
Annals of Operations Research (2021) 305:403–421
https://doi.org/10.1007/s10479-021-04214-w

ORIG INAL - OR MODEL ING/CASE STUDY

Robust flight schedules with stochastic programming

Sujeevraja Sanjeevi1 · Saravanan Venkatachalam2

Accepted: 20 July 2021 / Published online: 6 August 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Limiting flight delays during operations has become a critical research topic in recent years
due to their prohibitive impact on airlines, airports, and passengers. A popular strategy for
addressing this problem considers the uncertainty of day-of-operations delays and adjusts
flight schedules to accommodate them in the planning stage. In this work, we present a
stochastic programming model to account for uncertain future delays by adding buffers to
flight turnaround times in a controlled manner. Specifically, our model adds slack to flight
connection times with the objective of minimizing the expected value of the total propagated
flight delay in a schedule. We also present a parallel solution framework that integrates an
outer approximation decompositionmethod and column generation. Further, we demonstrate
the scalability of our approach and its effectiveness in reducing delays with an extensive
simulation study of five different flight networks using real-world data.

Keywords Airline planning · Robust scheduling · Stochastic programming · Column
generation · L-shaped method

1 Introduction

TheBureau of Transportation Statistics reports that betweenOctober 2018 andOctober 2019,
delays caused by late aircraft arrivals amounted to 40+ million minutes, which is 39.47%
of the total delays experienced by the flights of reporting carriers (https://www.transtats.bts.
gov/OTDelay/OTDelayCause1.asp). This highlights that operational delays are a significant
problem on both an absolute and a relative basis even today, with propagated delays being
the biggest offender. Propagated delays occur when the arriving flight for a connection is
delayed and causes a departure delay for the onward flight, kicking off a chain reaction of
delays on the aircraft’s route. Such propagation is primarily due to the creation of “tight”
schedules with very limited buffers for connection times. Such schedules are created to
maximize utilization of assets such as equipment and crew (Klabjan et al. 2001). This leaves
no room for the schedule to absorb fluctuations in flight arrivals and departures, resulting in
significant delays and costs.

B Saravanan Venkatachalam
saravanan.v@wayne.edu

1 Sabre, 3150 Sabre Drive, Southlake, TX 76092, USA

2 Wayne State University, Detroit, MI, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-021-04214-w&domain=pdf
http://orcid.org/0000-0002-7319-1456
https://www.transtats.bts.gov/OTDelay/OTDelayCause1.asp
https://www.transtats.bts.gov/OTDelay/OTDelayCause1.asp

404 Annals of Operations Research (2021) 305:403–421

The idea ofmaking an airline schedule robust seeks to counteract this problemby adjusting
the schedule to better absorb time fluctuations in aircraft arrivals and departures during oper-
ations. As robustness-based decisions need to be made much earlier than actual operational
delays are known, it is necessary to consider the stochasticity of such delays. The downside
of this approach is a reduction in resource utilization and an increase in planned operational
costs. This creates the need for solution strategies that can balance planning and operational
costs. Optimization-based approaches, which are inherently equipped with mechanisms for
such balancing acts, are therefore a great fit for this problem.

Schedule robustness has been tackled in the literature from several perspectives. A two-
stage stochastic programming model is proposed in Yen and Birge (2006), where crew
assignments are made in the first-stage and swap opportunities are anticipated in the second-
stage.Another two-stage stochastic programmingmodel is presented inFroyland et al. (2013),
where the first-stage is a tail assignment problem and the second-stage is a schedule recovery
problem. This model uses penalties to minimize changes between the planning and recovery
solutions. A mixed integer program (MIP) with stochastic data to minimize expected propa-
gated delays is presented in Lan et al. (2006). The study in Marla et al. (2018) compares the
performance of chance-constrained programming, robust optimization, and stochastic opti-
mization approaches using a solution space similar to the one in the model presented in Lan
et al. (2006). Methodologies to solve integrated aircraft routing and crew pairing problems
to reduce uncertain propagated delays are considered in Yen and Birge (2006), Dunbar et
al. (2012), Dunbar et al. (2014). More recently, the robust optimization approach presented
in Yan and Kung (2016) uses column and row generation to solve a routing problem with
delays coming from a bounded uncertainty set by minimizing worst-case propagated delay
costs. An alternate perspective in Ahmadbeygi et al. (2010), Chiraphadhanakul and Barnhart
(2013) retains a given planned routing but re-times flights in order to add time buffers or
“connection slacks” to flight connections that are likely to be missed. Other related work can
also be found in Arıkan et al. (2013), Kang (2004), Rosenberger et al. (2004), Shebalov and
Klabjan (2006), Talluri (1996), Weide et al. (2010).

To motivate our research, we present some concerns we observed with scheduled robust-
ness models proposed so far. First, there is no clear differentiation between the cost of
rescheduling flights a few weeks before the day-of-operations versus delaying them a few
hours before departure. This difference can be significant in practice. Second, the stochastic
programming approaches proposed in literature use very complex first-stage models with
a wide variety of first-stage decisions. This may be undesirable, as each adjustment of a
schedule can affect other operational considerations such as staff scheduling, maintenance
scheduling, crew and passenger connectivity, among others. Also, there is no clarity on how
to reduce the scope of such models while still generating useful results for scheduling practi-
tioners. Computationally, the size and complexity of first-stage models proposed in literature
makes it difficult to scale them and use them for real-world airline schedules.

In this research, we seek to fill the aforementioned gaps in literature. Our main contri-
butions are (i) a two-stage stochastic programming model that re-times flights of a given
schedule in a controlled manner while minimizing the sum of first-stage rescheduling costs
and expected cost of propagated delays on the day of operations; (ii) a parallel decomposi-
tion framework based on the L-shaped method (Van Slyke and Wets 1969) that uses column
generation to solve recourse second-stage models; (iii) extensive computational study using
disruptions caused by randomly generated flight delays that show a significant reduction
in propagated delays in schedules adjusted by the proposed model; and (iv) recommenda-
tions and insights that can boost the performance of decomposition techniques like Benders
decomposition and column generation for flight schedule models. The proposed model and

123

Annals of Operations Research (2021) 305:403–421 405

solution framework allow to solve much larger instances than those solved so far in literature.
For example, one of the networks we consider has 324 flights and 71 aircraft, much larger
in size than networks used in recent works like (Froyland et al. 2013; Yan and Kung 2016).
Furthermore, we use a dynamic delay approach similar to Yan and Kung (2016) to solve our
recourse problems. This approach uses the least required delay on each flight while building
paths. This eliminates the need for discrete delay copieswhich can generate unnecessary flight
delays due to discretization and cause significant run time increases (see Figure 7 in Froy-
land et al. (2013)). The path-based recourse formulation in our model can be easily extended
to incorporate requirements from other operational domains of airlines. This includes hard
constraints like minimum crew/passenger connection times and soft requirements like the
loss of passenger goodwill that can be incorporated into path costs.

