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Abstract
In this paper, a dependence-switching copula model is used for the first time to analyse
the dependence structure between sectoral equity markets and crude oil prices for India,
one of the largest oil importing countries. Specifically, we investigate the dependence and
tail dependence for four distinctive states of the market, i.e. rising oil prices—rising equity
markets, declining oil prices—declining equity markets, rising oil prices—declining equity
markets, and declining oil prices—rising equity markets. Our results reveal that the tail
dependence is symmetric (asymmetric) in positive (negative) correlation regimes. Based on
the copula results, we estimate the systemic crude oil price risk to different sectors using
CoVaR and delta CoVaR. A fleeting positive sectoral CoVaR and delta CoVaR across all
sectors implies a time-varying oil price systemic risk. Yet, little difference between CoVaR
and VaR across the sectors reveals that a bearish oil market does not add additional systemic
risk to a bearish sectoral equity market. The carbon sector is found to be the safe haven
investment when both the equity and the oil markets are in a downward phase.
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1 Introduction

Because of globalization, financial markets have become more correlated than ever before.
As a consequence, the benefits of international diversification across the financial markets
have been reduced (Moghadam & Viñals, 2010). At the same time, sectoral equities are
found showing an independentmovement, thereby providing opportunities for diversification
of risk through sectoral portfolio investments (Elyasianiet al., 2011). Mericet al. (2008)
show that in a bull market more benefits are associated with international diversification,
even if investments are made in the same sector in different countries, than with domestic
diversification across sectors in the same country.Also in a bearmarket sectoral diversification
opportunities across countries emerge, because the transition of the economies to a crisis is
either non-synchronised, wherein few sectors are least affected (Alexakis & Pappas, 2018),
or the responses of sectoral markets to an investment shock are heterogeneous (Kim & Sun,
2017). Generally, sectoral dynamics are endogenous to economic growth and, in a growing
economy, diversification to newmodern sectors first increases and later decreases. With such
dynamics, the modern sectors should substitute and not complement the traditional sectors
in the overall economic growth equilibrium (Zeira & Zoabi, 2015).

For an economy being oil importing or oil exporting, the extent that the sectoral equity
market dynamics are affected by oil price changes depends onwhether oil is an input or output
for the particular sectors (Gogineni, 2010). The sectoral reactions to oil price changes are
heterogeneous and they tend to become intensive in the case of extreme price movements.
Degiannakis et al. (2013) and Mensi et al. (2017a) find time-varying and sector-specific
impacts of the oil price on sectoral equity. This poses a problem for investors, portfolio
managers, and policy makers. The unobserved variable behind the dynamics between the
oil price and sectoral equity is the effect of economic growth on the demand side, as oil is
a crucial commodity for economic development. In a high economic growth regime, it is
possible for firms of the respective sectors to pass on hikes in the oil price to consumers,
because of the pricing power they enjoy during such a growth regime. On the contrary, it
is rather difficult to pass-through price increases in a low economic growth regime. Hence,
the positive relationship between oil price changes and sectoral equity in a high economic
growth regimemay change to an insignificant or even negative relationship in a low economic
growth regime.

Since the dependence between oil prices and sectoral indices depends on unobserved state
variables, we, for the first time, apply the novel dependence-switching copula approach of
Wang et al. (2013) to study this relationship. Their copula strongly replicates the actual mar-
kets by allowing the dependence structure to vary between positive and negative regimes.
The conventional Pearson correlation is unsuitable for examining such dependence because
it provides equal weight to both positive and negative returns, as well as large and small real-
isations. This therefore leads to the underestimation of risk from joint extreme events (Poon
et al., 2004; Tastan, 2006). Several studies use multivariate-GARCH models (Ang & Chen,
2002; Dungey & Martin, 2007), the extreme value approach (Bae et al., 2003; Cumperayot
et al., 2006), or regime-switching models (Ang & Chen, 2002) to overcome the concerns
with the Pearson correlation. Since these studies consider symmetric multivariate normal
distribution or Student’s t-distribution, they do not examine the asymmetric tail dependence
of the markets (Garcia & Tsafack, 2011; Patton, 2006).

Many studies have used copula models to understand movements across markets (e.g.
Ning, 2010; Meng and Liang, 2013; Reboredo & Ugolini, 2015; Kleinow & Moreira, 2016;
Lourme &Maurer, 2017; Pircalabu & Benth, 2017; Ji et al., 2018). A copula is a multivariate
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cumulative distribution function with uniform marginal distributions on the interval (0, 1).
It allows estimation of the dependence structure between multivariate random variables.
Some researchers argue that a time-invariant copula is not appropriate to capture actual
relations, and therefore allow the parameters to change in the copula function (Busetti &
Harvey, 2010; Lourme & Maurer, 2017) or allow the copula function itself to change over
time (Okimoto, 2008). The latter technique is more suited to estimate dependence switching
between different financial markets because allowing the parameters in the copula function
to change with time, as in the former technique, does not necessarily suggest dependence
switching between negative and positive correlation regimes.

In this paper, we argue that conditional correlations between oil and sectoral equity mar-
kets change between negative and positive regimes. As such, we employ a time-varying
dependence-switching copula to examine dependence across these markets for a number of
reasons. First, by combining the Clayton copula (which captures left side dependence) with
the survival copula (which captures right side dependence), we allow for asymmetric tail
dependence. Second, we allow the dependence structure across oil and sectoral equity mar-
kets to fluctuate between positive and negative correlation regimes which simulate the real
world where dependence can vary. Finally, we measure the tail dependence structure across
the various market conditions of rising oil prices—rising sectoral equity markets, falling oil
prices—falling sectoral equity markets, rising oil prices—falling sectoral equity markets,
and falling oil prices—rising sectoral equity markets.

Furthermore, as pointed out by Huang et al. (2005), the stock market is negatively affected
by changes in the crude oil price only when it crosses a threshold level. Similarly, investors
are more concerned about extreme price changes (Barber &Odean, 2008). The consideration
of tail dependency helps achieve a better portfolio diversification than a portfolio based on the
traditional mean–variance optimization (Trabelsi, 2017). Moreover, there is a risk premium
attached to oil price changes, which is systematically priced into stock prices (Christoffersen
& Pan, 2017; Demirer et al., 2015). Thus, using the results of the best fit copula, our study
is the first to estimate the systemic oil price risk spillover to different sectors using the
conditional value-at-risk (CoVaR) and delta CoVaR by following Adrian and Brunnermeier
(2016).

