
ORIG INAL RESEARCH

Data envelopment analysis model with decision makers’
preferences: a robust credibility approach

Hashem Omrani1 · Arash Alizadeh2 · Ali Emrouznejad3,4 · Tamara Teplova4

Accepted: 30 August 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Data envelopment analysis (DEA) is one of the widely used methods to measure the effi-
ciency scores of decision making units (DMUs). Conventional DEA is unable to consider
both uncertainty in data and decisionmakers’ (DMs) judgments in the evaluations. This study,
to address the shortcomings of the conventional DEA, proposes a new best worst method
(BWM)- robust credibility DEA (BWM-RCDEA) model to estimate the efficiency scores
of DMUs considering DMs’ preferences and uncertain data, simultaneously. First, to handle
uncertainty in input and output variables, fuzzy credibility model has been applied. Addition-
ally, uncertainty in constructing fuzzy sets is modeled using robust optimization with fuzzy
perturbation degree. In this paper, two new types of RCDEA models are proposed: RCDEA
model with exact perturbation in fuzzy inputs and outputs and RCDEA model with fuzzy
perturbation in fuzzy inputs and outputs. In addition, to deal with flexibility of weights and
incorporating DMs’ judgement into the RCDEAmodel, a bi-objective BWM-RCDEAmodel
is introduced. Finally, the proposed bi-objective model is solved using min–max approach.
To illustrate the usefulness and capability of the proposed model, efficiency scores of 39
distribution companies in Iran is investigated and results are analyzed and discussed. Finally,
based on the results, recommendations have been made for policy makers.
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1 Introduction

Electricity industry plays a major role in economic development of the countries. Indeed,
electricity industry as the mother industry, is the engine of economic growth in countries
(Tavassoli et al., 2020). Electricity industry consists of three important sectors of power gen-
eration, transmission, and electricity distribution. Electricity distribution companies deliver
final product to end customers and have direct relationship with customers. Therefore, elec-
tricity distribution companies’ performance evaluation has a great importance amongdecision
makers, managers, and regulators. In other words, in most cases, the quality of the electric-
ity delivered is directly related to the performance of the distribution companies. Hence,
high performance of the distribution companies could improve the economic growth and
customers satisfaction. For evaluating distribution companies’ performance various methods
have been applied in the literature. Data envelopment analysis (DEA) is one of the widely
used approach to estimate efficiency score of decision making units (DMUs). Data envelop-
ment analysis (DEA) is a non-parametric method to measure the relative efficiency of a set
of DMUs with homogenous inputs and outputs (Charnes et al., 1978). DEA is based on a
series of optimizations to specify an efficient frontier curve using linear programming tech-
nique. While the numerous advantages of DEA in the field of efficiency evaluations have led
researchers devote a considerable number of literatures to develop and apply DEA method
in recent two decades (Chen et al., 2019; Emrouznejad & Yang, 2018; Hatami-Marbini et al.,
2012), conventional DEA model suffers from some shortcomings such as weight flexibility
and uncertainty in input and output data which have been addressed in this study.

One of the crucial assumptions in the conventional DEA is that input and output data are
deterministic. In fact, DEA uses a deterministic amount of input to produce a deterministic
amount of output. However, in real world applications, data are sometimes contaminatedwith
uncertainty and vagueness. Since DEA is a linear programming model, hence, imprecise and
uncertain data may lead to unreliable, incomplete and even infeasible results (Ben Tal and
Nemirovski, 2000; Alizadeh & Omrani, 2019). Thereby, some researchers have addressed
uncertainties in DEA data using various methods, such as fuzzy sets, robust optimization,
stochastic programming, interval programming and etc.methods.This paper dealswith uncer-
tainty in input and output variables of DEA using mixed fuzzy sets and robust optimization
approaches simultaneously. It is notable that in engineering and management practices it
is difficult to collect data with knowing the probability distribution function of data which
resulted to unavailability of probability models such as stochastic programming (Yin et al.,
2018). In such cases, fuzzy sets and robust optimization are the most appropriate ways to
handle uncertainties. So, a review of the literature on fuzzy sets and robust optimization is
summarized in the next section.

In this paper, in order to incorporate DMs’ preferences and reducing flexibility in input and
output weights, a fuzzy robust DEAmodel is combined to the latest multiple criteria decision
making (MCDM) technique, namely best–worst method (BWM). BWM is a multi-criteria
decision making (MCDM) method which was first introduced by Rezaei (2015). BWM
applies reference comparisons in order to obtain the weights of criteria. The advantages of
BWM in generating more consistent and reliable weights and also needing less pairwise
comparison rather than other popular techniques such as AHP led to the application of this
method in literatures (Vafadarnikjoo et al., 2020). Readers can refer to comprehensive review
of application of BWM technique in decision making problems by Mi et al., (2019).

In summary, the main contributions of this study are as follows:

• Considering uncertainty in inputs and outputs using fuzzy credibility theory.
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• Considering uncertainty in constructing fuzzy sets using robust optimization approach.
• Considering perturbation degree of data as a fuzzy number.
• Incorporating preferences into robust-credibility DEA (RCDEA) model using BWM.

The rest of the paper is as follows: Literature has been reviewed in Sect. 2. Section 3
presents the methodology (definitions, models and proofs) used in this study. In Sect. 4,
the proposed model is applied to evaluate efficiency scores of Iranian electricity distribution
companies. Section 5 analyzes the results of the model. Recommendations have been made
for policy makers in Sect. 6 and finally, conclusion and summary is made in Sect. 7.

2 Literature review

In this paper, for considering uncertainty in input and output variables ofDEA, fuzzy sets have
been applied. Additionally, uncertainty in constructing fuzzy sets has been modeled using
robust optimization. We proceed one more level in considering uncertainty and used fuzzy
value for perturbation level in robust optimization. Finally, to incorporate DMs’ judgement
and reduce weight flexibility in conventional DEA, BWM has been used. In this section
literature of the used models have been reviewed. y

2.1 Fuzzy DEA

The first steps of incorporating fuzzy set theory into DEA (Emrouznejad & Tavana, 2014)
models was taken by Sengupta (1992). Sengupta (1992) introduced a DEAmodel with fuzzy
objective and constraints by defining a tolerance level on DEA constraint violations and
analyzed the model using Zimmermann (1978) approach. Later, Triantis and Girod (1998)
applied a novel three stage DEAmodel to measure the technical efficiency in a fuzzy environ-
ment. In the first stage, for input and output variables a membership function was defined, so
that imprecise input and output variables are expressed in terms of their risk-free and impos-
sible bounds. In the second stage, conventional DEA-VRS and DEA-CRS were formulated
in terms of the risk-free and impossible bounds and the membership function for each of the
fuzzy input and output variables. Finally, technical efficiencies were measured according to
the different membership function values. Their proposed three stage DEA model is catego-
rized in the most popular fuzzy α-level based approach. This method enables decision maker
(DM) to observe the impact of modifying input and output values between risk-free and
impossible bounds on the efficiency scores. In other words, the main purpose of the α-level
based approach is to provide a pair of parametric programs which measures the upper and
lower bounds of the α-level based membership function of efficiency scores (Emrouznejad
et al., 2014). The α-level based approach was later extended and applied in many literatures.
For instance, Liu (2008) in order to evaluate the upper and lower bound performance of flexi-
ble manufacturing systems (FMS) alternatives when the input and output data are represented
as crisp and fuzzy data, transformed a two-level mathematical program into a one-level DEA
assurance region model. Soltanzadeh and Omrani (2018) to deal with fluctuations in data
which can be represented by fuzzy numbers, extended the dynamic network DEAmodel in a
fuzzy framework. Their proposed method provided more information for management, since
data was presented by membership function. Peykani et al. (2019) proposed an adjustable
fuzzy DEA approach while Hatami- Marbini and Saati (2018) proposed a common-weight
DEA method to evaluate system efficiency and the component process efficiencies in fuzzy
environment.
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Another approach to dealwith fuzziness inDEAmodel is the fuzzy rankingwhichwas first
developed byGuo andTanaka (2001). In the fuzzy ranking approach,DMdefines a possibility
level and themodel converts to a linear programmingmodelwith crisp constraints and ranking
occurs using the comparison rule for fuzzy numbers. Like α-level based approach, fuzzy
ranking method has been widely applied in literatures. For instance, Guo (2009) proposed a
fuzzy DEA for evaluating objects with fuzzy inputs and outputs and applied his method to
analyze a case study involving a restaurant location problem in detail.

Finally, Lertworasirikul et al. (2003a, b) based on the Zadeh’s (1978) fundamental princi-
ples of possibility theory for fuzzy sets, proposed “possibility” and “credibility” approaches
to overcome ranking problem in DEA-CRS model. Later, Lertworasirikul et al. (2003b)
extended the possibility approach to fuzzy DEA-VRS model. Their model converted the
fuzzy DEA model to a linear model which can be solved using linear programming solvers.
Although “possibility” and “credibility” approaches are strong tool to deal with fuzzy and
uncertain data, “credibility” mathematical programming is complex and difficult to solve
(Amini et al., 2019). However, development of computer and appearance of algorithms have
facilitated the use of these approaches in optimization problems (Liu&Liu, 2002). In the cred-
ibility approach, the fuzzy DEAmodel converted into a credibility programming DEAmodel
and fuzzy variables were replaced by expected credits, which were obtained by applying
credibility measure (Lertworasirikul et al., 2003b). Unlike possibility approach, in credibil-
ity approach, expected credits are replaced with fuzzy data to deal with fuzzy constraints
and fuzzy objectives and there is no need to define any parameter to rank fuzzy efficiency by
DM. Generally, credibility approach has been applied in a narrow of literatures. For exam-
ple, Fasanghari et al., (2015) applied fuzzy credibility constrained programming and P-robust
approaches simultaneously for analyzing enterprise architecture scenarios. The catered DEA
model was linear, flexible, robust and successful in discrimination power improvement. Also,
Amini et al., (2019) to estimate the road safety efficiency of provinces in Iran used a credi-
bility DEA based on road safety (DEA-RS) model. In fact, the constraints of DEA-RS model
are considered as credibility constraints and a counterpart credibility DEA-RS (CreDEA-RS)
model was proposed. For a comprehensive review on literatures about fuzzy DEA readers
can refer to Hatami-Marbini et al. (2011).

2.2 Robust optimization

As mentioned before, fuzzy sets constructed based on the DMs’ opinions. In real world
applications, due to the dynamic and continuous change in preferences of stakeholders and
DMs, considering certain values for DMs’ preferencesmay lead to the unrealistic and reliable
evaluations (Omrani et al., 2018). Therefore, considering perturbation and noise, for DMs
assigned values, in order to produce more realistic and precise results is inevitable. One
of the most effective approaches to incorporate uncertainty and immunizes model against
uncertainty in linear programming is robust optimization (RO) which proposed by Ben-Tal
and Nemirovski (2000) and Bertsimas and Sim (2004). According to the Bertsimas and Sim
(2004), it is almost implausible that all parameters get their worst case values, therefore,
Bertsimas and Sim (2004) for each constraint i introduced a new parameter,�i , to make
a trade-off between the degree of conservatism of the solution and the protection level of
the constraint i. Robust optimization has been used in diverse management and engineering
practices such as supply chainmanagement (Omrani et al., 2017), wastemanagement (Saeidi-
Mobarakeh et al., 2020), investment management (Kim et al., 2018), project selection (Lee
et al., 2020), and portfolio optimization (Toloo & Mensah, 2019). Also, robust optimization
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has been appliedon the conventionalDEAas awell-known linear programmingmodelwidely.
Robust DEA (RDEA) is first introduced by Sadjadi and Omrani (2008) and then developed in
many researches (Sadjadi et al. (2011a,b), Omrani (2013), Salahi et al. (2016), Shabanpour
et al. (2017) and Toloo and Mensah (2019)). In this paper, the robust optimization approach
is used to handle uncertainties in both input and output data, simultaneously. In fact, since
data are considered as fuzzy sets, a small perturbation in DMs’ preferences in specifying
upper, medium and lower bounds may lead to unreal and imprecise results. In addition, in
RO, perturbation degree (percentage of uncertainty) is considered as exact values which
intensifies the impreciseness of the results. Therefore, in this study, perturbation level is
handled using fuzzy sets.

