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Abstract
In this paper we introduce a three factor model to price commodity futures contracts. This
model allows both the spot price volatility and convenience yield to be stochastic, nevertheless
futures prices can be obtained conveniently in closed form. Further, we use Brent crude oil
futures prices to calibrate the model using the extended Kalman filter. In comparison to
the benchmark model for commodity futures pricing, the Schwartz two-factor model, our
three factor model shows a superior fit for contracts that have longer maturities. We further
assess risk premia in Brent crude oil through the two models and observe that the Schwartz
two-factor model over-predicts risk premia in comparison to the new model.

Keywords Commodity futures · Stochastic volatility · Multi-factor models

JEL Classification C32 · G13 · Q02

1 Introduction

Crude oil is one of the most important fuel sources in the world and in consequence the crude
oil market is strongly linked to the performance of the global economy, financial markets
and energy policy (Kang et al. 2015; Zhu et al. 2015; Yao and Kuang 2019; Sun et al.
2020). Crude oil, either as an export or import product plays an important role in the macro-
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economy of many countries, among them most prominently are Saudi Arabia, Iraq, Norway,
U.S., Russia, and China. Crude oil is carefully monitored by policy-makers, consumers and
market participants. Unsurprisingly, crude oil futures have been one of the world’s most
actively traded commodity futures over the last decades.

Crude oil prices are highly volatile. Reasons for that may be changes in global demand and
supply, the global financial crises and its aftermath as well as military and political conflicts.
Examples of significant and sudden largemovements in the crude oil price include themarket
stress triggered by the Soviet war in Afghanistan in 1979, the following Iran hostage crisis
in 1980, the invasion of Kuwait in 1991 and the following Iraq war and the invasion of
Iraq in 2003, the sub-prime crisis in 2008, the Eurozone crisis in 2011, the recent economic
sanctions for Iraq and Venezuela in 2018, the bombing of oil installations in Saudi Arabia
in September 2019 and most recently the emergence of the COVID19 crisis . More recently,
the crude oil price dropped from a high of above $80 in September 2018 to a low of about
$50 in December 2018 in consequence of changes in the OPEC+ oil output policy and the
US-China trade war. After that, the price of crude oil fluctuated widely around $60 before
dropping to $20 on April 20th 2020 in the midst of the COVID19 crisis. After that it has
strongly recovered upwards to above $70 in June 2021.

Understanding the stochastic behaviour of commodity prices is vital for the valuation of
financial derivatives. In addition it is crucial for designing successful hedging and invest-
ment strategies (Schwartz 1997; Ewald and Ouyang 2017). As stated in Schwartz (1997),
knowledge about the shape of the forward curve, i.e. futures prices for differing maturities, is
essential for making optimal decisions. When it comes to commodity pricing, the presence
of convenience yield is always a prominent feature. Convenience yield acts as a continuous
dividend to the holder of the spot commodity. According to the theory of storage, there is
a negative relationship between supply/inventories and convenience yields (Brennan 1958).
Fama and French (1987) tested the theory of storage and found that the variation of con-
venience yield for most agricultural and animal products has seasonal behaviour. Pindyck
(2001) presented a framework that describes the cashmarket and the storagemarket to identify
the relationship between spot price, futures price, inventories and convenience yield. Brooks
et al. (2013) examined the theory of storage and extended the analysis of Fama and French
(1987) by using a much larger dataset which covers the period from early 1966 to mid-2010.
They confirmed that convenience yield plays an important role for most commodities.

