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Abstract
Thehomehealth care (HHC) covers awide rangeof health care services carriedout in patients’
home in case of illness, injury or aging. Each caregiver should as far as possible adhere to
the schedule set by the decision maker. However, unforeseen events would sometimes occur
and delay the delivery of care services, which will qualify the service as poor or even risky.
Deterministic models ignore this uncertainty, which can arise at any time and will therefore
lead to non-compliance with the predefined schedule. Furthermore, patients need several
care activities per day, and some of them require to be simultaneous by their nature such as
dressing, getting out of bed and bathing. In this work, a stochastic programming model with
recourse (SPR model) is proposed to deal with the home health care routing and scheduling
problem (HHCRSP) where uncertainties in terms of traveling and caring times that may
occur as well as synchronization of services are considered. The objective is to minimize
the transportation cost and the expected value of recourse, which is estimated using Monte
Carlo simulation. The recourse is defined as a penalty cost for patients’ delayed services
and a remuneration for caregivers’ extra working time. The deterministic model is solved by
CPLEX, the genetic algorithm (GA) and the general variable neighborhood search (GVNS)
based heuristics. The SPR model is solved by Monte Carlo simulation embedded into the
GA. Computational results highlight the efficiency of GVNS and GA based heuristics and
the complexity of the SPR model in terms of CPU running times.
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1 Introduction

The HHC is an evolving research area that has received growing consideration in the recent
years due to increasing life expectancy and low birth rates. According to the world report on
ageing and health 2015 (WHO and Course 2017), individuals are expected on average to live
to age 77; 15 of these years would be passed with some kind of disability. The percentage of
elderly people is increasing in European countries and is anticipated to rise still further in the
following years (Tarricone and Tsouros 2008). Furthermore, family members live more often
isolated from each other since children move to other cities in order to find jobs (Mankowska
et al. 2014) or to pursue studies while the parents stay in the hometown. The HHC will help
elderly people to live autonomously for as long as possible even with an injury, illness or
disabling disease. It covers a wide range of services that may involve medical care such as
nursing, physical therapy and speech therapy. It may include helping elderly individuals with
activities of daily living such as eating, dressing and bathing. It can also involve assistance
with cooking, cleaning and other housekeeping. HHC companies receive several requests
of services, so the decision maker has to assign qualified caregivers to patients and define
their routes with respect to the available resources and the patient preferences in terms of the
availability periods (preferred time window). This problem is well known as the home health
care routing and scheduling problem (HHCRSP), which is a combination of two NP-hard
problems: the vehicle routing problem with time windows (Bräysy and Gendreau 2005) and
the nurse rostering problem (Burke et al. 2004).

Severalmodels andmethods have been proposed in the literature to deal with theHHCRSP
but most of them are deterministic and generally less robust. The predefined schedule must
be revised for any change in practical situations. Otherwise, there will probably be delays in
the services for patients who have been not yet visited, which will cause their dissatisfaction.
Travel and service times are critical elements in the planning, any change could affect the
overall planning and service quality would be poor or even risky. The uncertainty in travel
times may be due to common factors such as varying road conditions, driving skills and
weather conditions (Shi et al. 2019).However, the service time is not always fixed as estimated
due to practical reasons, such as diagnosing time and parking situations (Shi et al. 2019).

Redjem and Marcon (2016) conducted a survey of many French home care structures and
showed that patients need several care activities per day. Consequently, the synchronization
of services will become essential, especially when more than one caregiver is assigned to
provide one or multiple simultaneous service operations to the same patient. For example,
an overweight patient will need two caregivers to lift him. It is not always easy to ensure the
synchronization of service operations, this task will become very complicated if the number
of caregivers is limited. Scheduling starting time of visits cannot be done independently from
the other routes (Cissé et al. 2017), which increases the complexity of the problem.

Most previous efforts have been focused on studying the vehicle routing problem with
stochastic parameters such as service time, demand and travel time (Laporte et al. 1992; Li
et al. 2010; Taş et al. 2014a, b; Luo et al. 2016; Errico et al. 2016; Marinaki and Marinakis
2016; Mendoza et al. 2016; Chepuri and Homem-De-Mello 2005; Juan et al. 2013; Sarasola
et al. 2016). But only a few studies have dealt with the HHCRSP with stochastic parameters
(e.g., Shi et al. 2018, 2019; Yuan et al. 2015). These studies are limited to a single service
operation per patient and, as, as far as we know, no researcher considered multiple services
and their synchronization if they are required to be simultaneous for the stochastic HHCRSP.
In this paper, we study the HHCRSP with stochastic travel and service times as well as mul-
tiple services per patient and their synchronization if they are required to be simultaneously

123



Annals of Operations Research (2023) 320:573–601 575

performed. In addition, we propose a new stopping condition for the simulation, instead of
just running it for a maximum number of iterations (100 iterations as in Shi et al. (2018)),
to find a good estimation of the expected real value. It should be noted that in this paper,
we extend our previous work (Bazirha et al. 2020), which is limited to a single service per
patient, to cover multiple services and their synchronization. Also, we propose a heuristic
based on a single solution (GVNS) to compare it with the performance of GA, which is a
population based.

Several models (Charnes and Cooper 1959; Ben-Tal et al. 2009; Bernard 1955) have
been proposed in the literature to deal with the uncertainty. The chance constrained model
(Charnes and Cooper 1959) tries to find a solution for which the failure probability is less
than some given threshold. In the failure case, the cost of corrective actions is not taken into
consideration (Gendreau et al. 1996). In the robust optimization (Ben-Tal et al. 2009), the
constructed solution is feasible for any realization of the uncertainty in a given set (Bertsimas
et al. 2011). This model looks in a minimax fashion for the solution that provides the best
“worst case” and solutions may be overly pessimistic. The uncertainty in this model is not
stochastic, but rather deterministic and set-based (Bertsimas et al. 2011). The stochastic
programming model with recourse (SPR model) (Bernard 1955) aims to find a first stage
solution that minimizes the expected cost of the second stage solution, which is equal to the
cost of the first stage solution plus the expected net cost of recourse (Gendreau et al. 1996).
A recourse is introduced in the second stage if a solution goes against the constraints. The
objective function of the SPR model is more meaningful than the chance constrained model
(Gendreau et al. 1996). The SPR model is adopted to deal with stochastic parameters, the
recourse is defined as a penalty cost for patients’ delayed services and a remuneration for
caregivers’ extra working time.

We use CPLEX as an exact method, and the genetic algorithm (GA) as well as the gen-
eral variable neighborhood search (GVNS) algorithms as approximate methods to solve the
deterministic model. The performance of variable neighborhood search (VNS) (Mladen-
ović and Hansen 1997) based heuristic is proved on the HHCRSP (Mankowska et al. 2014;
Trautsamwieser and Hirsch 2011; Shi et al. 2019; Bazirha et al. 2019). Furthermore, the
proposed solution coding takes into account both caregivers‘ routes and their assignment.
VNS is more suitable since several neighborhood structures could be used to better explore
the search space, which is not possible with heuristics designed to use a single neighborhood
structure such as tabu search (TS) (Glover 1986) and simulated annealing (SA) (Kirkpatrick
et al. 1983). We deal with stochastic travel and service times as well as the synchronization
of multiple services, which makes caregivers’ routes dependent. The simulation is used since
computing the expected real value by an explicit mathematical formula is very complex.
Classical solvers such as CPLEX and GUROBI are not suitable to be used with the simu-
lation since their computation time increases monotonically with the problem size and the
simulation takes time to converge towards the expected real value. The Genetic Algorithm
(GA) based heuristic is adopted and combined with Monte Carlo simulation to solve the SPR
model. Abundant experiments in the literature show that GA based heuristic has a good abil-
ity for global searching (Shi et al. 2018). In addition, parameters of GA are independent of
problem parameters (e.g. number of services). In contrast, heuristics that extend and improve
local search strategies such as TS, VNS and SA suffer from this problem, the number of
neighborhoods increases with the problem size. At each time a neighborhood is browsed, the
simulation is carried out to estimate the expected value of recourse, it requires time to find a
good estimation. Indeed, as much as the number of iterations tends to infinity, the estimated
value tends towards the expected real value (Law of large numbers). The GA is more suit-
able to solve the SPR model as its parameters are not depending on the problem size. The
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only parameter that could increase the complexity (number of running the simulation) is the
population size. However, it is controllable and could be fixed independently of the problem
size. In doing so, the complexity faced in heuristics extending local search methods will be
avoided.