2.3 Assurance region

The second issue addressed in the paper is weight flexibility in DEA. Each DMU in order
to be on the efficient frontier is free to set its own weight (Omrani, 2013). This implies that
a DMU can make a full benefit of the weighting system to maximize its own efficiency.
This weights flexibility could be considered as a strength of DEA, because inefficient units
interpreting is meaningful. In other words, these units cannot reach to the efficient frontier
even in situation they can choose weights, freely. However, weight flexibility is the weakness
of DEA models, too. Since, in some circumstances, some input and output variables take
zero or extreme values (Liu, 2014). Therefore, it will be difficult to interpret the impact of
these variables on the efficiency scores. Generally, in the literature, four approaches including
common weights (Roll et al., 1991), weight restriction (Dyson & Thanassoulis, 1988), cone
ratio (Charnes et al., 1990) and assurance region (AR) (Thompson et al., 1986) have been
proposed to reduce weight flexibility. Among weight restriction approaches, AR is a well-
known and appropriate approach to incorporate value judgment such as preference concepts,
expert opinions and prior information in analysis (Liu, 2014). AR impose ratios between
weights to be in a certain range of values (Khalili et al., 2010). AR is categorized to two ARI
and ARII approaches. ARI determines bounds on using a priori information on marginal
rates. ARII specifies bound for ratios of inputs/ outputs weights and mainly is applicable in
profit efficiency analysis. Both ARI and ARII are sensitive to scaling of inputs and outputs
(Allen et al., 1997).

Sarica and Or (2007) to evaluate performance of 65 electricity generation plants in Turkey
applied DEA/AR model. Wang et al., (2008) presented a DEA model with AR for prior-
ity derivation in the analytic hierarchy process (AHP), which is referred as the DEA/AR
model. Their proposed model overcame the shortcomings of the DEAHP such as illogical
local weights, over insensitivity to some comparisons, information loss, and overestimation
of some local weights, and provide better priority estimate and better decision conclusions
than the DEAHP. Lai et al. (2015) applied AHPmethod to incorporate the weightings of input
and output variables into DEA to evaluate 24 international airports. The results revealed that
the discrimination power of their model has been increased in comparison with conven-
tional DEA. Moreover, Degl’Innocenti et al. (2017) examined the efficiency of 116 banks
for nine new EU members in Central and Eastern European (CEE) countries over the period
2004–2015 using weight assurance region in two-stage DEA model. They also extended
their work by including a window-based approach to take into account the patterns of effi-
ciency over time. Ebrahimi and Khalili (2018) proposed a mixed integer AR- imprecise DEA
approach to find the best DMU and applied their model to solve a supplier selection problem.
Recently, Omrani et al. (2020) integrated best–worst method (BWM) and DEA to measure
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the efficiency score of 39 electricity distribution companies in Iran. Also, they extended their
proposed model to find common weights of input and output variables in DEA considering
DMs’ judgement.

The main motivation of this study was to propose a novel model to handle uncertainty
in data and DMs’ judgement comprehensively using the state- of- the- art techniques. As
mentioned before, due to the complexity, few research studies have addressed uncertainty
using credibility approach for evaluating the efficiency of DMUs. So, the gap of applying
credibility DEA approach in the efficiency evaluation of DMUs was obvious. Although,
mixed robust fuzzy DEA method has been applied in a few research studies, however, to the
best of the authors knowledge, no study has investigated the robust credibility DEA approach
with uncertain perturbation level and weight flexibility yet.

3 Methodology

In this section, the proposed BWM-RCDEA model has been illustrated. In summary, first
a fuzzy credibility DEA model is introduced. Then, considering uncertainty in constructing
fuzzy sets, a robust credibility DEA (RCDEA) model is used. Finally, DMs’ preferences is
incorporated into the RCDEA model using BWM and a novel bi-objective BWM-CRDEA
model is constructed. The proposed bi-objective BWM-RCDEA model is solved using a
min–max approach. In the following, methods applied into the proposed model have been
defined separately.

3.1 Preliminaries

First, a brief review of fuzzy sets definitions and terms have been explained in the following.
For more details, the readers can refer to Dubois and Prade (1978), Zimmermann (2001), Liu
and Liu (2002, 2003) and Li and Liu (2006). Moreover, the parameters used in models have
been presented in Table 1.

Table 1 Parameters applied for the models in this study

Parameter Definition

wi Weight of input and output variables

(xm
i j , xα

i j , xβ
i j ), (y

m
r j , yα

r j , yβ
r j ) ith fuzzy input and rth fuzzy output for jth DMU, respectively

�0 , � j Budget of uncertainty for objective function and jth constraint
respectively

p0 , p j Dual variable for objective function and constraints in robust
counterpart model

qi j Dual variables for constructing robust model in Bertsimas and Sim
(2004) approach

zi Linearization variable in Bertsimas and Sim (2004) approach

(em
i j , eα

i j , eβ
i j ) Fuzzy perturbation percentage

aBi , aiW The best and the worst preference values of DM

γ The confidence level for credibility theory γ ∈ [0, 1]

123

Annals of Operations Research (2024) 339:1269–13061274



Definition 1 LetU be a universe set. A fuzzy set Ã ofU is defined by a membership function
μ Ã(x) → [0, 1], ∀x ∈ U .

Definition 2 The α − cut of fuzzy set Ã, Ãα , is the crisp set Ãα � {x |μ Ã(x) ≥ α}.
Definition 3 A fuzzy number L-R type is expressed as Ã � (m, α, β)L R with below mem-
bership function:

μ Ã(r ) �
{

L(m−r
α

) r ≤ m
R( r−m

β
) r ≥ m

(1)

where L andR are the left and right functions, respectively, and α and β are the (non-negative)
left and right spreads, respectively.

Definition 4 An L-R fuzzy number, Ã � (m, α, β)L R � (m, α, β) is a triangular fuzzy
number if.

L(x) � R(x) �
{
1 − x 0 ≤ x ≤ 1
0 otherwise

(2)

Definition 5 Let Ã � (m, α, β)L R and B̃ � (m, α, β)L R be two positive triangular fuzzy
numbers. The addition, subtraction and multiplication of Ã and B̃ are as follows:

Addition: Ã + B̃ � (m, α, β)L R + (m, α, β)L R � (m + m, α + α, β + β)L R .
Subtraction: Ã − B̃ � (m, α, β)L R − (m, α, β)L R � (m − m, α + β, β + α)L R .
Multiplication (approximation):

Ã ⊗ B̃ � (m, α, β)L R ⊗ (m, α, β)L R � (mm, mα + mα − αα, mβ + mβ + ββ)L R

Definition 6 A possibility space is defined as (�, P(�), Pos) where � is nonempty set,
P(�) is the power set of � and Pos is the possibility measure. The possibility measure
satisfies the below axioms:

1. Pos(∅) � 0, Pos(X ) � 1;
2. ∀ A, B ∈ P(�) , i f A ⊆ B → Pos(A) ≤ Pos(B);
3. Pos(A1 ∪ A2... ∪ Ak) � Sup Pos j (A j ).

where X is the universe set.

Definition 7 The necessity measure is defined as Nec(A) � 1 − Pos(Ac) where Ac is the
complementary set of A set. The necessity measure satisfies the below axioms:

1. Nec(∅) � 0, Nec(X ) � 1;
2. ∀ A, B ∈ P(�) , i f A ⊆ B → Nec(A) ≤ Nec(B);
3. Nec(A1 ∩ A2... ∩ Ak) � I n f Nec j (A j ).

Definition 8 The credibility measure is defined as Cre(A) � 1
2 {Pos(A) + Nec(A)}. The

credibility measure satisfies the below axioms:

1.Cre(∅) � 0, Cre(X ) � 1;
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2.∀ A, B ∈ P(�) , i f A ⊆ B → Cre(A) ≤ Cre(B);
3.Cre(A) + Cre(Ac) � 1, ∀A ⊆ P(X )

Definition 9 Let λ be a fuzzy variables. The possibility, necessity and credibility of the fuzzy
event (λ ≥ r ) are defined as:

Pos(λ ≥ r ) � Sup
t≥r

μλ(t) (3)

Nec(λ ≥ r ) � 1 − Pos(λ < r ) � 1 − Sup μλ(t)
λ<r

(4)

Cre(λ ≥ r ) � 1

2
{Pos(λ ≥ r ) + Nec(λ ≥ r )} (5)

3.2 Data envelopment analysis (DEA)

DEA is a nonparametric method that uses linear programming to measure the efficiency of
DMUs with multiple inputs and multiple outputs. In DEA, efficiency is defined as a ratio
of weighted sum of outputs to a weighted sum of inputs. The data form a frontier, DMUs
which are on the frontier are evaluated as efficient. Output-oriented DEA models maximize
output for a given quantity of input factors, contrariwise input-oriented models minimize
input factors required for a given level of output. The input oriented DEA-CCR model is as
follows (Charnes et al., 1978):

θCC R
o � max

t+s∑
i�t+1

wi yio

st :
t+s∑

i�t+1

wi yi j −
t∑

i�1

wi xi j ≤ 0, j � 1, ..., n

t∑
i�1

wi xio � 1

wi ≥ 0, i � 1, ..., t + s

(6)

In model (6), jth DMU uses t inputs x1 j , ..., xt j for producing s outputs y(t+1) j , ..., y(t+s) j .
Also, the efficiency score of DMU under evaluation is θCC R

o .
Multiplier form of DEAmodel (6) contains an equality constraint

∑t
i�1 wi xio � 1. Since,

this paper assumes uncertainty in both inputs and outputs and the equality constraints have
not the robust counterpart, hence, to handle uncertainty in inputs using robust optimization
approach, the alternative DEA model (7) introduced by Zohrehbandian et al., (2010) is used
instead of model (6).
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max zo

s.t :
t+s∑

i�t+1

wi yio − θCC R
o

t∑
i�1

wi xio ≥ zo;

t+s∑
i�t+1

wi yi j − θCC R
j

t∑
i�1

wi xi j ≤ 0, j � 1, ..., n

t+s∑
i�1

wi � 1

wi ≥ 0, i � 1, ..., t + s

zo f ree

(7)

where θCC R
j is the efficiency score estimated for jth DMU in model (7). In model (7), the

normalization constraint
∑t

i�1 wi xio � 1 has been replaced by
∑t+s

i�1 wi � 1. Zohrehban-
dian et al. (2010) proved that the optimal solution of the models (6) and (7) are the same. In
other words, the weights generated by the models (6) and (7) are same.

