
Vol.:(0123456789)

Annals of Operations Research (2022) 312:65–85
https://doi.org/10.1007/s10479-021-04258-y

1 3

S.I. : STATISTICAL RELIABILITY MODELING AND OPTIMIZATION

Reliability and optimal release time analysis for multi
up‑gradation software with imperfect debugging
and varied testing coverage under the effect of random field
environments

Subhashis Chatterjee1 · Deepjyoti Saha1 · Akhilesh Sharma2 · Yogesh Verma2

Accepted: 30 August 2021 / Published online: 30 October 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Due to change requests for up-gradation of adding new features, software organizations
always develop new versions of the software by adding new features and improving the
existing software. Various software reliability growth models have been proposed consid-
ering realistic issue which affects the reliability growth of software. Testing coverage is a
crucial realistic issue that influences the fault detection and correction process. The diffi-
culty level for removing different faults is different, same kind of testing coverage function
can’t capture the fault detection process for all types of faults. Also, there exist random
effects in the field environment due to the change between the testing environment and the
operational environment. This randomness also affects the reliability growth of software.
In this paper, a software reliability growth model has been proposed considering imperfect
debugging, faults removal proportionality, two types of testing coverage function in the
presence of random effect of the testing environment. Here different categories of faults
have been considered. Though reliability is an important issue for software professionals,
they are worried about the optimal release of software at an optimal cost. Considering the
testing cost and debugging cost random, a cost model has been proposed for release time
analysis.

Keywords Software reliability · Non-homogeneous poisson process (NHPP) · Random
field environment (RFE) · Testing coverage function · Imperfect debugging · Fault removal
proportionality · Optimal release time · Mean value function (MVF)

 * Deepjyoti Saha
 sahadeepjyoti01@gmail.com

1 Department of Mathematics & Computing, IIT(ISM) Dhanbad, Dhanbad, Jharkhand, India
2 GSQAD/SRG/SAC-ISRO, Ahmedabad, India

http://orcid.org/0000-0002-2185-617X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-021-04258-y&domain=pdf

66 Annals of Operations Research (2022) 312:65–85

1 3

1 Introduction

People are acquainted with a well-behaved software system where works are carried out
in a fast, efficient manner by the software. The traditional method of doing a job is time
taking; the software system saves time and makes life more comfortable with its best use.
Software system has gained the most prominent place in the scientific, technological, and
R&D field. Due to the growing importance of software in safety–critical areas like: bank-
ing sector, medical science, communication, defence, Air traffic control system, nuclear
power plant, etc. (Pham, 2007), software professionals are always in search for developing
more efficient and reliable software. Due to multiple functionalities and complex develop-
ment process fault detection and correction process has become very difficult as well as the
failure of software causes a huge burden on the economy. Therefore, people are more con-
cerned about the reliability issues of software. As a result, software developers carry out
rigorous testing with the objective of producing a highly reliable software system. Software
reliability growth model (SRGM) plays a very important role in measuring and analysing
the reliability of software system (Yamada & Osaki, 1985). Since the last five decades,
many SRGMs have been proposed to predict the remaining faults, reliability growth of
software, failure rate, etc. SRGMs are also used for optimal release time analysis. SRGMs
based on NHPP are very popular (Kapur et al., 2011; Pachauri et al., 2015; Pham, 2001;
Pham & Zhang, 1997; Yamada et al., 1984) among the software professionals and soft-
ware reliability research community. Every parametric SRGMs are formulated based on
various assumptions such as: imperfect debugging, the effect of coverage factor, the effect
of change point, effect of random field environment, dependency of faults, the effect of
learning, etc., and these models are used to study the effects of these factors on fault detec-
tion and correction process during testing (Pham, 1995). Debugging can’t be perfect due
to partial removal of the cause of existing faults and the generation of new faults during
fault detection and correction process. Also, change in development and testing conditions
as well as variations in the performance of developers, faults can’t be removed perfectly.
Hence, many SRGMs have been proposed based on imperfect debugging and fault removal
efficiency (Chatterjee et al., 2012; Pham et al., 1999; Yamada et al., 1993; Zhang et al.,
2003).

Parametric SRGMs are mainly developed using failure data gathered during testing of
software. In house testing of software is carried out in a regulated environment. Therefore,
the factors which are used for the development of parametric SRGMs are also measured
in the same controlled environment. Practically there is a difference between the testing
environment and the field environment (Chang et al., 2014; Teng & Pham, 2006). After
release, standalone software may be used in varied locations for divergent applications and
purposes. Thus, operating environment for standalone software is separate from regulated
testing environment, and the failure behaviour of the software will be different in the field
environment due to the presence of randomness. Ultimately the randomness in the field
environment affects the cumulative failure, different metrics used to measure reliability,
and different factors that are used to develop SRGMs.

Testing coverage (Chang et al., 2014; Chatterjee & Shukla, 2016; Chatterjee & Singh,
2014) is very important from the developer’s point of view and also from the customer’s
point of view. To developers, testing coverage is an instrument for monitoring the improve-
ment in fault prediction and introduction process, whereas to the customer, testing coverage

67Annals of Operations Research (2022) 312:65–85

1 3

provides the trust about the software product they are going to purchase and use. Testing
coverage helps the developers to get an idea about additional efforts required to improve
the reliability of software. Many researchers use different testing coverage functions to
develop SRGMs.

The only way to deliver improved and reliable software to the customers is by adding
new features, correcting residuals bugs, and upgrading the existing version. Hence, up-
gradation of software takes place as when required depending on the demand from the
customer side or from in house development team. Software up-gradation may generate
many faults (Kapur et al., 2014). There are few SRGMs available in the literature related
to multi-release and multi up-gradation of software system (Yang et al., 2016; Kapur et al.,
2010a, b) based on different realistic issues. None of these SRGMs has taken care of two
very important issues: the effect of random environment and testing coverage factor. The
random field environment is a very important issue as it influences fault removal efficiency,
faulty introduction rate, failure rate, change point, testing coverage, etc. Considering this
factor in this paper, a SRGM has been proposed based on two types of testing coverage
functions, presence of randomness in field environment of testing, imperfect debugging,
and percentage of faults removal efficiency to estimate the reliability of upgraded software
system. Also, in the proposed work presence of two types of faults has been considered:
soft faults that are easy to detect and remove from software, and hard faults which are not
easy to remove and detect from software. This implies that the testing coverage should be
different for two different types of faults to quantify the effect of these two types of faults.
This fact has also been incorporated in the proposed SRGM. The effect of random field
environments with different fault types along with different test coverage factors on the
reliability growth of multi up-gradation software has not been studied earlier.