The remainder of this paper is organized as follows. In Sect. 2, we present a two-stage
stochastic programming formulation to minimize the expected value of propagated delays,
along with a simpler mixed integer programming formulation based on sample mean values
of primary delays. In Sect. 3, we describe a column-generation procedure for recourse prob-
lems and the L-shaped algorithm for the complete two-stage problem. In Sect. 4, we report
the results of extensive computational studies that highlight the qualitative and quantitative
benefits of our approach. In Sect. 5, we conclude the article with a summary and discussion
of future research directions.

2 Stochastic delaymodels

In this section, we present our two-stage stochastic programming formulation of the delay
mitigation problem. We also present an alternate approach that we use to benchmark our
computational results. The latter approach is based on an MIP model that uses the mean
values of individual flight delays. We begin by introducing the required notation.

Given a valid flight schedule, we model it as a connection network on a directed acyclic
graphG = (F, A) in which the set of nodes F represent flights and the arcs A represent flight
connections. A connection (i, j) is valid if and only if (i) the incoming arrival and outgoing
departure airports match, and (ii) the connection slack si j , defined as the difference between
the departure time of the outgoing flight j and the arrival time plus the turnaround time of
the incoming flight i , is non-negative. The set A contains only valid connections.

Our modeling of uncertain flight delays is similar to that in Lan et al. (2006), Dunbar et al.
(2012), Yan and Kung (2016). A flight can experience primary delays that are independent of
routing and rescheduling, and propagated delays that are caused by upstream flights on that
flight’s route. Let ω be a random variable representing a delay scenario, and let Ω be a finite
set of delay scenarios. Let pdω

f be the realized non-negative integer-valued primary delay
in minutes experienced by flight f ∈ F in scenario ω ∈ Ω . Let Rω be the set of possible
routes in scenario ω. For any route r ∈ Rω and connection (i, j) in r , the parameter dr j
representing the delay propagated to the outgoing flight j by the connection is defined as:

dr j = max(0, dri + pdω
i − si j). (1)

2.1 Two-stagemodel

Let x f ≥ 0 be an integer decision variable representing the number of minutes by which
flight f ∈ F needs to be rescheduled, and let c f , f ∈ F , be the per-minute reschedule cost.
The formulation of the two-stage model (TSM) can then be stated as:

123

406 Annals of Operations Research (2021) 305:403–421

(T SM) Minimize
∑

f ∈F
c f x f + EΩ [φ(x, ω̃)]

s.t. xi ≤ si j + x j , (i, j) ∈ Aorig, (2)
∑

f ∈F
x f ≤ B, (3)

x f ∈ Z ∩ [0, l], f ∈ F . (4)

The objective of this model is to minimize the sum of the total reschedule cost and the
expected flight delay costs. Constraints (2) protect the time connectivity for all connections
in the original routing Aorig ⊆ A. Constraints (3) provide a control factor in the form of a
time budget B that limits the total reschedule time. We also limit the x f values with a fixed
bound l to prevent exorbitant reschedules of individual flights. Given a reschedule x and the
scenario probabilities pω, ω ∈ Ω , the expected value EΩ [φ(x, ω)] = ∑

ω∈Ω pωφ(x, ω) can
be computed by solving the following set partitioning model for each scenarioω ∈ Ω , which
is the second-stage formulation for a given x and scenario ω:

φ(x, ω) = Min
∑

f ∈F
e f z

ω
f

s.t.
∑

r∈Rω

art yr = 1, t ∈ T , (5)

∑

r∈Rω

br f yr = 1, f ∈ F, (6)

∑

r∈Rω

br f dr f yr − x f ≤ zωf , f ∈ F, (7)

zωf ≥ 0, f ∈ F, yr ∈ {0, 1}, r ∈ Rω. (8)

The second-stage model minimizes the propagated delay costs incurred in scenario ω ∈ Ω

computed as per-minute costs e f for each flight f . It uses two sets of decision variables:
continuous variables zωf that represent the excess delay propagated to each flight f ∈ F and
binary variables yr that take the value 1 to indicate the selection of the route r ∈ Rω. The
parameters art and br f are binary and respectively indicate whether route r is for the tail t
and whether it contains flight f . Constraints (5) and (6) enforce the assignment of one route
per aircraft and one route per flight. Constraints (7) are linking constraints that capture the
excess propagated delay that has not been accounted for by the first-stage rescheduling.

Next, we present an MIP formulation that reschedules flights based on the average val-
ues of the primary delays. This model is used in the comparative studies presented in the
computational results section.

2.2 Mean delaymodel

Let ω̄ be the scenario in which each flight experiences the mean primary delay across all
scenarios inΩ , i.e., d ω̄

f = ∑
ω∈Ω pωdω

f for f ∈ F . Themean delaymodel aims to reschedule
flights to accommodate the average delay scenario ω̄ without changing the original routing.
To simplify the notation, we set d ω̄

f to be the delay propagated to flight f in scenario ω̄ in
the original schedule. The mean delay model can be stated as follows:

123

Annals of Operations Research (2021) 305:403–421 407

Minimize
∑

f ∈F

(
c f x f + e f z

ω̄
f

)

s.t. xi ≤ si j + x j , (i, j) ∈ Aorig,
∑

f ∈F
x f ≤ B,

d ω̄
f − x f ≤ zω̄f , f ∈ F,

zω̄f ≥ 0, x f ∈ Z ∩ [0, l], f ∈ F .

The objective functionminimizes the total reschedule and delay costs, with the latter carrying
a higher penalty. The first two sets of constraints are the first-stage constraints (2) and (3).
The third set of constraints is obtained from (7) by selecting only the original route for each
aircraft.

3 Solution approach

In this section, we present our solution framework that uses the L-shaped method in Van
Slyke and Wets (1969) to solve the TSM. We first present details about how we solve the
recourse problems of the TSM.

