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Abstract
Due to change requests for up-gradation of adding new features, software organizations 
always develop new versions of the software by adding new features and improving the 
existing software. Various software reliability growth models have been proposed consid-
ering realistic issue which affects the reliability growth of software. Testing coverage is a 
crucial realistic issue that influences the fault detection and correction process. The diffi-
culty level for removing different faults is different, same kind of testing coverage function 
can’t capture the fault detection process for all types of faults. Also, there exist random 
effects in the field environment due to the change between the testing environment and the 
operational environment. This randomness also affects the reliability growth of software. 
In this paper, a software reliability growth model has been proposed considering imperfect 
debugging, faults removal proportionality, two types of testing coverage function in the 
presence of random effect of the testing environment. Here different categories of faults 
have been considered. Though reliability is an important issue for software professionals, 
they are worried about the optimal release of software at an optimal cost. Considering the 
testing cost and debugging cost random, a cost model has been proposed for release time 
analysis.
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1 Introduction

People are acquainted with a well-behaved software system where works are carried out 
in a fast, efficient manner by the software. The traditional method of doing a job is time 
taking; the software system saves time and makes life more comfortable with its best use. 
Software system has gained the most prominent place in the scientific, technological, and 
R&D field. Due to the growing importance of software in safety–critical areas like: bank-
ing sector, medical science, communication, defence, Air traffic control system, nuclear 
power plant, etc. (Pham, 2007), software professionals are always in search for developing 
more efficient and reliable software. Due to multiple functionalities and complex develop-
ment process fault detection and correction process has become very difficult as well as the 
failure of software causes a huge burden on the economy. Therefore, people are more con-
cerned about the reliability issues of software. As a result, software developers carry out 
rigorous testing with the objective of producing a highly reliable software system. Software 
reliability growth model (SRGM) plays a very important role in measuring and analysing 
the reliability of software system (Yamada & Osaki, 1985). Since the last five decades, 
many SRGMs have been proposed to predict the remaining faults, reliability growth of 
software, failure rate, etc. SRGMs are also used for optimal release time analysis. SRGMs 
based on NHPP are very popular (Kapur et al., 2011; Pachauri et al., 2015; Pham, 2001; 
Pham & Zhang, 1997; Yamada et  al., 1984) among the software professionals and soft-
ware reliability research community. Every parametric SRGMs are formulated based on 
various assumptions such as: imperfect debugging, the effect of coverage factor, the effect 
of change point, effect of random field environment, dependency of faults, the effect of 
learning, etc., and these models are used to study the effects of these factors on fault detec-
tion and correction process during testing (Pham, 1995). Debugging can’t be perfect due 
to partial removal of the cause of existing faults and the generation of new faults during 
fault detection and correction process. Also, change in development and testing conditions 
as well as variations in the performance of developers, faults can’t be removed perfectly. 
Hence, many SRGMs have been proposed based on imperfect debugging and fault removal 
efficiency (Chatterjee et al., 2012; Pham et al., 1999; Yamada et al., 1993; Zhang et al., 
2003).

Parametric SRGMs are mainly developed using failure data gathered during testing of 
software. In house testing of software is carried out in a regulated environment. Therefore, 
the factors which are used for the development of parametric SRGMs are also measured 
in the same controlled environment. Practically there is a difference between the testing 
environment and the field environment (Chang et  al., 2014; Teng & Pham, 2006). After 
release, standalone software may be used in varied locations for divergent applications and 
purposes. Thus, operating environment for standalone software is separate from regulated 
testing environment, and the failure behaviour of the software will be different in the field 
environment due to the presence of randomness. Ultimately the randomness in the field 
environment affects the cumulative failure, different metrics used to measure reliability, 
and different factors that are used to develop SRGMs.

Testing coverage (Chang et al., 2014; Chatterjee & Shukla, 2016; Chatterjee & Singh, 
2014) is very important from the developer’s point of view and also from the customer’s 
point of view. To developers, testing coverage is an instrument for monitoring the improve-
ment in fault prediction and introduction process, whereas to the customer, testing coverage 
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provides the trust about the software product they are going to purchase and use. Testing 
coverage helps the developers to get an idea about additional efforts required to improve 
the reliability of software. Many researchers use different testing coverage functions to 
develop SRGMs.