3.3 Credibility DEA (CDEA) model

In this section, the credibility DEA (CDEA) model is described. For developing DEA using
fuzzy credibility theory, first following lemma is proven.

Lemma Let λ̃1 � (m1 , α1, β1)L R and λ̃2 � (m2, α2, β2)L R be two L-R fuzzy numbers with
continuous membership functions. For a given confidence level γ ∈ [0, 1] it is proven that
(Tavana et al., 2012):

I. If γ ≤ 0.5, then Cr (λ̃1 ≥ λ̃2) ≥ γ ⇔ m1 + β1R−1(2γ ) ≥ m2 − α2R−1(2γ ).
II. If γ > 0.5, then Cr (λ̃1 ≥ λ̃2) ≥ γ ⇔ m1−α1L−1(2(1−γ )) ≥ m2 +β2L−1(2(1−γ )).

Proof Suppose that.

λ � λ1 − λ2 � (m1, α1, β1)L R ⊕ (−m2, β2, α2)L R

� (m1 − m2, α1 + β2, α2 + β1)L R � (m̄, ᾱ, β̄)L R (8)

According to definition 9, we have:

Cr (λ̃1 ≥ λ̃2) � Cr (λ̃1 − λ̃2 ≥ 0) � Cr (̃λ ≥ 0) � 1

2

[
P0, (̃λ ≥ 0) + Nec(̃λ ≥ 0)

]
� 1

2

[
P0, (̃λ ≥ 0) + 1 − P0, (̃λ ≥ 0)

] � 1

2

[
sup
t≥0

μ(t) + 1 − sup
t<0

μ(t)

]
(9)

It is clear that the Eq. (9) can be expressed as follows:

Cr (̃λ ≥ 0) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 0 ≤ m − α
1
2

[
1 + 1 − L(m

α
)
]

� 1 − 1
2 L(m

α
) m − α ≤ 0 ≤ m

1
2

[
R(−m

β
) + 1 − 1

]
� 1

2 R(m
β
) m ≤ 0 ≤ m + β

0 m + β < 0

(10)
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If γ ≤ 0.5, then

Cr (̃λ ≥ 0) ≥ γ ⇔ 1

2
R(

−m

β
) ≥ γ ⇔ R(

−m

β
) ≥ 2γ ⇔ −m

β
≤ R−1(2γ ) ⇔ − m1 − m2

α2 + β1
≤ R−1(2γ )

⇔ m1 − m2 ≤ (α2 + β1)R
−1(2γ ) ⇔ m1 + β1R−1(2γ ) ≥ m2 − α2R−1(2γ )

If γ > 0.5, then

Cr (̃λ ≥ 0) ≥ γ ⇔ 1 − 1

2
L

(
m

α

)
≥ γ ⇔ 1

2
L

(
m

α

)
≤ 1 − γ ⇔ L

(
m

α

)
≤ 2(1 − γ )

⇔ m

α
≥ L−1(2(1 − γ )) ⇔ m1 − m2

α1 + β2
≥ L−1(2(1 − γ )) ⇔ m1 − m2 ≥ (α1 + β2)L

−1(2(1 − γ ))

⇔ m1 − α1L−1(2(1 − γ )) ≥ m2 + β2L−1(2(1 − γ ))

The credibility counterpart of dual of model (7) can be expressed as follows:

max zo

s.t :

Cr (
t+s∑

i�t+1

wi ỹio ≥ θCC R
o

t∑
i�1

wi x̃io + zo) ≥ γo

Cr (
t+s∑

i�t+1

wi ỹi j ≤ θCC R
j

t∑
i�1

wi x̃i j ) ≥ γ j , j � 1, ..., n

t+s∑
i�1

wi � 1

wi ≥ 0, i � 1, ..., t + s

zo f ree

(11)

where x̃i j � (xm
i j , xα

i j , xβ
i j )L R, i � 1, ..., t and ỹi j � (ym

i j , yα
i j , yβ

i j )L R, i � t + 1, ..., t + s are
the L-R fuzzy numbers. The parameter γ (γo, γi ) indicates theminimum level of confidence in
feasibility of the constraints. Since the data and perturbations are considered as the L–R fuzzy
numbers, hence, to protect the constraints against violation, the parameter γ is used. As the
parameter γ increase, we lose more objective function to protect the constraints. The higher
the value of the parameter γ , the higher the constraint confidence level. In other words, with
increasing confidence level, the value of the objective function of the model (11) decreases.
According to definition 3, the membership functions of inputs and outputs j � 1,…,n can be
expressed as follows, respectively:

μx̃i j (r ) �

⎧⎪⎪⎨
⎪⎪⎩

L

(
xm

i j −r

xα
i j

)
r ≤ xm

i j , i � 1, ..., t

R

(
r−xm

i j

xβ
i j

)
r ≥ xm

i j , i � 1, ..., t
(12)

μỹi j (r ) �

⎧⎪⎪⎨
⎪⎪⎩

L

(
ym

i j −r

yα
i j

)
r ≤ ym

i j , i � t + 1, ..., t + s

R

(
r−ym

i j

yβ
i j

)
r ≥ ym

i j , i � t + 1, ..., t + s
(13)
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According to Zadeh extension principle, the membership functions of the constraints of
model (11) can be expressed as follows:

μ t∑
i�1

wi x̃i j

(r ) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

L

⎛
⎜⎝

t∑
i�1

wi xm
i j −r

t∑
i�1

wi xα
i j

⎞
⎟⎠ r ≤

t∑
i�1

wi xm
i j , j � 1, ..., n

R

⎛
⎜⎝ r−

t∑
i�1

wi xm
i j

t∑
i�1

wi xβ
i j

⎞
⎟⎠ r ≥

t∑
i�1

wi xm
i j , j � 1, ..., n

(14)

μ t+s∑
i�t+1

wi ỹi j

(r ) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

L

⎛
⎜⎝

t+s∑
i�t+1

wi ym
i j −r

t+s∑
i�t+1

wi yα
i j

⎞
⎟⎠ r ≤

t+s∑
i�t+1

wi ym
i j , j � 1, ..., n

R

⎛
⎜⎝ r−

t+s∑
i�t+1

wi ym
i j

t+s∑
i�t+1

wi yβ
i j

⎞
⎟⎠ r ≥

t+s∑
i�t+1

wi ym
i j , j � 1, ..., n

(15)

Based on the membership functions (14) to (15), the fuzzy numbers∑t+s
i�t+1 wi ỹio,

∑t+s
i�t+1 wi ỹi j ,θCC R

j

∑t
i�1 wi x̃i j and θCC R

o
∑t

i�1 wi x̃io + zo are shown
as below L-R fuzzy numbers:

t+s∑
i�t+1

wi ỹio �
(

t+s∑
i�t+1

wi ym
io,

t+s∑
i�t+1

wi yα
io,

t+s∑
i�t+1

wi yβ
io

)
L R

(16)

t+s∑
i�t+1

wi ỹi j �
(

t+s∑
i�t+1

wi ym
i j ,

t+s∑
i�t+1

wi yα
i j ,

t+s∑
i�t+1

wi yβ
i j

)
L R

, j � 1, ..., n (17)

θCC R
j

t∑
i�1

wi x̃i j �
(

θCC R
j

t∑
i�1

wi xm
i j , θ

CC R
j

t∑
i�1

wi xα
i j , θ

CC R
j

t∑
i�1

wi xβ
i j

)
L R

, j � 1, ..., n

(18)

θCC R
o

t∑
i�1

wi x̃io + zo �
(

θCC R
o

t∑
i�1

wi xm
io + zo, θ

CC R
o

t∑
i�1

wi xα
io, θ

CC R
o

t∑
i�1

wi xβ
io

)
L R
(19)

In this study, the data are considered as triangular fuzzy numbers. Hence, according to
definition 4, we have:

L(x) � R(x) � L−1(x) � R−1(x) � 1 − x (20)
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According to above lemma, for γo ≤ 0.5, the first constraint of model (11) is expressed as
follows:

t+s∑
i�t+1

wi ym
io + R−1(2γo)

t+s∑
i�t+1

wi yβ
io ≥ θCC R

o

t∑
i�1

wi xm
io + zo − R−1(2γo)θ

CC R
o

t∑
i�1

wi xα
io

⇒
t+s∑

i�t+1

wi (y
m
io + R−1(2γo)y

β
io) ≥ θCC R

o

t∑
i�1

wi (x
m
io − R−1(2γo)x

α
io) + zo

⇒
t+s∑

i�t+1

wi (y
m
io + (1 − 2γo)y

β
io) ≥ θCC R

o

t∑
i�1

wi (x
m
io − (1 − 2γo)x

α
io) + zo

⇒
t+s∑

i�t+1

wi (y
m
io + (1 − 2γo)y

β
io) − θCC R

o

t∑
i�1

wi (x
m
io − (1 − 2γo)x

α
io) ≥ zo

(21)

In addition, the second constraint of model (11) is converted to a linear constraint as follows:

t+s∑
i�t+1

wi ym
i j − R−1(2γ j )

t+s∑
i�t+1

wi yα
i j ≤ θCC R

j

t∑
i�1

wi xm
i j + R−1(2γ j )θ

CC R
j

t∑
i�1

wi xβ
i j

⇒
t+s∑

i�t+1

wi

(
ym

i j − R−1(2γ j )y
α
i j

)
≤ θCC R

j

t∑
i�1

wi (x
m
i j + R−1(2γ j )x

β
i j )

⇒
t+s∑

i�t+1

wi

(
ym

i j − (1 − 2γ j )y
α
i j

)
≤ θCC R

j

t∑
i�1

wi (x
m
i j + (1 − 2γ j )x

β
i j )

⇒
t+s∑

i�t+1

wi

(
ym

i j − (1 − 2γ j )y
α
i j

)
− θCC R

j

t∑
i�1

wi (x
m
i j + (1 − 2γ j )x

β
i j ) ≤ 0

(22)

By considering the constraints (21) and (22), the final CDEA model for γo, γ j ≤ 0.5 is
expressed follows:

max zo

s.t :
t+s∑

i�t+1

wi

(
ym

io + (1 − 2γo)y
β
io

)
− θCC R

o

t∑
i�1

wi (x
m
io − (1 − 2γo)x

α
io) ≥ zo

t+s∑
i�t+1

wi

(
ym

i j − (1 − 2γ j )y
α
i j

)
− θCC R

j

t∑
i�1

wi (x
m
i j + (1 − 2γ j )x

β
i j ) ≤ 0, j � 1, ..., n

t+s∑
i�1

wi � 1

wi ≥ 0, i � 1, ..., t + s

zo f ree
(23)

Similar to above way and according to above lemma, the first constraint of model (11) for
γo > 0.5 is expressed as follows:
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t+s∑
i�t+1

wi ym
io − L−1(2(1 − γo))

t+s∑
i�t+1

wi yα
io ≥ θCC R

o

t∑
i�1

wi xm
io + zo + L−1(2(1 − γo))θ

CC R
o

t∑
i�1

wi xβ
io

⇒
t+s∑

i�t+1

wi (y
m
io − L−1(2(1 − γo))y

α
io) ≥ θCC R

o

t∑
i�1

wi (x
m
io + L−1(2(1 − γo))x

β
io) + zo

⇒
t+s∑

i�t+1

wi (y
m
io − (2γo − 1)yα

io) ≥ θCC R
o

t∑
i�1

wi (x
m
io + (2γo − 1)xβ

io) + zo

⇒
t+s∑

i�t+1

wi (y
m
io − (2γo − 1)yα

io) − θCC R
o

t∑
i�1

wi (x
m
io + (2γo − 1)xβ

io) ≥ zo

(24)