In fact, many academic studies have considered convenience yield as an important factor
for commodity futures pricing. Schwartz (1997) and Cortazar and Schwartz (1997) presented
a one factor model to price futures, assuming that the convenience yield of commodities
is constant. However, a constant convenience yield represents a very strong assumption.
Schwartz (1997) took the stochastic nature of the convenience yield into account, presenting
a two factor model to price futures. Others, like Gibson and Schwartz (1990) and Schwartz
and Smith (2000) also treated the convenience yield as a stochastic variable in their own two
factor models. Schröder (1989) and Cortazar and Schwartz (2003) developed three factor
models, featuring stochastic interest rates. They demonstrated that in particular for longer
term futures contracts, the stochastic nature of interest rates can have a significant influence on
futures prices. Based on (Schwartz 1997; Hilliard and Reis 1998) extended the two factor and
three factor model by introducing jumps in the spot price of commodities. They found that a
deterministic convenience yield can lead to a significant error for the price of futures options.
Miltersen and Schwartz (1998) developed a new model that considers all of the information
in the initial term structures of both interest rates and futures prices. The convenience yield
of forward and futures was first distinguished in their paper. Casassus and Collin-Dufresne
(2005) studied a three-factor model containing spot price, convenience yield and interest
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rate. By using weekly data on crude oil, copper, gold, and silver futures contracts, they
detected a positive relationship between spot price and convenience yield. More recently,
Date et al. (2013) confirmed that the performance of one-factor models is relatively poor and
in consequence developed a multi-state regime switching model to determine futures prices.

A large number of empirical studies have shown that the distributions of returns of equities,
currencies and commodities have higher peaks and fatter tails than a normal distribution, see
(Gatheral 2011; Cassese and Guidolin 2006; Chiarella et al. 2016) for example. Even so, all
modelsmentioned above assume that the logarithmof spot prices followanormal distribution.
Mathematically, the reason for this is that these models assume constant volatilities in both
spot price and convenience yield of the commodity, essentially the same assumption as in the
Black-Scholes model. Although this assumption will make the pricing problem easier, time
series of observed volatilities reveal that volatility is variable and unpredictable. There are
a number of studies that take account of this. The most well known among these is Heston
(1993). The so called Heston model has an analytical solution for option prices. However,
most stochastic volatility models are developed with the intent of pricing options rather than
futures, while most stochastic convenience yield models consider futures rather than options.
The model present in this paper can therefore be considered as a hybrid of both worlds.

In this paper, we propose a new three factor model to determine the value for Brent crude
oil futures.1 It is based on the Schwartz (1997) two-factor model but allows for stochastic
volatility. Themodel provides a closed form solution for futures prices.Apositive relationship
between spot price and convenience yield is demonstrated, consistent with Casassus and
Collin-Dufresne (2005) and many others. Our model is also related to the more sophisticated
and more general three factor model presented in Ewald and Zou (2021). However, the latter
only presents semi-closed form solutions (relative to the solution of a Riccati differential
equation), while in our paper, thanks to some simplifications and assumptions on the market
prices of risk, a "true" closed form solution can be obtained.While the latter paper focuses on
its empirical application of modeling aquaculture products, the empirical application in the
current paper focuses onBrent Crude oil.We further compare the new three factormodel with
the benchmark (Schwartz 1997) model for pricing futures. All parameters in the models are
estimated for Brent crude oil daily spot prices by using the extended Kalman filter technique.
The same methodology has been successfully applied to calibrate one factor, two factor, and
three factor models for crude oil data in Schwartz (1997) and Schwartz and Smith (2000).
We find that our new three factor model provides a superior fit to the data.

Additionally, we assess risk premia estimated from our Brent crude oil data set. It is well
known, that risk premia play an important role in forecasting of spot prices. Understanding
commodity futures risk premia is also important, for their role in hedging and investment
decisions of companies and institutions (Szymanowska et al. 2014). A lot of research has
been done in this area. Longstaff and Wang (2004) found that there are significant risk
premia in electricity forward contracts, looking at high-frequency data. Erb et al. (2011)
provided evidence for a relationship between the future basis and risk premia. They also found
that past performance and roll yields are key to modeling the risk premium for commodity
futures. Gorton et al. (2013) studied the time-series variation and cross-sectional variation
in commodity futures risk premia and found that risk premia are determined by the level of
inventories of the commodity in the economy. Basu and Miffre (2013) found that the risk
premia rise with the volatility of commodity futures markets and depend on considerations