The only way to deliver improved and reliable software to the customers is by adding 
new features, correcting residuals bugs, and upgrading the existing version. Hence, up-
gradation of software takes place as when required depending on the demand from the 
customer side or from in house development team. Software up-gradation may generate 
many faults (Kapur et al., 2014). There are few SRGMs available in the literature related 
to multi-release and multi up-gradation of software system (Yang et al., 2016; Kapur et al., 
2010a, b) based on different realistic issues. None of these SRGMs has taken care of two 
very important issues: the effect of random environment and testing coverage factor. The 
random field environment is a very important issue as it influences fault removal efficiency, 
faulty introduction rate, failure rate, change point, testing coverage, etc. Considering this 
factor in this paper, a SRGM has been proposed based on two types of testing coverage 
functions, presence of randomness in field environment of testing, imperfect debugging, 
and percentage of faults removal efficiency to estimate the reliability of upgraded software 
system. Also, in the proposed work presence of two types of faults has been considered: 
soft faults that are easy to detect and remove from software, and hard faults which are not 
easy to remove and detect from software. This implies that the testing coverage should be 
different for two different types of faults to quantify the effect of these two types of faults. 
This fact has also been incorporated in the proposed SRGM. The effect of random field 
environments with different fault types along with different test coverage factors on the 
reliability growth of multi up-gradation software has not been studied earlier.

Though reliability is an important issue for software companies, there is also another 
important and challenging issue to the software developers and organizations which is: 
when to release the software in the market with optimal cost. In order to achieve higher 
reliability, software is normally tested for a longer time of period before releasing. The test-
ing phase is the costliest phase as half of the amount of software development resources is 
consumed in testing phase. Many optimal release time models have been found for single 
release problem in literature (Ho & Ruhe, 2013; Li et al., 2014; Sailu & Ruhe, 2005; Zhu 
& Pham, 2018a, b; Li et al., 2011). Software companies always try to estimate the optimal 
release time such that the cost of the product will be optimal (Chatterjee et al., 2018; Kapur 
et al., 2014; Pham et al., 2003). Hence, a new optimal release time model has also been 
proposed considering the random debugging cost. In most of the existing literature about 
optimal release time analysis, the debugging cost is considered as constant. Practically due 
to imperfect debugging, variation in fault removal efficiency, the effect of random field 
environment in debugging process, the debugging cost cannot be constant. Rather, it will 
change with time, i.e., debugging costs will be random. Hence, in this article, the debug-
ging cost is considered as a function of time to incorporate the randomness.

The paper is organized as follows: Sect. 2 presents the proposed model, Sect. 3 describes 
parameter estimation, model validation and the comparative study with the existing model, 
Sect. 4 gives the details of optimal release time, and Sect. 5 concludes the paper.
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2  Notation

The following notations are used for model formulation: 

ak : Total initial faults present in the kth release of software.
s1k : Proportion of soft faults in the kth release of software.
s2k : Proportion of hard faults in the kth release of software where s2k =

(
1 − s1k

)
.

p1k : Probability that a soft type faults will be successfully removed from the kth release 
of software.
p2k : Probability that a hard type faults will be successfully removed from the kth release 
of software.
q1k : Error introduction rate of soft type faults from the kth release of software.
q2k : Error introduction rate of hard type faults from the kth release of software.
�k : Scale parameter of Gamma distribution for kth release.
� : Random environment effect.
f (�) : Probability density function of �.
b1k,�1k : Parameters of Weibull distribution of kth release of software.
b2k : Parameter of delayed S-shaped distribution of kth release of software.
mk : Shape parameter of Gamma distribution of kth release of software.

3  Software reliability modelling

This section depicts a glimpse about the details of software reliability terminologies used 
for the proposed model.

3.1  Assumptions

The following assumptions are made for the proposed model:

1. Generation of fault follows an NHPP.
2. Fault detection rate is proportional to the remaining faults in software.
3. Removal of faults take place immediately with a debugging effort having probability p.
4. Debugging process is imperfect.
5. Presence of testing coverage function.
6. Effect of random environment on testing coverage function.
7. Existence of two types of faults: soft fault and hard fault.