3.1 Column-generation framework

Solving the TSM using the L-shaped method requires computing φLP (x̄, ω), the solutions to
linear programming (LP) relaxations of the recourse models for any fixed first-stage solution
x̄ . For a given scenario ω, we use a column-generation approach to generate the required
routes. We iterate between solving a version of the recourse problem restricted to a subset
of routes R̃ ⊆ Rω and solving a pricing problem to find new routes that can improve the
solution. Optimality of the linear program can be declared when no such route can be found.
For ease of exposition, we state here the dual formulation of the recourse problem in full. Let
μt and ν f be unbounded dual variables for the coverage constraints (5) and (6) for a scenario
ω. Given a first-stage solution x̄ , we write the constraints (7) as

zωf −
∑

r∈Rω

br f dr f yr ≥ −x̄ f , f ∈ F,

and we let π f be the non-negative dual variables for these constraints. Let a(r) ∈ T be the
aircraft for which the route r ∈ Rω was generated. Using this notation, the dual formulation
can be written as:

Maximize
∑

t∈T
μt +

∑

f ∈F

(
ν f − x̄ f π f

)

s.t. μa(r) +
∑

f ∈F
br f

(
ν f − dr f π f

) ≤ 0, r ∈ Rω,

μt free, t ∈ T ,

ν f free, 0 ≤ π f ≤ e f , f ∈ F . (9)

Our column-generation procedure begins by solving the LP relaxation of the recourse
problem with a subset R̃ of routes. One way to initialize R̃ is with routes of the original

123

408 Annals of Operations Research (2021) 305:403–421

schedule that have delays propagated sufficiently enough to protect minimum turnaround
times. With the dual solution of this restricted problem, a pricing problem is solved to find
columns with the least reduced cost rcr , where

rcr =
∑

f ∈F
br f

(
dr f π f − ν f

) − μa(r). (10)

The dual formulation provides some intuition for rcr ; we want routes that violate the con-
straints (9). Once such a route is found, it is added to R̃ and we repeat the above steps. If no
such route can be found, optimality can be declared. As there are potentially a large number
of pricing problems to be solved, it is critical to determine the useful routes quickly. Next,
we present our version of the labeling algorithm, an extension of the algorithm presented in
Dunbar et al. (2012), Yan and Kung (2016), which we use to solve this problem.

3.2 Pricing problem

We solve the pricing problem by searching for routes in the graph G with negative values
for the reduced cost as defined in (10). As we assume that the original schedule is already
available, the airports fromwhich each aircraft should depart at the beginning of the schedule
and at which it should arrive at the end of the schedule are fixed. To reflect this, we introduce
separate source and sink nodes for each aircraft and separately search for candidate routes for
each aircraft. This approach is quite practical, as it can easily be extended to consider aircraft-
specific business constraints during route generation. Each aircraft’s source node connects
only to flights departing from the aircraft’s initial departure airport. Similar restrictions apply
to sink nodes based on final arrival airports.

To search for candidate routes, we use a label-setting algorithm similar to the one proposed
in Dunbar et al. (2012), Yan and Kung (2016). This algorithm relies on building labels that
represent partial routes and extending them along valid flight connections given by A to
generate full routes from the source to the sink. The combinatorial explosion in the number
of routes is controlled using the notion of dominance between labels. More formally, each
label l denotes a partial path stored in a tuple (fl , predl , redl , propl), where fl ∈ F is the
last flight on the path, predl is the label from which l was extended, redl is the reduced cost
accumulated so far, and propl is the delay propagated to fl on the partial route corresponding
to l. Note that predl is empty for labels at source nodes. When a label u is extended with a
connection (fu, f ′) ∈ A, the algorithm generates a new label v = (f ′, u, redv, propv) in
which redv and propv are updated using (1) and (10), respectively. Once a label is extended
to the sink node, the route that it corresponds to becomes a full route and can be obtained by
traversing backward along the chain of predecessors.

Definition 1 (Label dominance condition) Let u and v be two labels with fu = fv . The label
u dominates v if (i) redu ≤ redv , (ii) propu ≤ propv , and at least one of the inequalities is
strict.

Given two labels u and v, if we know that any feasible extension of v is also feasible for u,
any route that can be generated by successively extending v to the sink can also be generated
by u, meaning that we can safely ignore v. This was proved in Lemma 1 in Yan and Kung
(2016). For clarity, we restate the lemma here using the notation of the present article:

Lemma 1 Let u and v be labels such that u dominates v. If u′ and v′ are labels obtained by
extending u and v with a connection (fu, f ′) ∈ A, then u′ dominates v′.

123

Annals of Operations Research (2021) 305:403–421 409

Lemma 1 allows us to store and extend only non-dominated labels at each node and thus
implicitly remove large numbers of candidate paths from consideration. We have observed
that the label-setting algorithm in Yan and Kung (2016) provides at most one negative
reduced-cost route in each iteration. As any route with a negative reduced cost is likely
to improve the recourse solution, we enhance the algorithm by considering three possible
alternatives for generating multiple negative reduced-cost columns:

(i) All paths Store and return all negative reduced-cost paths.
(ii) Best paths Store all negative reduced-cost paths, but return only the N most negative

reduced-cost paths.
(iii) First paths Stop the search as soon as N negative reduced-cost paths are found, and return

them.

We found that all three strategies produce a significant speedup over generating a single
path per pricing problem. Among the three, the “first paths” strategy gave us the best runtime
with N=10.We present a more detailed comparative study of these strategies in the computa-
tional results section. We present the label-setting algorithm of Dunbar et al. (2012), Yan and
Kung (2016) with our enhancements below, in Algorithm 1. As the original initial-departure
and final-arrival airports can be different for each aircraft, the algorithm is used to separately
generate routes for each aircraft. The input includes augmented sets of nodes F ′ and arcs A′;
F ′ = F ∪ {so, si}, where so and si are dummy source and sink nodes, respectively, and A′
contains all eligible connections in A, connections from so to every valid first flight in F ,
and connections from every valid last flight to si for the selected aircraft. The output of the
algorithm is a set of negative reduced-cost columns for the selected aircraft.