1 We chose Brent crude oil, as it provides a global benchmark. Oil sold internationally is typically priced off
Brent, see (Scheitrum et al. 2018). West Texas Intermediate (WTI), a reasonable alternative, is more geared
toward the US market. Nevertheless, our study could be easily adapted to cover WTI prices instead of Brent
crude oil.
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relating to both speculators’ hedging pressure and inventory levels. Szymanowska et al.
(2014) identified two types of risk premia of commodity futures, i.e., spot premia and term
premia. Hamilton and Jing Cynthia (2014) estimated time-varying risk premia on oil futures
and showed that the risk premia changed significantly with growing trade volume. Koijen
et al. (2018) assumed that the return can be constructed with carry and price appreciation and
found strong evidence of time-varying risk premia by using a set of predictive regressions
of future returns of each asset on its cost of carry. Hahn et al. (2018) followed Schwartz
and Smith (2000) and estimated the short and long term risk premia using a suitable asset
pricing model. Bakshi et al. (2019) suggested that the risk structure in commodity markets
is multidimensional in nature. They modelled the commodities return using three factors
(average, carry and momentum) and obtained a positive and sizeable risk premium from the
exposure of commodities to the carry andmomentum factors. Cifuentes et al. (2020) analyzed
the data of copper futures between October 2010 and June 2018 and find that both exchanges
exhibit a positive average risk premium for each maturity. Sakkas and Tessaromatis (2020)
suggested that the risk premium of commodities is a compensation for generally negative
performance during recessions. Baker (2021) found that risk premia can be reduced through
financialization when studying the crude oil market. In this paper, we show that relative to
our new three factor model, the Schwartz (1997) model overestimates risk premia for Brent
crude oil.

The remainder of this paper is structured as follows. In Sect. 2 we introduce our new
three factor model with stochastic volatility, we present both its theory and guidance for
its empirical application. Following that, in Sect. 3, we discuss the dataset and carry out
our empirical investigation. This includes a detailed discussion and interpretation of our
empirical results as well as benchmarking against the classical Schwartz (1997) two-factor
model. Consequences on differences in risk premia are discussed in Sect. 4. In Sect. 5 we
summarize the main conclusions.

2 Model

In this section, we present a three factor model for commodities featuring stochastic volatility
and stochastic convenience yield. Themodel is based on theSchwartz (1997) two factormodel
and extended to allow for stochastic volatility of Ornstein–Uhlenbeck type. We then derive
a formula for pricing futures contracts in this model.

2.1 Valuationmodel

Schwartz (1997) assumed that under the risk-neutral measure Q, the spot price of the com-
modity S and the instantaneous convenience yield δ follow the dynamics

dSt = (r − δt )Stdt + σ1StdW1, (1)

dδt = (κ(α − δt ) − λ)dt + σ2dW2. (2)

where r is the risk-free interest rate; κ is the mean reversion speed of the convenience yield;
σ1, σ2, α and λ are constants, denoting respectively the spot price volatility, the convenience
yield volatility, the long-term level of convenience yield, and the market price of convenience
yield risk; W1 and W2 are Brownian motions with correlation dW1dW2 = ρdt . This model
shows good performance in pricing commodity derivatives, and we will use this model as
the benchmark model.

123



Annals of Operations Research (2022) 313:29–46 33

In our model, both convenience yield δ and spot price volatility V follow the Ornstein–
Uhlenbeck stochastic process.