3.2  SRGM formulation with fault removal efficiency and imperfect debugging

When failure occurs in software, the review board assigns developers to look into the dif-
ferent aspects of the failure and causes behind the failures. As a result, the testing process 
gets initiated. Most of the time, bugs can’t be eliminated from the software perfectly by 
review, inspections, and tests, because of poor fault removal efficiency (Chatterjee et al., 
2012; Pham et  al., 1999; Yamada et  al., 1993). Fault removal efficiency (Zhang et  al., 
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2003) is the proportion of bugs removed by developers. Imperfect debugging (Yamada, 
2014) also plays a crucial role as new faults occur in software during the development 
period. Based on the aforementioned discussions, the MVF of the proposed model will be 
as follows:

3.3  SRGM with testing coverage and effect of random environment

During testing time, the software failure rate also depends on the environmental effects 
(Chang et al., 2014; Teng & Pham, 2006; Zhu & Pham, 2018a, 2018b(b)). The impact of 
environment on software fault generation can’t be constant; practically, the environment 
is uncertain. To capture the uncertainty of the environment, a time-independent non-neg-
ative random variable � has been considered here. The fault detection in an uncertain field 
environment is captured by multiplying the constant � with unit failure detection rate h(t) , 
Therefore, the proposed SRGM in the presence of environmental effect will be as follows:

It is known that testing coverage plays a very important role in the fault detection and 
correction process (Chang et  al., 2014; Chatterjee & Shukla, 2016; Chatterjee & Singh, 
2014)). Also, the importance of testing coverage from the developer’s point of view as well 
as from the user’s point of view has been presented in the introduction of this paper. Gener-
ally testing coverage factor is denoted by c(t) . The derivative of testing coverage factor c�(t) 
gives coverage rate and (1 − c(t)) denotes the proportion of codes which has not been tested 
yet by test cases during the time t. Hence, the unit failure detection rate function in terms of 
testing coverage function will be h(t) = c�(t)

(1−c(t))
.

Therefore, the proposed model will be as follows:

The closed form of MVF derived from Eq. (2) with initial condition will be

(1)
m�(t) = h(t)(a(t) − p.m(t))

a�(t) = q.m�(t)

with a(0) = a and m(0) = 0

(2)
m�(t) = �h(t)(a(t) − p.m(t))

a�(t) = q.m�(t)

with a(0) = a and m(0) = 0

(3)
m�(t) = �

c�(t)

(1 − c(t))
(a(t) − p.m(t))

a�(t) = q.m�(t)

with a(0) = a and m(0) = 0

(4)
m�(t) = a�

t

∫
0

b(u).exp(−

u

∫
0

�(p − q)b(�)d�)du

where b(�) =
c�(�)

1 − c(�)
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3.4  Gamma RFE reliability model

Previously two types of non-negative probability density function have been proposed 
for � , one is Gamma distribution, and the other is Beta distribution (Pahm, 2007). The 
random field environment factor � can follow any kind of positive distribution, but 
Gamma distribution can take care of all conditions for fault detection in testing as well 
as the operational environment. � less than 1 implies that the condition for fault detec-
tion in operational environment is less favorable than testing environment, whereas 
when � = 1 the condition for fault detection are same in two different environments and 
when 𝜂 > 1 the condition for detection of faults in operational environment will be more 
favorable than testing environment. On the other hand, in case of Beta distribution � 
can take value only between 0 and 1. Hence, Gamma distribution is more suitable for 
describing random field environment and due to this reason Gamma distribution has 
been considered here.

Also, Fig.  1 shows the density curve of Gamma probability distribution, and it 
also seems to be reasonable to describe the software failure phenomenon in uncertain 
environments.

The Gamma distribution for � is as follows:

The Laplace transformation of f�(�) given in (4) is

(5)f�(�) =
�m�(m−1)e−��

(m − 1)!
where parameters �, �,m ≥ 0

(6)F∗(s) =
[

�

� + s

]m
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Fig. 1  Gamma distribution function with two different shape parameters
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Finally the MVF of the proposed SRGM using Gamma distribution is as follows:

Using the Laplace transformation, the compact form of the solution of MVF m(t) is 
as follows:

3.5  SRGM based on testing coverage function

Due to changes in codes, environmental effects, imperfect debugging, etc., new faults occur 
in software. Faults are not the same kind; some faults are very easy to detect and remove; 
on the other hand, some faults can’t be easily detected and removed. To remove the causes 
of the second category of faults extra effort is required. The first categories of faults are 
classified as soft faults, and second category of faults are classified as hard faults. Gram-
baaki et al. (Grambaki et al., 2011) has quantified the soft and hard fault using a logistic 
function in the mean value function m(t) . Testing coverage function is more appropriate for 
quantifying the effect of soft and hard fault. As detection and removal of soft fault is easy, 
hence the time taken to detect and removal of soft fault is negligible. This phenomenon 
can be better represented using exponential testing coverage function. As exponential func-
tion is a special case of Weibull function, hence Weibull function has been used here to 
represent the testing coverage function for soft fault, and this gives a generalized effect. On 
the other hand, hard faults are difficult to detect and remove. Hence, more time and effort 
will be required for detection and removal of hard faults. Also, the knowledge and skill 
of developers play an important role in detection and removal of hard faults. The knowl-
edge and skill of developer’s increases with learning. Therefore, with the passage of time, 
knowledge and skill of developers increases from low to high with. This phenomenon is 
better captured by S-shaped testing coverage function. Hence, S-shaped coverage function 
has been used here to represent the testing coverage function of hard faults. It is observed 
that the Weibull curve and delayed S-shaped curve captures the fault detection phenom-
enon better for soft and hard faults respectively. Based on this argument, two testing cov-
erage function is considered in the proposed SRGM. Out of these two functions, one is 
Weibull type testing coverage function for soft faults, and the other is delayed S-shaped 

m(t) =

∞

∫
0

m�(t)f (�)d�

=

∞

∫
0

a

⎛
⎜⎜⎝
�

t

∫
0

b(u).exp

⎛
⎜⎜⎝
−

u

∫
0

�(p − q)b(�)d�

⎞
⎟⎟⎠
duf (�)

⎞
⎟⎟⎠
d�

=

t

∫
0

b(u)

⎛⎜⎜⎝

∞

∫
0

a.exp(−

u

∫
0

�(p − q)b(�)d�)�f (�)d�

⎞⎟⎟⎠
du

(7)
m(t) =

a

(p − q)

⎛⎜⎜⎜⎜⎝
1 −

⎛⎜⎜⎜⎜⎝

�

� + (p − q)

t∫
0

b(u)du

⎞⎟⎟⎟⎟⎠

m⎞⎟⎟⎟⎟⎠
where b(u) =

c�(u)

1 − c(u)
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testing coverage function for hard faults. Therefore, the testing coverage functions are as 
follows:

c1(t) =
(
1 − e−bt

�) and c2(t) = 1 − ((1 + bt).exp(−bt))

The MVF for Weibull type testing coverage function will be

where the constant b and � reflects the quality of testing,
The MVF with delayed S-shaped testing coverage is as follows:

The combined MVF in presence of two types of testing coverage is as follows:

The details of the proposed model for different releases are discussed in the follow-
ing subsection,

3.6  Proposed SRGM for different releases

The mean value function can be derived for different releases using Eq. (10).
Hence, MVF for  1st release of the software will be as follows:

Hence, MVF can be written for 1st release is as follows: m1(t) = a1 × F1(t) for 
0 ≤ t ≤ t1 where.

F1(t) =
s11

(p11−q11)
.

(
1 −

(
�1

�1+(p11−q11)b11 t
�1

)m1
)
+

s21
(p21−q21)

.

(
1 −

(
�1

�1−(p21−q21).ln
(
(1+b21t)e

−b21 t
)
)m1

)
 

Now, MVF for other releases are as follows: mk(t) = {ak + ak−1.(1 − Fk−1(tk−1))} × Fk(t) 
for tk−1 ≤ t ≤ tk and where

(8)m(t) =
a

(p − q)

(
1 −

(
�

� + (p − q)bt�

)m)

(9)m(t) =
a

(p − q)
.

(
1 −

(
�

� − (p − q).ln
(
(1 + bt)e−bt

)
)m)

(10)

m(t) =
as

1

(p
1
− q

1
)
.

(
1 −

(
�

� + (p
1
− q

1
)b

1
t�1

)m)

+
as

2

(p
2
− q

2
)
.

(
1 −

(
�

� − (p
2
− q

2
).ln

(
(1 + b

2
t)e−b2t

)
)m)

(11)

m
1
(t) =

a
1
s
11

(p
11
− q

11
)
.