Though reliability is an important issue for software companies, there is also another
important and challenging issue to the software developers and organizations which is:
when to release the software in the market with optimal cost. In order to achieve higher
reliability, software is normally tested for a longer time of period before releasing. The test-
ing phase is the costliest phase as half of the amount of software development resources is
consumed in testing phase. Many optimal release time models have been found for single
release problem in literature (Ho & Ruhe, 2013; Li et al., 2014; Sailu & Ruhe, 2005; Zhu
& Pham, 2018a, b; Li et al., 2011). Software companies always try to estimate the optimal
release time such that the cost of the product will be optimal (Chatterjee et al., 2018; Kapur
et al., 2014; Pham et al., 2003). Hence, a new optimal release time model has also been
proposed considering the random debugging cost. In most of the existing literature about
optimal release time analysis, the debugging cost is considered as constant. Practically due
to imperfect debugging, variation in fault removal efficiency, the effect of random field
environment in debugging process, the debugging cost cannot be constant. Rather, it will
change with time, i.e., debugging costs will be random. Hence, in this article, the debug-
ging cost is considered as a function of time to incorporate the randomness.

The paper is organized as follows: Sect. 2 presents the proposed model, Sect. 3 describes
parameter estimation, model validation and the comparative study with the existing model,
Sect. 4 gives the details of optimal release time, and Sect. 5 concludes the paper.

68 Annals of Operations Research (2022) 312:65–85

1 3

2 Notation

The following notations are used for model formulation:

ak : Total initial faults present in the kth release of software.
s1k : Proportion of soft faults in the kth release of software.
s2k : Proportion of hard faults in the kth release of software where s2k =

(
1 − s1k

)
.

p1k : Probability that a soft type faults will be successfully removed from the kth release
of software.
p2k : Probability that a hard type faults will be successfully removed from the kth release
of software.
q1k : Error introduction rate of soft type faults from the kth release of software.
q2k : Error introduction rate of hard type faults from the kth release of software.
�k : Scale parameter of Gamma distribution for kth release.
� : Random environment effect.
f (�) : Probability density function of �.
b1k,�1k : Parameters of Weibull distribution of kth release of software.
b2k : Parameter of delayed S-shaped distribution of kth release of software.
mk : Shape parameter of Gamma distribution of kth release of software.

3 Software reliability modelling

This section depicts a glimpse about the details of software reliability terminologies used
for the proposed model.

3.1 Assumptions

The following assumptions are made for the proposed model:

1. Generation of fault follows an NHPP.
2. Fault detection rate is proportional to the remaining faults in software.
3. Removal of faults take place immediately with a debugging effort having probability p.
4. Debugging process is imperfect.
5. Presence of testing coverage function.
6. Effect of random environment on testing coverage function.
7. Existence of two types of faults: soft fault and hard fault.

3.2 SRGM formulation with fault removal efficiency and imperfect debugging

When failure occurs in software, the review board assigns developers to look into the dif-
ferent aspects of the failure and causes behind the failures. As a result, the testing process
gets initiated. Most of the time, bugs can’t be eliminated from the software perfectly by
review, inspections, and tests, because of poor fault removal efficiency (Chatterjee et al.,
2012; Pham et al., 1999; Yamada et al., 1993). Fault removal efficiency (Zhang et al.,

69Annals of Operations Research (2022) 312:65–85

1 3

2003) is the proportion of bugs removed by developers. Imperfect debugging (Yamada,
2014) also plays a crucial role as new faults occur in software during the development
period. Based on the aforementioned discussions, the MVF of the proposed model will be
as follows:

3.3 SRGM with testing coverage and effect of random environment

During testing time, the software failure rate also depends on the environmental effects
(Chang et al., 2014; Teng & Pham, 2006; Zhu & Pham, 2018a, 2018b(b)). The impact of
environment on software fault generation can’t be constant; practically, the environment
is uncertain. To capture the uncertainty of the environment, a time-independent non-neg-
ative random variable � has been considered here. The fault detection in an uncertain field
environment is captured by multiplying the constant � with unit failure detection rate h(t) ,
Therefore, the proposed SRGM in the presence of environmental effect will be as follows:

It is known that testing coverage plays a very important role in the fault detection and
correction process (Chang et al., 2014; Chatterjee & Shukla, 2016; Chatterjee & Singh,
2014)). Also, the importance of testing coverage from the developer’s point of view as well
as from the user’s point of view has been presented in the introduction of this paper. Gener-
ally testing coverage factor is denoted by c(t) . The derivative of testing coverage factor c�(t)
gives coverage rate and (1 − c(t)) denotes the proportion of codes which has not been tested
yet by test cases during the time t. Hence, the unit failure detection rate function in terms of
testing coverage function will be h(t) = c�(t)

(1−c(t))
.

Therefore, the proposed model will be as follows:

The closed form of MVF derived from Eq. (2) with initial condition will be

(1)
m�(t) = h(t)(a(t) − p.m(t))

a�(t) = q.m�(t)

with a(0) = a and m(0) = 0

(2)
m�(t) = �h(t)(a(t) − p.m(t))

a�(t) = q.m�(t)

with a(0) = a and m(0) = 0

(3)
m�(t) = �

c�(t)

(1 − c(t))
(a(t) − p.m(t))

a�(t) = q.m�(t)

with a(0) = a and m(0) = 0

(4)
m�(t) = a�

t

∫
0

b(u).exp(−

u

∫
0

�(p − q)b(�)d�)du

where b(�) =
c�(�)

1 − c(�)

70 Annals of Operations Research (2022) 312:65–85

1 3

3.4 Gamma RFE reliability model

Previously two types of non-negative probability density function have been proposed
for � , one is Gamma distribution, and the other is Beta distribution (Pahm, 2007). The
random field environment factor � can follow any kind of positive distribution, but
Gamma distribution can take care of all conditions for fault detection in testing as well
as the operational environment. � less than 1 implies that the condition for fault detec-
tion in operational environment is less favorable than testing environment, whereas
when � = 1 the condition for fault detection are same in two different environments and
when 𝜂 > 1 the condition for detection of faults in operational environment will be more
favorable than testing environment. On the other hand, in case of Beta distribution �
can take value only between 0 and 1. Hence, Gamma distribution is more suitable for
describing random field environment and due to this reason Gamma distribution has
been considered here.