Algorithm 1 Label-setting algorithm
function GenerateColumns(F ′, A′, so, si)

M f ← ∅, f ∈ F ′. � Processed labels container
I f ← ∅, f ∈ F ′. � All labels container
Iso ← {(so, ∅,−μω

a(r), 0)}. � Source label creation

while
⋃

i∈F ′ (Ii \ Mi) �= ∅ and ShouldStop(Iso) �= true do
Choose i ∈ F ′ and a label l ∈ Ii \ Mi with a minimal reduced cost.
for (i, j) ∈ A′ do

l ′ ← Extend(l, j).
if l ′ is not dominated by any label in I j then

I j ← I j ∪ {r(i), j}.
end if
if j = si and ShouldStop(Iso) = true then

break. � Stop processing labels
end if

end for
Mi ← Mi ∪ {l}.

end while
return BuildColumnsFromLabels(Iso)

end function

Algorithm 1 initializes a single label at the source node as (so, ∅,−μω
a(r), 0), without a

predecessor. Given a label l = (i, predl , redl , propl) and a connection (i, j), the Extend
procedure creates a new label l ′ at node j by updating propl ′ using (1) and the reduced
cost redl ′ = redl + d jπ j − ν j , as obtained from (10). Labels become complete when they
are extended to si . The implementation of ShouldStop depends on the column-generation

123

410 Annals of Operations Research (2021) 305:403–421

strategy that is used. It always returns f alse for the all-paths and best-paths strategies. For
the first-paths strategy, it returns true if the number of negative reduced-cost labels at si
have exceeded N , and f alse otherwise. When the while loop ends, the BuildColumns-
FromLabels procedure builds columns using negative reduced-cost labels at si . It returns
all columns for the all-paths strategy, and the N most negative reduced-cost columns for
the other two strategies. The LP solution to the recourse problem is optimal if Algorithm 1
returns an empty set.

3.3 Solution framework for the TSM

Now that we have established the machinery to solve recourse models, we are ready to
present the L-shaped method to solve the TSM. The method has two variants: a single-cut
and a multi-cut version. We present the multi-cut method here and show later in this section
how it can be modified to obtain the single-cut method. The multi-cut L-shaped method
works with the following approximation of the TSM:

(MP) Minimize
∑

f ∈F
c f x f +

∑

ω∈Ω

ηω

s.t. (2) − (4),

ηω free, ω ∈ Ω.

We refer to this version of the formulation as the “master problem” (MP). Our solution
procedure iterates between solving the MP and the recourse LP problems. Solutions to the
latter can provide optimality cuts that bound η from below or feasibility cuts generated
from infeasible recourse problems. As we can always get a feasible solution for any delay
scenario by propagating delays along the original routing, our recourse problems are always
feasible. So we only need to consider optimality cuts. To describe these cuts, we introduce
the following additional notation for each scenario ω ∈ Ω:

αω = pω

⎛

⎝
∑

t∈T
μt +

∑

f ∈F
ν f

⎞

⎠ , and βω
f = pωπ f , f ∈ F .

Using this notation, the multi-cut procedure is presented in Algorithm 2. We found that
x0f = 0, f ∈ F is a reasonable starting solution. The parameter MaxNumIterations
provides a practical way to limit the algorithm’s runtime. To convert the algorithm into the
single-cut L-shaped method, we use a single variable η in the MP and add only the single cut
(11) that is computed using the optimal dual values of all recourse problems in each iteration:

η ≥
∑

ω∈Ω

αω −
∑

f ∈F

(
∑

ω∈Ω

βω
f

)
x f . (11)

Wenote here that theBenders cuts are valid onlywhen the binary restrictions of the second-
stage problems are relaxed. Making our approach exact requires embedding Algorithm 2 in
a branch-and-bound scheme that finds integer solutions to all second-stage yr variables.
However, as we found that most of the optimality gap was closed in the root node, we did not
explore branching. Aswe shall see in Section 4, even these solutions can provide rescheduling
values that significantly improve the preparedness of a schedule for uncertain delays.

123

Annals of Operations Research (2021) 305:403–421 411

Algorithm 2Multi-cut L-shaped method for the SM

Solve the MP without ηω variables to get an initial solution x0.
Add ηω variables to the MP.
Set UB ← ∞, LB ← −∞, k ← 0, x∗ ← x0.
while UB − LB > ε and k ≤ MaxNumIterations do

for each scenario ω ∈ Ω do
Find φLP (xk , ω) using column generation.
Compute βω, αω using optimal dual values.
Add cut ηω ≥ αω − ∑

f ∈F βω
f x f to the MP.

end for
Set UB ← min

(
UB,

∑
f ∈F c f x

k
f + ∑

ω∈Ω φLP (xk , ω)
)
.

if UB changed then
Update incumbent solution x∗ ← xk .

end if
Solve the updated MP to get the objective value objk .
Set LB ← max(LB, objk), k ← k + 1.

end whilereturn x∗.

Table 1 Instance details Instance Number of flights Number of aircraft Number of paths

s1 210 41 48,674

s2 248 67 20,908

s3 112 17 39,242

s4 110 17 56,175

s5 80 13 190,540

s6 324 71 113,892

4 Computational experiments

In this section,wedemonstrate the efficacyof our proposed formulation and solution approach
using real-world data for five flight networks. We used Java for the implementation, with
CPLEX12.9 as the solver. The experiments were conducted on an Intel(R) Xeon(R) CPUE5-
2640 computer with 16 logical cores and 80 GB RAM. We implemented parallel processing
using the thread-safe Java “actors” provided by the Akka actor library (available at https://
akka.io). All code and data used for our experiments is publicly available at https://github.
com/sujeevraja/stochastic-flight-scheduler.

4.1 Network data and experiment setup

Table 1 presents details about the flight networks we used. Each network is based on daily
schedules of two different airlines on different days in early 2017, and is the planned schedule
for a single equipment type. We avoid solving multiple equipment types together as such
swaps can cause operational issues like unfilled seats or passenger spillage. Each flight in
our data has a minimum turnaround time that applies to connecting flights departing after
the arrival of the flight. As the costing data for our networks is quite complex, we simplify
the calculations with a first-stage reschedule cost of one per minute and a recourse delay
cost of 10 per minute for each flight. This costing serves to encode the significant increase
of costs incurred by operational delays as opposed to planned reschedules. The “Number of
paths” values are the maximum number of paths that can be built during column generation.