We assume that under physical measure P:

dSt = (μ − δt )Stdt + St VtdWS

dδt = (κ1(α − δt ))dt + σ1dWδ

dVt = (κ2(θ − σt ))dt + σ2dWV ,

(3)

with dWS · dWδ = ρ1dt , dWS · dWV = ρ2dt and dWδ · dWV = ρ3dt .
Under the pricing measure Q this becomes

dSt = (r − δt )Stdt + St Vtd ˜WS

dδt = (κ1(α̂ − δt ))dt + σ1d ˜Wδ

dVt = (κ2(θ̂ − Vt ))dt + σ2d ˜WV

(4)

with d ˜WS · d ˜Wδ = ρ1dt , d ˜WS · d ˜WV = ρ2dt and d ˜Wδ · d ˜WV = ρ3dt , where

α̂ = α − λ/κ1

θ̂ = θ − β/κ2.
(5)

Here λ and β denote the market price of convenience and volatility risk respectively.
Futures prices F(S, δ, V , T ) at current time 0 and time to maturity T must satisfy the fol-
lowing partial differential equation:

1

2
S2V 2FSS + 1

2
σ 2
1 Fδδ + 1

2
σ 2
2 FVV + Sσ1Vρ1FSδ + Sσ2Vρ2FSV + σ1σ2ρ3FδV

+(r − δt )SFS + (κ1(α̂ − δt ))Fδ + (κ2(θ̂ − Vt ))FV − FT = 0 (6)

subject to the terminal boundary condition F(S, δ, V , 0) = S.
The solution to Eq. (6) subject to its terminal boundary condition is as follows:2

F(S, δ, V , T ) = S exp(A(T ) + B(T )δ + C(T )V ), (7)

where

B(T ) = 1

κ1
(exp(−κ1T ) − 1) (8)

and

C(T ) = − σ1ρ1

b f κ1
(κ1 exp(bT ) + b exp(−κ1T ) − f ), (9)

where b = σ2ρ2 − κ2, f = b + κ1. The expression for A(T ) is provided in Appendix A.
Before we calibrate the three factor model, it is worthwhile to undertake a little bit of

comparative statics to see how key variables affect the futures price. We first plot the function
(V , T ) �→ F(δ, V , T ) for some fixed δ0, as shown in Fig. 1, which clearly demonstrates the
impact of volatility on futures prices. We further compare the three factor model with the
Schwartz (1997) two factor model.

Figure2 shows the futures prices obtained via our three factor model and the Schwartz
(1997) two factor model. In this case, the three factor model provides higher prices than the
two factormodel for longer time-to-maturities. For shorter time-to-maturities the effect is less
prominent and even negligible for very short time-to-maturities. The reason for stochastic
volatility to have a larger effect on the longer times-to-maturity contracts is of course that

2 This can be simply verified by substitution.
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Fig. 1 Futures price: a δ0 = −0.3; b δ0 = 0; c δ0 = 0.3 Note We obtain futures prices via the three factor
model by assuming S = 100, r = 0.06, σ1 = 0.5, σ2 = 0.5, κ1 = 0.5, κ2 = 1.8, α = 0.3, θ = 0.5, ρ1 = 0.8,
ρ2 = 0.3, ρ3 = 0.7, V0 ∈ [0, 1], T ∈ [0, 1]
123
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Fig. 2 The prices of futures contract Note we obtain futures prices via the three factor model and two factor
separately by assuming S = 100, δ0 = 0.5, V0 = 0.8, r = 0.02, σ1 = 1.1, σ2 = 1.1, κ1 = 1.1, κ2 = 5,
α = 0.3, θ = 3, ρ1 = 0.3, ρ2 = −0.7, ρ3 = 0.5, and T ∈ [0, 1]. The spot volatility in the two-factor model
is 1.1478 in this case

in this case volatility has more scope to grow, in the two-factor model volatility is tied to a
constant.

2.2 Empirical model

We assume that all three factors in our model, i.e., the commodity price S, the convenience
yield δ, and the spot price volatility V , are unobservable. Only the futures prices F can be
observed. The state space approach is a powerful way to deal with situations in which the
state variables are not observable. Once the model has been cast in state space form, model
parameters can be estimated by the filtering technique. The basic idea of filtering is simple:
based on Bayes theory, filters can use the information from current observations to predict
the values of unobservable variables at the next time point, and then update the information
and forecast the situation at the next time point (Pasricha 2006).