Also, Fig. 1 shows the density curve of Gamma probability distribution, and it
also seems to be reasonable to describe the software failure phenomenon in uncertain
environments.

The Gamma distribution for � is as follows:

The Laplace transformation of f�(�) given in (4) is

(5)f�(�) =
�m�(m−1)e−��

(m − 1)!
where parameters �, �,m ≥ 0

(6)F∗(s) =
[

�

� + s

]m

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

t

f(
t)

probability density curve for shape parameter 1 and scale parameter 3
probability density curve for shape parameter 5 and scale parameter 2

Fig. 1 Gamma distribution function with two different shape parameters

71Annals of Operations Research (2022) 312:65–85

1 3

Finally the MVF of the proposed SRGM using Gamma distribution is as follows:

Using the Laplace transformation, the compact form of the solution of MVF m(t) is
as follows:

3.5 SRGM based on testing coverage function

Due to changes in codes, environmental effects, imperfect debugging, etc., new faults occur
in software. Faults are not the same kind; some faults are very easy to detect and remove;
on the other hand, some faults can’t be easily detected and removed. To remove the causes
of the second category of faults extra effort is required. The first categories of faults are
classified as soft faults, and second category of faults are classified as hard faults. Gram-
baaki et al. (Grambaki et al., 2011) has quantified the soft and hard fault using a logistic
function in the mean value function m(t) . Testing coverage function is more appropriate for
quantifying the effect of soft and hard fault. As detection and removal of soft fault is easy,
hence the time taken to detect and removal of soft fault is negligible. This phenomenon
can be better represented using exponential testing coverage function. As exponential func-
tion is a special case of Weibull function, hence Weibull function has been used here to
represent the testing coverage function for soft fault, and this gives a generalized effect. On
the other hand, hard faults are difficult to detect and remove. Hence, more time and effort
will be required for detection and removal of hard faults. Also, the knowledge and skill
of developers play an important role in detection and removal of hard faults. The knowl-
edge and skill of developer’s increases with learning. Therefore, with the passage of time,
knowledge and skill of developers increases from low to high with. This phenomenon is
better captured by S-shaped testing coverage function. Hence, S-shaped coverage function
has been used here to represent the testing coverage function of hard faults. It is observed
that the Weibull curve and delayed S-shaped curve captures the fault detection phenom-
enon better for soft and hard faults respectively. Based on this argument, two testing cov-
erage function is considered in the proposed SRGM. Out of these two functions, one is
Weibull type testing coverage function for soft faults, and the other is delayed S-shaped

m(t) =

∞

∫
0

m�(t)f (�)d�

=

∞

∫
0

a

⎛
⎜⎜⎝
�

t

∫
0

b(u).exp

⎛
⎜⎜⎝
−

u

∫
0

�(p − q)b(�)d�

⎞
⎟⎟⎠
duf (�)

⎞
⎟⎟⎠
d�

=

t

∫
0

b(u)

⎛⎜⎜⎝

∞

∫
0

a.exp(−

u

∫
0

�(p − q)b(�)d�)�f (�)d�

⎞⎟⎟⎠
du

(7)
m(t) =

a

(p − q)

⎛⎜⎜⎜⎜⎝
1 −

⎛⎜⎜⎜⎜⎝

�

� + (p − q)

t∫
0

b(u)du

⎞⎟⎟⎟⎟⎠

m⎞⎟⎟⎟⎟⎠
where b(u) =

c�(u)

1 − c(u)

72 Annals of Operations Research (2022) 312:65–85

1 3

testing coverage function for hard faults. Therefore, the testing coverage functions are as
follows:

c1(t) =
(
1 − e−bt

�) and c2(t) = 1 − ((1 + bt).exp(−bt))

The MVF for Weibull type testing coverage function will be

where the constant b and � reflects the quality of testing,
The MVF with delayed S-shaped testing coverage is as follows:

The combined MVF in presence of two types of testing coverage is as follows:

The details of the proposed model for different releases are discussed in the follow-
ing subsection,

3.6 Proposed SRGM for different releases

The mean value function can be derived for different releases using Eq. (10).
Hence, MVF for 1st release of the software will be as follows:

Hence, MVF can be written for 1st release is as follows: m1(t) = a1 × F1(t) for
0 ≤ t ≤ t1 where.

F1(t) =
s11

(p11−q11)
.

(
1 −

(
�1

�1+(p11−q11)b11 t
�1

)m1
)
+

s21
(p21−q21)

.

(
1 −

(
�1

�1−(p21−q21).ln
(
(1+b21t)e

−b21 t
)
)m1

)

Now, MVF for other releases are as follows: mk(t) = {ak + ak−1.(1 − Fk−1(tk−1))} × Fk(t)
for tk−1 ≤ t ≤ tk and where

(8)m(t) =
a

(p − q)

(
1 −

(
�

� + (p − q)bt�

)m)

(9)m(t) =
a

(p − q)
.

(
1 −

(
�

� − (p − q).ln
(
(1 + bt)e−bt

)
)m)

(10)

m(t) =
as

1

(p
1
− q

1
)
.

(
1 −

(
�

� + (p
1
− q

1
)b

1
t�1

)m)

+
as

2

(p
2
− q

2
)
.

(
1 −

(
�

� − (p
2
− q

2
).ln

(
(1 + b

2
t)e−b2t

)
)m)

(11)

m
1
(t) =

a
1
s
11

(p
11
− q

11
)
.

(
1 −

(
�
1

�
1
+ (p

11
− q

11
)b

11
t�1

)m
1
)

+
a
1
s
21

(p
21
− q

21
)
.

(
1 −

(
�
1

�
1
− (p

21
− q

21
).ln

(
(1 + b

21
t)e−b21t

)
)m

1
)

for 0 ≤ t ≤ t
1

(12)

Fk(t) =
s
1k

(p
1k − q

1k)
.

(
1 −

(
�k

�k + (p
1k − q

1k)b1k(t − t(k−1))
�k

)mk
)

+
s
2k

(p
2k − q

2k)
.

(
1 −

(
�k

�k − (p
2k − q

2k).ln
(
(1 + b

2k(t − t(k−1)))e
−b

2k (t−t(k−1))
)
)mk

)
for k = 2, 3, 4, ...

