recharging stations which are scarce. Several articles investigated the influ-
ence of ambient temperature (Liu et al., 2018; Neubauer &Wood, 2014; Yuksel &Michalek,
2015; Yuksel et al., 2016), driver behavior (Guo et al., 2020; Neubauer & Wood, 2014; Wu
et al., 2015), terrain (Asamer et al., 2016), speed (Morlock et al., 2019) on the EV energy
consumption. However, the effects of these factors on routing decisions have received little
attention in the VRP literature. Among them, Rastani et al. (2019) investigated the influence
of ambient temperature on the fleet composition and route plans in the EVRPTW. Goeke and
Schneider (2015) considered a mixed fleet of EVs and ICEVs, and formulated a nonlinear
mixed integer model using the energy consumption model of Demir et al. (2012) that incor-
porates speed, road gradient, and load. This model is based on an augmented set of recharging
stations, and determining the numbers of dummy stations requires additional computational
effort. The authors developed an ALNS approach and analyzed three cost functions under
different scenarios to provide managerial insights using instances adapted from the pollution
routing problem (PRP) dataset of Demir et al. (2012).

In Table 1, we summarize the relevant literature by classifying the studies with respect
to the main features of the problems that they addressed and solution methodologies that
they proposed. Column “Load” reports whether the load effect is considered in the corre-
sponding study. “Energy Cost Function” and “Objective Function” columns show the nature
of the energy consumption and objective functions. The numbers given under the Objective
Function column are explained in Table 2. “Recharger Technology” denotes the charging
infrastructure in the stations, which includes single, multiple, or wireless charging tech-
nology stations (WCS) as well as battery swapping stations (BSS). “Recharge Amount”
column indicates whether the batteries are fully or partially recharged. The following col-
umn presents the solution methodology, where A- and EVO- VNS, HC, DP, WSM, and CG
stand for adaptive- and evolutionary-VNS, heuristic concentration, dynamic programming,
weighted sum method, and column generation, respectively. The studies that only presented
the solutions from a mixed-integer programming solver are reported as MIP. Finally, the last
two columns show whether time windows and station location decisions are considered in
the corresponding problem.

3 Problem description andmodel formulation

We tackle EVRPTWwhere a homogeneous fleet of EVs serve a set of customers with known
demands, timewindows, and service times. As opposed to previous studieswhich assume that
the energy on the battery is consumed proportional to the distance traveled, we consider the
additional energy consumption associated with cargo weight. The partial recharge strategy is
adopted where the duration of recharge depends on the amount of energy transferred. Since it
is a common practice in the real world to operatewithin the first phase of rechargingwhere the
energy transferred is a linear function of the recharge duration in order to prolong the battery
life (Pelletier et al., 2017), we assume a linear charging function. Furthermore, we assume
that the EV can be recharged at most once between two consecutive customers, which is the
practical case in most last-mile operations. Without loss of generality, we consider a pick-up
problem where the load of the EV increases during the journey as it visits the customers.
Since EVs can be recharged overnight, they depart from the depot with full battery.
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Table 2 Classification of the objective functions in Table 1

1: Vehicle cost 9: Charging cost

2: Total travel cost 10: Profit of visits

3: Recharging cost 11: Operational costs

4: Waiting cost 12: Battery swapping cost

5: Station installation cost 13: Unit time penalty for violated time windows

6: Total time cost 14: Driver wage

7: Fuel cost 15: Fixed costs of building a freight replenishment facility

8: Battery cost 16: Fixed costs of building a combined facility

3.1 Energy consumptionmodel

The energy consumption of an EV on the road depends on different factors such as its shape,
mass, road gradient, acceleration, etc. The power demand of a vehicle can be obtained by
using tractive power requirements placed on the vehicle at the wheels as follows (Demir
et al., 2012):

F = Ma + Mgsinθ + 0.5CdρAv2 + MgCrcosθ (1)

Ptract (kW ) = Fv/1000 (2)

Equation (1) calculates the tractive effort F where M is the total weight of the vehicle,
including its curb weight and the cargo weight (kg), a is the acceleration

(
m/sec2

)
, g is the

gravitational constant, θ is road gradient, Cd is the coefficient of aerodynamic drag, ρ is the
air density in

(
kg/m3

)
, A is the frontal area, v is the speed (m/s), and Cr is the coefficient

of rolling resistance. The tractive power requirement can be converted to second-by-second
battery power output (kW ) as follows:

P = Ptract/μt f + Pacc (3)

whereμt f is the vehicle’s drive train efficiency that includes the energy losses between electric
motor and battery as well as the energy losses in transforming energy to the wheels. Pacc
shows the power demand associated with the auxiliary equipment such as air conditioning,
audio system, cabin lights, which are neglected in this study. Then, the energy consumption
in (kWh/km) can be calculated as follows:

E = P/v (4)

To demonstrate how cargo load may affect the routing decisions we present an illustrative
example in Fig. 1. Our example consists of a network that includes a depot (node 0), one
recharging station, and four customerswhose demands have aweight equal to their ID number
(e.g., customer 3 has a demand that weighs 3 units). The time windows are omitted for the
sake of simplicity. The battery capacity of the EV is considered 120 units. The EV starts its
trip from the depot empty and picks up the customers’ demand by visiting them and then
returns to the depot. The distances given next to the arcs are symmetric, and the speed of
the EV is constant and equal to one (one unit distance is traveled in one unit of time). The
consumption rate of an empty vehicle is assumed as one unit of energy per unit distance
travelled, and the additional consumption corresponding to carrying one unit of cargo is
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Fig. 1 Illustrative example with
one depot (charging station) and
4 customers

assumed to be 0.05 unit of energy per unit distance. The recharging rate is 2 time units per
unit of energy.

Figure 2 illustrates the optimal solutions for the load-independent and load–dependent
cases. The battery states of charge (SoCs) of the EV arriving at and departing from a node are
indicated in red and the cargo loads at departure from the customers are shown in blue. The
energy consumptions along the arcs are provided next to the corresponding arc. Figure 2a
depicts the optimal solution for the load-independent case. In this case, since the effect of
the cargo load is neglected, the energy consumption on an arc is equal to its distance as the
energy consumption per unit distance is equal to one. We observe that the EV can serve all
the customers without needing any recharge throughout its tour. Figure 2b shows the optimal
solution for the load-dependent case. In this case, the EV needs to visit the recharging station
after serving customer 2, the amount of energy recharged is 18.4 units and its duration is 2
× 18.4 = 36.8. Total energy consumption is 138.4 whereas it is 115 if the load is neglected.
Note that neglecting the load did not only underestimate the cost in this case but it provided
a route on which the EV would run out of battery. Note also that in the existence of time
windows, one EV may not be able to serve all customers in a single tour and an additional
vehicle may be needed.