123

https://akka.io
https://akka.io
https://github.com/sujeevraja/stochastic-flight-scheduler
https://github.com/sujeevraja/stochastic-flight-scheduler

412 Annals of Operations Research (2021) 305:403–421

To calculate them, we build a flight network and add a dummy source and dummy sink
node for each aircraft based on its original first-departure and last-arrival stations. We then
add dummy source arcs to flights departing from the source node station and dummy sink
arcs from flights arriving at the sink node station. The number of paths for each aircraft
is recursively computed as the number of paths from the aircraft’s dummy source to the
aircraft’s dummy sink. The total number of paths is the sum of paths of all aircraft.

We simulate primary delays by constructing 30 randomly generated delay scenarios for
each run. The scenarios are generated by varying two parameters: the distribution used for
delay generation and the flights that experience primary delays. We follow the recommenda-
tion of Yan and Kung (2016) in using truncated normal, gamma, and log normal distributions
for primary delays, with log normal being the default. We select flights that experience pri-
mary delays using two strategies, which we call “hub” and “rush”. The hub strategy selects
flights from a hub, which we define as the airport with the most departures in a given sched-
ule. The rush strategy calculates the duration between the earliest departure and the latest
arrival for a schedule and selects flights departing during the first quarter of the window.
This idea stems from the morning runway congestion that frequently occurs in most airports.
Our model limits first-stage rescheduling with two control factors, an individual limit of l
for each flight and a limit of B minutes on the total delay. We fix l to 30 minutes in all of
our runs. We make B adaptive to the problem data by computing the total primary flight
delay for each recourse scenario, taking the average of these values, and allowing B to be a
fraction of the average total primary delay. Unless specified otherwise, we default to 0.5 for
B, LogNormal(15, 15) as the delay distribution, “hub” as the flight selection strategy, the
multi-cut L-shaped method, the first-paths column generation strategy outlined in Sect. 3.2,
and use 30 threads to solve 30 second-stage problems in parallel. Solution times in all tables
are reported in seconds.

4.2 Results and insights

Our computational study contains three sets of results. The first set presents the performance
metrics of our algorithm, as shown in Table 2. The Strategy column shows the strategy we
use to select flights, as explained above. We report two gaps: the percentage gap computed
as 100 × (UB − LB)/UB from Algorithm 2 in the Gap column, and the optimality gap
of the solution in the Opt Gap column. To compute the latter, we first find an upper bound
ub by fixing the first-stage reschedule values to the solution found by Algorithm 2, solving
all second-stage problems without relaxing the binary restrictions, and computing the objec-
tive value as the sum of the fixed reschedule cost and the mean value of the second-stage
delay costs. As the objective value of the solution found by Algorithm 2 is a lower bound
(denoted by lb) for the optimal solution, we report the optimality gap as 100×(ub-lb)/ub.
The columns Cuts and Iter report the number of Benders cuts added and the number of
iterations, respectively. The main takeaways from Table 1 are that the Benders gap is almost
completely closed for most instances and that the root node closes more than 90% of the
optimality gap. We believe that the low optimality gap occurs because of the set partitioning
structure in the second-stage model in TSM. As set partitioning models are known to have
a property called quasi-integrality (Balas and Padberg 1975, 1972; Tahir et al. 2019), their
linear relaxations typically yield integer solutions in most cases.

For the second set of experiments, we report solution quality results in Figs. 1, 2, 3, and
4. Numbers used for these figures are available in the Appendix in Tables 7, 8, 9 and 10
respectively. In these experiments, we first randomly generate 30 delay scenarios and use

123

Annals of Operations Research (2021) 305:403–421 413

Table 2 Solution quality and performance

Strategy Instance Time Gap (%) Opt gap (%) Cuts Iter

Hub s1 78.42 0.35 3.42 886 30

s2 53.94 2 3.87 900 30

s3 15.94 0 0 93 6

s4 14.04 0.05 7.61 304 15

s5 73.16 0 6.18 352 16

s6 377.3 3.54 11.85 900 30

Rush s1 90.64 0.09 7.52 861 30

s2 71.07 0.5 7.94 888 30

s3 11.73 0.03 8.75 79 4

s4 6.37 0 0.41 115 6

s5 47.92 0 0.09 188 8

s6 144.34 0.04 1.82 302 13

0.25 0.5 0.75 1 2

30

40

50

60

70

80

Budget

%
Im

pr
ov
em

en
t
ov
er

or
ig
in
al

TSM vs Original %s

s1 s2 s3 s4 s5 s6

0.25 0.5 0.75 1 2

0

20

40

60

Budget

%
Im

pr
ov
em

en
t
ov
er

M
D
M

TSM vs MDM %s

Fig. 1 Illustration of performance of TSM by budget

this data to solve the two-stage and mean delay models. The same scenarios are used for both
models for a fair comparison. Next, we generate a new set of 100 random delay scenarios
different from those used for solving. For each new scenario, we compute the total propagated
delay incurred by three variants of the original schedule: (i) no adjustments, (ii) adjustments
based on the reschedule solution of the mean delay model, and (iii) adjustments based on
the reschedule solution of the TSM. By “adjustment”, we mean that the departure time of
a flight is changed based on its corresponding reschedule value. The propagated delay for
any scenario, measured in minutes, is found by solving the integer-valued recourse model to
optimality. We then take the average value of the total propagated delay of the 100 scenarios
as a comparison metric for the three approaches. Each set of Figs. 1, 2, 3, and 4 has two charts
that measure the relative reduction in the average value of total propagated delay when using
the TSM compared with that of the original schedule and MDM solution.

To study the quality of the solution over the entire parameter space, we vary one
parameter in each figure that reports propagated delay comparisons. Figure 1 reports

123

414 Annals of Operations Research (2021) 305:403–421

Exp(30) LogN(30,15) TN(30,15)

40

50

60

70

80

Distribution

%
Im

pr
ov
em

en
t
ov
er

or
ig
in
al

TSM vs Original %s

s1 s2 s3 s4 s5 s6

Exp(30) LogN(30,15) TN(30,15)

10

20

30

40

50

Distribution

%
Im

pr
ov
em

en
t
ov
er

M
D
M

TSM vs MDM %s

Fig. 2 Illustration of performance of TSM by distribution

Exp(15) Exp(30) Exp(45) Exp(60)

30

40

50

60

70

80

Distribution mean

%
Im

pr
ov
em

en
t
ov
er

or
ig
in
al

TSM vs Original %s

s1 s2 s3 s4 s5 s6

Exp(15) Exp(30) Exp(45) Exp(60)
0

20

40

60

Distribution mean

%
Im

pr
ov
em

en
t
ov
er

M
D
M

TSM vs MDM %s

Fig. 3 Illustration of performance of TSM by distribution mean

a comparison for the reschedule budget fractions in {0.25, 0.5, 0.75, 1, 2}. Given a
budget fraction, the corresponding reschedule budget is computed by multiplying the
average value of the total primary flight delay of each of the 30 recourse scenar-
ios with the budget fraction value. Figure 3 reports comparisons for distributions in
{Exponential(30), LogNormal(30, 15), TruncatedNormal(30, 15)}. Figure 3 fixes the
distribution as exponential and reports comparisons for mean values of {15, 30, 45, 60} min-
utes. Figure 4 reports comparisons for the number of training scenarios in {10,20,30,40,50}.
These figures show that the reduction in propagated delay achieved with TSM is significantly
better than the original schedule and mean delay model, and that this reduction is agnostic
of the underlying data.