(
1 −

(
�
1

�
1
+ (p

11
− q

11
)b

11
t�1

)m
1
)

+
a
1
s
21

(p
21
− q

21
)
.

(
1 −

(
�
1

�
1
− (p

21
− q

21
).ln

(
(1 + b

21
t)e−b21t

)
)m

1
)

for 0 ≤ t ≤ t
1

(12)

Fk(t) =
s
1k

(p
1k − q

1k)
.

(
1 −

(
�k

�k + (p
1k − q

1k)b1k(t − t(k−1))
�k

)mk
)

+
s
2k

(p
2k − q

2k)
.

(
1 −

(
�k

�k − (p
2k − q

2k).ln
(
(1 + b

2k(t − t(k−1)))e
−b

2k (t−t(k−1) )
)
)mk

)
for k = 2, 3, 4, ...
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4  Parameter estimation, model validation & performance analysis

This section presents the parameter estimation and validation of the proposed model 
using some real software failure data for different releases. Also, the performance analy-
sis of the proposed model has been carried out comparing with some existing SRGMs 
(Garmabaki et al., 2011; Kapur et al., 2010a, b).

4.1  Parameter estimation

The parameters of the proposed model have been estimated using non- linear least 
square estimation method with the help of SPSS.

The failure data which has been collected during testing phase of software is in the 
form of 

(
ti, yi

)
 where ti represents the time and yi represents actual cumulative data of ith 

observation. Here, residuals ri, for i = 1, 2, 3,… can be described by ri = yi − f (ti, x), 
where x is a vector of m unknown parameters. Let S is defined as S =

∑
i

r2
i
 . The 

unknown parameters can be found by equating the gradient of S with 0, i.e , �S
�xi

= 0 for 
i = 1,2,... The estimated parameters are obtained solving �S

�xi
= 0 using SPSS.

4.2  Model validation and performance analysis

Tandem computer failure data (Wood, 1996) and online bug tracking system Mozilla 
fire-fox failure data sets (Yang et  al., 2016) are used for different releases to estimate 
unknown parameters of proposed model (Pham & Zhang, 2003).

4.2.1  Data Set 1

First data set is the Tandem computer failure data (Wood, 1996). The detected faults 
are collected for four releases. The estimated values of the parameters for the proposed 
model using this data set have been tabulated in Table 1.

Table 1  Estimated parameters of the proposed model

Parameters Release 1 (k = 1) Release 2 (k = 2) Release 3 (k = 3) Release 4 (k = 4)

ak 104.396 125.504 61.6 46.572
s
1k 0.140 0.134 0.444 0.957
p
1k 0.944 1 1 0.972

q
1k 0.122 0 0.001 0.004

�k 0.016 16,576.88 10.076 92.687
b
1k 0.014 0.044 0.001 0.512

�k 4.091 0.010 4.586 1.75
p
2k 1 1 0.999 0.603

q
2k 0.001 0 0 0.602
b
2k 0.011 0.033 0.999 0.001
mk 3.482 435,570.431 2.639 3.775
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4.2.2  Data Set 2

This data set is collected from Mozilla Firefox failure data (Yang et  al., 2016). The 
detected faults are collected for three releases. The estimated values of parameters for 
the proposed model using this data set have been tabulated in Table 2.

The plots of cumulative number of faults of different releases for the Tandem com-
puter failure data sets are given in Figs. 2, 3, 4, and 5. And Figs. 6, 7, and 8 have given 
the cumulative faults for different releases of the Mozilla fire-fox data sets. It is observed 

Fig. 2  Predicted cumulative faults via proposed models for Release 1

Fig. 3  Predicted cumulative faults via proposed models for Release 2

Table 2  Estimated parameters of 
the proposed model

Parameters Release 1 (k = 1) Release 2 (k = 2) Release 3 (k = 3)

ak 65.58 51.03 33.27
s
1k 0.393 0.969 0.001
p
1k 0.999 1 0.9

q
1k 0.287 0.003 0.899

�k 8.498 0.001 0.387
b
1k 0.0013 0.001 0.001

�k 1.046 7.762 2.915
p
2k 1 6.7 1

q
2k 001 6.667 0
b
2k 0.002 0.164 0.103
mk 1799.649 0.022 0.626
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Fig. 4  Predicted cumulative faults via proposed models for Release 3

Fig. 5  Predicted cumulative faults via proposed models for Release 4

Fig. 6  Predicted cumulative faults via proposed models for Release 1

Fig. 7  Predicted cumulative faults via proposed models for Release 2
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that the predicted faults are very close to the actual faults exist in the different release. 
The plots validate the different assumptions made to develop the proposed SRGM.