With this backdrop, our study is also the first in the context of India, one of the fastest
growing emerging economies and the third biggest oil consuming country. In its yearly report,
the International Monetary Fund (IMF, 2018) pointed out that India will be a key player in
global growth. Concurrently, the IMF articulated its concern, citing among other economic
risk factors, that the oil price risk may be a headwind for the Indian economic growth. India
ranks third, after the US and China, in the world oil consumption. 80% of its oil use is
imported, making India the fourth largest oil importing country in the world (MCX India,
2017). In the near future, the demand for oil is expected to be further increased by energy-
intensive economic growth. This growth is driven by the manufacturing sectors’ expansion,
stimulated through the Make-in-India campaign initiated by the Indian Government to make
India a manufacturing hub.1

We consider daily closing prices for crude oil and 16 sectoral indices. Our results reveal
that in a positive correlation regime, the dependence and tail-dependence between the sectoral
indices and the oil price are asymmetric and symmetric, respectively. However, in a negative
correlation regime, both dependence structures are asymmetric. The average sectoral CoVaR
is positive across the sectors and greater than the corresponding VaR. The CoVaR fleets over

1 The Indian government has launched the Make-in-India campaign in order to increase the share of the
manufacturing sectors’ contribution to the GDP by 25% by the year 2020.
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time, implying that a bearish oil market does not add additional systemic risk to a bearish
sectoral equity market. The carbon sector is found to be the safe haven investment when both
the oil and equitymarkets are in a downward phase.As far as the oil price risk is concerned, our
results will help achieving better sectoral portfolio diversification and improve the economic
policymaking by initiating sectoral policy rather than a common policy for all sectors.

The remaining work is structured as follows. Section 2 discusses the literature and further
highlights the importance of our study. Section 3 explains the methodology. While Sect. 4
provides an overview of the data, Sect. 5 presents the main results. Section 6 concludes.

2 Literature review

A large number of studies in the extant literature has analysed the economic impact of oil
price changes. These studies find that the impact is economy-specific, because the degree of
oil dependence is distinct (Nandha & Brooks, 2009; Ramos & Veiga, 2011). In a broader
market context, not only a positive impact of oil price changes (Arouri&Rault, 2012; Li et al.,
2012), but also a negative (Miller & Ratti, 2009; Sadorsky, 1999) and no impact (Apergis &
Miller, 2009; Huang et al., 1996) are found in the literature.

Few studies examine the influence of the oil price on equity markets by classifying the
countries as oil importing and exporting nations. For oil importing economies, negative
effects of the oil price on equity markets are reported by Sadorsky (1999) and Arouri and
Nguyen (2010). Aloui et al. (2012), who analyse 25 emerging net oil importing countries
including India, find no impact of the oil price on the stock market. However, stock markets
of oil exporting countries tend to be significantly positively influenced by oil price increases
(Aloui et al., 2012; Nandha & Faff, 2008). In another set of literature, the impact of the oil
price on the stock market is studied by differentiating between supply- and demand-driven
oil price shocks (Filis et al., 2011; Jammazi, 2012b). While the impact of demand shocks
is positive, supply-driven shocks are reported to have mixed impacts on the equity market.
Moreover, Filis et al. (2011) and Jammazi (2012a) report a dynamic effect of the oil price on
the equity market. Similarly, Martín-Barragán et al. (2015) find that the correlation between
the oil and stock market is dynamic. While the correlation is insignificant during normal
times, it becomes significant due to a shock from either the oil market or stock market or
both.

At the sectoral level, researchers have differentiated between sectors where oil is a major
input and those where it is predominantly an output. For sectors where oil is an input (output),
such as the automobile, transport, and airline industry (oil and gas industry), the effect tends
to be harmful (affirmative). However, the strength of the association with oil price changes
is heteroskedastic across industries (Boyer & Filion, 2007; Ramos & Veiga, 2011). The
industry-specific influences of the oil price and the simultaneous time-varying correlations
provide sectoral portfolio investment and diversification opportunities across sectors and over
different investment horizons (Degiannakis et al., 2013; Nandha & Faff, 2008).

Kirkulak-Uludag and Safarzadeh (2018) examine the volatility spillover between six Chi-
nese sectoral indexes and the OPEC oil price using the VAR-GARCH model. They find
unidirectional volatility spillover from the oil to the sectoral markets. Thereby, they assume
that the results hold in extreme market conditions of both the oil and sectoral indexes. Using
the VAR model in the context of G-7 countries, Lee et al. (2012) find no impact of the oil
price at the composite index level, while oil price changes have a negative causal effect on
sectoral market returns. However, they consider only the average effect of the oil price, which
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is assumed to hold in all types of market conditions. Emphasizing the non-linear oil-stock
relationship, Badeeb and Lean (2018) explore the asymmetric effect of oil on the Islamic
equity market using the NARDL co-integration framework. The oil price linkage is weak at
the aggregate market level, but the sectoral level reactions to oil price shocks are significantly
different from each other and non-linear in the long run. Although their study captures the
long and short run asymmetry, it does not consider the nature of asymmetry associated with
extreme market conditions.

As far as the Indian context is concerned, only few studies have investigated the link
between oil prices and equity markets, looking at both the aggregate and the sector-specific
equity markets. For example, Ghosh and Kanjilal (2016) report a unidirectional causality
from oil prices to the aggregate equity market without having any correlation between them.
Singhal and Ghosh (2016) examine the effect of Brent oil on the Bombay Stock Exchange
(BSE) Sensex at the aggregate level and on seven sectoral indices. They find no volatility
spillover at the aggregate level, but oil price spillover are found in three out of seven sectors,
namely in the automotive, power, and financial sector. However, the co-movement between
the oil price and the seven indices is time-varying and persistent. Ali andMasih (2014) exam-
ine the impact of the oil price on 15 sectors using the DCC–GARCH and CWTmethodology.
They find that the correlations among oil prices and all the sectoral indices are time-varying
and positive after the financial crisis. In terms of the data used, Tiwari et al. (2018) is the
closest to our study. They analyse the impact of the oil price on 13 sectors, applying the QRA
and frequency domain methodology. Their results show that in all market conditions, nine
of the sectors are not affected by the oil price. However, Tiwari et al. (2018) capture the oil
price impact in the extreme condition of the sectoral market only, whereas the oil market
extreme conditions are ignored.