In addition to the data-related parameters discussed so far, our approach also has several
technical parameters, such as the type of column-generation strategy and the use of single
versus multiple cuts for the L-shaped method. We use our final set of experiments to empir-

123

Annals of Operations Research (2021) 305:403–421 415

10 20 30 40 50

50

60

70

80

Scenarios

%
Im

pr
ov
em

en
t
ov
er

or
ig
in
al

TSM vs Original %s

s1 s2 s3 s4 s5 s6

10 20 30 40 50

10

20

30

40

50

Scenarios

%
Im

pr
ov
em

en
t
ov
er

M
D
M

TSM vs MDM %s

Fig. 4 Illustration of performance of TSM by scenarios

Table 3 Runtime comparison for
column-generation strategies

Instance Enumeration All paths Best paths First paths

s1 958.58 112.33 75.61 77.45

s2 161.19 63.45 47.46 49.87

s3 170.61 19.64 9.87 9.49

s4 417.46 28.32 15.2 14.28

s5 3086.92 121.61 65.81 69.34

s6 1860.32 1854.57 461.2 524.48

ically select a set of these parameters that give the best runtime performance. The results are
reported in Tables 3, 4, 5, and 6.

We obtain the values for each row in these tables as follows. First, we generate 30 random
delay scenarios using the default parameters specified in Sect. 4.1. Then we run Algorithm 2
for each value of the tested parameter and collect the solution time.We smooth out aberrations
by repeating this 5 times and reporting the average of these values as the time. The same
procedure applies for values other than the solution time reported in Table 5.

Table 3 reports a comparison between the different column-generation strategies presented
in Sect. 3.2. In this test, the first-paths and best-paths strategies are run with N=10, i.e., by
selecting the first 10 and the 10most negative reduced-cost columns, respectively. The results
reported in this table are in line with the intuition that enumerating all columns should take
much longer than using a delayed column-generation procedure with pricing. Among the
pricing strategies, the best-paths and first-paths strategies are both clearly better than the
all-paths strategy, which adds all negative reduced-cost columns to the restricted recourse
problems.

Table 4 reports a run-time comparison with an increase in the number of threads. While
it is indeed true that parallel solving should be faster, it is not practically obvious that this
should be true. Specifically, we expected that the performance should stagnate or worsen
when the number of threads exceeds the number of logical cores, but Table 4 shows that
this is not the case. Though the gain in performance declines with increasing threads, on
an absolute basis, increasing the number of threads up to 30 seems to improve the overall

123

416 Annals of Operations Research (2021) 305:403–421

Table 4 Runtime comparison for
multiple threads

Instance Number of parallel solvers

1 10 20 30

s1 692.71 123.49 98.63 77.88

s2 402.31 74.53 60.54 48.52

s3 64.64 12.58 10.16 8

s4 117.12 22.5 18.53 14.4

s5 607.55 104.76 88.55 74.04

s6 6490.08 986.12 736.96 519.8

Table 5 Comparison of single- vs multi-cut L-shaped method

Instance Multi-cut Single-cut

Time Gap Cuts Iter Time Gap Cuts Iter

s1 686.81 0.4 883.4 30 708.91 24.28 30 30

s2 406.39 2.51 899.8 30 455.63 33.08 30 30

s3 58.16 0 85 4.8 214.2 0 19.4 19.6

s4 105.99 0.01 304.6 14 223.77 11.88 30 30

s5 579.02 0.03 340 14.4 1172.27 12.36 30 30

s6 6488.77 3.87 900 30 6724.13 19.02 30 30

Table 6 Runtime comparison for
caching columns between
iterations

Instance Caching No caching

s1 686.78 715.77

s2 399.28 422.96

s3 62.31 61.52

s4 112.8 105.6

s5 615.87 585.76

s6 6372.9 6198.92

runtime. Increases beyond this are not helpful, as the maximum number of problems that
can be solved in parallel is the number of recourse problems, which is 30. Table 5 reports
a runtime comparison between the single- and multi-cut versions of Algorithm 2. Clearly,
the multi-cut version is better than the single-cut version in terms of the solution time, the
Benders percentage gap (reported in the Gap column), and the number of iterations. As the
memory used to store and add cuts is minuscule in comparison to the rest of the data, the
greater number of cuts in the multi-cut version does not affect performance at all. In Table
6, we present the results of caching the columns between the iterations for Algorithm 2. We
noticed that the columns generated in an iteration of the L-shaped method require only flight
data and propagated delay data, and are unaffected by changes in the first-stage reschedule
solution. This allows them to be cached and reused in future iterations, which in turn allows
pricing problems to be warm-started with promising columns. As Table 6 indicates, we were
not able to find a clear advantage of this approach.While we certainly do not discard this idea,
we recommend against using it, based purely on an ease-of-implementation perspective.