(a) (b) 

 Distance = Energy Consump�on = Time = 115
Energy Recharged en-route = 0 

Distance = 116, Energy Consump�on = 138.4
Time = 152.8,      Energy Recharged en-route = 18.4

Fig. 2 Optimal routes for the illustrative example: (a) load-independent case, (b) load-dependent case
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3.2 Mathematical models

In this section we present two alternative mathematical formulations of the LD-EVRPTW:
Model 1 is a mixed-integer linear program whereas Model 2 involves a non-linear objective
function with a set of linear constraints.

3.2.1 Model 1

For ease of understanding we use the mathematical notation and modeling convention in the
literature (Keskin & Çatay, 2016; Rastani et al., 2019; Schneider et al., 2014). We define
V = {1, . . . , n} and F as the set of customers and recharging stations, respectively. Vertex 0
denotes the depot where each EV departs from and return to at the end of its tour. We create
dummy copies of the depot in order to keep track of the battery SoC of each vehicle upon
their return. Let AD denote the set of arrival depots and V0 = V ∪ {0}, VAD = V ∪ AD,
V0,AD = V ∪ {0} ∪ AD. Then, the problem can be represented on a complete directed graph
G = (N , A) with the set of arcs A = { (i, j)|i, j ∈ N , i �= j}, where set N = V0,AD ∪ F
is the total set of nodes on the network.

The energy consumption depends on the distance traveled and the total weight of the EV,
which includes the weight of the cargo. Each customer i ∈ V is associated with service time
si , time window [ei , li ], and demand qi . All EVs have a battery capacity of Q and a cargo
capacity of C . At each recharging station, one unit of energy is transferred in g time units.
di j represents the direct distance from node i to j . Travel time from customer i to customer
j is denoted by ti j if the journey is direct and t̂i j s = tis + ts j − ti j is the extra travel time if it
is via station s. Note that t̂i j s does not include the recharging time at station s. w represents
the amount of additional energy required in order to move one unit of cargo. The total energy
consumption of an EV traveling from customer i to customer j is calculated as (h + wui )di j ,
where ui is the weight of the load on the vehicle upon departure from customer i .

The decision variables yi , yi js , and Yi js keep track of battery SoC at arrival at cus-
tomer/depot i , at arrival at station s on route (i, s, j), and at departure from station s on
route (i, s, j), respectively. τi denotes the time when the service starts at customer i . The
binary decision variable xi j takes a value of 1 if a vehicle travels from customer i to customer
j ; and 0 otherwise. The binary decision variable zi js is equal to 1 if the journey from customer
i to customer j is via station s.

The problem can be formulated as mixed-integer linear program as follows:

Min (y0 − yAD) +
∑

i∈V0

∑

j∈VAD

∑

s∈F

(
Yi js − yi js

)
(5)

subject to

y0 = Q
(6)

∑

j ∈ VAD

j �= i

xi j = 1 ∀i ∈ V (7)

∑

i ∈ V0
i �= j

xi j = 1 ∀ j ∈ VAD (8)
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∑

i ∈ V0
i �= j

xi j −
∑

i ∈ VAD

i �= j

x ji = 0 ∀ j ∈ V (9)

∑

s∈F
zi js ≤ xi j ∀i ∈ V0, j ∈ VAD, i �= j (10)

τi + (
ti j + ri

)
xi j+

∑

s∈F

(
t̂i j s zi js + g

(
Yi js − yi js

))

− l0
(
1 − xi j

) ≤ τ j ∀i ∈ V0, j ∈ VAD, i �= j (11)

e j ≤ τ j ≤ l j ∀ j ∈ N (12)

0 ≤ y j ≤ yi − (h + wui )di j + M(1 − xi j +
∑

s∈F
zi js) ∀i ∈ V0, j ∈ VAD, i �= j (13)

y j ≤ Yi js − (h + wui )ds j + M
(
1 − zi js

) ∀i ∈ V0, j ∈ VAD, s ∈ F, i �= j (14)

0 ≤ yi js ≤ yi − (h + wui )dis + M
(
1 − zi js

) ∀i ∈ V0, j ∈ VAD, s ∈ F, i �= j (15)

yi js ≤ Yi js ≤ Qzi js ∀i ∈ V0, j ∈ VAD, s ∈ F, i �= j (16)

y j ≤ Q
∑

i ∈ V0
i �= j

xi j ∀ j ∈ VAD (17)

u j ≥ ui + q j xi j − C
(
1 − xi j

) ∀i ∈ V0, j ∈ VAD, i �= j (18)

0 ≤ ui ≤ C ∀i ∈ V0,AD (19)

xi j ∈ {0, 1} ∀i ∈ V0, j ∈ VAD, i �= j (20)

zi js ∈ {0, 1} ∀i ∈ V0, j ∈ VAD, s ∈ F, i �= j (21)

The objective function (5) minimizes the total energy consumption. Since the EVs are
assumed to recharge overnight, constraints (6) set their initial battery SoC to full. Constraints
(7) and (8) impose the connectivity of customer visits whereas the flow conservation at each
vertex is ensured by constraints (9). Constraints (10) make sure that customer j is served
after customer i if the vehicle travels from i to j by recharging its battery en-route. Time
feasibility of arcs emanating from the customers (the depot) is guaranteed by Constraints (11)
whereas the time window restrictions are established by Constraints (12). Constraints (11)
and (12) also prevent the formation of sub-tours. Constraints (13) keep track of the SoCwhen
the vehicle travels from customer i to customer j without recharging en-route. Constraints
(14) determine battery SoC at the arrival at customer j if the vehicle visits a recharging
station after it has departed from customer i . Constraints (15) check the SoC at the arrival at
a station if the vehicle recharges en-route. Here, M is a sufficiently large constant and can be
M = Q + (h + w

∑

i∈V
qi ) × maxi∈V0, j∈VAD

{
di j

}
. Constraints (16) set the upper bound for

battery SoC when departing from a station. Constraints (17) allow positive battery SoC at
the arrival at customer j , when customer j is visited. Constraints (18) keep track of the load
of the vehicle throughout its tour. Constraints (19) ensure the non-negativity of the load on
the vehicle and guarantee that the cargo capacity is not exceeded. Finally, constraints (20)
and (21) define the binary decision variables.
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3.2.2 Model 2

In Model 1, the objective function minimizes the total energy consumption calculated in
terms of the changes in battery SoCs. Alternatively, the total energy consumption can be
calculated by multiplying the lengths of the arcs traversed by the energy consumption rate
per unit distance which vary by the weight of cargo carried onboard. Since the cargo load of
an EV and the arcs traversed are associated with decision variables, the resulting objective
function is nonlinear. The constraints, hence the feasible region, remain the same; however,
AD = {n + 1} since copies of the depot are no longer necessary to keep track of the battery
SoC of the EVs when they return to the depot. The mixed-integer nonlinear program can be
formulated as follows:

Min
∑

i∈V0

∑

j∈Vn+1

[
(hi j + wuidi j

)
xi j +

∑

s∈F

(
ĥi js + wui d̂i js

)
zi js] (22)

subject to (6)−(7), (9)−(21)
Since all constraints are linear, the feasible region is convex. A local minimum of a convex

function on a convex feasible region is also a global minimum (Bertsekas et al., 1999). In
order to check the convexity of the objective function, consider a small instance that involves
only a depot and a customer. The objective function can be formulated as follows:

Min
(
h0,1 + wu0d0,1

)
x0,1 + (

h1,0 + wu1d1,0
)
x1,0 (23)

Since the distances are symmetric, we let d = d0,1 = d1,0 and h = h0,1 = h1,0 for simplicity.
Hessianmatrix comprises geometric information about the surface z = f (x, y) and is defined
as follows:

H f (x, y) =
[
fxx fxy
fyx fyy

]

where all of the second partial derivatives of function f exist at any point. Let H show the
hessian matrix of the function in Eq. (23):

x0,1 x1,0 u0 u1
x0,1
x1,0
u0
u1

⎡

⎢⎢
⎣

0 0 wd 0
0 0 0 wd

wd 0 0 0
0 wd 0 0

⎤

⎥⎥
⎦

We calculate the eigenvalues of H in order to obtain the geometric information about the
surface of our objective function. If all the eigenvalues are positive (negative), the function is
convex (concave). If some of the eigenvalues are positive and some are negative, the function
is neither convex nor concave, and it will have a saddle point.We calculate det(H − Iλ) = 0,
where λ represent the eigenvalues, as follows:

det

⎛

⎜⎜
⎝

⎡

⎢⎢
⎣

0 0 wd 0
0 0 0 wd

wd 0 0 0
0 wd 0 0

⎤

⎥⎥
⎦ −

⎡

⎢⎢
⎣

−λ 0 0 0
0 −λ 0 0
0 0 −λ 0
0 0 0 −λ

⎤

⎥⎥
⎦

⎞

⎟⎟
⎠ = det

⎛

⎜⎜
⎝

⎡

⎢⎢
⎣

−λ 0 wd 0
0 −λ 0 wd

wd 0 −λ 0
0 wd 0 −λ

⎤

⎥⎥
⎦

⎞

⎟⎟
⎠

= (
λ2 − (wd)2

)2 = 0 → λ = ±wd
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w and d are positive scalars, thus λ values can be positive or negative. Hence, the objective
function is neither convex nor concave. Consequently, the solution obtained by solvingModel
2 provides a local minimum.

3.2.3 Analysis on the performance of the proposed models

To investigate the performances of Models 1 and 2 we solved the small-size EVRPTW
dataset of Schneider et al. (2014). This dataset consists of 36 instances involving 5, 10, and
15 customers generated based on the VRPTW instances of Solomon (1987). The instances
are classified according to the geographic distribution of the customers: clustered (c-type),
random (r-type), and half clustered half random (rc-type). Furthermore, in type-1 problems
(i.e., subsets r1, c1, rc1) the planning horizon is short, and the customers have narrow time
windows compared to long planning horizon andwide timewindows in type-2 problems (i.e.,
r2, c2, rc2). All instances were solved using Gurobi 9.0 with a 2-h time limit. The results are
reported in Table 3. In this table, “#Veh”, “EC”, “t(sec)”, and “Gap (%)” refer to the fleet
size, energy consumption, run time (in seconds), and the reported optimality gap by Gurobi,
respectively. “%�EC” shows the percentage deviation of the energy consumption in Model
1 from that in Model 2. Note that the deviation is calculated for solutions with the same fleet
size and a positive number indicates that Model 2 provides a better result. “Avg” stands for
average.

The results show that the nonlinear Model 2 is capable of providing better solutions in
shorter run time. It outperformsModel 1 in two instances in terms of #Veh and in two instances
in terms of EC (shown in bold). Moreover, Model 2 required 84% less computational effort
than Model 1 on the average. Although Model 2 does not guarantee a global minimum, the
results reveal that it is more promising than Model 1 in terms of both the solution quality and
run time.

The optimality gap forModel 2 in 34 out of 36 instances is 0 sinceGurobi found the optimal
solution; however, for Model 1 Gurobi stops when it reaches the time limit (7200 s) in 12
instances. We also increased the computational time for the two instances namely “r202c15-
s6” and “rc204c15-s7” to 10 h using Model 2. The instance “r202c15-s6” proved that the
provided solution inTable 3 is optimal in 2 h and 23min.However, for the instance “rc204c15-
s7”, it cannot decrease the gap that much and after 10 h it provides the same solution reported
in Table 3 with the optimality gap of 14.53%. Encouraged by the performance of Model 2 on
small-size problems, we selected a total of 18 instances involving 25- and 50- customers and
performed additional tests to investigate the tractability of the problem. In the 25-customer
instances Gurobi was able to solve only one out of 9 instances to optimality and the average
optimality gap is 61.90%, whereas none of the 50-customer instances was solved optimally
and the average optimality gap is 78.91%. These results show the complexity of the problem
and highlight the need for a heuristic method to solve not only large-size but medium-size
instances as well.

4 Solutionmethodology

Since the problem is intractable for large-size instances, we develop anLNS-basedmatheuris-
tic approach to solve it. Introduced by Shaw (1998) LNS attempts to improve an incumbent
solution using an iterative destroy-and-repair framework. In every iteration, some customers
are removed from the solution using a destroymechanism and reinserted into the routes using
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Table 3 Comparison of results obtained using Models 1 and 2