Also, the second constraint of model (11) is written as follows:

t+s∑
i�t+1

wi ym
i j + L−1(2(1 − γ j ))

t+s∑
i�t+1

wi yβ
i j ≤ θCC R

j

t∑
i�1

wi xm
i j − L−1(2(1 − γ j ))θ

CC R
j

t∑
i�1

wi xα
i j

⇒
t+s∑

i�t+1

wi (y
m
i j + L−1(2(1 − γ j ))y

β
i j ) ≤ θCC R

j

t∑
i�1

wi (x
m
i j − L−1(2(1 − γ j ))x

α
i j )

⇒
t+s∑

i�t+1

wi (y
m
i j + (2γ j − 1)yβ

i j ) ≤ θCC R
j

t∑
i�1

wi (x
m
i j − (2γ j − 1)xα

i j )

⇒
t+s∑

i�t+1

wi (y
m
i j + (2γ j − 1)yβ

i j ) − θCC R
j

t∑
i�1

wi (x
m
i j − (2γ j − 1)xα

i j ) ≤ 0

(25)

Finally, the CDEA model for γo, γ j > 0.5 is shown as model (26).

max zo

s.t :
t+s∑

i�t+1

wi (y
m
io − (2γo − 1)yα

io) − θCC R
o

t∑
i�1

wi (x
m
io + (2γo − 1)xβ

io) ≥ zo

t+s∑
i�t+1

wi (y
m
i j + (2γ j − 1)yβ

i j ) − θCC R
j

t∑
i�1

wi (x
m
i j − (2γ j − 1)xα

i j ) ≤ 0, j � 1, ..., n

t+s∑
i�1

wi � 1

wi ≥ 0, i � 1, ..., t + s

zo f ree

(26)

3.4 Robust optimization

Robust optimization is a preeminent approach in dealing with uncertainty of data (Alem and
Morabito, 2012) since robust optimization assumes no probability distribution for uncertain
data aswell as the capability inmodeling problemswith large number of uncertain parameters.
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In this study we have investigated the robust optimization model with data uncertainty of U
(Bental and Nemirovski, 2000).

Althoughfirst steps of robust optimizationwith data uncertainty ofUwas takenbySoyester
(1973) and then developed byBen-Tal andNemirovski (2000) andBertsimas and Sim (2004),
however, the advantages of Bertsimas and Sim (2004) in convertingmodels into simple linear
models and generating less conservatism solutions led to wide application of this approach
in real world problems.

To illustrate the robust optimization model (Bertsimas & Sim, 2004), consider the follow-
ing optimization model:

max c′x
s.t :∑

j

a′
i j x j ≤ bi , ∀i

l j ≤ x j ≤ u j , ∀ j

(27)

In the optimizationmodel (27), Ji is a set of uncertain coefficients in particular row i ofmatrix
A. Each independent uncertain parameter ãi j symmetrically distributed in a bounded interval

[ai j − 	
ai j , ai j +

	
ai j ] which centered at point ai j . Also

	
ai j � ei j × ai j where ei j indicates

percentage of perturbation in the nominal value ai j . Moreover, Bertsimas and Sim (2004)

introduced a scaled deviation zi j �
(
âi j − ai j

)/
	
ai j

which take values in interval [−1, 1].

Bertsimas and Sim (2004) believed that in real world problems, it is almost implausible that,
all parameters take their worst case values simultaneously, which leads to the conservatism
solution. Therefore, for each constraint i, Bertsimas and Sim (2004) introduced a new param-
eter of �i , as a budget of uncertainty, which takes value in interval [0, |Ji |]. Indeed �i values
make a trade-off between protection level of constraint and conservatism level of solutions.
When �i � 0, the constraints are vulnerable in dealing with uncertainty while in �i � |Ji |
constraints are fully protected and solutions are too conservatism. Considering all aforemen-
tioned details, Bertsimas and Sim (2004) introduced the robust linear counterpart of model
(27) as follows: (For more details, readers can refer to Bertsimas and sim (2004) and Alem
and Morabito (2012))

max c′x
s.t :∑

j

a′
i j x + �i Pi +

∑
j∈Ji

qr j ≤ bi , ∀i

Pj + qr j ≥ âi j y j , ∀ j

−y j ≤ x j ≤ y j , ∀ j

I j ≤ x j ≤ u j , ∀ j

qi j ≥ 0, ∀i, j ∈ Ji

y j ≥ 0, ∀ j

pi ≥ 0, ∀i

(28)
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3.5 Best worst method (BWM)

Best worst method was first introduced by Rezaei (2015) to weight criteria using pairwise
comparison. Indeed, likeAHP, BWMassign theweights based on the preferences of Decision
makers. However, BWM has advantages in compared with AHP such ass less pairwise
comparison and higher consistency ratio (Zhao et al., 2019). For example, for a set of n
criteria, AHP needs n∗(n−1)

2 pairwise comparison while BWM applies (2 ∗ n) − 3, which is
less than AHP technique.

The final BWMmodel is as model (29). It is important to note that the steps of the BWM
are completely explained in Rezaei (2015, 2016) and readers for more details can refer to
them.

min ξr

s.t :

{|wi − aiW wW |}r ≤ ξr , i � 1, ..., n

{|wB − aBiwi |}r ≤ ξr , i � 1, ..., n
n∑

i�1

wi � 1

wi ≥ 0, j � 1, ..., n

(29)

where the preference of the best criterion over ith criteria for rth DM is aBi and preference
of ith criteria on worst criterion for rth DM is aiW . In this paper, linear BWM (29) is
applied to estimate the indicators’ weights. Also readers can refer to comprehensive review
of application of BWM technique in decision making problems by Mi et al., (2019).

3.6 Robust Credibility DEA (RCDEA)

In this section, the counterpart robust CDEA (RCDEA) models are proposed. The proposed
RCDEA models are:

• RCDEA model with exact perturbation in fuzzy inputs and fuzzy outputs.
• RCDEA model with fuzzy perturbation in fuzzy inputs and fuzzy outputs.

Let x̃i j � (xm
i j , xα

i j , xβ
i j )L R, i � 1, ..., t and ỹi j � (ym

i j , yα
i j , yβ

i j )L R, i � t + 1, ..., t + s
be the L-R fuzzy numbers. Let xm

i j and ym
i j are symmetrically distributed in intervals [xm

i j −
	
x

m

i j , xm
i j +

	
x

m

i j ] and [ym
i j − 	

y
m

i j , ym
i j +

	
y

m

i j ] where
	
x

m

i j � ei j × xm
i j and

	
y

m

i j � ei j × ym
i j . Since

xm
i j and ym

i j are contaminated with perturbation, hence, xα
i j , xβ

i j , yα
i j and yβ

i j are symmetrically
distributed in determined intervals, too.

3.6.1 RCDEAmodel with exact perturbation in fuzzy inputs and fuzzy outputs

To show the RCDEA model with exact perturbation in fuzzy inputs and fuzzy outputs,
credibility DEAmodels (23) and (26) are converted to the counterpart robust CDEAmodels.
According to approach proposed by Bertsimas and Sim (2004), the robust counterpart of
CDEA models for γ ≤ 0.5 and γ > 0.5 are as (30) and (31) respectively:

θ RC DE A
o � max

γo,γi ≤0.5

t+s∑
i�t+1

wi (y
m
io + (1 − 2γo)y

β
io) − θCC R

o

t∑
i�1

wi (x
m
io − (1 − 2γo)x

α
io) − �o po −

t+s∑
i�t+1

qio −
t∑

i�1

qio
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s.t :

t+s∑
i�t+1

wi (y
m
i j − (1 − 2γ j )y

α
i j ) − θCC R

j

t∑
i�1

wi (x
m
i j + (1 − 2γ j )x

β
i j ) + � j p j +

t+s∑
i�t+1

qi j +
t∑

i�1

qi j ≤ 0, j � 1, ..., n

m+s∑
i�1

wi � 1

po + qio ≥ eio(y
m
io + (1 − 2γo)y

β
io)zi , ∀i � t + 1, ...t + s

po + qio ≥ eio(x
m
io − (1 − 2γo)x

α
io)zi , ∀i � 1, ...t

p j + qi j ≥ ei j (y
m
i j − (1 − 2γ j )y

α
i j )zi , ∀i � t + 1, ...t + s, ∀ j � 1, ..., n

p j + qi j ≥ ei j (x
m
i j + (1 − 2γ j )x

β
i j )zi , ∀i � 1, ...t, ∀ j � 1, ..., n

− zi ≤ wi ≤ zi , ∀i � 1, 2, ..., t + s

p j , qi j ≥ 0, ∀i, j

wi ≥ 0, i � 1, ..., t + s (30)

θ RC DE A
o � max

γo,γi >0.5

t+s∑
i�t+1

wi (y
m
io − (2γo − 1)yα

io) − θCC R
o

t∑
i�1

wi (x
m
io + (2γo − 1)x

β
io) − �o po −

t+s∑
i�t+1

qio −
t∑

i�1

qio

s.t :

t+s∑
i�t+1

wi (y
m
i j + (2γ j − 1)y

β
i j ) − θCC R

j

t∑
i�1

wi (x
m
i j − (2γ j − 1)xα

i j ) + � j p j +
t+s∑

i�t+1

qi j −
t∑

i�1

qi j ≤ 0, j � 1, ..., n

m+s∑
i�1

wi � 1

po + qio ≥ eio(y
m
io − (2γo − 1)yα

io)zi , ∀i � t + 1, ...t + s

po + qio ≥ eio(x
m
io + (2γo − 1)x

β
io)zi , ∀i � 1, ...t

p j + qi j ≥ ei j (y
m
i j + (2γ j − 1)y

β
i j )zi , ∀i � t + 1, ...t + s, ∀ j � 1, ..., n

p j + qi j ≥ ei j (x
m
i j − (2γ j − 1)xα

i j )zi , ∀i � 1, ...t, ∀ j � 1, ..., n

− zi ≤ wi ≤ zi , ∀i � 1, 2, ..., t + s

p j , qi j ≥ 0, ∀i, j

wi ≥ 0, i � 1, ..., t + s (31)

where the free variable zo is removed and the first constraint of models (23) and (26) are
moved to objective functions.

It is notable that the objective function and constraints of the models (30) and (32) are the
same except the constraints related to robust optimization. In fact, the 3th to 6th constraints
are different for these models. The constraints show that the feasible space of model (32) is
greater than the feasible space of model (30). Consider the 3th constraint for the models. For
the model (30), the third constraint is as po+qio ≥ eio(ym

io+(1−2γo)y
β
io)zi and for the model

(32), it express as po + qio ≥ [em
io − (1 − 2γio)eα

io](y
m
io + (1 − 2γo)y

β
io)zi . Since the value of

[em
io−(1−2γio)eα

io] is a positive value, then the feasible space ofmodel (32) is greater than the
feasible space of model (30). Hence, the objective function of model (32) is equal or greater
than the objective functionmodel (30), namely, θ RC DE A−Fuzzy Perturbation

o ≥ θ RC DE A
o . Note

that we set em
io � eio. In a similar way, for γ > 0.5, we can show that the objective function

of model (33) is equal or smaller than the objective function model (31).