73Annals of Operations Research (2022) 312:65–85

1 3

4 Parameter estimation, model validation & performance analysis

This section presents the parameter estimation and validation of the proposed model
using some real software failure data for different releases. Also, the performance analy-
sis of the proposed model has been carried out comparing with some existing SRGMs
(Garmabaki et al., 2011; Kapur et al., 2010a, b).

4.1 Parameter estimation

The parameters of the proposed model have been estimated using non- linear least
square estimation method with the help of SPSS.

The failure data which has been collected during testing phase of software is in the
form of

(
ti, yi

)
 where ti represents the time and yi represents actual cumulative data of ith

observation. Here, residuals ri, for i = 1, 2, 3,… can be described by ri = yi − f (ti, x),
where x is a vector of m unknown parameters. Let S is defined as S =

∑
i

r2
i
 . The

unknown parameters can be found by equating the gradient of S with 0, i.e , �S
�xi

= 0 for
i = 1,2,... The estimated parameters are obtained solving �S

�xi
= 0 using SPSS.

4.2 Model validation and performance analysis

Tandem computer failure data (Wood, 1996) and online bug tracking system Mozilla
fire-fox failure data sets (Yang et al., 2016) are used for different releases to estimate
unknown parameters of proposed model (Pham & Zhang, 2003).

4.2.1 Data Set 1

First data set is the Tandem computer failure data (Wood, 1996). The detected faults
are collected for four releases. The estimated values of the parameters for the proposed
model using this data set have been tabulated in Table 1.

Table 1 Estimated parameters of the proposed model

Parameters Release 1 (k = 1) Release 2 (k = 2) Release 3 (k = 3) Release 4 (k = 4)

ak 104.396 125.504 61.6 46.572
s
1k 0.140 0.134 0.444 0.957
p
1k 0.944 1 1 0.972

q
1k 0.122 0 0.001 0.004

�k 0.016 16,576.88 10.076 92.687
b
1k 0.014 0.044 0.001 0.512

�k 4.091 0.010 4.586 1.75
p
2k 1 1 0.999 0.603

q
2k 0.001 0 0 0.602
b
2k 0.011 0.033 0.999 0.001
mk 3.482 435,570.431 2.639 3.775

74 Annals of Operations Research (2022) 312:65–85

1 3

4.2.2 Data Set 2

This data set is collected from Mozilla Firefox failure data (Yang et al., 2016). The
detected faults are collected for three releases. The estimated values of parameters for
the proposed model using this data set have been tabulated in Table 2.

The plots of cumulative number of faults of different releases for the Tandem com-
puter failure data sets are given in Figs. 2, 3, 4, and 5. And Figs. 6, 7, and 8 have given
the cumulative faults for different releases of the Mozilla fire-fox data sets. It is observed

Fig. 2 Predicted cumulative faults via proposed models for Release 1

Fig. 3 Predicted cumulative faults via proposed models for Release 2

Table 2 Estimated parameters of
the proposed model

Parameters Release 1 (k = 1) Release 2 (k = 2) Release 3 (k = 3)

ak 65.58 51.03 33.27
s
1k 0.393 0.969 0.001
p
1k 0.999 1 0.9

q
1k 0.287 0.003 0.899

�k 8.498 0.001 0.387
b
1k 0.0013 0.001 0.001

�k 1.046 7.762 2.915
p
2k 1 6.7 1

q
2k 001 6.667 0
b
2k 0.002 0.164 0.103
mk 1799.649 0.022 0.626

75Annals of Operations Research (2022) 312:65–85

1 3

Fig. 4 Predicted cumulative faults via proposed models for Release 3

Fig. 5 Predicted cumulative faults via proposed models for Release 4

Fig. 6 Predicted cumulative faults via proposed models for Release 1

Fig. 7 Predicted cumulative faults via proposed models for Release 2

76 Annals of Operations Research (2022) 312:65–85

1 3

that the predicted faults are very close to the actual faults exist in the different release.
The plots validate the different assumptions made to develop the proposed SRGM.

4.3 Comparison criterion

The proposed model has been compared with existing models for multi release problem
(Kapur et al., 2010a, 2010b, December; Garmabaki et al., 2011, December; Kapur et al., 1999;
Kapur et al., 2010a, 2010b, December). Different comparison measure like: Sum of Square of
Errors (SSE), Mean Square Error (MSE) and Adjusted R2, Akaike Information Criteria (AIC),
Bayesian Information Criteria (BIC), and Mean Absolute Error have been used for model
comparison (Kapur et al., 2011; Pham, 2007). The following tables give the values of these
criteria for the used data sets. The comparative study for the proposed model with the existing
models based on these criteria has been tabulated in Tables 3 and 4.

As shown in Tables 3 and 4, the values of SSE and MSE and AIC and mean absolute error
are less for the proposed model than the existing model, and Adjusted R2 values are high than
the existing model. Hence, it can be said from the tabulated values that the proposed SRGM
performs better. Also, the comparative study establishes the validation of the assumptions
made for the proposed model.

5 Optimal release time modeling

This section provides the details of optimal release time for different releases of software. As
development process is a continuous process, software companies can’t place software at one
time in the market (Li et al., 2011; Naciri et al., 2015; Szoke et al., 2011). Instead, software
developers release a new version of software within a shorter span of time. Developers also
try to enhance reliability of new versions than the existing ones. If developers stop testing
too early, bugs can’t be identified and removed properly. As a result, failures occur in the sys-
tem. On the other hand, if too much testing carried out, it will consume extra effort and cost
increases. Due to business competition and commitment to clients, organizations always in
search for suitable optimal release time with affordable cost of the software (Chatterjee &
Shukla, 2019; Chatterjee et al., 1997, 2012, 2019). Considering this a cost model has been
carried out to find optimal releasing time of software with affordable cost for releasing.

During the up-gradation and release of new versions of software, new faults may gener-
ate in successive versions as well as some faults will also survive from the previous versions,

Fig. 8 Predicted cumulative faults via proposed models for Release 3

77Annals of Operations Research (2022) 312:65–85

1 3

Ta
bl

e
3

 C
om

pa
ra

tiv
e

stu
dy

 o
f t

he
 p

ro
po

se
d

m
od

el
 w

ith
 e

xi
sti

ng
 m

od
el

s f
or

 T
an

de
m

 c
om

pu
te

r d
at

a

M
od

el
s

SS
E

M
SE

A
dj

us
te

d
 R

2
A

IC
B

IC
M

ea
n

ab
so

lu
te

 E
rr

or

Re
le

as
e

1
Pr

op
os

ed
 m

od
el

16
.1

56
0.