4.3  Comparison criterion

The proposed model has been compared with existing models for multi release problem 
(Kapur et al., 2010a, 2010b, December; Garmabaki et al., 2011, December; Kapur et al., 1999; 
Kapur et al., 2010a, 2010b, December). Different comparison measure like: Sum of Square of 
Errors (SSE), Mean Square Error (MSE) and Adjusted  R2, Akaike Information Criteria (AIC), 
Bayesian Information Criteria (BIC), and Mean Absolute Error have been used for model 
comparison (Kapur et al., 2011; Pham, 2007). The following tables give the values of these 
criteria for the used data sets. The comparative study for the proposed model with the existing 
models based on these criteria has been tabulated in Tables 3 and 4.

As shown in Tables 3 and 4, the values of SSE and MSE and AIC and mean absolute error 
are less for the proposed model than the existing model, and Adjusted  R2 values are high than 
the existing model. Hence, it can be said from the tabulated values that the proposed SRGM 
performs better. Also, the comparative study establishes the validation of the assumptions 
made for the proposed model.

5  Optimal release time modeling

This section provides the details of optimal release time for different releases of software. As 
development process is a continuous process, software companies can’t place software at one 
time in the market (Li et al., 2011; Naciri et al., 2015; Szoke et al., 2011). Instead, software 
developers release a new version of software within a shorter span of time. Developers also 
try to enhance reliability of new versions than the existing ones. If developers stop testing 
too early, bugs can’t be identified and removed properly. As a result, failures occur in the sys-
tem. On the other hand, if too much testing carried out, it will consume extra effort and cost 
increases. Due to business competition and commitment to clients, organizations always in 
search for suitable optimal release time with affordable cost of the software (Chatterjee & 
Shukla, 2019; Chatterjee et al., 1997, 2012, 2019). Considering this a cost model has been 
carried out to find optimal releasing time of software with affordable cost for releasing.

During the up-gradation and release of new versions of software, new faults may gener-
ate in successive versions as well as some faults will also survive from the previous versions, 

Fig. 8  Predicted cumulative faults via proposed models for Release 3
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which will be carried out in the successive version of that particular release (Kapur et  al., 
2014; Pham, 2007). Hence, debugging cost for faults migrated from the previous version has 
been considered in the cost model. The notation, which is used to formulate the cost model is 
as follows: 

c0j(t)  cost of testing in testing period in jth release.
c1j(t)  Debugging cost of faults in testing period of jth release.
c2j(t)  Debugging cost of faults in operational phase of jth release.
cj(t)  Cost for debugging of faults from the previous version.
cs  Set up cost for software release.

Hence, the cost model for different releases will be as follows

Here, c0j(t) = c0j is taken as a constant since the testing is performed in “in-housing” con-
dition. As mentioned earlier, due to the effect of different factors, the debugging costs in 
each release are time-dependent. With the passage of time, more testing is required which 
results in increasing manpower requirements. Hence, debugging cost increases.

Therefore, the cost for debugging in testing period is taken as follows: 
c1j(t) = c1j + r1j(t − tj−1) for j ≥ 1 and t0 is the starting time for first release. Here  r1j-unit 
charges will be increased for per unit debugging due to increase of unit time in testing 
period. Also, the debugging cost from previous remaining faults increases is as debugging 
cost increases for removing faults in testing period of the present release. The debugging 
cost in the operational phase will again increase due to the detection and removal of faults 
during operational period. Also, more skilled personnel are required for identification and 
removal of faults in this phase. Hence, the cost model for operational phase will be as fol-
lows:c2j(t) = c2j + r2j.(tlc − t) . Here  r2j-unit charges will be increased for per unit debugging 
due to increase of unit time in operational phase. Here tLC means total life cycle of software. 