In terms of methodology, the work of Trabelsi (2017) is the closest to our analysis. Yet,
his study focuses on the major oil exporting country Saudi Arabia, whereas ours is on the
major oil importing country India. Trabelsi (2017) explores the potential asymmetry in tail
dependency between the international oil market and the Saudi Arabian sectoral market
using a time-varying copula. He reports an asymmetric effect of the oil price in the left
tail in all sectors, except for the petrochemical, agricultural, and food sector. So far, there
exists no study on an oil importing nation that explores the extreme asymmetry between oil
and sectoral market returns. We use the dependence-switching copula to estimate the tail
dependence asymmetry among oil prices and16 sector pairs. Moreover, based on the best fit
copula results, the study is the first to estimate systemic downside oil price risk spillovers
to different sectors using the CoVaR and delta CoVaR approach by following Adrian and
Brunnermeier (2016). Though very limited, the copula approach has been applied in the
financial literature in the context of BRICS stock and foreign exchange markets (Kumar
et al., 2019), symmetric tail dependence to the crude oil market (Reboredo, 2011), the crude
oil and Asia–Pacific stock market (Zhu et al., 2014), the Chinese and US stock markets (Wen
et al., 2012), and the oil and European equity markets (Aloui et al., 2013).

3 Methodology

3.1 Copula specification

As mentioned at the outset, the dependence structure between the oil price (X1) and sectoral
equity index (X2) is examined using the copula in a time-varying and dependence-switching
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framework. Then the risk spillover between the oil price and sectoral equity market is esti-
mated using the CoVaRs and delta CoVaRs from their joint distribution.

The bivariate joint distribution function FX1X2(x1, x2) for two random variables is exam-
ined using a copula. According to Sklar’s theorem (Sklar, 1959), this copula function is
obtained by transforming the marginal distributions into uniform distributions. Thus, a cop-
ula function C can be represented as:

F
(
X1,t , X2,t ; δ1, δ2;θ

c) � C(F1
(
X1,t , δ1

)
, F2

(
X2,t , δ2); θ

c) (1)

where FK
(
XK ,t ; δK

)
, with K� 1, 2, is the marginal cumulative distribution function of XK ,t

and δK , while θc are the parameter sets of FK
(
XK ,t ; δK

)
and C.

If each of the cumulative distributions are differentiable, then

f
(
X1,t , X2,t ; δ1, δ2;θ
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(
u1,t , u2,t ; θ

c)
2∏

K�1

fk
(
Xk,t ; δk

)
, (2)

where f
(
X1,t , X2,t ; δ1, δ2;θc

) � ∂F2
(
X1,t , X2,t ; δ1, δ2;θc

)
/∂X1,t∂X2,t is the joint den-

sity of X1,t and X2,t . uk,t is the probability integral transformation of XK ,t based
on FK

(
XK ,t ; δK

)
, with K � 1, 2. C

(
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(
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(
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)/
∂u1,t∂u2,t is the copula density function, and, finally, FK

(
XK ,t ; δK

)
is

the marginal density of XK ,t ,where K � 1, 2.
The co-movement of the oil price and sectoral index prices can be positive (Return chas-

ing) or negative (Portfolio rebalancing). One of the effects can potentially be dominant at
different times, implying that the two series under consideration may switch from a positive
to a negative dependence regime or vice-versa. In order to account for the two dependence
regimes, we use the Markov-switching copula model, where the latent variables are set in
both the copula function and the marginal models.

The designed copula model looks as follows:

CS,t

(
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C
1 θC0

)
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(
u1,t , u2,t ; θC1

)
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)
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,

where St is an unobserved state variable, whereas C1
(
u1,t , u2,t ; θC1

)
and C0

(
u1,t , u2,t ; θC0

)

are two copula functions, whichmix the ClaytonCopula (Cc) and the Survival Clayton copula
(CSC) with the positive and negative dependence structures correspondingly.2 Hence,
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(
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1

)
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)
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u1,t , u2,t ;α2
)

(3)
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C
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)
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)
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, (4)

where θC1 � (α1, α2)’,θC0 � (α3, α4)’, CC (u, υ, α) � (
u−α + υ−α − 1

)−1/α ,
CSC (u, υ, α) � (u + υ − 1) + Cc(1 − u, 1 − υ, α), and α∈ (0, ∞). The computed shape
parameter α1 is changed into Kendall’s τi , the correlation coeffient ρ1, and the tail depen-
dence ϕi with τi � ∝i

/
(2+ ∝i )

, ρ1 � sin(π ∗ τi/2), and ϕi � 0.5 ∗ 2−1/∝i , for i � 1, 2, 3,
4.

2 Wang et al. (2018) argued that, although as a substitute, the Gumbel copula could be explored, but it was
not found to be suitable according to the AIC.
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ρ2(ρ3) estimates the dependence of a high oil price and high (low) sectoral equity index,
and ρ1(ρ4) estimates the dependence of a low oil price and low (high) sectoral equity index.
Consequently, ϕ2(ϕ3) estimates the dependence of very high oil prices with very high (low)
sectoral equity index prices. ϕ1(ϕ4) estimates the dependence of very low oil prices with
very low (high) sectoral equity index prices.

The transition probability matrix of the latent variable St , which follows the Markov-
switching process, is depicted below:

p �
[
p00 1 − p00
1 − p11 p11

]
,

where pi j � 1 − p11Pr[St � j |St−1 � i |] for I, j� 0, 1. St changes between the two regimes
explained above. Its bivariate density function is:

f
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1
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0
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1
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0
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1
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)
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1∑

j�0

Pr (St � j)C j
(
u1,t , u2,t ; θ

j
c
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⎧
⎨

⎩
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j
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⎬

⎭

⎫
⎬

⎭

(5)

Transforming Eq. (5) into log-likelihood gives:

L(ϑ) � Lc(ϕ1) +
2∑

K�1

Lk
(
ϕ2,k

)
(6)

where ϑ � (
θ1c , θ0c , δ11, δ

0
1, δ

1
2, δ

0
2, p11, p00

)
.Lc(ϕ1) and Lk(ϕ2,k) standforthe log of the cop-

ula density and the marginal density of Xk , respectively. They can be represented as:

Lc(ϕ1) � log
[
Pr(St � 1)c1

(
u1, u2; θ

1
c

)
+ (1 − Pr(St � 1)c0(

(
u1, u2; θ

0
c

)]
,

LK
(
ϕ2,k

) � log
[
Pr(St � 1) fk

(
ηk : δ1k .St � 1

)
+ (1 − Pr(St � 1) fk

(
ηk, δ

0
k .St � 0

)]
,

where ϕ1 � (θ1c , θ0c , p11, p00).