80
78

0.
99

7
26

.0
36

36
.9

89
0.

88
05

G
ar

m
ab

ak
i’s

 fa
ul

ts
 in

 se
ve

rit
y

m
od

el
38

.8
36

1.
94

2
0.

99
2

48
.5

69
53

.5
48

3.
67

89
K

ap
ur

’s
 im

pe
rfe

ct
 d

eb
ug

gi
ng

 m
od

el
15

1.
66

2
7.

58
1

0.
98

9
54

.6
99

59
.6

78
4.

17
85

Lo
gi

sti
c

m
ul

ti-
re

le
as

e
m

od
el

17
9.

4
8.

97
0.

98
9

52
.3

78
57

.2
1

6.
67

12
G

oe
l-O

ku
m

ot
o

m
od

el
46

9.
53

3
23

.4
83

0.
97

6
53

.0
61

55
.0

52
7.

07
12

D
el

ay
ed

 S
-s

ha
pe

d
m

od
el

50
5.

12
8

25
.2

86
0.

96
9

68
.6

11
70

.6
03

12
.4

12
1

Re
le

as
e

2
Pr

op
os

ed
 m

od
el

58
.3

48
3.

07
1

0.
99

8
33

.5
63

43
.9

52
1.

00
17

G
ar

m
ab

ak
i’s

 fa
ul

ts
 in

 se
ve

rit
y

m
od

el
64

.7
93

8
3.

41
02

0.
99

7
37

.3
09

46
.8

64
2.

89
15

K
ap

ur
’s

 im
pe

rfe
ct

 d
eb

ug
gi

ng
 m

od
el

14
4.

68
5

7.
61

5
0.

99
5

48
.5

72
53

.2
94

4.
69

87
Lo

gi
sti

c
m

ul
ti-

re
le

as
e

m
od

el
16

0.
55

8.
45

0.
99

4
61

.3
42

57
.1

43
6.

13
41

G
oe

l-O
ku

m
ot

o
m

od
el

44
5.

68
9

22
.2

84
45

0.
97

1
86

.3
64

88
.2

53
7.

72
66

D
el

ay
ed

 S
-s

ha
pe

d
m

od
el

24
9.

77
7

12
.4

89
0.

97
8

53
.7

88
55

.6
77

2.
55

78
Re

le
as

e
3

Pr
op

os
ed

 m
od

el
14

.3
39

1.
02

4
0.

99
5

27
.6

17
32

.9
51

1.
06

61
G

ar
m

ab
ak

i’s
 fa

ul
ts

 in
 se

ve
rit

y
m

od
el

7.
70

2
0.

64
2

0.
99

7
4.

67
86

7.
10

3
0.

89
67

K
ap

ur
’s

 im
pe

rfe
ct

 d
eb

ug
gi

ng
 m

od
el

27
.7

08
2.

30
9

0.
99

5
28

.0
39

32
.9

87
1.

97
23

Lo
gi

sti
c

m
ul

ti-
re

le
as

e
m

od
el

85
.6

8
7.

14
0.

98
3

28
.7

82
34

.1
64

2.
27

51
G

oe
l-O

ku
m

ot
o

m
od

el
24

3.
17

2
20

.2
64

0.
98

2
49

.7
13

50
.6

83
6.

03
54

D
el

ay
ed

 S
-s

ha
pe

d
m

od
el

12
.1

59
1.

01
3

0.
99

0
30

.4
56

38
.8

80
2.

53
12

Re
le

as
e

4
Pr

op
os

ed
 m

od
el

15
.7

50
8

0.
82

89
89

4
0.

99
6

18
.4

37
28

.8
25

0.
69

87
G

ar
m

ab
ak

i’s
 fa

ul
ts

 in
 se

ve
rit

y
m

od
el

16
.1

40
0.

85
0

0.
99

5
20

.4
56

32
.6

71
0.

89
27

K
ap

ur
’s

 im
pe

rfe
ct

 d
eb

ug
gi

ng
 m

od
el

16
.0

65
0.

84
6

0.
99

5
19

.4
54

31
.6

78
0.

89
09

Lo
gi

sti
c

m
ul

ti-
re

le
as

e
m

od
el

31
.3

5
1.

65
0.

99
1

27
.1

75
37

,1
69

1.
97

8
G

oe
l-O

ku
m

ot
o

m
od

el
86

.7
03

4.
33

5
0.

95
2

47
.8

93
49

.7
82

2.
65

57
D

el
ay

ed
 S

-s
ha

pe
d

m
od

el
18

.6
18

0.
93

0
0.

98
1

41
.1

06
42

.9
95

2.
32

79

78 Annals of Operations Research (2022) 312:65–85

1 3

Ta
bl

e
4

 C
om

pa
ra

tiv
e

stu
dy

 o
f t

he
 p

ro
po

se
d

m
od

el
 w

ith
 e

xi
sti

ng
 m

od
el

s f
or

 M
oz

ill
a

da
ta

 se
t

M
od

el
s

SS
E

M
SE

A
dj

us
te

d
 R

2
A

IC
B

IC
M

ea
n

ab
so

lu
te

 e
rr

or

Re
le

as
e

1
Pr

op
os

ed
 m

od
el

43
.1

77
0.

81
46

6
0.

99
8

57
.7

96
79

.4
69

1.
00

45
48

K
ap

ur
’s

 fa
ul

ts
 in

 se
ve

rit
y

m
od

el
48

.2
73

0.
91

1
0.

98
9

48
.2

73
10

5.
98

1.
38

23
2

G
ar

m
ab

ak
i’s

 im
pe

rfe
ct

 d
eb

ug
gi

ng
 m

od
el

82
2.

03
5

15
.5

10
0.

98
7

82
2.

03
5

17
0.

11
3.

66
08

02
Lo

gi
sti

c
m

ul
ti-

re
le

as
e

m
od

el
83

1.
80

4
16

.6
3

0.
91

2
15

2.
84

16
4.

21
4

3.
41

34
G

oe
l-O

ku
m

ot
o

m
od

el
82

0.
96

2
15

.4
90

0.
90

8
14

9.
26

15
3.

20
3.

46
07

6
D

el
ay

ed
 S

-s
ha

pe
d

m
od

el
20

73
.2

22
39

.1
17

0.
77

8
19

8.
33

20
2.

27
5.

40
45

Re
le

as
e

2
Pr

op
os

ed
 m

od
el

37
.1

36
1.