Instance Model 1 Model 2 %ΔEC

#Veh EC t (sec) Gap (%) #Veh EC t (sec) Gap (%)

r104c5-s3 2 141.54 < 1 0.00 2 141.54 < 1 0.00 0.00

r105c5-s3 2 159.23 < 1 0.00 2 159.23 < 1 0.00 0.00

r202c5-s3 1 144.12 < 1 0.00 1 144.12 < 1 0.00 0.00

r203c5-s4 1 181.32 < 1 0.00 1 181.32 < 1 0.00 0.00

c101c5-s3 2 266.02 < 1 0.00 2 266.02 < 1 0.00 0.00

c103c5-s2 1 186.83 < 1 0.00 1 186.83 < 1 0.00 0.00

c206c5-s4 1 250.63 < 1 0.00 1 250.63 < 1 0.00 0.00

c208c5-s3 1 168.91 < 1 0.00 1 168.91 < 1 0.00 0.00

rc105c5-s4 2 256.62 < 1 0.00 2 256.62 < 1 0.00 0.00

rc108c5-s4 2 264.00 < 1 0.00 2 264.00 < 1 0.00 0.00

rc204c5-s4 1 188.59 < 1 0.00 1 188.59 < 1 0.00 0.00

rc208c5-s3 1 170.82 < 1 0.00 1 170.82 < 1 0.00 0.00

Avg 1.42 198.22 0.25 0.00 1.42 198.22 0.04 0.00 0.00

r102c10-s4 3 336.00 4 0.00 3 336.00 < 1 0.00 0.00

r103c10-s3 2 220.50 213 0.00 2 220.50 < 1 0.00 0.00

r201c10-s4 1 262.40 4 0.00 1 262.40 < 1 0.00 0.00

r203c10-s5 1 227.26 3297 0.00 1 227.26 < 1 0.00 0.00

c101c10-s5 3 410.10 11 0.00 3 410.10 < 1 0.00 0.00

c104c10-s4 2 305.64 7200 94.17 2 305.64 1 0.00 0.00

c202c10-s5 1 319.04 < 1 0.00 1 319.04 < 1 0.00 0.00

c205c10-s3 2 233.74 18 0.00 2 233.74 < 1 0.00 0.00

rc102c10-s4 5 475.00 54 0.00 5 475.00 < 1 0.00 0.00

rc108c10-s4 3 364.62 46 0.00 3 364.62 < 1 0.00 0.00

rc201c10-s4 1 424.49 < 1 0.00 1 424.49 < 1 0.00 0.00

rc205c10-s4 2 334.54 103 0.00 2 334.54 < 1 0.00 0.00

Avg 2.17 326.11 913 7.85 2.17 326.11 0.92 0.00 0.00

r102c15-s8 5 430.83 7200 66.37 5 430.83 < 1 0.00 0.00

r105c15-s6 4 350.09 7200 47.08 4 350.09 < 1 0.00 0.00

r202c15-s6 2 365.06 7200 99.99 1 590.31 7200 7.47

r209c15-s5 1 347.31 7200 91.13 1 347.31 145 0.00 0.00

c103c15-s5 3 403.18 7200 89.78 3 401.97 27 0.00 0.30

c106c15-s3 3 352.29 2478 0.00 3 352.29 4 0.00 0.00

c202c15-s5 2 393.19 7200 99.32 2 393.19 2 0.00 0.00

c208c15-s4 2 310.12 7200 41.46 2 310.12 < 1 0.00 0.00

rc103c15-s5 4 415.79 7200 85.32 4 415.79 4 0.00 0.00
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Table 3 (continued)

Instance Model 1 Model 2 %ΔEC

#Veh EC t (sec) Gap (%) #Veh EC t (sec) Gap (%)

rc108c15-s5 4 430.69 7200 99.99 3 417.92 72 0.00 –

rc202c15-s5 2 403.03 7200 34.72 2 403.03 1 0.00 0.00

rc204c15-s7 1 402.41 7200 100.00 1 402.15 7200 16.95 0.06

Avg 2.75 383.67 6807 71.26 2.58 401.25 1221 2.03 0.04

Overall Avg 2.11 302.67 2573 26.37 2.06 308.53 407 0.67 0.01

a repair algorithm to generate a new, hopefully better solution. This procedure is repeated for
a predetermined number of iterations. LNS and adaptive LNS (ALNS) have been success-
fully applied to many VRP variants including EVRPs and EVRPTWs (Goeke & Schneider,
2015; Hiermann et al., 2016; Keskin & Çatay, 2016, 2018; Keskin et al., 2019; Schiffer et al.,
2018; Wen et al., 2016).

In this study, we generate the initial solution by adopting the insertion heuristic of Keskin
and Çatay (2016) to the load-dependent case where the cost of inserting a customer into
a route is calculated as (h + wui )dik + (h + wuk)dkj − (h + wui )di j . This insertion cost
is calculated for all the customers that are not visited yet, and the minimum cost insertion
is performed by ensuring that the constraints associated with the vehicle cargo capacity,
battery SoC, customer time windows, and maximum tour duration are not violated. If an
EV runs out of energy, a station may be inserted to make the tour energy feasible. We use
first-feasible station insertion algorithm which will be described in Sect. 4.2. If no customer
can be feasibly inserted into the route, a new route is initialized, and the procedure is repeated
until all customers are served.

Our LNS employs several destroy and repair mechanisms adapted from the literature as
well as newmechanisms that are designed to deal the more complex structure of the problem,
including an optimal repair mechanism. In each iteration, a customer removal algorithm is
applied to a feasible solution to remove a subset of customers from the routes. If any station
is no longer needed in the partial solution, they are removed from the solution as well. Next,
we apply a customer insertion algorithm that inserts all the removed customers to repair
the solution with the aim of obtaining a new improved solution. Stations may be inserted
to maintain the energy feasibility along the route. Solutions are accepted using simulated
annealing rule. This procedure is repeated for a pre-determined number of iterations. Note
that the set of stations that can be visited between any two customers is reduced by using the
dominance rules presented in Bruglieri et al. (2016).

4.1 Destroy operators

The current feasible solution is destroyed by removing γ customers. We use worst-
consumption, random worst-consumption, shaw, random worst-time, random, random route,
and greedy route removal procedures of Keskin and Çatay (2016) by modifying them for
the load-dependent problem. At every iteration, one of these destroy operators is selected
randomly.
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• Worst-consumption removal algorithmselects the customerswith high energy consumption
imposed on the route by visiting that customer. We utilize the following selection criterion
that calculates the energy consumption based on the distance travelled and cargo load:
(h + wui )dik + (h + wuk)dkj − (h + wui )di j .

• Random worst-consumption removal sorts the customers with respect to the associated
energy consumptions, considers a subset of σ × γ customers with the highest costs to
select γ customers randomly, and removes them. Here, σ is a constant used to determine
the size of the customer subset.

• Shaw removal evaluates similar customers with respect to their energy consumption, ear-
liest service time, being in the same route, and their demand. It randomly selects customer
i and calculates the relatedness measure as Ri j = φ1hidi j + φ2

∣
∣ei − e j

∣
∣ + φ3li j +

φ4
∣
∣Di − Dj

∣
∣ to determine other customers that are similar. φ1-φ4 are the shaw param-

eters, li j = − 1 if i and j are in the same route, 1 otherwise. Small Ri j means high
similarity. Using the non-decreasing order of the customers according to their relatedness
values with customer i , the first γ customers in the list are removed from the solution.