3.2 Marginal models

TheARFIMA (p, dm, q) model for a stationary time series rt , t � 1, . . . , T may be expressed
as follows:

ϕ(L)(1 − L)d(rt − γ ) � ω(L) ∈t , ∈t∼ i .i .d.
(
0, σ 2∈

)
(7)

where εt � ζtσt ; ζt ∼ (0, 1). γ is the restrictive average, L is the backward-shift operator
and (1 − L)d is the fractional differencing operator. ϕ(L) � ϕ1L + ϕ2L2 + · · · + ϕT LT and
ω(L) � ω1L +ω2L2 + · · ·+ωs Ls are the AR andMA polynomials. When dm > 0, in Eq. (7),
we say that the process has a long memory. When 0 ≤ dm ≤ 0.5, we say that the series is
covariance stationary and mean reverting. If 0.5 ≤ dm ≤ 1.0, the series is mean reverting
but not covariance stationary, because no long run effect of a novelty on future values of the
process is seen. Finally, if dm > 1.0, we say that the series is non-stationary and non-mean
reverting, and if −0.5 ≤ dm ≤ 0.0, the series is known to display transitional memory.

The GARCH (p,q) model of Bollerslev (1987) may be written as:

rt � φ+ ∈t
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σ 2
t � ω +

q∑

i�1

αi ∈2
t−i +

p∑

j�1

β jσ
2
t− j (8)

where φ is the likely return and εt is an IID term. The ω is a constant, εt−i is the ARCH and
σ 2
t− j is the GARCH component, and the number of lags (p, q) are chosen using the AIC.

3.3 Computationmethodology

According to theCanonicalMaximumLikelihood (CML) approach, the standardized residual
is transformed into an identical distribution as:

Fi (ω) � 1

T + 1

T∑

i�1

I
(
υ
St
i,t ≤ ω

)
(9)

where I(.) is a dual function, which is equal to 1 when υ
St
i,t ≤ ω holds or 0 otherwise.

Subsequent to this, the function is estimated for all parameters ˙̂υSt
i,t and denoted by ˙̂μSt

i, j �
F̂k

( ˙̂μSt
i, j

)
, with i � 1,2; j � 1, 2,…, T ; and St � 0, 1.

We apply the Hamilton’s filtered technique and the process is shown as:
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)
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(
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)
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(
û01,t ; û

0
2,tθ

0
c

)

⎞
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where “o” is defined as the Hadamard product and μSt indicatesthe density function for St
� 0, 1. The parameters’ vector θ � (

θ1c , θ0c , δ11, δ
0
1, δ

1
2, δ

0
2, p11, p00

)
is then estimated by

maximizing L(θ):3

θ � argmax
θ

T∑

t�1

L(θ) (10)

Sequel to the estimation of the parameters, the time-varying dependence of the oil
prices and sectoral index prices can be formed. We hypothesize that E(c1(u1, u2)) �∫ 1
0

∫ 1
0c1(u1, u2)dc1(u1, u2), and Kendall’s τ in the positive correlation regime is:

τ 1 � ω1[∝1 /2+ ∝1] + (1 − ω1)[∝2 /2+ ∝2] (11)

Similarly, the Kendall’s τ in the negative correlation regime is:4

τ 0 � ω2[∝3 /2+ ∝3] + (1 − ω2)[∝4 /2+ ∝4] (12)

3 Wang et al. (2018) argued that it is better to use the simplex search method, in order to avoid an arbitrary

initial value to obtain the θ
(
θ̂0

)
. We can then use the initial value of the MLE estimates of θ

(
θ̂0

)
.

4 For a comprehensive derivation of the Kendall’s correlation and smoothing correlation of the mixed copula,
see Wang et al. (2013, 2018).
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During dissimilar correlation regimes, the correlation coefficient is computed as ρ j �
sin

(
π ∗ τ j/2

)
for j � 0, 1, while the smoothing correlation ρsm is estimated as:

ρsm � ρ1,smρ1 − ρ0,smρ0 � ρ1,sm ∗ sin(A) − ρ0,sm ∗ sin(B) (13)

where A � 0.5πX [ω1τ1 + (1 − ω1)τ2],B � 0.5πX [ω2τ3 + (1 − ω2)τ4], and ρ j,sm is the
smoothing probability in regime j for j � 0, 1.

3.4 Measures of systemic oil price risk spillover

Based on the copula results, the VaR and CoVaR are estimated. In line with the general
literature, we limited our analysis to the downside risk (Girardi & Ergün, 2013; Ji et al.,
2018). The VaR for the sectoral index return is computed as the worst loss for a fixed
horizon that will be within the band of a pre-fixed level of confidence 1 − α, where α

denotes the tail probability. Hence, the downside VaR for a sectoral index return may be
measured as pr

(
rsec,t ≤ VaRα

sec,t

) � α. The first assumption is to put α � 0.05. Using the
GJR-GARCH (p,q) skewed-t model for sectoral stock markets, we estimate the VaRα

sec,t �
μsec,t + σsec,t .t−1

υ,η(α), where t
−1
υ,η(α) is the α quantile of Eq. (8).

Subsequent to the VaR, the CoVaR is used to compute the risk spillover from the oil to the
sectoral markets. The CoVaR is the VaR for sectoral market returns based on severe oil price
fluctuations, captured in the VaR. The advantage of the CoVaR over the VaR is the ability of
the former in measuring the tail dependence and severe risk spillovers.