Under appropriate assumptions, the classical Kalman filter provides an optimal algo-
rithm for solving a system with unobserved state variables. However, it requires a normality
assumption for the posterior density at each point in time. The extended Kalman filter is
essentially a linearization around the current mean and covariance at the appropriate step in
the recursion. In consequence, using the extended Kalman filter, the measurement function
and the state function do not need to be linear anymore. Ourmodel can therefore be calibrated
with the extended Kalman filter. Beyond linearization, the main principles of the Kalman
filter algorithm and the extended Kalman filter algorithm will remain the same.

Let ft denote an (n × 1) vector of futures prices observed at time t and let �t denote a
(3 × 1) vector of state variables, i.e., the log spot price Xt , the convenience yield δt and the
volatility Vt . The state space representation can be written as

ft = ct + Zt�t + εt (10)

�t+1 = dt + Jt�t + ηt , (11)
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where Eq. (10) is the measurement equation with components

ft =
⎛

⎜

⎝

ln F(T1)
...

ln F(Tn)

⎞

⎟

⎠
, ct =

⎛

⎜

⎝

A(T1)
...

A(Tn)

⎞

⎟

⎠
, Zt =

⎛

⎜

⎝

1 B(T1) C(T1)
...

...

1 B(Tn) C(Tn)

⎞

⎟

⎠
(12)

and εt is an (n × 1) vector of serially uncorrelated disturbances with

E(εt ) = 0, Var(εt ) = R. (13)

Equation (11) represents the transition equation with components

�t =
⎛

⎝

X(t)
δ(t)
V (t)

⎞

⎠ (14)

dt =
⎛

⎝

μ
t + 1
2V

2
t−1
t

κ1α
t
κ2θ
t

⎞

⎠ (15)

Jt =
⎛

⎝

1 −
t −Vt−1
t
0 1 − κ1
t 0
0 0 1 − κ2
t

⎞

⎠ (16)

and ηt represents serially uncorrelated disturbances with

E(ηt ) = 0, Var(ηt ) =
⎛

⎝

σ 2
X (
t) σXδ(
t) σXV (
t)

σXδ(
t) σ 2
δ (
t) σδV (
t)

σXV (
t) σδV (
t) σ 2
V (
t)

⎞

⎠ , (17)

where 
t = tk+1 − tk represents the time interval in the discretization and Ti denotes the
given and fixed maturity of the i-th closest-to-maturity futures contract. The functions B(T )

and C(T ) are defined in Eqs. (8) and (9) respectively, and A(T ) is illustrated in Eq. (21) in
Appendix A.

3 Data and estimation

We use price data for Brent crude oil futures to calibrate the proposed model. The empirical
results are discussed.

3.1 Data

Our data set consists of 2214 daily futures prices of Brent crude oil from 26/04/2010 to
28/01/2019. Taking liquidity and presence into consideration, five contracts, i.e., F1, F3, F5,
F7, and F9, are chosen to construct the panel data in the empirical study. We follow Schwartz
(1997) denoting F1 as the contract closest to maturity (with average maturity of 0.040 year)
counting up to F9 which represents the contract farthest to maturity (with average maturity
of 0.705 years). Table 1 describes some features of the sample contracts.

In this paper, weekends and other non-trading days are omitted, which means that the
trading days are considered to be continuous. Based on the efficient market hypothesis,
relevant information from non-trading days (e.g. weekends and holidays) will be reflected
in the prices after the non-trading day. The other assumption is that each future contract will
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Table 1 Descriptive statistics, 26/04/2010–28/01/2019