3.6.2 RCDEAmodel with fuzzy perturbation in fuzzy inputs and fuzzy outputs

In real world application, the level of uncertainty is unknown and considering certain val-
ues for uncertainty level of data (the value e) may be contributed to imprecise results.
In this section, the percentage of perturbation is considered as L-R fuzzy number ẽi j �
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(em
i j , eα

i j , eβ
i j )L R . Consider the fifth constraint of RCDEAmodel (30). In fuzzy status, this con-

straint iswritten asCre(p j+qi j ≥ ẽi j (ym
i j +(2γ j −1)yβ

i j )zi ) ≥ γi j . According to above lemma,

the later fuzzy constraint is converted to p j +qi j ≥ [em
i j − (1−2γi j )eα

i j ](y
m
i j +(2γ j −1)yβ

i j )zi .
In fact, in order to obtain a RCDEA model with fuzzy perturbation, it is enough to replace
ei j with [em

i j − (1 − 2γi j )eα
i j ] for γi j ≤ 0.5 and [em

i j + (2γi j − 1)eβ
i j ] γi j > 0.5. Therefore,

models (30) and (31) are converted to (32) and (33), respectively:

θ
RC DE A−Fuzzy Perturbation
o � max

γo,γi ≤0.5

t+s∑
i�t+1

wi (y
m
io + (1 − 2γo)y

β
io) − θCC R

o

t∑
i�1

wi (x
m
io − (1 − 2γo)x

α
io) − �o po −

t+s∑
i�t+1

qio −
t∑

i�1

qio

s.t :

t+s∑
i�t+1

wi (y
m
i j − (1 − 2γ j )y

α
i j ) − θCC R

j

t∑
i�1

wi (x
m
i j + (1 − 2γ j )x

β
i j ) + � j p j +

t+s∑
i�t+1

qi j +
t∑

i�1

qi j ≤ 0, j � 1, ..., n

m+s∑
i�1

wi � 1

po + qio ≥ [em
io − (1 − 2γio)e

α
io](y

m
io + (1 − 2γo)y

β
io)zi , ∀i � t + 1, ...t + s

po + qio ≥ [em
io − (1 − 2γio)e

α
io](x

m
io − (1 − 2γo)x

α
io)zi , ∀i � 1, ...t

p j + qi j ≥ [em
i j − (1 − 2γi j )e

α
i j ](y

m
i j − (1 − 2γ j )y

α
i j )zi , ∀i � t + 1, ...t + s, ∀ j � 1, ..., n

p j + qi j ≥ [em
i j − (1 − 2γi j )e

α
i j ](x

m
i j + (1 − 2γ j )x

β
i j )zi , ∀i � 1, ...t, ∀ j � 1, ..., n

− zi ≤ wi ≤ zi , ∀i � 1, 2, ..., t + s

p j , qi j ≥ 0, ∀i, j

wi ≥ 0, i � 1, ..., t + s (32)

θ
RC DE A−Fuzzy Perturbation
o � max

γo,γi >0.5

t+s∑
i�t+1

wi (y
m
io − (2γo − 1)yα

io) − θCC R
o

t∑
i�1

wi (x
m
io + (2γo − 1)x

β
io) − �o po −

t+s∑
i�t+1

qio −
t∑

i�1

qio

s.t :

t+s∑
i�t+1

wi (y
m
i j + (2γ j − 1)y

β
i j ) − θCC R

j

t∑
i�1

wi (x
m
i j − (2γ j − 1)xα

i j ) + � j p j +
t+s∑

i�t+1

qi j +
t∑

i�1

qi j ≤ 0, j � 1, ..., n

m+s∑
i�1

wi � 1

po + qio ≥ [em
io + (2γio − 1)e

β
io](y

m
io − (2γo − 1)yα

io)zi , ∀i � t + 1, ...t + s

po + qio ≥ [em
io + (2γio − 1)e

β
io](x

m
io + (2γo − 1)x

β
io)zi , ∀i � 1, ...t

p j + qi j ≥ [em
i j + (2γi j − 1)e

β
i j ](y

m
i j + (2γ j − 1)y

β
i j )zi , ∀i � t + 1, ...t + s, ∀ j � 1, ..., n

p j + qi j ≥ [em
i j + (2γi j − 1)e

β
i j ](x

m
i j − (2γ j − 1)xα

i j )zi , ∀i � 1, ...t, ∀ j � 1, ..., n

− zi ≤ wi ≤ zi , ∀i � 1, 2, ..., t + s

p j , qi j ≥ 0, ∀i, j

wi ≥ 0, i � 1, ..., t + s (33)
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3.7 BWM-RCDEAmodel with fuzzy perturbation in fuzzy inputs and fuzzy outputs

In this section, a novel BWM-RCDEAmodel is proposed. Existence of mutual normalization
constraint of

∑m+s
i�1 wi � 1 in both RCDEA and BWMmade it possible to incorporate DMs’

preferences into the proposed BWM-RCDEA model. According to models (32) and (33),
the proposed BWM- RCDEA model with fuzzy perturbation for γ ≤ 0.5 and γ > 0.5 can
be expressed as models (34) and (35), respectively:

(34)

max
γo,γi ≤0.5

f1 �
t+s∑

i�t+1

wi (y
m
io + (1 − 2γo)y

β
io) − θCC R

o

t∑
i�1

wi (x
m
io − (1 − 2γo)x

α
io) − �o po −

t+s∑
i�t+1

qio −
t∑

i�1

qio

max f2 � −ξ

s.t :

t+s∑
i�t+1

wi (y
m
i j − (1 − 2γ j )y

α
i j ) − θCC R

j

t∑
i�1

wi (x
m
i j + (1 − 2γ j )x

β
i j ) + � j p j +

t+s∑
i�t+1

qi j +
t∑

i�1

qi j ≤ 0, j � 1, ..., n

m+s∑
i�1

wi � 1

po + qio ≥ [em
io − (1 − 2γio)e

α
io](y

m
io + (1 − 2γo)y

β
io)zi , ∀i � t + 1, ...t + s

po + qio ≥ [em
io − (1 − 2γio)e

α
io](x

m
io − (1 − 2γo)x

α
io)zi , ∀i � 1, ...t

p j + qi j ≥ [em
i j − (1 − 2γi j )e

α
i j ](y

m
i j − (1 − 2γ j )y

α
i j )zi , ∀i � t + 1, ...t + s, ∀ j � 1, ..., n

p j + qi j ≥ [em
i j − (1 − 2γi j )e

α
i j ](x

m
i j + (1 − 2γ j )x

β
i j )zi , ∀i � 1, ...t, ∀ j � 1, ..., n

−zi ≤ wi ≤ zi , ∀i � 1, 2, ..., t + s∣∣wB − aBi wi
∣∣ ≤ ξ , i � 1, ..., t + s∣∣wi − aiW wW
∣∣ ≤ ξ , i � 1, ..., t + s

p j , qi j ≥ 0, ∀i, j

wi ≥ 0, i � 1, ..., t + s

max
γo,γi >0.5

f1 �
t+s∑

i�t+1

wi (y
m
io − (2γo − 1)yα

io) − θCC R
o

t∑
i�1

wi (x
m
io + (2γo − 1)x

β
io) − �o po −

t+s∑
i�t+1

qio −
t∑

i�1

qio

max f2 � −ξ

s.t :

t+s∑
i�t+1

wi (y
m
i j + (2γ j − 1)y

β
i j ) − θCC R

j

t∑
i�1

wi (x
m
i j − (2γ j − 1)xα

i j ) + � j p j +
t+s∑

i�t+1

qi j +
t∑

i�1

qi j ≤ 0, j � 1, ..., n

m+s∑
i�1

wi � 1

po + qio ≥ [em
io + (2γio − 1)e

β
io](y

m
io − (2γo − 1)yα

io)zi , ∀i � t + 1, ...t + s

po + qio ≥ [em
io + (2γio − 1)e

β
io](x

m
io + (2γo − 1)x

β
io)zi , ∀i � 1, ...t

p j + qi j ≥ [em
i j + (2γi j − 1)e

β
i j ](y

m
i j + (2γ j − 1)y

β
i j )zi , ∀i � t + 1, ...t + s, ∀ j � 1, ..., n

p j + qi j ≥ [em
i j + (2γi j − 1)e

β
i j ](x

m
i j − (2γ j − 1)xα

i j )zi , ∀i � 1, ...t, ∀ j � 1, ..., n

−zi ≤ wi ≤ zi , ∀i � 1, 2, ..., t + s∣∣wB − aBi wi
∣∣ ≤ ξ, i � 1, ..., t + s∣∣wi − aiW wW
∣∣ ≤ ξ, i � 1, ..., t + s

p j , qi j ≥ 0, ∀i, j

wi ≥ 0, i � 1, ..., t + s

(35)

In models (34) and (35), the constraints belong to both BWM and RCDEA models.
Also, the constraint |wB − aBi wi | ≤ ξ is easily transformed to two linear constraints
wB − aBiwi ≤ ξ and aBiwi − wB ≥ ξ .

Lemma The models (34) and (35) are feasible.
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Proof Without loss of generality, it is assumed that the w1 � z1 � 1 and other variables are
equal to zero except q1 j . If we find a feasible value for q1 j , then the model (34) is feasible.
Since w1 � z1 � 1, the constraints of the model (34) is as follows:

The first constraint will be as −θCC R
j (xm

1 j + (1 − 2 × (0.4))xβ
1 j ) + q1 j ≤ 0, j � 1, ...n. It

is assumed that the xα
1 j and xβ

1 j are 0.05 of the xm
1 j . Also, the eα

1 j and eβ
1 j are 0.05 of the em

1 j .

Hence, the first constraint can be written as q1 j ≤ 1.01xm
1 j × θCC R

j . In addition, the 4th and
the 6th constraints will be q1 j ≥ 0.99em

1 j ×0.99xm
1 j and q1 j ≥ 0.99em

1 j ×1.01xm
1 j . Therefore

0.99em
1 j × 1.01xm

1 j ≤ q1 j ≤ 1.01xm
1 j × θCC R

j . Since em
1 j is the perturbation percentage (for

instance em
1 j � 0.05) and it is a small value, then, we can find a feasible value for q1 j ≥ 0.

Other constraints including the constraints related to BWM are feasible. In a similar way, the
model (35) is feasible, too.