In addition, the upside and downside CoVaRs are computed as the VaR of sectoral market
returns based on unknown severe fluctuation in the oil price returns. Given a bivariate time
series rt � (rsec,t , roil,t ), the downside CoVaR of sectoral returns conditional on severe
downward fluctuation of the oil price returns and the upside CoVaR of sectoral returns
conditional on severe upward oil price returns are determined using lower and upper tail
dependences:

pr
(
rsec,t ≤ CoVaRD,α

secoil.D,t ||roil,t ≤ VaRD,β
oil,t

)
� α (14)

and

r
(
rsec,t ≥ CoVaRU ,α

sec|oil.U ,t |roil,t ≥ VaRU ,β
oil,t

)
� α, (15)

where pr
(
roil,t ≤ VaRD,β

oil,t

)
� β and pr

(
roil,t ≥ VaRU ,β

oil,t

)
� β, while β represents the

tail probability of uncertainty changes roil,t . We represent the CoVaR for sectoral returns in
the copula form below:

C
(
Fsec,t

(
CoVaRα

sec,t

)
, Foil,t

(
VaRβ

oil,t

))
− βα � 0, (16)

where Fsec,t and Foil,t are the marginal distribution of the sectoral prices and oil prices,
respectively.

Further, we use the delta CoVaR as another measure of risk spillover from oil returns to
sectoral market returns that is defined as:

deltaCoVaRα
sec,t �

(
CoVaRα

sec,t − CoVaRαβ�0.5
sec,t

)

CoVaRαβ�0.5
sec,t

, (17)

where the CoVaRαβ�0.5
sec,t satisfies that pr

(
rsec,t ≤ CoVaRα

sec,t

∣∣Foil,t (roil,t
) � 0.5

) � α,
with Foil,t (.) being the distribution function of roil,t .
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We perform three statistical tests. First and second, we analysethe two risk spillover
impacts with H11 : CoVaRD,α

sec|oil.D < VaRD,α
sec and H12 : CoVaRU ,α

sec|oil.U < VaRU ,α
sec .

H11(H12) assumes considerable differences between the CoVaR and the respective VaR.

Third, we test for an asymmetric effect using H13 :
CoVaRD,α

sec|oil.U
VaRD,α

sec
>

CoVaRU ,α
sec|oil.U

VaRU ,α
sec

. H13

suggests that the rise in downside sectoral market risk is comparatively higher than the
upside risk, when the likelihood of uncertain price changes in the oil market is very high.

4 Data and preliminary statistics

Daily closing price data of 16 sectoral indices are taken from the Bombay Stock Exchange
(BSE) of India for the period starting from the date of their availability up to May 21,
2018 (Refer to Table 1). The daily WTI crude oil prices are extracted from the U.S. Energy
Information Administration (2018). We calculate the daily returns by subtracting the natural
log of the previous prices from the natural log of the current prices. Table 1 presents the
descriptive statistics for the oil and sectoral returns series. The standard deviations for all
returns series are larger compared to their respective average values, indicating larger risks in
these indices. The skewness values are less than zero for every index, except for GreenX and
Capital goods, and the kurtosis is greater than three, implying asymmetric and fat tails. In
addition, the Jarque–Bera test significantly rejects the normality hypothesis. We use the ADF
and PP unit root tests and the KPSS stationarity test to check the stationarity of the selected
series. All return series are found to be stationary. Since the data might have undergone
structural changes due to economic or geopolitical factors in the global context, we further
check the stationarity using a structural break unit root test, i.e. the Zivot-Andrew (1994)
test. The results, as shown in the last two columns in the Table, pass the stationarity test even
under structural breaks in the data.

5 Main empirical results

5.1 GARCH estimation results for themarginal distributionmodels

It is highly important to identify the best specification of the marginal copula model, as we
otherwise may not obtain unbiased estimations. Therefore, we examine various lags of the
ARFIMA (p,dm,q)-GARCH (1,1) model, to investigate empirically the dynamic behaviour
of the volatility of each of the 16 sectoral indices of the BSE with the oil price. The best
order of p and q is selected based on the AIC and correlation in the standardized error
terms (Q(10)) as well as in the squared standardized error terms (Q2(10)), by keeping the
maximum order of p as 10 and for q as 5. Table 2 presents the findings. The restricted mean
factor is significant at the 5% level in more than half of the cases and the slope factors in
the restricted variance equation are also significant. The null hypothesis of dm � 0, i.e. short
term memory in the mean, is rejected for five out of 16 sectors, namely for the Metal, Bank,
Energy, Carbon, and Capital sectors. This shows the short efficiency in those five sectors,
which could be attributed to active trading in the component stocks and high correlation with
the economy. The presence of autocorrelation is ruled out through the results of theQ(10) and
Q2(10) values. The result of the ARCH-LM statistic fails to reject the null hypothesis of no
ARCH effect for any of the 16 sectors. Overall, the reported diagnostic results on the residual
show that, except for one series, autocorrelation and heteroscedasticity have been correctly
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removed in the selected ARFIMA (p, dm,q)–GARCH (1,1) specification. Therefore, we now
assess the copula models.

5.2 Estimating the copula functions

In this section, we first estimate various single-copula functions. Specifically, these are the
Normal copula, Student-t copula, and 4 different specifications of the Clayton copula, namely
the Clayton copula, the Rotated Clayton copula, and two Rotated Clayton copulas (half
rotated). Table 3 reports the findings and, as a measure of the evaluation, the log-likelihood
value (LL), AIC, and BIC. When the Normal and Student-t copula are computed, the param-
eter estimates ρ of the copula are significant for all BSE sectoral indices at least at the 1%
level. Conversely, for the single Clayton copulas, a measure of lower tail dependency, each
parameter estimate α is significant for all indices. However, the dependency in the upper tail
is counter-intuitive; because the parameter estimate α is significant for the Rotated Clayton
copula for each of the sixteen sectors, while it is not significant for the half rotated Clayton
copulas.

Out of all the copula models estimated, the half rotated Clayton copulas generate the
highest log likelihood values while the Student-t copula has the smallest AIC and BIC for
all sectoral indices and oil as found in Wang et al. (2013). The Student-t copula, however, is
subject to the following two limitations. First, it assumes symmetric tail dependency, which
is rejected by the Clayton copula. Second, it ignores the dynamics of positive and negative
relationship regimes between the oil price and sectoral equitymarkets. Consequently, in order
to allow for asymmetry and regime switching dependency, we study the dependence structure
among the sectoral indices and the oil market using the dependence-switching copula model.