This paper is organized as follows: In Sect. 2, the state of the art of the HHCRSP is
presentedwith a focus on papers dealingwith stochasticmodels. Sect. 3 describes the problem
statement. A two-stage stochastic programming model with recourse for the HHCRSP and
Monte Carlo simulation are presented in Sect. 4. The heuristic methods used in the sequel,
as well as the proposed procedure to ensure the synchronization of multiple services are
presented in Sect. 5. Numerical experiments are conducted in Sect. 6. The paper is concluded
in Sect. 7.

2 Literature review

HHC issues have attracted the attention of a large number of researchers in recent years. Their
studies are not only from the perspective of social and medical techniques, but also from the
optimization viewpoint (Shi et al. 2018).Mankowska et al. (2014) andRasmussen et al. (2012)
focused their works on temporal dependencies of services. In Mankowska et al. (2014), the
authors proposed a mathematical model and a heuristic to deal with double synchronization
as well as pairwise temporal precedence between jobs. In Rasmussen et al. (2012), the
authors solved the problem by a dynamic column generation approach embedded into a
branch-and-price framework, taking into consideration temporal dependencies between the
start times of visits. Liu et al. (2017) dealt with the HHCRSP with lunch break requirements
that has to be scheduled on caregivers’ routes, they proposed a branch-and-price algorithm
to solve the problem. Rest and Hirsch (2016) and Hiermann et al. (2015) considered the
HHCRSP with multimodal transportation. Bazirha et al. (2019) studied the HHCRSP with
multiple availability periods of patients. They proposed a mathematical model and a general
variable neighborhood search based heuristic to minimize earliness and tardiness of services
operations as well as caregivers’ waiting times.

Deterministic models and methods are generally less robust. Without considering uncer-
tainties, the quality of services would be very poor or risky. Laporte et al. (1992) worked
on the vehicle routing problem with stochastic travel times. They proposed a stochastic pro-
gramming model with recourse and a chance constrained model, which were solved by a
general branch-and-cut algorithm. Li et al. (2010) studied the vehicle routing problem with
stochastic travel and service times where each customer has a time window constraint. They
proposed a stochastic programming model with recourse and a chance constrained model,
which were solved by a tabu search based heuristic. Taş et al. (2014a) focused their work on
time-dependent vehicle routing problem with soft time windows and stochastic travel times.
The authors suggested heuristics based on tabu search and adaptive large neighborhood search
to minimize the total weighted cost, which includes service costs incurred due to earliness
and tardiness of services, vehicles used, transportation, and overtime. They also used another
solution approach to solve the problem using branch-and-price and column generation algo-
rithms Taş et al. (2014b). Yuan et al. (2015) worked on home health care scheduling and
routing problem with skill requirements and stochastic service times. They implemented
a branch-and-price algorithm to optimize transportation cost, penalty for tardiness of cus-
tomers’ services, caregivers’ fixed cost and service cost. Luo et al. (2016) implemented an
adaptive large neighborhood search based heuristic to solve the vehicle routing problem with
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stochastic demands and weight-related costs. The authors combined dynamic programming
recursions with the proactive recourse strategy to compute the expected cost for each route.
Errico et al. (2016) used a priori optimization with recourse for the vehicle routing problem
with hard time windows and stochastic service times. The authors proposed two recourse
policies for infeasible routes: skipping the service at the current customer and skipping
the visit at the next customer. They solved the problem using brunch-cut-and-price algo-
rithms. Marinaki and Marinakis (2016) studied the vehicle routing problem with stochastic
demands and proposed a glowworm swarm optimization algorithm as a solving approach.
Mendoza et al. (2016) worked on the vehicle routing problem with stochastic demands and
duration constraints. They proposed a chance constrained model, which was solved by a
greedy randomized adaptive search procedure enhanced by heuristic concentration. Shi et
al. (2018) studied the simultaneous delivery and pick-up problem with stochastic travel and
service times in HHC. The authors adopted a stochastic programming model with recourse
to minimize the transportation cost and the expected value of recourse caused by patients’
delayed services and caregivers’ extra working time. They solved the deterministic model
using Gurobi solver and heuristics based on simulated annealing, hybrid genetic algorithm,
firefly algorithm and bat algorithm. The SPR model was solved by a simulated annealing
based heuristic. Shi et al. (2019) used the robust optimization to deal with the HHCRSP
with caregivers’ qualification, a maximum of patients to visit per caregiver and stochastic
travel and service times. They implemented heuristics based on simulated annealing, variable
neighborhood search and tabu search to solve the problem.

As presented above, on the one hand, exact approaches such as branch-and-price algorithm
have been proposed to solve these problems, where the service time (Errico et al. 2016; Yuan
et al. 2015) or the travel time (Taş et al. 2014b) is considered stochastic and the expected
value is computed exactly by a mathematical formula. On the other hand, in Shi et al. (2018)
the problem has been considered with travel and service times that are supposed stochastic,
and the simulation has been used to estimate the expected value. To solve our problem within
a reasonable computational time, a heuristic is used rather than exact approaches. Most of
previous efforts have been focused on studying the vehicle routing problem, but there are
only a few studies that have dealt with the HHCRSP with stochastic parameters (e.g., Shi et
al. 2018, 2019; Yuan et al. 2015). However, these studies have been generally deterministic
if the patients’ requested services are considered multiple such as (Rasmussen et al. 2012;
Mankowska et al. 2014; Redjem and Marcon 2016).

In this work, we combine three challenges that make the problem very complex to solve:

– The HHCRSP is NP-hard problem and difficult to solve for large instances since it is a
combination of two NP-hard problems: the vehicle routing problem with time windows
(Bräysy and Gendreau 2005) and the nurse rostering problem (Burke et al. 2004);

– The uncertainty of service and travel times requires evaluating the expected value;
– The synchronization of multiple services that increases the difficulty of the problem due

to the routes that could not be evaluated independently.

3 Problem statement

The set of patients is denoted by N = {1, 2, 3, ..., n}, where n is the number of patients
dispersed in a geographic area. For each patient i , a preferred time window is defined as
[ai , bi ], where ai and bi are, respectively, the earliest and latest possible service times of the
visits. The patient can request one or more service operations, which should be synchronized
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if they are required to be simultaneous. Each service operation s has a duration˜tis , which is
stochastic and without preemption. The travel time from patient i to patient j is supposed
stochastic and denoted T̃i j .

Since caregivers do not all have the same skills, the HHC company must assign them to
patients according to the skills required by the nature of the requested services. The caregivers
set is denoted by K = {1, 2, 3, ..., c}, where c is their number and the set of services is denoted
by S = {1, 2, 3, ..., q}, where q is the maximum number of services that the HHC company
could provide. The duty length for each caregiver k is given by [dk, ek], where dk and ek are,
respectively, the earliest and latest service times

Patients’ requested services are indicated in a matrix of binary parameters δis . If a patient
i ∈ N requests a service operation s ∈ S, the binary parameter δis is set to 1 and 0 otherwise.
Accordingly, caregivers’ qualifications are indicated in a matrix of binary parameters Δks . If
the caregiver k ∈ K is skilled to provide the service operation s ∈ S, the binary parameterΔks

is set to 1 and 0 otherwise. Each service operation must be performed by a single caregiver
for patients requesting multiple services.