The models (34) and (35) are bi-objective programming models which can be solved
via some multiple objective programming models such as parametric method, constraint-ε,
min–max approach, goal programming and etc. In this paper, themin–max approach has been
used for solving models (34) and (35). The min–max approach for bi-objectives of model
(34) is as follows:

min max

{(
f ∗
1 −

[
t+s∑

i�t+1

wi

(
ym

io + (1 − 2γo)yβ
io

)
− θCC R

o

t∑
i�1

wi
(
xm

io − (1 − 2γo)xα
io

)

−�o po −
t+s∑

i�t+1

qio −
t∑

i�1

qio

])
,
(

f ∗
2 − [−ξ ]

)}
(36)

where f ∗
1 and f ∗

2 are the ideal values of first and second objective functions. For calculating
f ∗
1 and f ∗

2 , the objective functions f1 and f2 are optimized on the constraints of model (34),
separately. In the other words, for obtaining the ideal value for f1, the objective function f2
is eliminated from the model (34) and the model is solved by using the objective function
f1. Also, the ideal value for f2 is obtained by eliminating the objective function f1 from the
model (34). It is clear that the min–max (36) is easily converted to a linear model as follows:

(37)

min κ

s.t :

f ∗
1 −

⎡
⎣ t+s∑

i�t+1

wi (y
m
io + (1 − 2γo)y

β
io) − θCC R

o

t∑
i�1

wi (x
m
io − (1 − 2γo)x

α
io) − �o po −

t+s∑
i�t+1

qio −
t∑

i�1

qio

⎤
⎦ ≤ κ

f ∗
2 − [−ξ ] ≤ κ

t+s∑
i�t+1

wi (y
m
i j − (1 − 2γ j )y

α
i j ) − θCC R

j

t∑
i�1

wi (x
m
i j + (1 − 2γ j )x

β
i j ) + � j p j +

t+s∑
i�t+1

qi j +
t∑

i�1

qi j ≤ 0, j � 1, ..., n

m+s∑
i�1

wi � 1

po + qio ≥ [em
io − (1 − 2γio)e

α
io](y

m
io + (1 − 2γo)y

β
io)zi , ∀i � t + 1, ...t + s

po + qio ≥ [em
io − (1 − 2γio)e

α
io](x

m
io − (1 − 2γo)x

α
io)zi , ∀i � 1, ...t

p j + qi j ≥ [em
i j − (1 − 2γi j )e

α
i j ](y

m
i j − (1 − 2γ j )y

α
i j )zi , ∀i � t + 1, ...t + s, ∀ j � 1, ..., n

p j + qi j ≥ [em
i j − (1 − 2γi j )e

α
i j ](x

m
i j + (1 − 2γ j )x

β
i j )zi , ∀i � 1, ...t, ∀ j � 1, ..., n

−zi ≤ wi ≤ zi , ∀i � 1, 2, ..., t + s∣∣wB − aBi wi
∣∣ ≤ ξ, i � 1, ..., t + s∣∣wi − aiW wW
∣∣ ≤ ξ, i � 1, ..., t + s

p j , qi j ≥ 0, ∀i, j

wi ≥ 0, i � 1, ..., t + s
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The linear BWM- RCDEA model (37) is solved and the optimal weights
(w∗

1, ..., w
∗
m, w∗

m+1, ..., w
∗
m+s ) are obtained for inputs and outputs. Then, the efficiency score

of DMUo for γ ≤ 0.5 is calculated by Eq. (38).

θ BW M−RC DE A
o,γo≤0.5 �

m+s∑
i�m+1

w∗
i
[ym

io + (1 − 2γo)y
β
io]

m∑
i�1

w∗
i
[xm

io − (1 − 2γo)xα
io]

(38)

According to the above way, for γ > 0.5, the bi-objective model (35) can be transferred to
linear models and the efficiency score of DMUo can be calculated as follows:

θ BW M−RC DE A
o,γo>0.5 �

m+s∑
i�m+1

w∗
i
[ym

io − (2γo − 1)yα
io]

m∑
i�1

w∗
i
[xm

io + (2γo − 1)xβ
io]

(39)

4 Illustrative application

In this section, data of 39 electricity distribution companies in Iran is collected and companies
are evaluated through the proposed BWM-RCDEA model. Iranian distribution companies
are run under supervision of TAVANIR Company (Iran Power Generation, Transmission and
Distribution Management Company). TAVANIR was established in 1992 and is responsible
for development of electricity power generation, transmission and distribution in Iran. Per-
formance assessment of electricity distribution companies is very important from variety of
aspects, especially service to customers and their satisfaction, selling electricity as an eco-
nomic commodity at a lower cost, development of distribution network for covering the vast
surface of the country and reduce electricity failure.

In order to evaluate efficiency of electricity distribution companies, first input and output
variables must be selected. Since there is no firm consensus on which variables best describe
the operation of distribution utilities, in literature, different variables have been selected. For
instance, Petridis et al. (2019) evaluated 20 Turkish electric distribution companies using
a network DEA model with criteria of number of staff, net consumption, length of cables,
installed capacity as inputs, energy supply as intermediate and energy loses, annual faults and
disruption, number of customers and number of towns/villages as desirable and undesirable
output variables. Çelen and Aydin (2012) evaluated 21 electricity distribution companies in
Turkey. They applied number of employees, length of the distribution line and transform-
ers capacity as inputs and quality of service, number of customers and quantity delivered
as outputs. Also, Çelen (2013) evaluated 21 distribution utilities in Turkey between years
2002–2009. Variables of number of employees, length of the distribution line, transformer
capacity and quality of electricity considered as inputs and variables of electricity delivered
and number of customers as outputs. Tavassoli et al. (2015) selected the number of employ-
ees, network length and transmission capacity as inputs and unit delivery and service area
as outputs of their research. Moreover, Azadeh et al. (2015) evaluated Iranian distribution
companies using network length, transport capacity and the number of employees as inputs
while number of customers and total electricity sales are chosen as stochastic outputs. In other
research for evaluating Iranian distribution units, Sadjadi andOmrani (2008) adopted number
of employees, transformers capacity and network length as inputs and number of customers
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and total electricity sales as outputs. And finally, Omrani et al., (2020) for evaluating 39
electricity distribution companies in Iran, used four inputs of number of employees, service
area network length, and, transformers capacity and three outputs of number of customers,
energy delivery, and total electricity sales.

As it can be seen, different variables have been selected by different researchers. In this
study, the most frequent variables in the literature are selected. For this purpose, four inputs
including service area (km2), number of employees, transformers capacity (Mega Volt Amp)
and network length (km) and three outputs including energy delivery (million KWh), number
of customers (*1000) and total electricity sales (million KWh) are selected. Our data series
involves annual data on 39 companies observed in 2017. These data are retrieved from
Iran Ministry of Energy, TAVANIR Company (www.tavanir.org.ir) and presented in Table
2. It should be noted that since robust optimization is sensitive to normalization, data are
normalized and presented in interval [0, 1].

5 Results and discussions

In this section the result of applying the proposedmodel has beenpresented. Indeed, electricity
companies’ efficiency scores evaluated in three phases. In the first phase, a DEA model has
been applied to estimate the efficiency scores of companies. Then considering data as fuzzy
sets, and considering perturbation in constructing fuzzy sets, RCDEAmodelwith andwithout
fuzzy perturbation in fuzzy inputs and fuzzy outputs results are calculated. Finally, in the third
phase, DMs’ preferences and judgments on input and output variables are incorporated into
the RCDEA models and BWM-RCDEA models are generated. The results of implementing
each phase of the proposed model are discussed below.

5.1 DEA results

The results of conventional DEAmodel are presented in Table 3 and Fig. 1. According to the
results, the efficiencies of 10 companies are equal to one. In other words, these 10 companies
technically are efficient in converting inputs to outputs and form the efficient frontier. On the
other hand, companies with efficiency scores less than 1 are inefficient and among inefficient
units, Ilam has the worst performance with the score of 0.6351. Also, Gharb-e-Mazandaran
with the score of 0.6685 and Golestan with the score of 0.6750 are the second and the third
worst performance units respectively. As it can be observed from the Table 3, DEA is unable
to rank all DMUs and low distinguish power of DEA is the weakness of this popular model
to evaluate efficiency scores. Moreover, DEA uses only data to calculate efficiencies, and
DMUs are free to find the best combination of input and output variables for reaching the
efficient frontier. Finally, the mean of efficiency scores is 0.8681 which is more than both
RCDEA and BWM-RCDEADEA results.

5.2 RCDEA results

RCDEA results has been shown in the Table 3. Initially, in order to obtain RCDEA results,
some parameters should be set. First, without losing any generality, it is assumed that γ �
γi � γr . So, for different γ (γ ≤ 0.5 and γ > 0.5) eithermodel (23) or (26) can be applied. In
this paper, proposed model is implemented for γ � 0.4 and γ � 0.8 respectively. The mean
value of L-R fuzzy numbers (m) are considered as data reported in Table 2 after normalizing.
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Table 3 Results of DEA and RCDEA with and without fuzzy perturbation in fuzzy inputs and outputs

DMU DEA γ � 0.4 γ � 0.8

RCDEA with
fuzzy
perturbation

RCDEA RCDEA with
fuzzy
perturbation

RCDEA

Tabriz 1 0.9808 0.9802 0.8337 0.8352

Azarbayejan sharghi 0.8234 0.8023 0.8017 0.6818 0.6832

Azarbayejan gharbi 0.941 0.9189 0.9183 0.7809 0.7825

Ardabil 1 0.9808 0.9802 0.8337 0.8352

Esfahan 0.8497 0.8288 0.8283 0.7044 0.7058

Ostan-e-Esfahan 0.9183 0.8982 0.8976 0.7634 0.7649

Chaharmahal-o-Bakhtiari 0.7349 0.7128 0.7123 0.6057 0.6070

Markazi 0.868 0.8473 0.8468 0.7172 0.7185

Hamedan 0.7173 0.6950 0.6945 0.5905 0.5918

Lorestan 0.7431 0.7211 0.7206 0.6127 0.6140

Alborz 1 0.9808 0.9802 0.8337 0.8352

Tehran bozorg 1 0.9808 0.9802 0.8337 0.8352

Ostan-e-Tehran 0.9807 0.9613 0.9607 0.6907 0.6919

Ghom 0.8438 0.8229 0.8223 0.6938 0.6950

Mashhad 1 0.9808 0.9802 0.8337 0.8352

Khorasan-e-Razavi 0.963 0.9424 0.9417 0.8001 0.8016

Khorasan-e-Jonubi 0.7231 0.7009 0.7004 0.5955 0.5968

Khorasan-e-Shomali 0.8491 0.8253 0.8247 0.7013 0.7028

Ahwaz 1 0.9808 0.9802 0.8337 0.8352

Khouzestan 1 0.9808 0.9802 0.8337 0.8352

Kohkiluye-o-Boyerahmad 0.6792 0.6565 0.6560 0.5577 0.5590

Zanjan 1 0.9808 0.9802 0.8337 0.8352

Ghazvin 1 0.9808 0.9802 0.8337 0.8352

Semnan 0.8768 0.8523 0.8517 0.7242 0.7257

Sistan-o-Balouchestan 0.8377 0.8161 0.8156 0.6919 0.6931

Kermanshah 0.7976 0.7731 0.7725 0.6558 0.6573

Kordestan 0.943 0.9140 0.9133 0.7761 0.7778

Ilam 0.6351 0.6119 0.6115 0.5198 0.5210

Shiraz 0.6856 0.6630 0.6625 0.5600 0.5610

Fars 0.8646 0.8437 0.8431 0.7170 0.7185

Boushehr 0.9688 0.9492 0.9487 0.8069 0.8084

Shomal-e-Kerman 0.8009 0.7795 0.7790 0.6573 0.6628

Jonub-e-Kerman 0.8385 0.8129 0.8123 0.6907 0.6922

Gilan 0.9139 0.8908 0.8901 0.7569 0.7585

Mazandran 0.7639 0.7421 0.7416 0.6306 0.6319
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Table 3 (continued)

DMU DEA γ � 0.4 γ � 0.8

RCDEA with
fuzzy
perturbation

RCDEA RCDEA with
fuzzy
perturbation

RCDEA

Gharb-e-Mazandaran 0.6685 0.6457 0.6452 0.5485 0.5498

Golestan 0.675 0.6523 0.6518 0.5541 0.5554

Hormozgan 0.9523 0.9326 0.9320 0.7927 0.7942

Yazd 1 0.9808 0.9802 0.8337 0.8352

Mean 0.8681 0.8466 0.8426 0.7158 0.7173
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Fig. 1 The scores generated by RCDEA model

In addition, the left and right spreads (α, β) are 0.05 of the mean value. It is assumed that
in determining mean values, there is 0.03 perturbation, and this uncertainty degree is exact.
Furthermore, to ensure full protection of model, budget of uncertainty parameter, �, is set
equal 7 for all constraints. Indeed, model is immune if 100% of uncertain parameters take
their worst-case value.