The results, which are presented in Table 4, indicate that the αi are large for each sectoral
index under the negative correlation regime.Nonetheless, almost half of themare insignificant
in the positive correlation regime. It is noteworthy that almost all computed log-likelihood
functions are larger compared to those reported in Table 3 for the single copula models for all
sectoral indices. Similarly, all corresponding AIC and BIC estimates in Table 4 are smaller
compared to those in Table 3. This adds more affirmation to our argument of applying
a dependence-switching copula, rather than the single copula models, to understand the
dependence framework among sectoral indices and the oil price.Moreover, the high values of
the estimated transition probabilities P11 and P00 indicate longer durations of the correlation
regimes.

An additional improvement is that this framework allows us to examine the dependence
(ρi ) and tail dependence (ϕi ) for four market states, i.e. (a) bear oil markets coupled with
bear stock markets, (b) bull oil markets coupled with bull stock markets, (c) bear oil markets
coupled with bull stock markets, and (d) bull oil markets coupled with bear stock markets. A
considerable tail dependence, measured by ϕi , would suggest a greater likelihood of extreme
events, implying a higher approximation of the VaR compared to what is obtained from a
Gaussian distribution. Therefore, not considering tail dependence may result in an underesti-
mation of risk and knowledge about significant tail dependences is crucial for the estimation
of the true VaR.

A positive correlation state represents two of the four states of the market, namely bear
oil markets coupled with bear stock markets and bull oil markets coupled with bull stock
markets. The left tail dependence (ϕ3) signifies the likelihood of a greater loss in a bear-bear
market (Case a), and the right tail dependence (ϕ4) shows the likelihood of higher gains in a
bull-bull market (Case b). If ϕ3 (ϕ4) is large, a long (short) position in the two markets would
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Table 4 Estimates of the dependence-switching copula model for the sectoral equity markets and oil price

Carbon GreenX Power Utility Material Industrial Energy CDG

A negative correlation regime—Panel A and Panel B

Panel A: Bear oil markets coupled with bull stock markets

α1 0.45*** 0.73*** 0.65*** 0.63*** 0.699*** 0.570*** 0.656*** 0.58***

(0.096) (0.097) (0.106) (0.116) (0.128) (0.082) (0.113) (0.073)

ρ1 0.28*** 0.41*** 0.38*** 0.37*** 0.396*** 0.341*** 0.378*** 0.35***

(0.048) (0.037) (0.044) (0.049) (0.051) (0.037) (0.046) (0.032)

ϕ1 0.11*** 0.19*** 0.17*** 0.17*** 0.186*** 0.148*** 0.174*** 0.15***

(0.035) (0.024) (0.030) (0.034) (0.034) (0.026) (0.032) (0.023)

Panel B: Bull oil markets coupled with bear stock markets

α2 0.19** 0.39*** 0.187** 0.275*** 0.190** 0.124* 0.225** 0.23***

(0.081) (0.103) (0.086) (0.096) (0.086) (0.065) (0.084) (0.000)

ρ2 0.14** 0.25*** 0.134** 0.189*** 0.136** 0.091** 0.158*** 0.16***

(0.053) (0.055) (0.056) (0.057) (0.056) (0.045) (0.053) (0.000)

ϕ2 0.013 0.08*** 0.012 0.040 0.013 0.002 0.023 0.03***

(0.020) (0.040) (0.021) (0.035) (0.022) (0.005) (0.026) (0.000)

A positive correlation regime—Panel C and Panel D

Panel C: Bear oil markets coupled with bear stock markets

α3 0.067 1.95*** − 0.103* − 0.096** − 0.106 0.148 − 0.116* 0.37***

(0.110) (0.727) (0.055) (0.049) (0.081) (0.133) (0.067) (0.073)

ρ3 0.051 0.70*** − 0.085* − 0.079* − 0.088 0.108 − 0.096* 0.24***

(0.081) (0.104) (0.048) (0.042) (0.071) (0.090) (0.059) (0.039)

ϕ3 0.000 0.35*** 417.1 675.1 340.9 0.005 201.55 0.08**

(0.000) (0.046) (1492) (2467) (1699) (0.019) (702.5) (0.028)

Panel D: Bull oil markets coupled with bull stock markets

α4 0.090 0.889 − 0.073 − 0.071 − 0.128** − 0.047 − 0.055 − 0.16**

(0.134) (0.616) (0.049) (0.048) (0.053) (0.095) (0.059) (0.060)

ρ4 0.067 0.46*** − 0.060 − 0.058 − 0.107** − 0.037 − 0.045 − 0.14**

(0.096) (0.205) (0.041) (0.041) (0.047) (0.078) (0.049) (0.055)

ϕ4 0.000 0.23* 6355 8913 113.41 1E + 06 1E + 05 39.99

(0.003) (0.124) (40,169) (6E + 04) (253.9) (4E + 07) (2E + 06) (66.05)

Panel E: Regime switching

P11 0.996 0.856 0.999 0.999 0.999 0.996 0.998 0.998

P00 0.992 0.245 0.999 0.999 0.998 0.989 0.999 0.994

LL 3940 4907 6894 6537 6523 6540 6532 6544

AIC − 7920 − 9853 − 13,828 − 13,114 − 13,086 − 13,120 − 13,103 − 13,128

BIC − 8031 − 9968 − 13,949 − 13,234 − 13,207 − 13,241 − 13,223 − 13,248

Bank Metals IT Oil & Gas FMCG Consumer Capital Auto

A negative correlation regime—Panel A and Panel B
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Table 4 (continued)

Bank Metals IT Oil & Gas FMCG Consumer Capital Auto

Panel A: Bear oil markets associated with bull stock markets

α1 0.53*** 0.65*** 0.88*** 0.71*** 0.28*** 0.712*** 0.52*** 0.54***

(0.084) (0.105) 0.146 (0.120) (0.062) (0.152) (0.081) (0.090)

ρ1 0.32*** 0.38*** 0.46*** 0.40*** 0.19*** 0.401*** 0.32*** 0.33***

(0.039) (0.043) (0.049) (0.047) (0.037) (0.060) (0.038) (0.042)

ϕ1 0.13*** 0.17*** 0.23*** 0.19*** 0.040* 0.189*** 0.132*** 0.14***

(0.028) (0.030) (0.030) (0.031) (0.023) (0.039) (0.027) (0.030)