Cost model for 1st release As there is no previous version before this version, there is 
no fault to debug in this present version. Hence, there is no debugging cost required for 
testing previous version. The cost model will be as follows:

Cost model for 2nd release New faults will occur in the software during testing and 
some faults will survive from the previous version. Hence, extra cost will be incurred. 
Finally proposed cost model for 2nd release will be

(13)
CTotal = Cset up cost + Cper unit testing cost + Cdebuggingcost in testing phase

+ Ccost for operational period + Cdebugging cost for remaining faults from previos version

(14)
C(t) = c

s
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Cost model for 3rd version As thoroughly testing is going on before releasing any ver-
sion of software, there is a less chance of migration of any faults from 1st version. In 
3rd version there are some faults surviving from 2nd version. Hence, cost model for 3rd 
version will be  

Cost model for 4th version Due to abovementioned reason the cost model for 4th ver-
sion is as follows:

Let cs = 200 dollars, c0i = 10 dollars, c1i = 15 dollars, c2i = 20 dollars and c1, c2,c3 are 
taken 15 dollars for reported faults from 1st, 2nd and 3rd release of the software. Due to 
absence of software experts, testing tools, and effect of field environment in operational 
phase, debugging process is very much difficult in operational phase than debugging in 
testing phase. As a result, cost of debugging in operational phase increases with increasing 
of time more than in testing phase. As a result, r1j and r2j have been considered as 0.1 and 
0,15 here. These values are considered as an example to find the cost and optimal release 
time of the software. Based on the data sets, the release time for different releases is given 
in Figs. 9, 10, 11 and 12 respectively for the Tandem failure data set and Figs. 13,14, and 
15 have been shown the optimal time of release for Mozilla failure data sets. The optimal 
release time and optimal cost has been tabulated in Tables 5 and 6 for these two data sets.

The arrows in the plots (Figs. 5, 6, 7, and 8) show the optimal release time and corre-
sponding cost for a particular release for the Tandem software failure data.

The arrows in the plots (Figs. 13, 14, and 15) show the optimal release time and corre-
sponding cost for three different releases for the Mozilla data.
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Fig. 9  Predicted optimal release time Release 1 for Tandem data set
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Fig. 10  Predicted optimal release time Release 2 for Tandem data set

Fig. 11  Predicted optimal release time Release 3 for Tandem data set

Fig. 12  Predicted optimal release time Release 4 for Tandem data set

Fig. 13  Predicted optimal release time Release 1 for Mozilla data set
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Table 5  Optimal release time 
and corresponding cost for 
Tandem data set

Releases Optimal Time (weeks) Optimal 
cost 
(units)

1st release 20.12 2209
2nd release 19.44 2973
3rd release 14.79 2006
4th release 20.05 1908

Table 6  Optimal release time 
and corresponding cost for 
Mozilla data set

Releases Optimal Time (weeks) Optimal 
cost 
(units)

1st release 13.34 1799
2nd release 27.51 2030
3rd release 24.03 2188

Fig. 14  Predicted optimal release time Release 1 for Mozilla data set

Fig. 15  Predicted optimal release time Release 1 for Mozilla data set
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6  Conclusion

To enhance reliability and to estimate faults of software, many SRGMs have been con-
structed based on various realistic issues. But there is no such SRGM based on two very 
important realistic issues like: testing coverage and effect of testing environment on growth 
models for multi-release problem are available. Fault detection rate can change due to the 
presence of different kinds of faults. In this article, a NHPP based SRGM has been pro-
posed considering imperfect debugging, faults removal efficiency, two types of testing cov-
erage, and effects of uncertain testing environment on SRGMs for multi-release problems. 
Also, the presence of two different types of faults: soft fault and hard fault has been consid-
ered here. In formulating the cost model, the concept of random debugging cost has been 
incorporated. To the software organizations, reliability is not only main issue; determina-
tion of optimal release time of the software is also an important issue. Due to this reason, 
a cost model has also been carried out to find the optimal time of release at an affordable 
cost. In brief, the major contribution of the proposed work is: consideration of the effect 
of testing coverage and random field environment in the reliability growth of multi-release 
software in the presence of two different types of faults and consideration of random 
debugging cost for cost modelling. Performance analysis and comparison with existing 
SRGMs show that the proposed model is better fitted than existing models for multi release 
problem. Therefore, it can be concluded that the proposed model is more realistic, and it 
will be more useful for reliability analysis of multi up-gradation problem.
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