• Random worst-time removal algorithm is a special case of shaw removal where φ1, φ3, φ4

are set equal to 0. The customers are sorted in the non-decreasing order of their relatedness
values. Then, from a subset of top σ × γ customers in the list, γ customers are randomly
selected and removed from the solution.

• Random removal mechanism selects γ customers randomly and removes them from the
solution.

• Random route removal algorithm selects ω routes randomly and removes them from the
solution.

• Greedy route removalmechanismsorts the routes in the non-decreasing order of the number
of customers visited, and removes thefirstω routes that serve the least number of customers.

Note that the route removal algorithms attempt to reduce the fleet size.

4.2 Repair operators

We adapt random greedy, regret-2, random time-based, random greedy with noise function,
and regret-2 with noise function repair algorithms of Keskin and Çatay (2016) and Demir
et al. (2012) for our load-dependent problem. In addition, we propose exhaustive greedy,
exhaustive time-based, exhaustive time-based with noise function, and random time-based
with noise function algorithms.

• Random greedy insertion selects a customer randomly and inserts it in the position that
increases the energy consumption the least.

• Randomgreedywith noise function insertion is an extension of the randomgreedy insertion
mechanism with a degree of freedom. We use the same noise function presented in Demir
et al. (2012). The insertion cost using the freedom degree is calculated as NewCost =
ActualCost + dμε, where d represents the maximum distance in the network, μ is the
noise parameter used for diversification, and ε is a random number between [− 1, 1].

• Exhaustive greedy insertion considers all possible insertion positions for all customers
that are not inserted yet and selects the customer-position matching which leads to least
increase in energy consumption.

• Exhaustive time-based insertion calculates the difference between the route duration after
and before inserting a customer as the insertion cost. For all customers, the insertion costs
in all possible positions are calculated and the customer with the least insertion cost is
inserted in the associated position.
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• Random time-based insertion is similar to the exhaustive time-based algorithm. Instead of
considering all unvisited customers, it first selects a customer randomly, and then inserts
it in its best position with respect to time-based insertion cost.

• Regret-2 insertion aims at avoiding higher costs in the subsequent iterations. It calculates
the difference between the cost of the best insertion and the second-best insertion for all
customers, and insert the customer with the largest difference in the associated position.

Note that regret-2 with noise function, exhaustive time-based with noise function, random
time-based with noise function are extensions of regret-2, exhaustive time-based and random
time-based insertion mechanisms, respectively, using a similar noise function.

As we mentioned earlier, the unnecessary stations are removed from the partial solution
obtained using the destroy operator. During the repair procedure, the insertion of a customer
may not be feasible with respect to battery SoC. In that case, we first attempt to increase
the recharge quantity if a station is visited prior to arriving at that customer. If the energy
recharged at the station cannot be increased or no station is visited en-route, we apply a station
insertion operator to make the insertion feasible. We modify the greedy station insertion and
best station insertion operator of Keskin and Çatay (2016) and multiple station insertion
operator of Rastani et al. (2019), and applied them for the load-dependent problem. Note that
at most one station can be inserted between two consecutive customers in a route.

• Greedy-station insertion considers the first customer (or depot)where theEVarrives atwith
negative SoC and checks the insertion of the best station in the preceding arcs backward.
The first station which makes the problem feasible is inserted.

• Best-station insertion algorithm determines the first customer (or depot) where the EV
arrives at with negative SoC, evaluates the insertion costs on all the arcs from that customer
backward along the route, and performs the insertion of the best station (which increases
the consumption least) in its best position.

• Multiple-station insertion algorithm insertsmultiple stations into a routewhen the insertion
of a single station cannot make the route feasible. A station is inserted on the arc traversed
immediately before arriving at the customer (or depot) with a negative SoC where the
vehicle is recharged up to the maximum level allowed by the battery capacity and time
windows restrictions of the succeeding customers. If the SoC is still negative at that cus-
tomer or if the vehicle runs out of energy before reaching the inserted station, we attempt
to insert another station prior to the last customer visited before traveling to the recently
inserted station. This procedure is repeated until the route becomes energy feasible.

A station insertion algorithm is selected randomly when the repair procedure leads to
infeasible route with respect to battery SoC. If one of the first-feasible station insertion or
best-station insertion algorithms is selected but cannot create a feasible route, we resort to the
multiple-station insertion algorithm. Furthermore, we remove all stations in the solution after
every β iterations and apply the best-station insertion algorithm in an attempt to improve the
solution.

4.3 Repair-opt insertion operator

We introduce a repair operator that attempts to insert the removed customers in the partial
solution optimally along with the recharging stations, if needed. In this procedure, after the
customers are removed from the solution, we feed the partial solution to a commercial solver
and solve the mathematical programming model to insert them in their best positions in the
solution. We refer to this operator as repair-opt procedure and implement it by employing
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Model 2. We call repair-opt in the LNS framework after performing η iterations because: (i)
it is expensive in terms of computational time, (ii) it is more promising if it is applied after the
algorithm has converged to a good solution. Furthermore, in order to accelerate the solution
time, we provide an upper bound on the number of vehicles. This upper bound is determined
according to the feasible solution obtained using the LNS procedure and becomes tighter as
the procedure progresses. The contribution of the proposed optimal repair mechanism on the
performance of LNS is investigated in the experimental study.

5 Experimental study

We performed our computational tests using the dataset of Schneider et al. (2014) and
Desaulniers et al. (2016) for the small- and large-size instances, respectively. The data char-
acteristics are as described in Sect. 3.2.3. Schneider et al. (2014) generated 56 large-size
instances based on the VRPTW instances of Solomon (1987). Desaulniers et al. (2016) mod-
ified them to maintain feasibility for the case where the vehicles are allowed to recharge at
most once during their tours. We used this dataset in order to investigate the sensitivity of
the results under different recharging scenarios. We focused on type-1 instances in the large-
size dataset and omitted type-2 instances since wide time window constraints have minor
influence on the recharging decisions. (Desaulniers et al., 2016; Keskin & Çatay, 2018).

In order to deal with a realistic vehicle cargo capacity and customer demands, we assumed
an electric truck based on the specifications provided in Demir et al. (2012). Since the
payload of this vehicle is 3650 kg, we converted the demand values to reasonable weights by
multiplying each by “3650/original capacity” of the vehicle in order to observe the effect of
cargo weight on energy consumption. We assumed a drive train efficiency of 0.9 as EVs are
more efficient than internal combustion engine vehicles. Furthermore, since the EVs in the
original data are assumed to consume one unit of energy per unit distance/time traveled, we
used Eq. (4) to calculate the actual energy consumption of an empty vehicle (i.e., a truck with
6350 kg curb-weight) per unit distance and scaled it to h = 1. We used the same approach
to determine the energy consumption w associated with unit load carried. For the sake of
simplicity, we considered a flat terrain where road gradients are zero and the vehicle speed
is constant and equals to 16.67 m/s.