According to the results for γ � 0.4, although all scores get reduced than DEA model
but ranking has not change tangibly and is almost the same with the DEA model. Since
it is considered the same level of robustness and fuzziness for all data, hence, efficiency
scores decreased by almost the same proportion. For example, units with the score of 1, in
a new evaluation get the score of 0.9802 and like DEA model 10 companies have the best
performance. On the other hand, on the bottom of the Table 3, Ilam, Gharb-e-Mazandaran
and Golestan with the scores of 0.6115, 0.6452 and 0.6518 have the weakest performance,
respectively. Moreover, the mean of all scores is 0.8425, which implies that model in order
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to keep constraints immune against uncertainty, releases the optimal solutions and scores get
lower values to keep the model feasible.

Also, RCDEA model is implemented for γ � 0.8 and efficiencies are evaluated using
model (31). According to the results, scores are lower than both DEA and RCDEA for
γ � 0.4. However, units’ ranking has not changed significantly and is almost the same with
previous two models. For example, top efficiency score is 0.8352 for 10 companies and the
lowest score is 0.5210 which belongs to the Ilam. The mean of scores is 0.7173, which is
lower than both DEA and RCDEA for γ � 0.4.

5.3 RCDEAwith fuzzy perturbation results

To observe the impact of uncertainty on the perturbation level, the results of RCDEA model
are recalculated considering fuzzy perturbation. The results are presented in the Table 3 and
Fig. 1. According to the results, for γ ≤ 0.5 with fuzzy perturbation, efficiency scores show
slight increase, and for γ > 0.5 with fuzzy perturbation scores indicate slight decrease in
comparison with RCDEA models with exact perturbation. For instance, for γ ≤ 0.5 with
fuzzy perturbation, best companies get the score of 0.9808 which is more than γ ≤ 0.5
with exact perturbation model results. Also, the mean of efficiency scores is 0.8467. The
reason for increasing efficiency scores is that considering fuzzy data for perturbation values
lead to decrease in value of perturbation and resulted in increase in efficiency scores. In the
other words, when uncertainty level decreases, model keeps optimal solutions and is closer
to conventional deterministic DEA model results.

In contrast, considering fuzzy sets for perturbation value for γ > 0.5, resulted in decreas-
ing efficiency scores and consequently decrease in the mean of scores to 0.7158. Indeed,
model to keep constraints against increase in uncertainty level releases optimal solutions.
It should be noted that since uncertainty considered the same for all inputs, outputs and
perturbation values, rankings remained almost unchanged in models.

5.4 BWM- RCDEA Results

In order to reduce input and output weights flexibility and to incorporate DMs’ judgement
into the evaluations, a novel BWM- RCDEA model is applied and efficiency scores for
electricity distribution companies are re-calculated. In this regard, a preference vector is
designed according to the opinions of a team of experts consist of three members with
sufficient experiences at the Azarbaijan Gharbi company. The values are outcome of the
mentioned team closely working and are acceptable for all team members. Table 4 presents
the best, the worst criteria and preference values of the best criterion over all criteria and
preference of all criteria over the worst criterion.

After determination of preferences’ vector, obtained BWMmodel is incorporated into the
RCDEA model and a bi-objective BWM- RCDEA models (34) and (35) are obtained. Then
the bi-objective models are solved with pre-defined parameters (Sect. 5.2, first paragraph)
using min–max approach (37) and results are shown in the Table 5 and Fig. 2.

According to the results for γ � 0.4 with fuzzy perturbation, Tehran Bozorg and Ahwaz
units with the score of 0.9802 have the best performance and are followed by Alborz and
Mashhad with efficiency scores of 0.8371 and 0.7814 respectively. In contrary, Khorasan-e-
Jonubi with the score of 0.1801 has the worst performance in converting inputs to outputs.
Khorasan-e-Shomali with the score of 0.2260 is the second and Jonub-e-Kerman with the
score of 0.2554 is the third worst performance among 39 companies. As it can be seen, the
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Table 4 Preference values of best criterion over all criteria and all criteria over worst criterion

Criteria Area
service

Number of
employees

Transformer
capacity

Network
length

Energy
delivery

Number
of
customers

Total
electricity
sale

Best
criterion
(Total
electric-
ity
sale)

8 6 4 5 3 2 1

Worst
criterion
(Area
service)

1 3 5 4 6 7 8

proposedmodel is able to rank DMUs almost fully and has improved the distinguish power of
conventionalDEAdramatically. Furthermore, the efficiency scores get reducedmeaningfully,
because we have added new constraints into the proposed BWM- RCDEA model and under
such circumstance, results will not improve. Therefore, the mean of scores is 0.4510, which
is less than RCDEA model results for γ � 0.4. Results imply that the preferences of DMs
have a significant impact on the efficiencies, since data are normalized and higher weights
for variables can subjectively modify the efficiencies.

According to the BWM- RCDEA results for γ � 0.8, again, Tehran Bozorg and Ahwaz
with the efficiency score of 0.8352 has the best performance among 39 companies. Alborz
unit with the score of 0.7161 is ranked second and is followed by Mashhad with the score
of 0.6703. At the bottom of the ranking Khorasan-e- Jonubi with the score of 0.1539 has
the weakest performance. Khorasan-e- Shomali with the score of 0.1923 has the second
worst performance and Jonub-e-Kerman with the score of 0.2183 has the third weakest
performance among 39 units. The other units’ performances get reduced thanBWM-RCDEA
results for γ � 0.8 with fuzzy perturbation, however, ranking has not changed dramatically
in comparison with BWM-RCDEA model with γ � 0.4. In overall, distinguish power of
DEA has been improved significantly and model is able to immune constraints and objective
function against uncertainty obviously. Furthermore, using both data and DMs’ preferences
in evaluations leads to a more precise and reliable ranking. Like RCDEA model, to observe
the fuzziness impact on the perturbation degree results, we have implementedBWM-RCDEA
with considering exact values for perturbation and reported results in the Table 5. Results
approve that ignoring fuzziness of perturbation lead decrease in scores for γ ≤ 0.5 model in
comparison with BWM- RCDEAmodel with fuzzy perturbation in fuzzy inputs and outputs.
Also considering exact value for perturbation for γ > 0.5 resulted in increase in scores
and the mean of scores in comparison with BWM- RCDEA model with fuzzy perturbation.
To present the differences of scores generated by different models without and with fuzzy
perturbation, the scores are depicted in Figs. 3 and 4, respectively.

For investigating the relationship between the results of the DEA, RCDEA, RCDEA with
fuzzy perturbation, BWM-RCDEA and BWM-RCDEAwith fuzzy perturbation, we perform
Pearson correlation test between efficiency scores and Spearman correlation test between
ranks. The results for γ � 0.4 are presented in the Tables 6 and 7. As can be seen in Tables 6
and 7, the both correlations are significant at the 0.01 level.
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Table 5 Results of DEA and BWM- RCDEA models with and without fuzzy perturbation

DMU DEA γ � 0.4 γ � 0.8

BWM-
RCDEA with
fuzzy
perturbation

BWM-
RCDEA

BWM-
RCDEA with
fuzzy
perturbation

BWM-
RCDEA

Tabriz 1.0000 0.6920 0.6916 0.5903 0.5913

Azarbayejan sharghi 0.8234 0.2666 0.2665 0.2272 0.2276

Azarbayejan gharbi 0.9410 0.3434 0.3432 0.2928 0.2933

Ardabil 1.0000 0.2726 0.2724 0.2320 0.2324

Esfahan 0.8497 0.4185 0.4182 0.3575 0.3581

Ostan-e-Esfahan 0.9183 0.6591 0.6587 0.5616 0.5626

Chaharmahal-o-Bakhtiari 0.7349 0.2749 0.2748 0.2340 0.2344

Markazi 0.8680 0.3893 0.3890 0.3322 0.3328

Hamedan 0.7173 0.3394 0.3392 0.2895 0.2900

Lorestan 0.7431 0.3396 0.3394 0.2889 0.2894

Alborz 1.0000 0.8376 0.8371 0.7149 0.7161

Tehran Bozorg 1.0000 0.9808 0.9802 0.8337 0.8352

Ostan-e-Tehran 0.9807 0.6325 0.6322 0.5424 0.5433

Ghom 0.8438 0.6667 0.6663 0.5564 0.5574

Mashhad 1.0000 0.7819 0.7814 0.6692 0.6703

Khorasan-e-Razavi 0.9630 0.3541 0.3539 0.2737 0.2742

Khorasan-e-Jonubi 0.7231 0.1802 0.1801 0.1537 0.1539

Khorasan-e-Shomali 0.8491 0.2262 0.2260 0.1920 0.1923

Ahwaz 1.0000 0.9808 0.9802 0.8337 0.8352

Khouzestan 1.0000 0.6832 0.6828 0.5837 0.5847

Kohkiluye-o-Boyerahmad 0.6792 0.3142 0.3140 0.2669 0.2674

Zanjan 1.0000 0.3865 0.3863 0.3294 0.3299

Ghazvin 1.0000 0.5455 0.5452 0.4649 0.4657

Semnan 0.8768 0.3832 0.3830 0.3264 0.3270

Sistan-o-Balouchestan 0.8377 0.2703 0.2702 0.2319 0.2322

Kermanshah 0.7976 0.3302 0.3300 0.2814 0.2819

Kordestan 0.9430 0.2911 0.2909 0.2477 0.2482

Ilam 0.6351 0.3044 0.3042 0.2451 0.2456

Shiraz 0.6856 0.4257 0.4254 0.3638 0.3644

Fars 0.8646 0.3705 0.3703 0.2920 0.2925

Boushehr 0.9688 0.5694 0.5691 0.4850 0.4858

Shomal-e-Kerman 0.8009 0.3438 0.3436 0.2934 0.2939

Jonub-e-Kerman 0.8385 0.2556 0.2554 0.2180 0.2183

Gilan 0.9139 0.3892 0.3890 0.3332 0.3338
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Table 5 (continued)

DMU DEA γ � 0.4 γ � 0.8

BWM-
RCDEA with
fuzzy
perturbation

BWM-
RCDEA

BWM-
RCDEA with
fuzzy
perturbation

BWM-
RCDEA

Mazandran 0.7639 0.4181 0.4178 0.3578 0.3584

Gharb-e-Mazandaran 0.6685 0.3655 0.3653 0.3110 0.3116

Golestan 0.6750 0.3746 0.3744 0.3185 0.3191

Hormozgan 0.9523 0.5213 0.5210 0.4457 0.4464

Yazd 1.0000 0.4233 0.4230 0.3615 0.3621

Mean 0.8681 0.4513 0.4510 0.3829 0.3835
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Fig. 2 The score generated by BWM- RCDEA model

5.5 Sensitivity analysis

Here, sensitivity analysis is performed on parameters such as γ , � and e. For sensitivity
analysis, we consider two scenarios for each parameter and compare the results. For example,
for perturbation degree, e, we consider the perturbation equal to 0.05, solve the model and
compare the results with our initial 0.03. Likewise, we run the model for different values of
the,γ and �. The results are presented in the Tables 8 and 9, respectively. The results indicate
that by increasing perturbation degree (e), efficiency scores get lower. Also, by decreasing
the budget of uncertain parameters in each constraints (�), efficiencies get higher scores
and by increasing value for γ in the model (37), scores take lower values. Moreover, by
decreasing values for γ in the case γ > 0.5, for example γ � 0.6, scores take higher values
than RCDEA model for γ � 0.8.
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Fig. 3 The scores generated by different models with exact perturbation value (e � 0.03)
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Fig. 4 The scores generated by different models with fuzzy perturbation value

6 Recommendations for policy makers

In this section, according to the BWM- RCDEA results recommendations have been made
for decision makers. In this regard, the average weight of criteria has been calculated after
implementing BWM- RCDEA model and results are indicated in the Table 10.