The problem is to define a daily planning in order to minimize the transportation cost and
the expected value of recourse caused by patients’ delayed services and caregivers’ extra
working time. Each patient receives qualified caregivers to perform his requested services
within his preferred availability period. If there are multiple services that are required to be
simultaneously performed, they must be synchronized. Caregivers leaving from the HHC
center, to serve assigned patients, return to the center.

4 Mathematical formulation

The problem is formulated as a two-stage stochastic programming model with recourse. The
first stage aims to compute the transportation cost while the second stage is to introduce the
recourse, which is defined as a penalty cost for patients’ delayed services and a remuneration
for caregivers’ extra working time. The notation of sets, decision variables and parameters
used in the model are defined as follows:

4.1 Sets

– N : set of patients;
– N 0 and N n+1: set of patients including the HHC center, which is represented by artificial

nodes 0 and n + 1 where N 0 = N ∪ {0} and N n+1 = N ∪ {n + 1};
– K : set of caregivers;
– S: set of services and skills.

4.2 Deterministic parameters

– n: number of patients;
– c: number of caregivers;
– q: number of services (skills);
– M : large positive number;
– [ai , bi ]: patients’ time windows;
– [dk, ek]: caregivers’ time windows;
– ci j : transportation cost between patients i and j ;
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– δis : equals 1 if the patient i ∈ N requires the service operation s ∈ S;
– Δks : equals 1 if the caregiver k ∈ K is qualified to provide the service operation s ∈ S;
– λi : equals 1 if service operations requested by the patient i must be simultaneous.

4.3 Stochastic parameters

– ˜Ti j : travel time from the patient i to the patient j ;
– ˜tis : processing time of the service operation s at the patient i ∈ N ;
– E(.): the expected value of the second stage of the model, which expresses the recourse

value caused by extra working times and delayed services operations.

4.4 Decision variables

– xi jk : equals 1 if the caregiver k visits the patient j after the patient i , 0 otherwise;
– yiks : equals 1 if the service operation s is provided by the caregiver k to the patient i , 0

otherwise;
– ˜Sik : start time of a service operation at the patient i provided by the caregiver k.

4.5 Parameters for recourse model

– vi : tardiness of a service operation at the patient i ;
– ok : extra working time for the caregiver k;
– α: unit penalty cost for a tardiness of a service operation;
– γ : caregiver’s remuneration unit for an extra working time.

4.6 Mathematical model

The stochastic programmingmodelwith recourse formulationproposed to solve theHHCRSP
with stochastic travel and service times, which is adapted from our previous work (Bazirha
et al. 2019) and the recourse model from Shi et al. (2018) by adding other constraints of the
HHC context (multiple services and synchronization), is defined as follows:

min Z =
c

∑

k=1

n
∑

i=0

n+1
∑

j=1

ci j xi jk + E

[

min

(

α

n
∑

i=1

vi + γ

c
∑

k=1

ok

)]

s.t.
n

∑

i=0

c
∑

k=1

xi jk =
q

∑

s=1

δ js j ∈ N (1)

n+1
∑

j=1

c
∑

k=1

xi jk =
q

∑

s=1

δis i ∈ N (2)

n
∑

i=0

xi,n+1,k = 1 k ∈ K (3)

n+1
∑

j=1

x0, j,k = 1 k ∈ K (4)
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n
∑

i=0

ximk =
n+1
∑

j=1

xmjk m ∈ N , k ∈ K (5)

˜Sik +
q

∑

s=1

˜tis yiks + ˜Ti j ≤ ˜S jk + (1 − xi jk)M i ∈ N 0, j ∈ N n+1, k ∈ K(6)

˜Sik ≤
q

∑

s=1

yiks M i ∈ N , k ∈ K (7)

n+1
∑

j=1

xi jk =
q

∑

s=1

yiks i ∈ N , k ∈ K (8)

2yiks ≤ δis + Δks i ∈ N , s ∈ S, k ∈ K (9)
q

∑

s=1

yiks ≤ 1 i ∈ N , k ∈ K (10)

c
∑

k=1

yiks ≤ 1 i ∈ N , s ∈ S (11)

dk ≤ ˜S0k k ∈ K (12)
˜S(n+1)k ≤ ek + ok k ∈ K (13)
( q

∑

s=1

yiks − 1

)

M + ai ≤ ˜Sik i ∈ N , k ∈ K (14)

˜Sik +
q

∑

s=1

˜tis yiks ≤ bi + vi + (1 −
q

∑

s=1

yiks)M i ∈ N , k ∈ K (15)

c
∑

v=1

˜Siv −
q

∑

s=1

δis˜Sik ≤ (2 − λi −
q

∑

s=1

yiks)M i ∈ N , k ∈ K (16)

c
∑

v=1

˜Siv −
q

∑

s=1

δis˜Sik ≥ (

q
∑

s=1

yiks + λi − 2)M i ∈ N , k ∈ K (17)

xiik = 0 i ∈ N , k ∈ K (18)
˜Sik ≥ 0 i ∈ N , k ∈ K (19)

vi ≥ 0 i ∈ N (20)

ok ≥ 0 k ∈ K (21)

xi jk ∈ {0, 1} i ∈ N , j ∈ N , k ∈ K (22)

yiks ∈ {0, 1} i ∈ N , k ∈ K , s ∈ S (23)

The objective function is to minimize the total transportation cost and the expected value
of recourse caused by patients’ tardiness of services operations and caregivers’ extra working
times. Constraints (1) and (2) state that each patientwill be visited by a group of caregivers, the
number will depend on the kind of requested services. Constraints (3) and (4) state that each
caregiver leaving the HHC center to visit assigned patients must get back there. Constraints
(5) impose route continuity for the patients assigned to a caregiver k. In doing so, tours will be
constructed rather than open paths. Constraints (6) determine the service operations’ starting
time of the patient j with respect to service operations’ completion time of the patient i .
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These constraints require that the starting time of services along the route of a caregiver
are strictly increasing. Under this condition, these constraints can also remove sub-tours
because a return to an already visited patient will violate the start time of the previous visit
(Mankowska et al. 2014). Constraints (7) initialize the starting time to zero if the caregiver
k is not assigned to the patient i . Constraints (8) define the variables yiks , the caregiver k is
assigned to the patient i if after having visited the patient i he will visit the next patient j or
return to the HHC center. Constraints (9) ensure the qualification of the caregiver k to provide
the service operation s requested by the patient i . Constraints (10) ensure that each caregiver
provides a single service operation to an assigned patient i . Constraints (11) guarantee that
for a patient i , each service operation is provided by only one caregiver. Constraints (12) and
(13) ensure the respecting of caregivers’ time windows. Constraints (14) and (15) guarantee
the respecting of patients’ availability periods. Constraints (16) and (17) ensure caregivers’
starting time synchronization if a patient’s requested services must be simultaneous (λi = 1).
Constraints (18)–(23) are the domains of the decision variables.

4.7 The expected recourse estimation procedure

The recourse model in stochastic programming is formulated by different ways depending
on the nature of the problem. The recourse will be introduced if a solution goes against the
constraints. On the VRP with capacity (CVRP) and stochastic demand, the recourse could
be defined as returning to the depot if a vehicle is filled and assigned customers are not all
visited. This recourse could be applied only to CVRP. In Errico et al. (2016), recourse policies
are defined as: skipping the service at the current customer and skipping the visit at the next
customer. The main drawback of this recourse is to decrease patients’ satisfaction since their
requested services could be ignored. In our problem, the recourse model considered in Shi et
al. (2018) is adopted, since we consider that all patients’ requested services will be provided.
Constraints related to travel and service times will be relaxed to soft ones, and recourse will
be introduced if a solution goes against these constraints. The recourse is defined as: a penalty
cost for a tardiness of a service operation and a remuneration for an extra working time.