123

Annals of Operations Research (2021) 305:403–421 417

Table 7 Total propagated delay improvements for different budgets

Budget fraction Average total propagated delay

Instance Original MDM TSM RR over
original
(%)

RR over
MDM
(%)

0.25 s1 845 628.06 562.57 33.42 10.43

s2 850.82 611.65 520.17 38.86 14.96

s3 50.24 26.88 15.68 68.79 41.67

s4 219.37 145.93 135.86 38.07 6.9

s5 254.29 215.02 160.18 37.01 25.5

s6 1221.54 993.74 844.16 30.89 15.05

0.5 s1 836.37 474.79 406.51 51.4 14.38

s2 844.62 416.29 363.95 56.91 12.57

s3 42.45 19.89 8.6 79.74 56.76

s4 232.55 150.1 117.32 49.55 21.84

s5 250.1 123.74 115.61 53.77 6.57

s6 1231.86 799.37 672.06 45.44 15.93

0.75 s1 861.65 373.57 365.71 57.56 2.1

s2 868.94 345.26 303.68 65.05 12.04

s3 46.81 25.88 11.76 74.88 54.56

s4 218.15 132.55 87.93 59.69 33.66

s5 242.06 116.37 102.03 57.85 12.32

s6 1244.04 648.78 566.47 54.47 12.69

1 s1 832.36 349.93 272.63 67.25 22.09

s2 829.33 316.21 209.45 74.74 33.76

s3 49.48 29.62 19.71 60.17 33.46

s4 233.37 155.23 106.54 54.35 31.37

s5 246.86 123.38 89.9 63.58 27.14

s6 1197.72 505.05 502.65 58.03 0.48

2 s1 849.18 351.68 238.15 71.96 32.28

s2 851.63 344.38 222.88 73.83 35.28

s3 49.12 28.81 16.94 65.51 41.2

s4 222.53 144.08 95.3 57.17 33.86

s5 243.47 116.92 79.63 67.29 31.89

s6 1237.37 538.89 434.22 64.91 19.42

5 Conclusions and future research

In this research, we present a two-stage stochastic programming model that adds time buffers
to flight connections in order to make a schedule more robust to uncertain delays. By
“robust”, we mean that the schedule is more accommodating to changes in scheduled times
and has fewer delays propagated to downstream flights. To solve the two-stage model, we
present a solution framework that combines an outer approximation method with a delayed
column-generation routine. We conduct a thorough qualitative and quantitative analysis of
the proposed framework and report extensive computational results. To efficiently solve

123

418 Annals of Operations Research (2021) 305:403–421

Table 8 Total propagated delay improvements for different distributions

Distribution Average total propagated delay

Instance Original MDM TSM RR over
original
(%)

RR over
MDM
(%)

Exp(30) s1 2050.08 1562.11 1230.08 40 21.26

s2 1993.59 1336.85 1107.84 44.43 17.13

s3 141.43 87.52 55.89 60.48 36.14

s4 701.25 434.87 391.68 44.15 9.93

s5 599.99 411.45 330.68 44.89 19.63

s6 3281.99 2542.58 2113.81 35.59 16.86

LogNormal(30,15) s1 1966.24 1233.31 867.31 55.89 29.68

s2 1849.07 999.45 663.77 64.1 33.59

s3 116.12 46.47 24.7 78.73 46.85

s4 575.49 223.43 203.98 64.56 8.71

s5 580.18 378.54 210.44 63.73 44.41

s6 3187.22 2251.7 1619.3 49.19 28.09

TruncNormal(30,15) s1 2008.96 1204.15 903.91 55.01 24.93

s2 1919.41 900.75 693.00 63.84 22.95

s3 115.87 39.72 18.16 84.33 54.28

s4 615.21 238.11 207.77 66.23 16.26

s5 580.18 378.54 210.44 63.73 44.41

s6 3187.22 2251.7 1619.3 49.19 28.09

large-scale instances of the model, we adopt various software engineering techniques such
as caching and parallelism. Our results highlight that the operational delay reduction can be
significant using our proposed methodology compared to a deterministic approach.

There are several interesting directions for extending this work, and we highlight a few
here. First, the model can be made into a closer approximation of reality by considering more
business constraints such as maintenance events and crew-friendliness. Another direction
would be to study the scalability of our approach when more complex modifications such as
cancellations, diversions, and overbooking are allowed in the first-stage. We have observed
that, in practice, strategies to minimize delays can be quite diverse. While some airlines want
to spread out delays among several flights to prohibit exorbitant delays for a single flight, other
airlines want almost the exact opposite with the idea of minimizing the number of flights with
delays. Making our model flexible enough to allow such variety in rescheduling and delay
strategies is a worthwhile idea to pursue in the future. Also, from a modelling perspective,
appropriate risk-averse objectives other than the risk-neutral expectation function can be
evaluated in the second-stage.

Acknowledgements The authors would like to thank Sabre for providing the anonymized flight network data
that we used for the computational studies in this article.

123

Annals of Operations Research (2021) 305:403–421 419

Appendix

In this section, we report numbers used for the charts in Figs. 1, 2, 3 and 4.
Nomenclature common to all the following tables is listed below. All total propagated

values are reported in minutes.

– Instance name of instance.
– Original average total propagated delay for the original schedules.
– MDM average total propagated delaywith the schedule adjusted by themean delaymodel

solution.
– TSM average total propagated delay with the schedule adjusted by the TSM.
– RR over original (%) relative improvement of theMDM solution over the original (100×

(Original − T SM)/Original).
– RR over MDM (%) relative improvement of the TSM solution over the original (100 ×

(MDM − T SM)/MDM).

Table 9 Total propagated delay improvements for different distribution means

Distribution Average total propagated delay

Instance Original MDM TSM RR over
Original
(%)

RR over
MDM
(%)

Exp(15) s1 860.09 521.5 472.28 45.1 9.44

s2 853.49 453.26 395.58 53.65 12.73

s3 42.41 23.41 9.34 77.98 60.10

s4 235.08 155.06 122.52 47.88 20.99

s5 252.87 149.5 122.54 51.54 18.03

s6 1233.16 849.91 705.01 42.83 17.05

Exp(30) s1 2050.08 1562.11 1230.08 40 21.26

s2 1993.59 1336.85 1107.84 44.43 17.13

s3 141.43 87.52 55.89 60.48 36.14

s4 701.25 434.87 391.68 44.15 9.93

s5 599.99 411.45 330.68 44.89 19.63

s6 3242.44 2538.83 2125.24 34.46 16.29

Exp(45) s1 3504.48 2554.76 2286.38 34.76 10.51

s2 3079.29 1930.02 1818.79 40.93 5.76

s3 267.3 166.12 142.39 46.73 14.28

s4 1199.09 762.59 703.14 41.36 7.80

s5 1042.92 723.06 653.13 37.37 9.67

s6 5715.73 4359.76 3846.91 32.7 11.76

Exp(60) s1 5247.03 3922.66 3715.71 29.18 5.28

s2 4674.16 3045.3 2938.05 37.14 3.52

s3 412.07 280.51 257.87 37.42 8.07

s4 1825.04 1322.64 1168.95 35.95 11.62

s5 1437.66 1138.58 958.5 33.33 15.82

s6 8822.83 6750.83 6198.65 29.74 8.18

123

420 Annals of Operations Research (2021) 305:403–421

Table 10 Total propagated delay improvements for different numbers of training scenarios