32
63

0.
99

5
27

.9
9

12
.6

5
1.

05
69

77
G

ar
m

ab
ak

i’s
 fa

ul
ts

 in
 se

ve
rit

y
m

od
el

46
.7

82
1.

67
1

0.
98

8
31

.7
8

32
.4

4
1.

06
94

3
K

ap
ur

’s
 im

pe
rfe

ct
 d

eb
ug

gi
ng

 m
od

el
50

.6
57

1.
80

91
7

0.
98

6
53

.4
9

23
.5

0
1.

36
77

Lo
gi

sti
c

m
ul

ti-
re

le
as

e
m

od
el

51
.1

42
1.

82
65

0.
99

0
54

.0
09

24
.2

16
1.

47
2

G
oe

l-O
ku

m
ot

o
m

od
el

51
.0

57
1.

82
3

0.
98

6
31

.4
1

28
.5

0
1.

07
73

7
D

el
ay

ed
 S

-s
ha

pe
d

m
od

el
18

7.
45

1
6.

69
4

0.
96

4
72

.1
3

74
.7

9
2.

72
13

42
Re

le
as

e
3

Pr
op

os
ed

 m
od

el
12

1.
09

5
2.

42
19

0.
97

2
74

.6
6

93
.6

9
1.

36
60

7
G

ar
m

ab
ak

i’s
 fa

ul
ts

 in
 se

ve
rit

y
m

od
el

14
3.

72
1

2.
87

4
0.

96
4

85
.8

0
95

.3
6

1.
69

79
K

ap
ur

’s
 im

pe
rfe

ct
 d

eb
ug

gi
ng

 m
od

el
14

4.
58

9
2.

89
4

0.
96

2
86

.0
4

95
.6

0
1.

78
38

Lo
gi

sti
c

m
ul

ti-
re

le
as

e
m

od
el

15
9.

22
5

3.
18

0.
96

6
87

.2
98

97
.1

26
1.

46
71

G
oe

l-O
ku

m
ot

o
m

od
el

14
9.

19
2

2.
98

3
0.

95
2

91
.3

6
34

.4
8

1.
39

89
D

el
ay

ed
 S

-s
ha

pe
d

m
od

el
21

3.
54

4
4.

27
1

0.
95

5
97

.8
6

99
.1

1.
80

54

79Annals of Operations Research (2022) 312:65–85

1 3

which will be carried out in the successive version of that particular release (Kapur et al.,
2014; Pham, 2007). Hence, debugging cost for faults migrated from the previous version has
been considered in the cost model. The notation, which is used to formulate the cost model is
as follows:

c0j(t) cost of testing in testing period in jth release.
c1j(t) Debugging cost of faults in testing period of jth release.
c2j(t) Debugging cost of faults in operational phase of jth release.
cj(t) Cost for debugging of faults from the previous version.
cs Set up cost for software release.

Hence, the cost model for different releases will be as follows

Here, c0j(t) = c0j is taken as a constant since the testing is performed in “in-housing” con-
dition. As mentioned earlier, due to the effect of different factors, the debugging costs in
each release are time-dependent. With the passage of time, more testing is required which
results in increasing manpower requirements. Hence, debugging cost increases.

Therefore, the cost for debugging in testing period is taken as follows:
c1j(t) = c1j + r1j(t − tj−1) for j ≥ 1 and t0 is the starting time for first release. Here r1j-unit
charges will be increased for per unit debugging due to increase of unit time in testing
period. Also, the debugging cost from previous remaining faults increases is as debugging
cost increases for removing faults in testing period of the present release. The debugging
cost in the operational phase will again increase due to the detection and removal of faults
during operational period. Also, more skilled personnel are required for identification and
removal of faults in this phase. Hence, the cost model for operational phase will be as fol-
lows:c2j(t) = c2j + r2j.(tlc − t) . Here r2j-unit charges will be increased for per unit debugging
due to increase of unit time in operational phase. Here tLC means total life cycle of software.

Cost model for 1st release As there is no previous version before this version, there is
no fault to debug in this present version. Hence, there is no debugging cost required for
testing previous version. The cost model will be as follows:

Cost model for 2nd release New faults will occur in the software during testing and
some faults will survive from the previous version. Hence, extra cost will be incurred.
Finally proposed cost model for 2nd release will be

(13)
CTotal = Cset up cost + Cper unit testing cost + Cdebuggingcost in testing phase

+ Ccost for operational period + Cdebugging cost for remaining faults from previos version

(14)
C(t) = c

s
+ c

01
(t)t + c

11
(t)a

1
F
1(t) + c

12
(t)
(
1 − F

1(t)
)

for 0 ≤ t ≤ t
1
where m

1
(t) = a

1
.F

1
(t) and m

1
(t) is the mean value

function of cumulative faults of 1st release

(15)

C(t) = c
s
+ c

02
(t)t + c

12
(t).a

2
.F

2
(t − t

1
) + c

1
(t).a

1
.(1 − F

1
(t
1
)).F

2
(t − t

1
)

+ c
22
(t)[{a

2
+ a

1
.((1 − F

1
(t
1
)).(1 − F

2
(t − t

1
)))}

− a
2
.F

2
(t − t

1
)] where m

2
(t) = a

2
.F

2
(t) and m

1
(t)

= a
1
.F

1
(t) in the time interval t

1
≤ t ≤ t

2
.

80 Annals of Operations Research (2022) 312:65–85

1 3

Cost model for 3rd version As thoroughly testing is going on before releasing any ver-
sion of software, there is a less chance of migration of any faults from 1st version. In
3rd version there are some faults surviving from 2nd version. Hence, cost model for 3rd
version will be

Cost model for 4th version Due to abovementioned reason the cost model for 4th ver-
sion is as follows:

Let cs = 200 dollars, c0i = 10 dollars, c1i = 15 dollars, c2i = 20 dollars and c1, c2,c3 are
taken 15 dollars for reported faults from 1st, 2nd and 3rd release of the software. Due to
absence of software experts, testing tools, and effect of field environment in operational
phase, debugging process is very much difficult in operational phase than debugging in
testing phase. As a result, cost of debugging in operational phase increases with increasing
of time more than in testing phase. As a result, r1j and r2j have been considered as 0.1 and
0,15 here. These values are considered as an example to find the cost and optimal release
time of the software. Based on the data sets, the release time for different releases is given
in Figs. 9, 10, 11 and 12 respectively for the Tandem failure data set and Figs. 13,14, and
15 have been shown the optimal time of release for Mozilla failure data sets. The optimal
release time and optimal cost has been tabulated in Tables 5 and 6 for these two data sets.