Monte Carlo simulation (Von Neumann and Ulam 1951) is a method for estimating a
numerical quantity that uses random numbers. Computing the real expected value (E(.))
is very complex since caregivers’ routes are dependent and travel and service times are
considered stochastic. This simulation is used as an alternative way to compute the estimated
value of recourse (̂E(.)). Ê(.) gives the average recourse that will be incurred for a given
schedule. A robust planning will be performed since different scenarios that might occur have
been simulated. The recourse of tardiness of services operations and caregivers’ overtimes
working that might arise will be approximated by Ê(.).

Algorithm 1 is performed to estimate the expected value of recourse (̂E(.)). sumT is the
total tardiness of services operations occurred at patients. sumO is the total extra working
times of caregivers and SSi is the synchronized starting time for the patient i . Given a solution,
patients are assigned to caregivers and caregivers’ routes (order of visiting) are defined.
Firstly, caregivers’ transportation cost are computed, which are independent of travel and
service times. Secondly, Monte Carlo simulation 1 is used to estimate the expected value of
recourse caused by patients’ delayed services and caregivers’ extra working time. At each
iteration, caregivers’ travel times ˜Ti j and patients’ service times˜tis are randomly generated,
then the synchronization of services operations will be ensured. The estimation procedure
is running until either condition 1 or condition 2 is met. Condition 1 is fixed as a maximum
number of iterations, denoted by Max I ter MC S, and condition 2 is defined as follows:
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Algorithm 1: The expected recourse estimation procedure

1 Initialization: ;
2 - Set i ter = 0 ;
3 - Vk : set of patients assigned to the caregiver k ;
4 while (condition 1 or condition 2 ) do
5 Generate randomly ˜Ti j ;
6 Generate randomly˜t js ;
7 while (SS j is changing ) do
8 Set sumT = 0 and sumO = 0;
9 for k ← 1 to K do

10 for j ∈ Vk do
11 Set v j = 0 ;
12 if λ j = 0 then
13 Calculate ˜S jk ;
14 if ˜S jk +˜t js > b j then
15 Set v j ←− ˜S jk +˜t js − b j ;
16 end
17 else
18 Calculate ˜SS j ;
19 if ˜SS j +˜t js > b j then
20 Set v j ←− ˜SS j +˜t js − b j ;
21 end
22 end
23 sumT ←− sumT + v j ;
24 end
25 Set ok = 0 ;
26 if ˜S(N+1)k > ek then
27 Set ok ←− ˜S(N+1)k − ek ;
28 end
29 sumO ←− sumO + ok ;
30 end
31 end
32 i ter ←− i ter + 1 ;
33 end

34 Set Ê(.) ←− α×sumT +γ×sumO
iter ;

gap =
∣

∣

∣

E(.)(I ter−1)−E(.)I ter
E(.)(I ter−1)

∣

∣

∣ < ε. This condition means that the gap must exactly hold at a

maximum number of iterations, denoted by Max I terGap, and it expresses the gap between
E(.)(I ter−1) and E(.)I ter with an error ε. In other words, the estimated value is considered
close to the real value when the formula is satisfied (gap < ε) for the fixedmaximum number
of iterations, which means that E(.)I ter are close to each other for the last Max I terGap
iterations. The counter is set to zero if the formula is not satisfied for an iteration. The more ε

is reduced to 0 and Max I terGap increases, the more the estimated value tends towards the
expected real value. However, the computational time increases significantly given that for
each individual the expected value is calculated. Condition 1, i.e. Max I ter MC S, is used to
avoid falling into an infinite loop that could be caused by the condition 2, especially when ε

tends towards 0 and Max I terGap tends towards a large number. The condition used in Shi
et al. (2018), is a particular case of the proposed conditions ( ε = 0, Max I terGap = +∞
and max I ter MC S = 100).
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Table 1 Example of solution
encoding

Patients 5 (2) 2 (1) 6 (2) 3 (1) 1 (2) 4 (3) 1 (3)

Caregivers 2 1 1 2 1 2 2

5 Approximatemethods

5.1 Encoding

To take into consideration both assignment and routing of caregivers, a solution will be rep-
resented by two chromosomes where their sizes equal to the number of the total requested
services of all patients. The first one (patients’ chromosome) will contain patients and
requested services (are included in parenthesis), and describes patients’ visiting order. The
second (caregivers’ chromosome) will contain assigned caregivers. To deal with multiple
services, we will duplicate a patient i as many times as the number of services he requested.

Example Consider 6 patients and 2 caregivers skilled to provide 3 types of services operations.
The patient 1 requests two service operations 2 and 3. A solution will be encoded as follows
(see Table 1).

The caregiver 1 will visit patients 2, 6 and 1 to provide respectively service operations 1,
2 and 2.

5.2 Decoding

Given a solution encoded as proposed above. For each subset of patients assigned to a
caregiver, arrival and starting times will be iteratively calculated in the same order as they
appear in patients’ chromosome. Due to dependent caregivers’ routes, the starting times
must be synchronized for patients who requested multiple simultaneous services (λi = 1).
Otherwise (λi = 0), each caregiver arrives will start providing the assigned service operation
and leave when finishing. In the case λi = 1, a synchronized starting time SSi is considered
and it is equal to the maximum between the earliest time window ai for the patient i and
caregivers’ arrival times {Aik1 , Aik2 , ...}. Algorithmically, arrival and starting times will be
iteratively calculated in the same order as they appear in the matrix. Each time a caregiver
k arrives to a patient i , SSi is first initialized by ai and then will take the value Aik if
(Aik > SSi ). These steps are repeated until SSi will not change for each patient. In the end,
caregivers’ starting times at patients will be the synchronized starting time Sik = SSi .

Remark The decoding method could fall into an infinite loop, so service operations would
never be synchronized and the solution will be consequently considered infeasible as illus-
trated by the example of Table 2. Suppose that patients 1 and 4 request two services 3 and 2.
Hence, services requested for both patients 1 and 4 cannot be synchronized because caregiver
1 visits patient 1 then patient 4, and caregiver 2 visits patient 4 then patient 1. In the case of
hard/fixed time windows, the infeasibility will be considered if after a number of iterations,
the synchronized starting time value for a patient i (in the case λi = 1) will be greater than
the latest service time bi . However, in the case of soft/flexible time windows, the solution
infeasibility is considered when the number of iterations exceeds the maximum number of
iterations denoted by Max I ter Syn.
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Table 2 Example of infeasible solution under the synchronization constraint

Patients 5 (2) 2 (1) 6 (2) 3 (1) 1 (2) 4 (3) 4 (2) 1 (3)

Caregivers 2 1 1 2 1 2 1 2

5.3 Genetic algorithm

Themain drawback of exactmethods is the allowed running time, which is not always enough
even to find a feasible solution, especially for NP-hard problems. Several heuristics have
been proposed and are able to yield near-optimal solutions to hard problems in a reasonable
amount of time such asGA,whichwas invented by JohnHolland in the 1960s (Holland 1992).
Abundant experiments in the literature show that GA based heuristics have a good ability
for global searching (Shi et al. 2018), which involve a simulation of Darwinian “survival
of the fittest”. This simulation takes an initial population and through the mechanism of
reproduction (selection, crossover and mutation), the produced offspring inherits parents’
characteristics and will be added to the next generation. This process keeps on iterating and
the fittest individuals will be kept in the end.