Panel B: Bull oil markets associated with bear stock markets

α2 0.20*** 0.31** 0.045* 0.201** 0.123** 0.270** 0.067 0.26***

(0.072) (0.113) (0.086) (0.081) (0.058) (0.114) (0.056) (0.080)

ρ2 0.14*** 0.21*** 0.035* 0.14*** 0.091** 0.186** 0.051 0.18***

(0.047) (0.065) (0.064) (0.052) (0.040) (0.068) (0.041) (0.049)

ϕ2 0.014 0.052** 0.00*** 0.016 0.002 0.038** 0.000 0.033

(0.019) (0.044) (0.000) (0.022) (0.005) (0.042) (0.000) (0.028)

A positive correlation regime—Panel C and Panel D

Panel C: Bear oil markets associated with bear stock markets

α3 0.136 0.059 0.069* − 0.031 0.017 0.053 0.123* 0.17**

(0.089) (0.053) (0.041) (0.043) (0.048) (0.044) (0.064) (0.064)

ρ3 0.100* 0.045 0.052* − 0.025 0.014 0.041 0.091** 0.12***

(0.061) (0.039) (0.030) (0.035) (0.037) (0.033) (0.044) (0.042)

ϕ3 0.003 0.000 0.000 2E + 09 0.000 0.000 0.002 0.009

(0.010) (0.000) (0.000) (6E + 10) (0.000) (0.000) (0.005) (0.013)

Panel D: Bull oil markets associated with bull stock markets

α4 0.135 0.033 − 0.038 0.003 0.127* − 0.015 0.006 0.017

(0.106) (0.055) (0.035) (0.044) (0.069) (0.039) (0.051) (0.051)

ρ4 0.099 0.025 − 0.030 0.002 0.094* − 0.012 0.005 0.013

(0.073) (0.042) (0.028) (0.034) (0.048) (0.031) (0.040) (0.039)

ϕ4 0.003 0.000 5E + 07 0.000 0.002 8E + 19 0.000 0.000

(0.012) (0.000) (9E + 08) (0.000) (0.006) (0.411) (0.000) (0.000)

Panel E: Regime switching

P11 0.990 0.995 0.999 0.998 1.000 0.994 0.998 0.993

P00 0.979 0.995 0.999 0.999 0.999 0.997 0.998 0.994

LL 8468 9973 10,004 9990 10,028 10,018 10,005 10,003

AIC − 16,976 − 19,986 − 20,047 − 20,020 − 20,096 − 20,077 − 20,050 − 20,046

BIC − 17,101 − 20,115 − 20,176 − 20,148 − 20,225 − 20,206 − 20,179 − 20,175

αi is the shape parameter of the dependence-switching copula, and ρi and ϕi are the measures of dependence and tail
dependence, respectively. The numbers in parentheses are standard deviations.P11 andP00 are the two transition probabilities.
*, ** and, *** indicate significance at the 10%, 5%, and 1% level, respectively
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make investors experience large losses (gains). Hence, consideration of tail dependence is
essential for managing the portfolio risk.

In Panel C, the estimates of the left dependence (ρ3) are significant for GreenX, Power,
Utility, Energy, Consumer discretionary goods, Banking, IT, Capital goods, and Auto. The
left tail dependence (ϕ3) is significant for GreenX and Consumer discretionary goods when
both the oil and equity markets collapse. Conversely, in Panel D, the parameters of right
dependency and right tail dependency, i.e.ρ4 and ϕ4 respectively, are found to be mainly
insignificant when both markets are advancing. Exceptions are GreenX, Material, CDG, and
FMCG for ρ4 andGreenX for ϕ4. Therefore, the significant left tail dependences and predom-
inantly insignificant right tail dependencies confirm the asymmetric tail dependency between
the oil price and sectoral equity markets in a positive correlation regime. From a portfolio
management prospective, if investors hold both oil and sectoral equity in the portfolio, they
are exposed to large losses in the bear-bear market state but not to correspondingly large
gains in a bull-bull market.

Subsequently, we focus on the negative correlation regime associatedwith bear oilmarkets
coupled with bull sectoral equity markets and bull oil markets coupled with bear sectoral
equity markets. The left tail dependence (ϕ1) represents the likelihood of suffering huge
losses in a bearish oil market and at the time gaining huge profits in bullish sectoral equity
markets. The opposite holds true for the right tail dependence (ϕ2). A bigger value of ϕ1(ϕ2)
signifies the higher likelihood for an investor to suffer large losses if he is long (short) in the
oil market and short (long) in the sectoral equity market. In Panel A, the estimates of the
left dependence ρ1 are significant for all sectoral indices and range from 0.19 to 0.46. The
estimates of ϕ1 are also significant for all sectoral indices and vary between 0.04 and 0.23.
Panel B shows that, apart from capital goods, the estimates of ρ2 are all significant and range
from 0.035 to 0.25, whereas the estimates of ϕ2 are large only for GreenX, CDG, Metals, IT,
and Consumer durables, and vary between 0.000017 and 0.08.

Concerning the magnitude of the tail dependences, commonly larger values are estimated
in the negative correlation regime when the oil market is in the bear phase. In such dynamics,
FMCG and Carbon sectors are showing the lowest dependency with oil. Thus, an investor is
exposed to the lowest systemic risk in the negative correlation regime if these two sectors are
included in the portfolio along with a short position in the oil market. The heteroskedastic
dependence structure between the sectoral equity and oil price is in confirmation with the
findings of Ramos and Veiga (2011), and the reasons may depend on first, whether oil is an
input or output to that particular sector, and second, whether the oil shock is due to demand
or supply factors.