The arrows in the plots (Figs. 5, 6, 7, and 8) show the optimal release time and corre-
sponding cost for a particular release for the Tandem software failure data.

The arrows in the plots (Figs. 13, 14, and 15) show the optimal release time and corre-
sponding cost for three different releases for the Mozilla data.

(16)

C(t) = c
s
+ c

03
(t)t + c

13
(t).a

3
.F

3
(t − t

2
) + c

2
(t).a

2
.(1 − F

2
(t
2
)).F

3
(t − t

2
)

+ c
23
(t)[{a

3
+ a

2
.((1 − F

2
(t
2
)).(1 − F

3
(t − t

2
)))}

− a
3
.F

3
(t − t

2
)] where m

3
(t) = a

3
.F

3
(t) and m

2
(t)

= a
2
.F

2
(t) in the time interval t

2
≤ t ≤ t

3
.

(17)

C(t) = c
s
+ c

04
(t)t + c

14
(t).a

4
.F

4
(t − t

3
) + c

3
(t).a

3
.(1 − F

3
(t
3
)).F

4
(t − t

3
)

+ c
24
(t)[{a

4
+ a

3
.((1 − F

3
(t
3
)).(1 − F

4
(t − t

3
)))}

− a
4
.F

4
(t − t

3
)] Where m

4
(t) = a

4
.F

4
(t) and m

3
(t)

= a
3
.F

3
(t) in the time interval t ≥ t

3
.

Fig. 9 Predicted optimal release time Release 1 for Tandem data set

81Annals of Operations Research (2022) 312:65–85

1 3

Fig. 10 Predicted optimal release time Release 2 for Tandem data set

Fig. 11 Predicted optimal release time Release 3 for Tandem data set

Fig. 12 Predicted optimal release time Release 4 for Tandem data set

Fig. 13 Predicted optimal release time Release 1 for Mozilla data set

82 Annals of Operations Research (2022) 312:65–85

1 3

Table 5 Optimal release time
and corresponding cost for
Tandem data set

Releases Optimal Time (weeks) Optimal
cost
(units)

1st release 20.12 2209
2nd release 19.44 2973
3rd release 14.79 2006
4th release 20.05 1908

Table 6 Optimal release time
and corresponding cost for
Mozilla data set

Releases Optimal Time (weeks) Optimal
cost
(units)

1st release 13.34 1799
2nd release 27.51 2030
3rd release 24.03 2188

Fig. 14 Predicted optimal release time Release 1 for Mozilla data set

Fig. 15 Predicted optimal release time Release 1 for Mozilla data set

83Annals of Operations Research (2022) 312:65–85

1 3

6 Conclusion

To enhance reliability and to estimate faults of software, many SRGMs have been con-
structed based on various realistic issues. But there is no such SRGM based on two very
important realistic issues like: testing coverage and effect of testing environment on growth
models for multi-release problem are available. Fault detection rate can change due to the
presence of different kinds of faults. In this article, a NHPP based SRGM has been pro-
posed considering imperfect debugging, faults removal efficiency, two types of testing cov-
erage, and effects of uncertain testing environment on SRGMs for multi-release problems.
Also, the presence of two different types of faults: soft fault and hard fault has been consid-
ered here. In formulating the cost model, the concept of random debugging cost has been
incorporated. To the software organizations, reliability is not only main issue; determina-
tion of optimal release time of the software is also an important issue. Due to this reason,
a cost model has also been carried out to find the optimal time of release at an affordable
cost. In brief, the major contribution of the proposed work is: consideration of the effect
of testing coverage and random field environment in the reliability growth of multi-release
software in the presence of two different types of faults and consideration of random
debugging cost for cost modelling. Performance analysis and comparison with existing
SRGMs show that the proposed model is better fitted than existing models for multi release
problem. Therefore, it can be concluded that the proposed model is more realistic, and it
will be more useful for reliability analysis of multi up-gradation problem.

Acknowledgements Authors are thankful to Indian Space Research Organization, funding the project. Also,
the authors are thankful to Indian Institute of Technology (ISM), Dhanbad, India for providing facility.

Funding The author(s) received funding from Indian Space Research Organization for the research.

Declarations

Conflict of interest The author(s) declared no potential conflicts of interest with respect to the research, au-
thorship, and/or publication of this article.

References

Chang, I. H., Pham, H., Lee, S. W., & Song, K. Y. (2014). A testing-coverage software reliability model
with the uncertainty of operating environments. International Journal of Systems Science: Operations
& Logistics, 1(4), 220–227.

Chatterjee, S., Singh, J. B., Roy, A., & Shukla, A. (2018). NHPP-Based Software Reliability Growth Mod-
eling and Optimal Release Policy for N-Version Programming System with Increasing Fault Detection
Rate under Imperfect Debugging. Proceedings of the National Academy of Sciences, India Section A:
Physical Sciences, 1–16.

Chatterjee, S., Chaudhuri, B., & Bhar, C. (2019). Optimal release time determination in intuitionistic fuzzy
environment involving randomized cost budget for SDE-based software reliability growth model. Ara-
bian Journal for Science and Engineering, 1–21.

Chatterjee, S., Misra, R. B., & Alam, S. S. (1997). Joint effect of test effort and learning factor on software
reliability and optimal release policy. International Journal of Systems Science, 28(4), 391–396.

Chatterjee, S., Nigam, S., Singh, J. B., & Upadhyaya, L. N. (2012). Effect of change point and imperfect
debugging in software reliability and its optimal release policy. Mathematical and Computer Model-
ling of Dynamical Systems, 18(5), 539–551.

Chatterjee, S., & Shukla, A. (2016). Effect of Test Coverage and Change Point on Software Reliability
Growth Based on Time Variable Fault Detection Probability. JSW, 11(1), 110–117.

84 Annals of Operations Research (2022) 312:65–85

1 3

Chatterjee, S., & Shukla, A. (2019). A unified approach of testing coverage-based software reliability
growth modelling with fault detection probability, imperfect debugging, and change point. Journal of
Software: Evolution and Process, 31(3), e2150.

Chatterjee, S., & Singh, J. B. (2014). A NHPP based software reliability model and optimal release policy
with logistic–exponential test coverage under imperfect debugging. International Journal of System
Assurance Engineering and Management, 5(3), 399–406.