5.3.1 Crossover operator

The crossover operation is the main genetic operator in GA used to combine the genetic
information of two parents to stochastically generate new offspring. A large number of
crossover operators have been proposed such as 1-point crossover, 2-point crossover and
uniform order crossover (UOX). These 3 crossover operators were implemented and tested
on some instances to choose the best one, the UOX operator, was developed by David Davis
(1991), gives better results. The UOX preserves the position of some genes and the relative
ordering of the rest. After the selection of two parents is done, the two chromosomes are
separated and theUOXoperator is independently applied for each one (patients’ chromosome
and caregivers’ chromosome) and then are recombined. A function is used to repair infeasible
offspring according to assignment constraints. The UOX operator is applied as follows:

1. For each parent chromosome a binary string of the same length is randomly generated;
2. The intermediate offspring preserves genes of the first parent where the generated string

contains “1”;
3. Sort genes not preserved in the first parent in the same order as they appear in the second

parent. For patients’ chromosome, two genes are considered similar if patient’s number
and the requested service of each gene are equal. Replace genes not preserved in the first
parent by genes of second parent for caregivers’ chromosome.

Steps 1 and 2 are similar for both chromosomes (caregivers and patients). However, step 3
is adapted for each chromosome. Since the repetition of caregivers does not pose a problem,
genes not preserved in first parent are replaced by genes of the second parent (see Figs. 1 and
2). In contrast, each patient with the requested service operation must appear only once in
the solution, sorting genes not preserved in the first parent in the same order as they appear
in the second parent is mandatory to avoid the duplication or the deletion of a patient from
the solution (see Figs. 1 and 3).
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Parent 1:
5 (2) 2 (1) 6 (2) 3 (1) 1 (2) 4 (3) 1 (3)

2 1 1 2 1 2 2

Parent 2:
1 (3) 3 (1) 1 (2) 4 (3) 2 (1) 6 (2) 5 (2)

1 1 2 2 1 1 2

Offspring:
5 (2) 4 (3) 2 (1) 3 (1) 1 (2) 6 (2) 1 (3)

1 1 2 2 1 2 2

Fig. 1 Example of parents and an offspring

Fig. 2 Example of caregivers’
crossover operator

Binary string : 0 1 0 0 1 1 0

Parent 1: 2 1 1 2 1 2 2

Parent 2: 1 1 2 2 1 1 2

Step 2: 1 1 2

Step 3: 1 2 2 2

offspring: 1 1 2 2 1 2 2

Binary string : 1 0 0 1 1 0 1

Parent 1: 5 (2) 2 (1) 6 (2) 3 (1) 1 (2) 4 (3) 1 (3)

Parent 2: 1 (3) 3 (1) 1 (2) 4 (3) 2 (1) 6 (2) 5 (2)

Step 2: 5 (2) 3 (1) 1 (2) 1 (3)

Step 3: 4 (3) 2 (1) 6 (2)

Offspring: 5 (2) 4 (3) 2 (1) 3 (1) 1 (2) 6 (2) 1 (3)

Fig. 3 Example of patients’ crossover operator

Table 3 Example of mutation
operators

Patients 5 (2) 2 (1) 1 (2) 3 (1) 6 (2) 4 (3) 1 (3)

Caregivers 1 1 1 2 1 2 2

5.3.2 Mutation operator

The role of the mutation operator, which is randomly performed with a small probability,
is to avoid being trapped in local optima, to excavate the diversity of the individuals in
the population and to diversify the search directions. Two mutation operators are proposed,
patients’ mutation operator is to exchange two patients’ positions randomly generated, and
caregivers’ mutation operator is to switch an assigned caregiver to a patient randomly. Taking
the example of the Table 1 and supposing that the probabilities of carried out mutation
operators are satisfied for both chromosomes. The position for caregivers’ chromosome is
1 and positions for patients’ chromosome are 3 and 5. Table 3 shows the obtained solution
after carry out the mutation operators.
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5.3.3 Fitness and Selection

In selection phase, the fittest individuals are selected for reproduction, which let them pass
their genes to the next generation. The most commonly known selection methods include
roulette rank selection, wheel selection, and tournament selection (Goldberg and Deb 1991).
The first one suffers from the slow convergence and the sorting is done for the population
to assign ranks, which increase the computational time. The second suffers from problem of
premature convergence due to the possible presence of dominant individuals that always win
the competition and are selected as a parent, which will be rewarded with a large number of
offspring in the next generation while the population size is kept constant (Baker 1985).

In this study, the tournament selectionwill be used. It consists of selecting some individuals
from the population, then those individuals compete against each other. The one with the
highest fitnesswins andparticipates in reproduction.Twofitness functions are used to evaluate
solutions, FD is used for the deterministic model and FS P R is used for the SPR model and
are defined as follows:

FD =
c

∑

k=1

n
∑

i=0

n+1
∑

j=1

ci j xi jk + β (Ts + Oc) (24)

FS P R =
c

∑

k=1

n
∑

i=0

n+1
∑

j=1

ci j xi jk + E(.) (25)

Infeasible solutions according to time windows constraints are accepted with a penalty
cost, which is the sum of tardiness of services operations Ts and caregivers’ overtimes Oc.
The coefficient β is introduced to ensure the convergence of infeasible solutions to feasible
ones for the deterministic model, the more β is higher the more penalized solutions are to
be eliminated from the population in selection step. The individual with small fitness will be
selected.

5.3.4 Genetic algorithm procedure

At each time crossover and mutation operations are applied to the selected parents, the
generated offspringmight not be feasible. A service operation could be assigned to a caregiver
who is not qualified to provide. To avoid this issue, the repair function is called after applying
crossover and mutation operations. This function checks each assigned service to a caregiver
and verify if he is qualified to provide it, otherwise, a randomly qualified caregiver is selected.

5.3.5 Initial population

The initial population for a given size Psize is randomly generated as follows:

– For i = 1 to Psize do:
– Generate a random visiting order (see Table 4);
– For each patient, assign a qualified caregiver randomly selected (see Table 5);
– Calculate the transportation cost and the expected value of recourse for the stochastic

model by Eq. (25). For the deterministic model, the transportation cost, penalized tar-
diness of services operations and caregivers’ extra working times are computed by Eq.
(24).
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Algorithm 2: GA procedure

1 Initialization: ;
2 - Define Psize: population size;
3 - Define Pc: crossover probability ;
4 - Define PS : mutation probability ;
5 - Define P: population ;
6 - Define O f f : Offspring ;
7 while (the stopping condition is not reached) do
8 for i ← 1 to Psize do
9 Selection: P1 and P2 ;

10 Generate randomly p1 ;
11 if pc < p1 then
12 Set O f f ←− Crossover(P1, P2) ;
13 end
14 Generate randomly p2 ;
15 if pm < p2 then
16 Set O f f ←− Mutation(O f f ) ;
17 end
18 Repair O f f ;
19 end
20 Set P ←− O f f ;
21 end

Table 4 Example of visiting
order

Patients 5 (2) 1 (3) 3 (1) 1 (2) 4 (3) 2 (1) 6 (2)

Caregivers

Table 5 Example of caregivers’
assignment to patients

Patients 5 (2) 1 (3) 3 (1) 1 (2) 4 (3) 2 (1) 6 (2)

Caregivers 1 2 2 1 1 2 1

5.4 Variable Neighborhood Search

The drawback of local search strategies is known as falling into a local optimum with a
poor value. Several heuristics, extend and improve the local search strategies, have been
proposed to avoid being trapped in a local optima such as tabu search (Glover 1986), simulated
annealing (Kirkpatrick et al. 1983) and variable neighborhood search (VNS) (Mladenović
and Hansen 1997). VNS is based on the idea of systematic changes of neighborhoods in
the search to find a better solution. When an initial solution is defined, the VNS proceeds
by a descent method exploring the predefined neighborhoods of a solution to find a local
minimum. Each time the descent method is trapped in a local optimum, the shaking phase is
randomly applied to generate a new solution and start over the search. Many versions of VNS
are used in the literature such as: (1) variable neighborhood descent (VND) is a deterministic
version of VNS, the defined neighborhoods are applied to the initial solution in a predefined
order, the searching restart from the first neighborhood when a new local minimum is found.
(2) reduced variable neighborhood search is a pure stochastic search method where only the
shaking phase is applied to solutions; (3) general variable neighborhood search (GVNS) is a
VNS where the local descend method is replaced by the VND.
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Original solution :
Patients 5 (2) 2 (1) 6 (2) 3 (1) 1 (2) 4 (3) 1 (3)
Caregivers 2 1 1 2 1 2 2