The small-size instances were solved using Gurobi 9.0 with a 2-h time limit. LNS was
coded in Python 3.7.1 and all runs were performed on an Intel Core(TM) i7-8700 processor
with 3.20 GHz speed and 32 GB RAM. We performed five runs for each instance. Based on
some preliminary experiments on a subset of instances, we observed that performing LNS
for 1000 and 6000 iterations for the small- and large-size instances, respectively, provided
good solutions in reasonable computational time. The values of the remaining parameters
are given in Appendix A.

5.1 Results for small-size instances

Wefirst consider the small-size instances to validate the performance of the proposedmethod
and to investigate the influence of the cargo load on route plans. The results are reported in
Table 4. In this table, the columns under “Gurobi” present the results provided by Gurobi
and the columns under “LNS” give the results obtained by the proposed LNS algorithm.
“Load Independent” column reports the results for the case that does not take into account
the increased energy consumption associated with the cargo carried whereas column “Load
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Dependent” shows the results for the case that considers the load on the vehicle. The com-
parison of the result under these two columns exhibits the influence of the load on the fleet
size and energy consumption. “#Veh”, “t (sec)”, and “EC” refer to the fleet size, average run
time (in seconds), and total energy consumption, respectively, as defined in Sect. 3.2.3, and
“%ΔEC” shows the percentage increase in the energy consumption for the load-dependent
case as compared to the load-independent case.

The results show that Gurobi solved all the instances optimally except “rc204c15-s7”
in the load-independent case, and “rc204c15-s7” and “r202c15-s6” in the load-dependent
case. We observe that the existence of the load factor in the model required a larger fleet
in one instance (“rc102c10- s4”) and resulted in an increase in the energy consumption in
all instances, as expected. Furthermore, the energy consumption may be significantly higher
when the cargo load is taken into account and the difference increases as the problem size
increases. The actual energy consumption is 7.13% more on the average and can be up to
34.84%more due to the cargo load.Whenwe compare the results found by our LNS approach
to those of Gurobi, we see that LNSmatches the optimal solutions (or the upper bounds in two
instances) in all the instances except “r202c15-s6”. This constitutes an exceptional instance
where a single EV serves all 15 customers in the optimal solution, which is difficult to identify
heuristically.

5.2 Results for large-size instances

We solved the large-size instances for both load-independent and load-dependent cases using
LNS. The results are provided in Table 5.We observe that the fleet size increases by two vehi-
cles in one instance and by one vehicle in 15 instances (shown in bold) in the load-dependent
case compared to the load-independent case. Furthermore, in the remaining 13 instances, EC
increases by 13.11% on the average and can be as large as 31.63%. We believe that these
significant differences in the energy consumptions and fleet sizes reveal the importance of
considering cargo weight for more accurate route planning of EVs.

5.3 Sensitivity analysis

In this section, we first investigate the contribution of the repair-opt operator in LNS to the
performance of the algorithm. Next, we analyze the sensitivity of the results to the single-
recharge policy where an EV is allowed to recharge its battery at most once during its tour.
This may be a practical case in urban logistics since the stations are scarce and may be
unavailable, and the delivery companies do not want to waste the often-expensive vehicle
and driver time with recharging.

5.3.1 Contribution of the insertion operators to algorithmic performance

In order to investigate the contribution of the insertion operators on the algorithmic perfor-
mancewe select 12 instances and re-solved themby removing one of the insertion operators at
a time. We performed 5 runs and summarized the results in Table 6 in comparison with those
reported in Table 5. “#Veh (%)” and “EC (%)” in Table 6 represent the average increase in fleet
size and energy consumption when the corresponding insertion operator is omitted. These
results show that the proposed LNS algorithm benefits from all of the insertion operators and
the contribution of an operator to minimizing the fleet size and energy consumption can be
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Table 5 Results for large-size instances

Instance Load independent Load dependent %ΔEC

#Veh EC t (sec) #Veh EC t (sec)

r101 17 1679.69 782 18 1741.27 712 –

r102 16 1607.23 1761 17 1630.97 1135 –

r103 14 1277.51 2200 14 1404.57 1885 9.95

r104 12 1162.21 2776 13 1247.14 2545 –

r105 15 1348.54 1608 16 1482.75 1324 –

r106 14 1404.93 1885 15 1469.73 1752 –

r107 12 1243.62 2057 13 1332.27 1774 –

r108 12 1054.45 2836 12 1181.01 2560 12.00

r109 14 1261.83 1854 14 1415.5 1734 12.18

r110 13 1146.24 2656 13 1251.46 2129 9.18

r111 12 1193.67 2567 13 1262.93 2029 –

r112 12 1105.43 3616 12 1218.47 2763 10.23

Avg 13.58 1290.45 2217 14.17 1386.51 1862 10.71

c101 12 1043.38 682 12 1186.46 718 13.71

c102 11 1100.17 2252 12 1173.36 1969 –

c103 11 1246.22 3019 11 1395.65 3005 11.99

c104 11 1142.82 5640 11 1241.07 5024 8.60

c105 11 1037.26 1617 12 1161.57 1345 –

c106 11 1040.79 1896 12 1166.90 1919 –

c107 11 1021.93 2142 12 1179.50 1634 –

c108 12 1096.64 2570 12 1206.47 2466 10.02

c109 11 1001.64 3667 11 1318.41 2648 31.63

Avg 11.22 1081.21 2610 11.67 1225.49 2303 15.19

rc101 15 1652.33 1733 17 1921.03 1119 –

rc102 16 1607.69 1517 16 1815.88 1555 12.95

rc103 14 1501.91 1884 14 1722.56 1773 14.69

rc104 12 1380.05 2496 13 1515.47 2930 –

rc105 15 1539.88 2015 15 1734.78 1654 12.66

rc106 14 1484.98 1930 15 1650.57 1557 –

rc107 12 1264.11 2314 13 1467.85 2060 –

rc108 12 1398.05 2815 13 1533.09 2240 –

Avg 13.75 1478.63 2088 14.50 1670.15 1861 13.43

Overall Avg 12.85 1283.43 2305 13.44 1427.38 2009 13.11

as much as 3.69% (regret-2 insertion) and 6.82% (exhaustive greedy insertion), respectively,
on average.
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Table 6 Average increases in fleet size and energy consumption upon removing an operator

Operator removed Increase

#Veh (%) EC (%)

Exhaustive greedy insertion 2.91 6.82

Random greedy insertion 3.09 0.32

Regret-2 insertion 3.69 4.24

Exhaustive time-based insertion 0.00 1.58

Random time-based insertion 0.60 2.02

Random greedy with noise function insertion 0.02 1.97

Regret-2 with noise function insertion 3.20 2.98

Exhaustive time-based with noise function insertion 0.44 2.42

Random time-based with noise function insertion 2.11 2.25

Repair-opt insertion 0.46 2.27

5.3.2 Contribution of repair-opt operator to algorithmic performance

Since the repair-opt operator is key component of the proposed method, we considered the
LD-EVRPTW and re-solved all the instances by removing the repair-opt operator from the
LNS to further investigate its role in the performance of the algorithm. We performed the
LNS algorithm for 15,000 and 25,000 iterations to solve small- and large-size instances,
respectively, as they showed a good compromise between the solution quality and computa-
tional effort. Note that the numbers of iterations were substantially smaller and set to 1000
and 6000 for small- and large-size problems, respectively, when LNS included the repair-opt.