Garmabaki, A. H., Aggarwal, A. G., & Kapur, P. K. (2011). Multi up-gradation software reliability growth
model with faults of different severity. In 2011 IEEE International Conference on Industrial Engineer-
ing and Engineering Management (pp. 1539–1543). IEEE.

Ho, J., & Ruhe, G. (2013). Releasing sooner or later: An optimization approach and its case study evalu-
ation. In Proceedings of the 1st International Workshop on Release Engineering (pp. 21–24). IEEE
Press

Kapur, P. K., Kumar, S., & Garg, R. B. (1999). Contributions to hardware and software reliability (Vol. 3).
World Scientific.

Kapur, P. K., Tandon, A., & Kaur, G. (2010). Multi up-gradation software reliability model. In 2010 2nd
International Conference on Reliability, Safety and Hazard-Risk-Based Technologies and Physics-of-
Failure Methods (ICRESH) (pp. 468–474). IEEE.

Kapur, P. K., Pham, H., Gupta, A., & Jha, P. C. (2011). Software reliability assessment with OR applications
(p. 364). Springer.

Kapur, P. K., Sachdeva, N., & Singh, J. N. (2014). Optimal cost: A criterion to release multiple versions of
software. International Journal of System Assurance Engineering and Management, 5(2), 174–180.

Kapur, P. K., Singh, O., Garmabaki, A. S., & Singh, J. (2010b). Multi up-gradation software reliability
growth model with imperfect debugging. International Journal of System Assurance Engineering and
Management, 1(4), 299–306.

Li, L., Harman, M., Letier, E., & Zhang, Y. (2014). Robust next release problem: Handling uncertainty dur-
ing optimization. In Proceedings of the ACM 2014 Annual Conference on Genetic and Evolutionary
Computation (pp. 1247–1254).

Li, Q., & Pham, H. (2017). NHPP software reliability model considering the uncertainty of operating envi-
ronments with imperfect debugging and testing coverage. Applied Mathematical Modelling, 51, 68–85.

Li, X., Li, Y. F., Xie, M., & Ng, S. H. (2011). Reliability analysis and optimal version-updating for open-
source software. Information and Software Technology, 53(9), 929–936.

Naciri, S., Idrissi, M. A. J., & Kerzazi, N. (2015). A strategic release planning model from TPM point of
view. In 2015 10th international conference on IEEE intelligent systems: Theories and applications
(SITA) (pp. 1–9).

Pachauri, B., Dhar, J., & Kumar, A. (2015). Incorporating inflection S-shaped fault reduction factor to
enhance software reliability growth. Applied Mathematical Modelling, 39(5), 1463–1469.

Pham, H. (2001). Software reliability. Wiley Encyclopedia of Electrical and Electronics Engineering.
Pham, H. (1995). Software reliability and testing. IEEE Computer Society Press.
Pham, H. (2007). System software reliability. Springer Science & Business Media.
Pham, H., Nordmann, L., & Zhang, Z. (1999). A general imperfect-software-debugging model with

S-shaped fault-detection rate. IEEE Transactions on Reliability, 48(2), 169–175.
Pham, H., & Zhang, X. (1997). An NHPP software reliability model and its comparison. International Jour-

nal of Reliability, Quality and Safety Engineering, 4(03), 269–282.
Pham, H., & Zhang, X. (2003). NHPP software reliability and cost models with testing coverage. European

Journal of Operational Research, 145(2), 443–454.
Saliu, O., & Ruhe, G. (2005). Software release planning for evolving systems. Innovations in Systems and

Software Engineering, 1(2), 189–204.
Szöke, Á. (2011). Conceptual scheduling model and optimized release scheduling for agile environments.

Information and Software Technology, 53(6), 574–591.
Teng, X., & Pham, H. (2006). A new methodology for predicting software reliability in the random field

environments. IEEE Transactions on Reliability, 55(3), 458–468.
Wood, A. (1996). Predicting software reliability. Computer, 29(11), 69–77.
Yamada, S. (2014). Software reliability modeling: Fundamentals and applications (Vol. 5). Springer.
Yamada, S., Hishitani, J., & Osaki, S. (1993). Software-reliability growth with a Weibull test-effort: A

model and application. IEEE Transactions on Reliability, 42(1), 100–106.
Yamada, S., Ohba, M., & Osaki, S. (1984). S-shaped software reliability growth models and their applica-

tions. IEEE Transactions on Reliability, 33(4), 289–292.
Yamada, S., & Osaki, S. (1985). Software reliability growth modeling: Models and applications. IEEE

Transactions on Software Engineering, 12, 1431–1437.

85Annals of Operations Research (2022) 312:65–85

1 3

Yang, J., Liu, Y., Xie, M., & Zhao, M. (2016). Modeling and analysis of reliability of multi-release open
source software incorporating both fault detection and correction processes. Journal of Systems and
Software, 115, 102–110.

Zhang, X., Teng, X., & Pham, H. (2003). Considering fault removal efficiency in software reliability assess-
ment. IEEE Transactions on Systems, Man, and Cybernetics-Part a: Systems and Humans, 33(1),
114–120.

Zhu, M., & Pham, H. (2018a). A multi-release software reliability modeling for open source software incor-
porating dependent fault detection process. Annals of Operations Research, 269(1–2), 773–790.

Zhu, M., & Pham, H. (2018b). A software reliability model incorporating martingale process with
gamma-distributed environmental factors. Annals of Operations Research. https:// doi. org/ 10. 1007/
s10479- 018- 2951-7

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1007/s10479-018-2951-7
https://doi.org/10.1007/s10479-018-2951-7

	Reliability and optimal release time analysis for multi up-gradation software with imperfect debugging and varied testing coverage under the effect of random field environments
	Abstract
	1 Introduction
	2 Notation
	3 Software reliability modelling
	3.1 Assumptions
	3.2 SRGM formulation with fault removal efficiency and imperfect debugging
	3.3 SRGM with testing coverage and effect of random environment
	3.4 Gamma RFE reliability model
	3.5 SRGM based on testing coverage function
	3.6 Proposed SRGM for different releases

	4 Parameter estimation, model validation & performance analysis
	4.1 Parameter estimation
	4.2 Model validation and performance analysis
	4.2.1 Data Set 1
	4.2.2 Data Set 2

	4.3 Comparison criterion

	5 Optimal release time modeling
	6 Conclusion
	Acknowledgements
	References