Neighbor solution :
Patients 5 (2) 2 (1) 6 (2) 3 (1) 1 (2) 4 (3) 1 (3)
Caregivers 1 1 1 2 1 2 2

Fig. 4 Example of switch neighborhood moves

Original solution :
Patients 5 (2) 2 (1) 6 (2) 3 (1) 1 (2) 4 (3) 1 (3)
Caregivers 2 1 1 2 1 2 2

Neighbor solution :
Patients 5 (2) 2 (1) 6 (2) 3 (1) 1 (2) 4 (3) 1 (3)
Caregivers 2 1 2 2 1 1 2

Fig. 5 Example of inter-swap neighborhood moves

5.4.1 Neighborhoods

A neighborhood relation is defined on the search space to generate neighborhoods of a
solution, and it is a transformation applied to a solution in order to generate new candidate
solutions. Four neighborhood relations are defined, two neighborhoods are used to intensify
caregivers’ assignment and the two others are used to intensify the routes (order of visiting),
intra-shift, inter-swap and intra-swap neighborhoods are adopted from Mankowska et al.
(2014) and adapted to the proposed decoding. The total requested services of all patients is
denoted by s.

1. Switch: this neighborhood is defined as a reassignment of a patient i to another caregiver k,
it takes a patient i out of a given caregiver’s route and inserts him into another caregiver’s
route (see Fig. 4). The size of possible neighborhoods is less than s(c − 1) depending
on caregivers’ skills. The equality will be held if all caregivers are skilled to provide all
services operations;

2. Inter-swap: the neighborhood aims to change caregivers’ assignment to patients. Given
two patients, assigned caregivers are swapped. This move interchanges two patients that
are assigned to two different routes (see Fig. 5). The size of possible neighborhoods equals
to (s−1)×s

2 ;
3. Intra-shift: given a solution and a patient i , the neighborhood is defined as shifting this

patient with the assigned caregiver to another position. This move will change assigned
patients’ order for the caregiver k (see Fig. 6). The size of possible neighborhoods equals
to (s − 1) × s;

4. Intra-swap: given a solution and two patients i and j , the neighborhood is defined as
exchanging of their positions with preserving the assigned caregivers. This move will
change the order of patients’ visiting for the both assigned caregivers (see Fig. 7). The
size of possible neighborhoods equals to (s−1)×s

2 .
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Original solution :
Patients 5 (2) 2 (1) 6 (2) 3 (1) 1 (2) 4 (3) 1 (3)
Caregivers 2 1 1 2 1 2 2

Neighbor solution :
Patients 2 (1) 6 (2) 3 (1) 1 (2) 5 (2) 4 (3) 1 (3)
Caregivers 1 1 2 1 2 2 2

Fig. 6 Example of intra-shift neighborhood moves

Original solution :
Patients 5 (2) 2 (1) 6 (2) 3 (1) 1 (2) 4 (3) 1 (3)
Caregivers 2 1 1 2 1 2 2

Neighbor solution :
Patients 5 (2) 2 (1) 4 (3) 3 (1) 1 (2) 6 (2) 1 (3)
Caregivers 2 1 2 2 1 1 2

Fig. 7 Example of intra-swap neighborhood moves

5.4.2 Shaking

The shaking phase is the core of the algorithm, which is called whenever the local descent
methods are trapped in a local optimum (Mladenović and Hansen 1997). It is defined as a
series of moves applied to a solution to skip from a local optima and jump to another solution.
The four proposed neighborhoods are used as operators for the shaking phase (kmax = 4),
which will be applied a number of times, each time the move is randomly generated.

5.4.3 Local search methods

Local descend methods browse candidate solutions to improve the incumbent solution. Two
algorithms could be used to select the next solution (Taillard 1990): 1) the first improvement
consists of selecting the first neighbor that improves the incumbent solution; 2) the best
improvement consists selecting the best candidate solution after that all neighbors are tested
to choose the best. Four local descend methods will be used, each one is matched to a
neighborhood of the four proposed. The best improvement algorithm will be adopted.

5.4.4 Initial solution

The initial solution is randomly generated the same way for the GA based heuristic by setting
Psize = 1.

5.4.5 GVNS procedure

The VND is applied to each solution x ′ generated in the shaking phase. Candidate neighbor-
hoods generated by switch and inter-swap operators could be infeasible, a caregiver could
be assigned to provide a service operation that he is not qualified to provide. To avoid this
issue, for switch operator only feasible assignments are accepted. For inter-swap operator,
infeasible solutions caused by patients’ interchange are ignored. If the solution x (resp. x ′)
is improved, the k (resp. l) is initialed to 1 (see Algorithm 3).
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Algorithm 3: GVNS procedure

1 Initialization: ;
2 - Set Kmax = 4 and lmax = 4 ;
3 - Generate an initial solution x ;
4 while (the stopping condition is not reached) do
5 for k ← 1 to kmax do
6 Generate at random x ′ in the kth Neighborhood of x , the kth Neighborhood move is applied h

times to x ;
7 for l ← 1 to lmax do
8 Find the best neighbor x ′′ of x ′ in Nl (x ′) ;
9 if f (x ′′) < f (x ′) then

10 Set x ′ ←− x ′′ and l ←− 1 ;
11 else
12 Set l ←− l + 1 ;
13 end
14 end
15 if f (x ′) < f (x) then
16 Set x ←− x ′ and k ←− 1 ;
17 else
18 Set k ←− k + 1 ;
19 end
20 end
21 end

5.5 Tuning parameters

A series of tests are performed to find the best values of tuning parameters (see Table 6).
The stopping criterion for both GA and GVNS based heuristics is set as the number of
no improvement in the best solution found for a maximum number of iterations. The total
requested services of all patients is denoted by s.

6 Numerical experiments

The experiments run under windows 10 on the computer with Intel i7-7600U 2.80-GHz CPU
and 16 GB of RAM. The reduced SPR model to the Mixed Integer Linear Program (MILP)
is implemented and tested using CPLEX version 12.8. GA and GVNS based heuristics are
coded and tested using the language C++.

6.1 Test instances

The test instances have been randomly generated using the benchmark instances from
Mankowska et al. (2014). The HHC center and patients’ locations are placed at random
positions in the area of 100× 100 distance units. Travel time Ti j and cost ci j are equal to the
Euclidean distance di j between patients’ locations truncated to an integer. In practice, cost
and travel time between patients are quasi-proportional to the distance. It is assumed that
Ti j = coe f1 ×di j , ci j = coe f2 ×di j and coe f1 = coe f2 = 1. Service times tis are randomly
generated within an interval of [10, 20] minutes. Six types of services (respectively skills)
S = {1, ..., 6} are taken into consideration. Caregivers are divided into two groups with
different qualifications. Each caregiver of the first group is skilled to provide at most three
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Table 6 Tuning parameters

Algorithm Parameter Value

GA based heuristic
(Deterministic model)

Pc: crossover probability 0.8

Ps : mutation probability 0.01

Psize : population size s2

Stopping criterion 5s

Tournament size c + 1

GVNS based heuristic Shaking phase h = c + 1

Stopping criterion 2s

Shaking phases order Switch, inter-swap,
intra-swap and shift

Local search methods order Shift, switch, inter-swap and
intra-swap

Monte Carlo simulation ε 0.05

Max I ter MC S 100

Max I terGap 10

GA based heuristic (SPR
model)