We performed our tests on the 5-, 10-, 15-, and 100-customer instances. The results are
summarized in Table 7. “#Better #Veh” and “#Better EC” reports the number of instances
where LNS with repair-opt operator obtains a better solution with regard to the number of
vehicles and energy consumption, respectively, and “#Inst” shows the number of instances
solved. “%ΔEC " represents the average percentage deviation in the energy consumption
when LNS is performed without repair-opt operator as compared to with repair-opt. A neg-
ative value indicates the contribution of repair-opt to the solution quality.

The results show that the repair-opt operator allowed LNS to converge to better solutions
in 8 small-size instances out of 36: in two instances it reduced the fleet size whereas in six
instances it decreased the total energy consumption. In the large-size instances, the LNS
equipped with repair-opt achieved smaller fleet size in two instances and provided savings
in energy consumption in 17 instances. Note that the results with repair-opt were achieved
with shorter computation times. The detailed results are reported in Appendix B. In light of
these results, we conclude that the repair-opt procedure enhances the overall performance of
the proposed LNS method.

5.3.3 Analysis of single-recharge strategy

To investigate the impact of the single-recharge (SR) strategy on the route plans and costs
we solved all large-size problems by limiting the en-route recharges by one. Note that the
results we provided earlier were obtained under the multiple recharge (MR) strategy where
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the EVs can recharge their batteries as many times as they need, but only once between two
consecutive customers. Table 8 compares the results of the MR and SR strategies for the LD-
EVRPTW. We observe that the SR strategy frequently leads to the utilization of additional
vehicles in the fleet (in 18 out of 29 instances, as shown in bold). It also increases the energy
consumption by up to 18.46%. These results show that the companies that adopt the SR

Table 8 Comparison of results for multiple- and single-recharge strategies

Instance MR SR %ΔEC

#Veh EC t (sec) #Veh EC t (sec)

r101 18 1741.27 712 21 1804.74 2845 –

r102 17 1630.97 1135 18 1625.74 2327 –

r103 14 1404.57 1885 15 1416.33 2347 –

r104 13 1247.14 2545 13 1286.17 2877 3.13

r105 16 1482.75 1324 17 1546.19 2740 –

r106 15 1469.73 1752 16 1503.25 2682 –

r107 13 1332.27 1774 14 1391.63 2437 –

r108 12 1181.01 2560 12 1234.29 2470 4.51

r109 14 1415.50 1734 16 1485.32 2441 –

r110 13 1251.46 2129 13 1291.98 2640 3.24

r111 13 1262.93 2029 14 1307.41 2819 –

r112 12 1218.47 2763 13 1244.18 2796 –

Avg 14.17 1386.51 1862 15.17 1428.10 2618 3.63

c101 12 1186.46 718 13 1305.60 1969 –

c102 12 1173.36 1969 12 1272.16 2576 8.42

c103 11 1395.65 3005 12 1263.82 2734 –

c104 11 1241.07 5024 11 1287.01 3238 3.70

c105 12 1161.57 1345 12 1375.97 2451 18.46

c106 12 1166.90 1919 12 1310.25 2576 12.28

c107 12 1179.50 1634 12 1232.97 2513 4.53

c108 12 1206.47 2466 12 1259.80 2474 4.42

c109 11 1318.41 2648 12 1211.23 2915 –

Avg 11.67 1225.49 2303 12.00 1279.87 2605 8.64

rc101 17 1921.03 1119 18 1979.08 2671 –

rc102 16 1815.88 1555 17 1859.46 2643 –

rc103 14 1722.56 1773 14 1753.40 2774 1.79

rc104 13 1515.47 2930 13 1521.31 2448 0.39

rc105 15 1734.78 1654 16 1862.04 2741 –

rc106 15 1650.57 1557 16 1768.59 2403 –

rc107 13 1467.85 2060 14 1539.99 2578 –

rc108 13 1533.09 2240 14 1569.16 2691 –

Avg 14.50 1670.15 1861 15.25 1731.63 2619 1.09

Overall Avg 13.44 1427.38 2009 14.14 1479.87 2614 4.45

123



Annals of Operations Research (2023) 324:761–793 787

strategy should re-evaluate this strategy by accounting accurately the trade-offs between
driver/vehicle times and vehicle acquisition/fuel costs.

6 Conclusions and future research directions

In this paper, we addressed EVRPTW with partial recharges by taking into account the
energy consumption associated with the cargo carried on the vehicle. We formulated two
differentmathematicalmodels of the problem and compared their performances on small-size
instances. For solving the large-size instances, we developed an LNS method by proposing
newdestroy and repair operators aswell as a new repairmechanismbased on an exactmethod.

Our numerical tests showed how the fleet size and/or energy consumption increase in
comparison to the case where the load factor is neglected and revealed the importance of
considering cargo weight of the vehicles for more accurate route planning. Specifically, we
observed that the energy consumption can increase by up to 31% (in realistic large-size
instances) because of the weight of the cargo carried on the vehicle. Furthermore, additional
vehicles are often needed in order to provide service without disruption. Our experiments
also revealed the contribution of the proposed repair-opt algorithm on the performance of the
LNS algorithm.

Future research on this topicmay consider the road gradient. A loaded vehicle going uphill
will consume significantly more energy. On the other hand, when it travels downhill it can
recharge its battery through energy recuperation from the wheels. However, the recuperation
brings additional complexities to the problem.
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Appendix A: Parameter setting

The parameters used in the LNS algorithm are displayed in Table 9.