According to the Table 10, energy delivery has the least impact on the evaluations and
in contrary, total electricity sale is the most important criterion. Units, in order to increase
their efficiencies are better to put their attention to sale energy and generate energy from
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Table 6 Pearson correlation test among different models

DEA RCDEA RCDEA with
fuzzy
perturbation

BWM-RCDEA BWM-RCDEA
with fuzzy
perturbation

DEA 1.000 1.000* 1.000* 0.571* 0.571*

RCDEA 1.000 1.000* 0.576* 0.576*

RCDEA with
fuzzy
perturbation

1.000 0.576* 0.576*

BWM-RCDEA 1.000 1.000*

BWM-RCDEA
with fuzzy
perturbation

1.000

*Correlation is significant at the 0.01 level (2-tailed)

Table 7 Spearman correlation test among different models

DEA RCDEA RCDEA with
fuzzy
perturbation

BWM-RCDEA BWM-RCDEA
with fuzzy
perturbation

DEA 1.000 1.000* 1.000* 0.594* 0.594*

RCDEA 1.000 1.000* 0.594* 0.594*

RCDEA with
fuzzy
perturbation

1.000 0.594* 0.594*

BWM-RCDEA 1.000 1.000*

BWM-RCDEA
with fuzzy
perturbation

1.000

*Correlation is significant at the 0.01 level (2-tailed)

available and cheap resources such as renewable sources. For example, small sized power
plants which are closer to customers, not only needs less network length, but also increases
the outputs simultaneously. Also, renewing distribution infrastructures to improve energy
delivery will lead to increase efficiencies of electricity distribution companies. Specifically,
for Khorasan-e-Jonubi, Khorasan-e-Shomali and Jonub-e-Kerman that sale less electricity
for customers because of small populations (located in desert areas with less population
density), and it is almost impossible to increase their outputs substantially, decreasing the
number of employers and network length by constructing small sized renewable resources
may improve their efficiency.
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Table 8 Sensitivity analysis for RCDEA with γ ≤ 0.5

DMU RCDEA

Initial RCDEA e � 0.05 � � 5 γ � 0.3

Tabriz 0.9802 0.9417 0.9802 1.0202

Azarbayejan sharghi 0.8017 0.7666 0.8017 0.8345

Azarbayejan gharbi 0.9183 0.8781 0.9183 0.9558

Ardabil 0.9802 0.9417 0.9802 1.0202

Esfahan 0.8283 0.7927 0.8283 0.8621

Ostan-e-Esfahan 0.8976 0.8607 0.8976 0.9343

Chaharmahal-o-Bakhtiari 0.7123 0.6789 0.7123 0.7414

Markazi 0.8468 0.8108 0.8478 0.8814

Hamedan 0.6945 0.6615 0.6946 0.7229

Lorestan 0.7206 0.6870 0.7206 0.7500

Alborz 0.9802 0.9417 0.9868 1.0202

Tehran bozorg 0.9802 0.9417 0.9802 1.0202

Ostan-e-Tehran 0.9607 0.9226 0.9607 0.9999

Ghom 0.8223 0.7869 0.8226 0.8559

Mashhad 0.9802 0.9417 0.9884 1.0202

Khorasan-e-Razavi 0.9417 0.9010 0.9417 0.9802

Khorasan-e-Jonubi 0.7004 0.6672 0.7004 0.7290

Khorasan-e-Shomali 0.8247 0.7872 0.8247 0.8584

Ahwaz 0.9802 0.9417 0.9868 1.0202

Khouzestan 0.9802 0.9417 0.9875 1.0202

Kohkiluye-o-Boyerahmad 0.6560 0.6237 0.6571 0.6828

Zanjan 0.9802 0.9417 0.9814 1.0202

Ghazvin 0.9802 0.9417 0.9815 1.0202

Semnan 0.8517 0.8120 0.8517 0.8864

Sistan-o-Balouchestan 0.8156 0.7808 0.8156 0.8495

Kermanshah 0.7725 0.7359 0.7725 0.8041

Kordestan 0.9133 0.8700 0.9133 0.9506

Ilam 0.6115 0.5800 0.6116 0.6364

Shiraz 0.6625 0.6300 0.6630 0.6895

Fars 0.8431 0.7889 0.8431 0.8776

Boushehr 0.9487 0.9108 0.9488 0.9874

Shomal-e-Kerman 0.7790 0.7443 0.7790 0.8108

Jonub-e-Kerman 0.8123 0.7756 0.8123 0.8466

Gilan 0.8901 0.8470 0.8901 0.9265

Mazandran 0.7416 0.7077 0.7417 0.7719

Gharb-e-Mazandaran 0.6452 0.6131 0.6457 0.6715
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Table 8 (continued)

DMU RCDEA

Initial RCDEA e � 0.05 � � 5 γ � 0.3

Golestan 0.6518 0.6195 0.6518 0.6784

Hormozgan 0.9320 0.8944 0.9320 0.9700

Yazd 0.9802 0.9417 0.9802 1.0202

7 Conclusion

In real competitive markets, performance evaluation is crucial for companies to know their
strengths and weaknesses to set appropriate policies for improving their efficiencies. Dis-
tribution companies’ performance evaluation is considered crucial issue for regulators. In
this study, we applied a novel approach of BWM- RCDEA model to investigate efficiency
scores of 39 electricity distribution companies in Iran. Indeed, beside of considering uncer-
tainty in data as fuzzy sets and uncertainty in constructing fuzzy sets as robust optimization
with fuzzy perturbation, DMs’ preferences were incorporated into DEA model, too. The
proposed bi-objective model was solved using min–max approach. As results, the proposed
model improves the distinguish power of DEA and results are more reliable and precise than
conventional DEA. Also, recommendations were proposed for decision makers to improve
units’ efficiencies. In summary, due to the importance of total electricity sale criterion on the
efficiency evaluations, generating energy from convenient and cheap resources may lead to
increase in electricity sale and consequently improving performances. For future studies, the
BWMmodel can be combined with other DEAmodels such as supper-efficiency DEA, addi-
tive models and etc. Also, researchers can consider DMs’ judgments as fuzzy numbers and
fuzzy BWM model can be combined with the DEA models. Also, developing group BWM-
DEA for considering the preferences of multiple DMs is very important in this field. Finally,
for dealing with real worlds problem with integer variables, such as number of customers,
the mixed integer model of BWM-RCDEA could be applied.
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Table 9 Sensitivity analysis for RCDEA with γ > 0.5

DMU RCDEA

Initial RCDEA e � 0.05 � � 5 γ � 0.6

Tabriz 0.8352 0.8024 0.8352 0.9048

Azarbayejan sharghi 0.6832 0.6533 0.6832 0.7401

Azarbayejan gharbi 0.7825 0.7483 0.7825 0.8477

Ardabil 0.8352 0.8024 0.8352 0.9048

Esfahan 0.7058 0.6749 0.7055 0.7646

Ostan-e-Esfahan 0.7649 0.7116 0.7649 0.8286

Chaharmahal-o-Bakhtiari 0.6070 0.5785 0.6072 0.6575

Markazi 0.7185 0.6909 0.7224 0.7817

Hamedan 0.5918 0.5636 0.5919 0.6411

Lorestan 0.6140 0.5854 0.6143 0.6652

Alborz 0.8352 0.8024 0.8373 0.9048

Tehran Bozorg 0.8352 0.8024 0.8352 0.9048

Ostan-e-Tehran 0.6919 0.6647 0.6919 0.8868

Ghom 0.6950 0.6705 0.7009 0.7591

Mashhad 0.8352 0.8024 0.8352 0.9048

Khorasan-e-Razavi 0.8016 0.7677 0.8025 0.8693

Khorasan-e-Jonubi 0.5968 0.5685 0.5968 0.6465

Khorasan-e-Shomali 0.7028 0.6708 0.7028 0.7613

Ahwaz 0.8352 0.8024 0.8352 0.9048

Khouzestan 0.8352 0.8024 0.8352 0.9048

Kohkiluye-o-Boyerahmad 0.5590 0.5315 0.5596 0.6056

Zanjan 0.8352 0.8024 0.8362 0.9048

Ghazvin 0.8352 0.8005 0.8359 0.9048

Semnan 0.7257 0.6805 0.7158 0.7862

Sistan-o-Balouchestan 0.6931 0.6653 0.6950 0.7534

Kermanshah 0.6573 0.6271 0.6583 0.7131

Kordestan 0.7778 0.7406 0.7782 0.8431

Ilam 0.5210 0.4942 0.5160 0.5590

Shiraz 0.5610 0.5196 0.5647 0.6115

Fars 0.7185 0.6722 0.7061 0.7783

Boushehr 0.8084 0.7761 0.8084 0.8757

Shomal-e-Kerman 0.6628 0.6343 0.6638 0.7191

Jonub-e-Kerman 0.6922 0.6609 0.6931 0.7509

Gilan 0.7585 0.6741 0.7554 0.8210

Mazandran 0.6319 0.5442 0.6319 0.6846

Gharb-e-Mazandaran 0.5498 0.5215 0.5483 0.5956
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Table 9 (continued)

DMU RCDEA

Initial RCDEA e � 0.05 � � 5 γ � 0.6

Golestan 0.5554 0.5279 0.5558 0.6017

Hormozgan 0.7942 0.7189 0.7940 0.8602

Yazd 0.8352 0.8024 0.8352 0.9048

Table 10 Weights of criteria
Variables BWM-RCDEA Weight

γ � 0.4
BWM-RCDEA
Weight γ � 0.8

Service area 0.0670 0.0753

Number of
employees

0.1290 0.1351

Transformer
capacity

0.1953 0.2050

Network length 0.1198 0.1195

Energy delivery 0.00001 0.00001

Number of
customers

0.2001 0.1861

Total electricity sale 0.2965 0.2790
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