Pc: crossover probability 0.6

Ps : mutation probability 0.08

Psize : population size 100

Stopping criterion 50

Tournament size c + 1

Others Max I ter Syn 2c

β 100

services selected from the subset {1, 2, 3} of S. Accordingly, each caregiver of the second
group is skilled for providing at most three services drawn from the subset {4, 5, 6}. Each
patient requires single or double services, which are randomly drawn from S = {1, ..., 6}.
30% of patients are considered requesting double services (Mankowska et al. 2014), 50%
of double services are supposed to be simultaneous and the others 50% are supposed to be
received without synchronization. Time windows are of length 2 hours and are randomly
placed within a daily planning period of 10 hours. Two sets of instances are generated single
services (SS) and multiple synchronized services (M SS), each one contains 3 subsets and
are summarized in the Table 7. ’Size’ is the number of instances in each subset. ’#N ’ is the
number of patients. ’#S’ is the total requested services by all patients. ’#K ’ is the number of
caregivers available. Stochastic parameters (travel and service times) are randomly generated
the same way in Shi et al. (2018). The travel time between each two patients follows a nor-
mal distribution ˜Ti j ∼ N (ci j , (

ci j
3 )2) and the service time also follows a normal distribution

˜tis ∼ N (tis, (
tis
5 )2). ci j and tis are respectively the average of the traveling time between

two patients i and j and the average time of a service operation s at patient i .
ci j
3 and tis

5 are
respectively the standard deviation values of the traveling time between two patients i and j
and service operation time s for the patient i . α and γ are set to 1.
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Table 7 Tested instances details Set Subset Size #N #S #K

SS A 7 10 10 3

B 7 25 25 5

C 7 50 50 10

MSS D 7 10 13 3

E 7 25 33 5

F 7 50 65 10

6.2 Computational results

Instances are generated as described above and solved within a time limit of 4 hours. L B is
lower bound of the model given by CPLEX. Z is the objective function value and C PU is
the computing time. For GVNS and GA based heuristics, each instance is running 10 times;
the best, the worst and the average solutions are considered. C PU computing time relates
to the aggregate time elapsed to solve each instance 10 times. G AP is calculated as 100%×
(average—lower bound)/average). Optimal solutions reached are in boldface.

CPLEX could solve the subsets A, B, C , D and E optimally. For the subset F , only
instances F1 and F6 could be solved optimally. For other instances F2, F3, F4, F5 and
F7 a feasible solution is found with a gap respectively of 10.48%, 2.66%, 12.25%, 10.84%
and 1.26%. The GVNS based heuristic could find the optimal solutions for the subsets A,
B, D and E at least once among the ten runs of each instance, except for the instances E2.
The optimal solution is found also for the instances C4, C5 and C7. The GA based heuristic
could find the optimal solutions for the subsets A, B and D and for the instances E1, E6 and
E7 at least once among the ten runs of each instance (see Tables 8 and 9).

The worst gaps found by the GVNS for the subsets A, B, C, D, E and F are respectively
0.99% (instance A6), 0.77% (instance B6), 3.53% (instance C4), 0.00% (subset D), 2.21%
(instance E2) and 17.71% (instance F5). For the GA, are respectively 2.60% (instance A6),
2.82% (instance B2), 14.98% (instance C4), 1.04% (instance D6), 5.71% (instance E3)
and 28.35% (instance F5). Both GVNS and GA based heuristics could find good quality
solutions with a better efficiency for the GVNS (see Figs. 8 and 9).

Figure 10 shows that the minimum, first quartile and median found by CPLEX, GVNS
average and GA average are very close to each other, which indicate that the performances
of these methods in the first 50% of instances (subsets A, B and D) are similar. According to
Tables 8 and 9, optimal solutions are reached by both heuristics at least once in 10 runs. For
the subset E , both heuristics still could reach solutions very close to those found by CPLEX.
GVNS showed a better efficiency and could reach 6 optimal solutions from 7 at least once in
10 runs. Figure 10 shows also that solutions reached by GA are very dispersed in the second
50% of instances (subsets C, E and F). Figures 8 and 9 show that GA found solutions for
subsets C and F a little bit further from those reached by CPLEX and GVNS compared to
solutions of subset E . Therefore, we can conclude that this dispersion is caused by objective
function values of instances in subsets C and F. The solutions reached by GVNS and CPLEX
have a very close distribution if we delete the outlier (the maximum).

In the SPRmodel, the transportation cost, the expected value of recourse and the objective
function (Z = cost + Ê(.)) are considered. Small instances (subset A and D) are solved by
both GA and GVNS based heuristics. Solutions found by both heuristics are very close (see
Table 10, the gap is computed as (averageGV N S- averageG A)/averageGV N S).
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Fig. 8 Comparison of solutions found by CPLEX, GVNS and GA for the instances of the set SS with
deterministic parameters
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Fig. 9 Comparison of solutions found by CPLEX, GVNS and GA for the instances of the set M SS with
deterministic parameters

Table 10 shows clearly that GVNS is not suitable to be combined with the simulation to
solve the SPRmodel. Theworst CPU running time jumped from 494.64 seconds (instance A5
of the set SS) to 1221.90 seconds (instance D6 of the set M SS) while the worst CPU running
time of GA jumped from 134.184 seconds (instance A4 of the set SS) to 275.68 seconds
(instance D7 of the set M SS). This is due to the complexity of neighborhoods sizes, which
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Fig. 10 Comparison of solutions found by CPLEX, GVNS and GA with deterministic parameters

Table 10 Results of solving small instances (subsets A and D) with stochastic parameters using GA and
GVNS based heuristics

GVNS (10 runs) GA (10 runs)

Best Worst Average CPU Best Worst Average CPU Gap

A1 521.38 522.79 521.93 266.53 520.70 522.25 521.52 95.83 0.08%

A2 722.41 725.51 724.29 365.41 720.96 723.90 722.36 119.08 0.27%

A3 495.49 497.42 496.45 324.63 494.32 498.66 495.43 87.28 0.20%

A4 815.68 819.73 817.67 421.12 812.79 817.90 814.49 134.84 0.39%

A5 616.88 634.61 619.85 494.64 613.76 631.85 624.46 113.63 -0.74%

A6 430.95 434.63 432.94 477.53 428.35 452.80 432.83 127.54 0.03%

A7 537.15 538.80 537.96 408.06 534.82 536.95 535.92 122.84 0.38%

D1 778.68 783.76 780.38 1139.46 776.41 818.87 786.06 255.71 -0.73%

D2 872.23 872.98 872.71 621.22 872.06 872.99 872.52 184.24 0.02%

D3 688.40 698.00 693.05 918.01 683.96 697.95 694.09 192.73 -0.15%

D4 883.85 890.67 888.17 944.82 881.55 884.81 883.92 253.85 0.48%

D5 753.77 759.03 755.88 978.60 749.68 768.82 752.90 223.57 0.39%

D6 578.98 583.96 581.76 1221.90 576.52 588.86 580.31 273.40 0.25%

D7 609.43 610.66 609.94 1162.30 609.27 614.73 611.04 275.68 -0.18%

depends on the size s of the problem (number of total requested services by all patients).
Three from the four proposed neighborhood structures of GVNS have a complexity of O(s2).
Exploring neighborhood solutions imply running the simulation for each new generated solu-
tion to estimate the expected value of recourse, which significantly increases the CPU running
time. To illustrate that, we solved the first instance of each subset (A1, B1, C1, D1, E1 and
F1) by GVNS for a single iteration. Figure 11 clearly shows that the CPU running time
increases monotonically with the total number of services requested by all patients. The
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Fig. 11 CPU running times elapsed to solve the first instance of each subset using the simulation embedded
into GVNS for a single iteration

CPU running time jumped from 1.41 seconds (instance A1 with 10 services) to 2120.45
seconds (instance F1 with 65 services) to run GVNS for a single iteration.