Table 9 Parameter values

Par. Description Value

γ Number of customers removed Random between [20%, 55%]

� Number of customers removed when repair-opt is
selected as insertion operator

Random between [15%, 45%]

σ Parameter used in random worst-consumption and
random worst-time algorithm

1.5

ω Number of routes removed Random between [10%, 40%]

φ1 First Shaw parameter 0.5

φ2 Second Shaw parameter 0.25
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Table 9 (continued)

Par. Description Value

φ3 Third Shaw parameter 0.15

φ4 Fourth Shaw parameter 0.25

μ Noise parameter 0.1

∈ Random number for noise function Random between [− 1, 1]

α First-feasible station insertion selection probability 0.7

δ1 Worst-consumption removal selection probability 1/13

δ2 Random worst-consumption removal selection
probability

4/13

δ3 Shaw removal selection probability 3/13

δ4 Random worst-time removal selection probability 1/13

δ5 Random removal selection probability 2/13

δ6 Random route removal selection probability 1/13

δ7 Greedy route removal selection probability 1/13

λ1 Exhaustive greedy insertion selection probability 2/27

λ2 Random greedy insertion selection probability 8/27

λ3 Regret-2 insertion selection probability 4/27

λ4 Exhaustive time-based insertion selection probability 2/27

λ5 Random time-based insertion selection probability 2/27

λ6 Random greedy with noise function insertion selection
probability

2/27

λ7 Regret-2 with noise function insertion selection
probability

2/27

λ8 Exhaustive time-based with noise function insertion
selection probability

2/27

λ9 Random time-based with noise function insertion
selection probability

2/27

λ10 Repair-opt insertion selection probability 1/27

β Number of iterations to remove and reinsert stations 50

η Number of iterations during which LNS is not allowed
to call Repair-opt operator

800 for small-size instances

5800 for large-size instances

Note that values for the shaw and noise parameters were adopted from Demir et al. (2012) and the remaining
parameters are determined by performing preliminary experiments. In these experiments, δ and λ parameters
were assigned weights varying from 1 to 4 and 1 to 8, respectively, and normalized to obtain probabilities
whose sum is equal to 1.

Appendix B. Detailed results analyzing the performance of repair-opt
operator

The detailed results for the small- and large-size instances obtained using the LNS algorithm
with and without employing the repair-opt operator for the load-dependent case are reported
in Tables 10 and 11, respectively. In both tables, “#Veh”, “t (sec)”, and “EC” refer to the fleet
size, average run time (in seconds), and total energy consumption, respectively, and “%ΔEC”
shows the percentage increase in the energy consumption when LNS does not employ the
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Table 10 Results for small-size instances obtained with and without using repair-opt

Instance w/out Repair-opt w/ Repair-opt %ΔEC

#Veh EC t (sec) #Veh EC t (sec)

r104c5-s3 2 142 11 2 142 1 0.00

r105c5-s3 2 159 8 2 159 1 0.00

r202c5-s3 1 144 16 1 144 2 0.00

r203c5-s4 1 181 9 1 181 2 0.00

c101c5-s3 2 266 9 2 266 1 0.00

c103c5-s2 1 187 10 1 187 1 0.00

c206c5-s4 1 251 10 1 251 2 0.00

c208c5-s3 1 169 9 1 169 2 0.00

rc105c5-s4 2 257 8 2 257 1 0.00

rc108c5-s4 2 264 10 2 264 1 0.00

rc204c5-s4 1 189 16 1 189 3 0.00

rc208c5-s3 1 171 14 1 171 2 0.00

r102c10-s4 4 272 22 3 336 3 −
r103c10-s3 2 220 29 2 220 14 0.00

r201c10-s4 1 270 14 1 262 2 − 2.82

r203c10-s5 1 227 4 1 227 8 0.00

c101c10-s5 3 428 20 3 410 2 − 4.21

c104c10-s4 2 308 48 2 306 85 − 0.77

c202c10-s5 1 321 9 1 319 1 − 0.62

c205c10-s3 2 234 26 2 234 3 0.00

rc102c10-s4 5 475 17 5 475 2 0.00

rc108c10-s4 3 365 23 3 365 4 0.00

rc201c10-s4 2 327 28 1 424 3 −
rc205c10-s4 2 335 25 2 335 4 0.00

r102c15-s8 5 431 28 5 431 5 − 0.04

r105c15-s6 4 350 32 4 350 4 0.00

r202c15-s6 2 365 30 2 365 272 0.00

r209c15-s5 1 360 25 1 347 36 − 3.52

c103c15-s5 3 402 73 3 402 419 − 0.01

c106c15-s3 3 352 52 3 352 12 0.00

c202c15-s5 2 393 44 2 393 33 0.00

c208c15-s4 2 310 47 2 310 15 0.00

rc103c15-s5 4 416 45 4 416 57 0.00

rc108c15-s5 3 418 40 3 418 20 0.00

rc202c15-s5 2 403 48 2 403 11 0.01

rc204c15-s7 1 489 58 1 402 371 − 17.76
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Table 11 Results for large-size instances obtained with and without using repair-opt

Instance w/out Repair-opt w/ Repair-opt %ΔEC

#Veh EC t (sec) #Veh EC t (sec)

r101 19 1833 1357 18 1741 712 −
r102 17 1746 1430 17 1631 1135 − 6.57

r103 14 1375 1898 14 1405 1885 2.13

r104 13 1253 3017 13 1247 2545 − 0.49

r105 16 1481 1629 16 1483 1324 0.12

r106 15 1469 1928 15 1470 1752 0.06

r107 13 1357 2148 13 1332 1774 − 1.83

r108 12 1190 3596 12 1181 2560 − 0.73

r109 14 1457 1818 14 1416 1734 − 2.87

r110 13 1256 2967 13 1251 2129 − 0.36

r111 13 1271 2601 13 1263 2029 − 0.66

r112 12 1204 3521 12 1218 2763 1.19

c101 12 1198 1454 12 1186 718 − 0.93

c102 12 1210 2008 12 1173 1969 − 3.05

c103 11 1433 2809 11 1396 3005 − 2.61

c104 11 1456 5247 11 1241 4524 − 14.77

c105 12 1167 1934 12 1162 1345 − 0.50

c106 12 1171 2348 12 1167 1919 − 0.39

c107 12 1183 2490 12 1180 1634 − 0.32

c108 12 1215 3060 12 1206 2466 − 0.70

c109 12 1256 2913 11 1318 2648 −
rc101 17 1947 1485 17 1921 1119 − 1.34

rc102 16 1812 1627 16 1816 1555 0.23

rc103 14 1653 1975 14 1723 1773 4.23

rc104 13 1490 3282 13 1515 2930 1.71

rc105 15 1734 1845 15 1735 1654 0.02

rc106 15 1630 2008 15 1651 1557 1.25

rc107 13 1523 2486 13 1468 2060 − 3.65

rc108 13 1527 2786 13 1533 2240 0.37

repair-opt operator as compared to when it employs it. In Tables 10 and 11, the improvements
in terms of energy consumption and number of vehicles are shown in bold.
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