Scenarios Average total propagated delay

Instance Original MDM TSM RR over
original
(%)

RR over
MDM
(%)

10 s1 1960.17 1115.96 846.1 56.84 24.18

20 1945.01 1146.31 830.28 57.31 27.57

30 1941.91 1112.12 831.43 57.18 25.24

40 1943.8 1123.35 812.97 58.18 27.63

50 1949.21 1117.64 806.86 58.61 27.81

10 s2 1857.88 811.84 614.34 66.93 24.33

20 1867.09 789.97 624.08 66.57 21

30 1851.5 929.35 605.88 67.28 34.81

40 1856.5 970.19 601.81 67.58 37.97

50 1845.01 938.06 609.64 66.96 35.01

10 s3 108.81 39.26 21.23 80.49 45.92

20 110.76 43.02 23.96 78.37 44.3

30 112.25 38.89 20.83 81.44 46.44

40 118.27 47.47 26.97 77.2 43.19

50 114.05 42.11 19.25 83.12 54.29

10 s4 587.27 212.83 183.25 68.8 13.9

20 583.26 189.41 161.75 72.27 14.6

30 610.97 202.41 184.06 69.87 9.07

40 580.37 194.53 163.15 71.89 16.13

50 586.65 188.69 168.23 71.32 10.84

10 s5 562.62 330.84 229.6 59.19 30.6

20 560.79 303.95 213.6 61.91 29.73

30 554.21 306.81 200.55 63.81 34.63

40 544.98 218.56 206.14 62.17 5.68

50 548.48 304.2 203.92 62.82 32.97

10 s6 3053.12 2143.16 1508.29 50.6 29.62

20 3082.73 2221.58 1560.49 49.38 29.76

30 3062.17 2137.81 1527.92 50.1 28.53

40 3099.17 2169.34 1518.15 51.01 30.02

50 3078.29 2086.7 1487.11 51.69 28.73

References

Ahmadbeygi, S., Cohn,A.,&Lapp,M. (2010).Decreasing airline delay propagation by re-allocating scheduled
slack. IIE Transactions, 42(7), 478–489.

Arıkan, M., Deshpande, V., & Sohoni, M. (2013). Building reliable air-travel infrastructure using empirical
data and stochastic models of airline networks. Operations Research, 61(1), 45–64.

Balas, E., & Padberg,M. (1975). On the set-covering problem: Ii. An algorithm for set partitioning.Operations
Research, 23(1), 74–90.

Balas, E., & Padberg, M. W. (1972). On the set-covering problem. Operations Research, 20(6), 1152–1161.
BTS: Bureau of Transportation Statistics. https://www.transtats.bts.gov/OTDelay/OTDelayCause1.asp

123

https://www.transtats.bts.gov/OTDelay/OTDelayCause1.asp

Annals of Operations Research (2021) 305:403–421 421

Chiraphadhanakul, V., & Barnhart, C. (2013). Robust flight schedules through slack re-allocation. EURO
Journal on Transportation and Logistics, 2(4), 277–306.

Dunbar, M., Froyland, G., & Wu, C. L. (2012). Robust airline schedule planning: Minimizing propagated
delay in an integrated routing and crewing framework. Transportation Science, 46(2), 204–216.

Dunbar, M., Froyland, G., & Wu, C. L. (2014). An integrated scenario-based approach for robust aircraft
routing, crew pairing and re-timing. Computers & Operations Research, 45, 68–86.

Froyland, G.,Maher, S. J., &Wu, C. L. (2013). The recoverable robust tail assignment problem. Transportation
Science, 48(3), 351–372.

Kang, L.S.: Degradable airline scheduling: an approach to improve operational robustness and differentiate
service quality. Ph.D. thesis, Massachusetts Institute of Technology (2004)

Klabjan,D., Schaefer, A.J., Johnson, E.L., Kleywegt, A.J.,&Nemhauser, G.L.: Robust airline crew scheduling.
In Proceedings of TRISTAN IV (pp. 275–280) (2001)

Lan, S., Clarke, J. P., &Barnhart, C. (2006). Planning for robust airline operations: Optimizing aircraft routings
and flight departure times to minimize passenger disruptions. Transportation science, 40(1), 15–28.

Marla, L., Vaze, V., & Barnhart, C. (2018). Robust optimization: Lessons learned from aircraft routing.
Computers & Operations Research, 98, 165–184.

Rosenberger, J. M., Johnson, E. L., & Nemhauser, G. L. (2004). A robust fleet-assignment model with hub
isolation and short cycles. Transportation Science, 38(3), 357–368.

Shebalov, S., & Klabjan, D. (2006). Robust airline crew pairing: Move-up crews. Transportation Science,
40(3), 300–312.

Tahir, A., Desaulniers, G., &El Hallaoui, I. (2019). Integral column generation for the set partitioning problem.
EURO Journal on Transportation and Logistics, 8(5), 713–744.

Talluri, K. T. (1996). Swapping applications in a daily airline fleet assignment. Transportation Science, 30(3),
237–248.

Van Slyke, R. M., & Wets, R. (1969). L-shaped linear programs with applications to optimal control and
stochastic programming. SIAM Journal on Applied Mathematics, 17(4), 638–663.

Weide, O., Ryan, D., & Ehrgott, M. (2010). An iterative approach to robust and integrated aircraft routing and
crew scheduling. Computers & Operations Research, 37(5), 833–844.

Yan, C., & Kung, J. (2016). Robust aircraft routing. Transportation Science, 52(1), 118–133.
Yen, J. W., & Birge, J. R. (2006). A stochastic programming approach to the airline crew scheduling problem.

Transportation Science, 40(1), 3–14.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	Robust flight schedules with stochastic programming
	Abstract
	1 Introduction
	2 Stochastic delay models
	2.1 Two-stage model
	2.2 Mean delay model

	3 Solution approach
	3.1 Column-generation framework
	3.2 Pricing problem
	3.3 Solution framework for the TSM

	4 Computational experiments
	4.1 Network data and experiment setup
	4.2 Results and insights

	5 Conclusions and future research
	Acknowledgements
	Appendix
	References