In the other hand, GA parameters are independent of the problem size. To solve medium
(subsets B and E) and large (subsets C and F) instances in reasonable computational time,
we fixed the population size and the stopping criterion independently of the problem size (see
Table 6: SPRmodel). TheSPRmodel is very complex in terms ofCPU running time compared
to the deterministicmodel, due to the expected value thatmust be estimated for each individual
and in each iteration of the algorithm (see Table 11). In other words, the expected recourse
estimation procedure is executed each time the selection-crossover-mutation mechanism is
applied.

In Table 12 we compared when deterministic optimal solutions of small instances (subsets
A and D) are considered as solutions for the stochastic model with solutions found by the
SPRmodel. The first stage (caregivers’ routes and their assignment to patients) is the optimal
solution given by CPLEX. In the second stage, we run the simulation to estimate the expected
value of recourse Ê(.). The total cost Z includes the transportation cost found by CPLEX and
the cost of the recourse computed by the simulation, the costs of the two stages are computed
independently. TheGVNS (respectively GA) column contains the average solution of 10 runs
for solving the SPR model and the gaps are computed as (Z – Average)/Z. In most cases, the
values of the gaps are greater than 1, which shows that deterministic optimal solutions are not
privileged in the stochastic case since the recourse is not optimized simultaneously with the
transportation cost. In addition, the SPR model prioritizes solutions with higher difference
between latest service times (bi and ek) and caregivers’ completion Cik to minimize the
expected value of recourse. The more the margins bi − Cik and ek − Cik are higher the
more the fluctuation of caregivers’ arrival times remains robust and compatible with time
windows.
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Table 11 Results of solving medium and large instances with stochastic parameters using GA based heuristic

Genetic Algorithm (10 runs)

SS Best Worst Average CPU MSS Best Worst Average CPU

B1 1134.77 1342.94 1210.03 549.03 E1 1318.66 2030.43 1677.94 957.04

B2 1002.53 1197.89 1085.04 748.76 E2 1371.74 2180.87 1673.77 862.95

B3 1135.76 1250.39 1176.94 930.63 E3 1479.07 1767.76 1604.45 881.13

B4 942.71 1081.69 1016.55 811.72 E4 1267.52 1481.07 1361.58 925.49

B5 1076.11 1308.81 1167.70 841.30 E5 1325.51 2223.86 1636.49 836.41

B6 1158.15 1289.61 1221.40 614.21 E6 1388.26 2595.32 1750.48 818.38

B7 1116.84 1224.54 1182.24 1035.93 E7 1235.28 2688.13 1640.10 853.78

C1 1692.52 2068.92 1856.73 4714.29 F1 2942.55 4547.42 3363.43 4756.74

C2 1930.80 2244.35 2117.14 5442.66 F2 2465.93 3610.59 3114.22 5739.92

C3 1775.89 1978.25 1881.40 6233.01 F3 2253.21 3138.75 2635.77 5478.67

C4 1882.94 2368.98 2129.19 4268.39 F4 2388.92 3876.00 3148.09 4959.69

C5 1950.67 2221.42 2063.72 6063.64 F5 2861.24 4806.11 3520.34 4753.81

C6 1974.69 2135.67 2041.33 4233.30 F6 2522.03 3356.50 2908.03 5183.04

C7 1712.97 2037.94 1826.58 6020.90 F7 2018.86 3162.31 2801.73 5535.88

Table 12 Deterministic solutions with stochastic parameters and solutions found by the SPR model for the
small instances

CPLEX Simulation GVNS (10 runs) GA (10 runs)

Cost Ê(.) Z Average Gap Average Gap

A1 521 5.67 526.67 521.93 0.90% 521.52 0.98%

A2 715 20.02 735.02 724.29 1.46% 722.36 1.72%

A3 508 4.69 512.69 496.45 3.17% 495.43 3.37%

A4 817 19.8 836.8 817.67 2.29% 814.49 2.67%

A5 645 10.52 655.52 619.85 5.44% 624.46 4.74%

A6 439 1.53 440.53 432.94 1.72% 432.83 1.75%

A7 539 5.13 544.13 537.96 1.13% 535.92 1.51%

D1 769 19.65 788.65 780.38 1.05% 786.06 0.33%

D2 872 2.27 874.27 872.71 0.18% 872.52 0.20%

D3 709 40.1 749.1 693.05 7.48% 694.09 7.34%

D4 938 19.63 957.63 888.17 7.25% 883.92 7.70%

D5 777 28.38 805.38 755.88 6.15% 752.90 6.52%

D6 588 1.68 589.68 581.76 1.34% 580.31 1.59%

D7 609 5.86 614.86 609.94 0.80% 611.04 0.62%

To sum up, even though the exact methods reach the optimal solution, their computational
time increases monotonically with the problem size. The two proposed heuristics GVNS and
GA are able to solve large instances in a short computation time. GVNS showed the better
efficiency in solving the instances for the deterministic model compared to GA. Despite this,
GVNS was not suitable to be combined with simulation to solve the SPR model because
three from the proposed neighborhood structures have a running time complexity of O(s2).
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To overcome this limitation, we embedded the simulation into GA to solve the SPR model
since its parameters do not depend on the problem size. Although the SPR model is very
complex with a high run time, this model provides a robust scheduling in which uncertainties
in term of traveling and caring times are taken into account. The computed expected value
gives the average recourse that will be incurred for a given schedule without needing to know
which patients have received the services with a tardiness and which caregivers have worked
overtime.

7 Conclusion

The home health care companies aim to both minimize provided services cost and maximize
patients’ satisfaction. In the real world, travel and service times are not always determin-
istic. Uncertainties may arise and affect the overall planning and service quality would be
quite poor, which will cause patients’ dissatisfaction. In addition, patients need several care
activities per day and some of them require to be simultaneous. In this paper, the home
health care routing and scheduling problem with stochastic travel and service times as well
as multiple synchronized services is addressed. The objective is to define a daily planning in
which uncertainties in terms of traveling and providing services that may occur are taken into
account. To that end, a two-stage stochastic programming model with recourse is proposed
to minimize the transportation cost and the expected value of recourse caused by patients’
delayed services and caregivers’ extra working time. The first stage is to define caregivers’
routes and their assignment to patients in order to compute the transportation cost. The second
stage is to introduce the recourse if a solution goes against constraints related to patients’
time windows and caregivers’ duty length. The deterministic model is solved using CPLEX,
the genetic algorithm (GA) and the general variable neighborhood search (GVNS) based
heuristics. Monte Carlo simulation is used to estimate the expected value of recourse, which
is embedded into the GA based heuristic to solve the stochastic model. GVNS and GA are
successfully tested using several instances randomly generated from the literature. The tests
prove the high performance of these two heuristics to deal with large instances in a little
amount of time. GVNS and GA are able to reach optimal solutions for some instances and
yield near-optimal solutions for others. The complexity of the SPR model in terms of CPU
running times is significant due to the expected value that has to be estimated for each solu-
tion. Future works could be addressed to propose a robust optimization approach to deal with
the HHCRSP with stochastic service and travel times and synchronized services since this
approach does not require knowing the distribution of stochastic parameters. Furthermore,
it would be interesting to consider multiple time windows for patients, which will be useful
to minimize tardiness of services operations consequently minimize the expected value of
recourse. Dynamic programming would be necessary to avoid revising the overall planning
in the event that a requested service is canceled or a new risky service should be provided.

Data Availability Datasets related to this article can be found at http://dx.doi.org/10.17632/cwvgxbvw4f.1,
an open-source online data repository hosted at Mendeley Data.
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