Next, we check the hypotheses of symmetric dependence and tail dependence using a
Wald test. For the positive correlation regime, where both markets are rising or collapsing
simultaneously,we test ifρ3 � ρ4 and ifϕ3 � ϕ4. The results fromPanelA inTable 5 indicate
that the hypothesis of symmetric dependence can be rejected for CDG, IT, and Auto, whereas
the symmetric tail dependence cannot be rejected for any of the indices. Panel B in Table 5
presents the results under a negative correlation regime. As explained in Ning (2010), such a
setting is not captured by a single copula model. Specifically, for the symmetric dependence
we test the null hypothesis that ρ1 � ρ2, and for the symmetric tail dependence we test if
ϕ1 � ϕ2. The results indicate that the symmetric hypothesis is rejected for all sectoral indices,
except for FMCG. A number of studies have shown asymmetric tail dependence across stock
and oil markets (e.g., see Mensi et al., 2017b; Oh & Patton, 2017; Raza et al., 2016; Jondeau,
2016; Reboredo, 2015). Our results of asymmetric tail dependence in a negative correlation
regime between oil and the BSE sectoral indices add more evidence to this existing literature.
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Table 5 Symmetric dependences under a positive and negative correlation regime

Numbers in brackets are p-values. ρi and ϕi measure the dependence and tail dependence of the oil and BSE
sectoral indices under different market statuses

To further validate our application of the dependence-switching copula, we present the
smoothing probability of the positive correlation regime and the corresponding smoothing
correlation coefficients for each sector in Fig. 1. These smoothing probabilities indicate
whether both of the markets stay in the regime or not. If they stay in the regime, it is
an indication of opportunities for portfolio rebalancing between the two asset classes. The
smoothing correlation coefficients reflect the correlation structure between the two markets
throughout the sample period.

Except for FMCG and GREEN-X, the sectors tend to stay in the regime with the oil
price for most of the time. During the financial crisis of 2008 and the European crisis of
2011–13, these sectors along with the oil price witness a simultaneous crash. Also a negative
correlation regime is evident from Fig. 1 for these sectors during 2005–07 and 2014–16. The
corresponding smoothing correlation coefficients further confirm the positive regime, where
both the sectoral indices and the oil price stay in the regime and vice-versa. Our results on
India are an indication that the dependency between the oil price and sectoral equity markets
switches between the positive and negative correlation regime, hence, supporting the use of
a dependence-switching copula.

5.3 Measures of oil price risk spillover

Following the estimation of tail dependences, the downside oil price risk spillovers to different
sectors are measured using the VaR, CoVaR, and delta CoVaR. The results are presented
graphically in Fig. 2 and the summary statistics are presented in Table 6.
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Fig. 1 Smoothing probability and smoothing correlation coefficients of the positive correlation regime between
the oil returns and sectoral equity returns

In a bearish equity market, the IT sector is the riskiest sector with the highest VaR and
the Carbon sector has the lowest VaR. Therefore, in such a market situation, the Carbon
sector provides the opportunity for a safe haven investment. However, across the sectors
the average sectoral CoVaR is positive, i.e. greater than the VaR. Given its minimum and
maximum value, the CoVaR is fleeting over time. This suggests that when the sectoral equity
market is bearish, a bearish oil market does not create any additional risk for the equity
market. Similar to Demirer et al. (2015) and Christoffersen and Pan (2017) in the context
of stocks, our findings reveal that the oil price risk is systemically priced across the sectors
when both the sectoral equity and oil market are bearish.

The same phenomenon is observed for the delta CoVaRs for all sectoral indices over
the sample period, i.e. the systemic oil price risk is time-varying. The maximum of 0.20%
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Fig. 1 continued

(minimum of 0.01%) systemic oil price risk is observed for the Industrial sector (Carbon
sector). The implication for portfolio investing is that when the equity market is bearish, the
oil price brings the diversification opportunity, and the best diversified portfolio that can be
constructed is the combination of investments in the oil and carbon sector.Hence, the potential
sectoral portfolio diversification as suggested by Degiannakis et al. (2013) and Nandha and
Faff (2008) is limited to the carbon sector in a bearish market. Furthermore, highly positive
correlations (more than 0.90) between the delta CoVaR and CoVaR indicate that for a given
sector, the delta CoVaR does not bring any additional systemic risk over its VaR.
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Fig. 1 continued

During a financial crisis period, a jump in both the sectoral VaR and delta CoVaR is
observed. Although the CoVaR increased across the sectors during the period of a financial
crisis, the increase is verymarginal. This again signifies that the oil market does not contribute
any additional systemic risk to the sectoral equity market during the crisis. This finding
validates the sectoral equity market results of Aloui et al. (2012), who detect no impact of
the oil price on the stock market in 25 emerging net oil importing countries including India.

6 Conclusions and policy implications

Highlighting the necessity to look at four diverse market conditions between the oil price and
the sectoral equity markets, we have examined the dependence and tail dependence asym-
metry using the novel dependence-switching copula methodology of Wang et al. (2013).
Thereby, our focus on India and the sectoral equity markets is important. On the one hand,
India is one of the fastest growing economies in the world and has become the major invest-
ment destination in the emerging market context. Though the IMF is also confident that the
Indian growth continues in the long-run, rising oil prices are a major cause of concern due to
India’s high dependence on oil imports. On the other hand, sectoral investing has emerged as
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Fig. 2 Downside sectoral VaR, CoVaR and delta CoVaR

an investment strategy for two main reasons. First, given financial market integration, port-
folio diversification opportunities at the aggregate market level have been reduced. Second,
sectoral indices show varying degrees of exposure to oil price risk.

Our results show that in a positive correlation regime, the dependence and tail-dependence
between the sectoral indices and the oil price are asymmetric and symmetric, respectively.
However, in a negative correlation regime, both dependence structures are asymmetric.The
average sectoral CoVaR is positive across the sectors and greater than the corresponding
VaR. Given its minimum and maximum value, the CoVaR fleets over time, this implies that a
bearish oil market does not add additional systemic risk to a bearish sectoral equity market.
When both equity and oil are in a downward phase, the carbon sector is found to be the safe
haven investment. Thus, knowledge about the dependence structure across financial markets
helps to understand the portfolio diversification opportunities, asset pricing, contagion and
better risk management through VaR.
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Our results have important practical implications for cross-market risk management and
asset pricing. Our findings reveal that investors should not rule out the risks from one market
to another, since there are significant tail dependences among the oil and sectoral equity
markets. Moreover, the oil price risk is systemically priced across the sectors when both the
sectoral equity and the oil market are bearish. The advantage of the CoVaR over the VaR
is the ability of the former in measuring the tail dependence and severe risk spillovers. A
practical implication of our results for portfolio investing is that when the equity market is
bearish in India, the oil price provides a diversification opportunity. In such a market, the
combination of investments in the oil and carbon sector gives the best diversified portfolio.
Paradoxically, the chances of making profit are very limited when both markets are booming.
As such, when stock and foreign exchange markets are moving in the same direction, there
are higher chances of incurring simultaneous losses than of making simultaneous profits.
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