F1 F3 F5 F7 F9

Mean 81.67 81.64 81.68 81.64 81.52

Median 78.64 78.91 79.61 80.40 81.22

Maximum 126.65 125.64 124.63 123.68 122.84

Minimum 27.88 29.38 30.84 32.15 33.32

Std. Dev. 26.87 26.06 25.35 24.73 24.18

Skewness –0.07 0.07 –0.08 –0.08 –0.08

Kurtosis 1.51 1.50 1.50 1.49 1.48

Mean maturity (year) 0.040 0.206 0.372 0.539 0.705

Observations 2214 2214 2214 2214 2214

Descriptive statistics of daily futures prices in the whole sample. We use a similar notation as in Schwartz
(1997) and denote with F1 the contract closest to maturity counting up to F9 which represents the contract
farthest to maturity. Data are available through Bloomberg

be executed immediately at maturity. In other words, the last trading day of the contract is
chosen to represent the expiration date. Based on this assumption, the length of the maturity
can be accurately measured.

3.2 Empirical results

As indicated before, we can use the extended Kalman filter to calibrate the model once it
has been cast in the state space form. We use our sample data ranging from 2010 to 2019
and choose the average rate for 10-year U.S. treasury notes during the sample period as the
risk-free rate r; it is of 2.38%. The results of the calibration are shown in Table 2. Table 3
presents the evaluation of the model fit.

As shown in Table 2, the mean reversion speed of spot price volatility κ2 is much higher
than that of the convenience yield κ1. This means that shocks to the convenience yield, which
could indeed be tied to supply and demand, are much more persistent than pure volatility
shocks, which may be caused by the availability of new information. Moreover, the estimated
level of spot volatility (σ2) and that of the convenience yield (σ1) are quite close. It is alsoworth
noting that the correlation coefficients between all three factors are positive. Specifically, a
strong positive correlation between spot price and convenience yield (ρ1 = 0.8939), which
supports the theory of storage; the expected return (μ), and the market price of risk (λ and β)
are all positive, which indicates compensation is required for bearing the corresponding risk.
Figure3 depicts the state variables spot price S, convenience yield δ and spot price volatility
V , filtered by the model. From there we can observe a positive correlation between variables.

Figure4 shows the term structure of Brent crude oil, where the left part displays the actual
term structure and the right part displays the model generated term structure. Overall, our
model performs very well: the model generated forward curves match the actual forward
curves and the filtered spot price is near the price of the closest-to-maturity futures. We also
compare the fitted futures price with the actual futures price, and find that our model can
provide a very good fit to market prices, see Fig. 5.

Following Schwartz (1997), we further evaluate the performance and robustness of the
model by using contracts that are not used in the calibration, i.e., F2, F4, F6 and F8, namely
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Table 2 Parameter estimates for
the three factor model

Parameter Estimate

μ 0.2740

κ1 0.8780

κ2 2.3369

σ1 0.1632

σ2 0.1900

ρ1 0.8939

ρ2 0.3456

ρ3 0.6980

α 0.0888

θ 0.4742

λ 0.1038

β 2.6931

Table 3 MAE and RMSE of log
price: 26/04/2010–28/01/2019

F1 F3 F5 F7 F9 ALL

MAE 0.0062 0.0017 0.0002 0.0004 0.0005 0.0018

RMSE 0.0084 0.0023 0.0004 0.0008 0.0008 0.0039

The mean absolute error (MAE) and root-mean-square error (RMSE)
are used to evaluate the fit of the three-factor model

Fig. 3 State variables: (i) spot price; (ii) convenience yield; (iii) spot price volatility

cross-section evaluation. Table 4 reports the MAE and RMSE. In general, the performance
is still very good and robust.

3.3 Comparison with Schwartz (1997) two factor model

As mentioned before, the Schwartz (1997) two factor model serves as a benchmark model
for our work. Therefore, we use the same data set to calibrate this classical model. Estimation
results are reported in Table 5. Compared to the parameter values in Table 2, we can find that
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Fig. 4 Term structures: actual forward curves on the left, model generated forward curves on the right

Fig. 5 Fitted versus actual futures price

Table 4 Cross-section test of log
price: 26/04/2010–28/01/2019

F2 F4 F6 F8 ALL

MAE 0.0032 0.0011 0.0011 0.0012 0.0016

RMSE 0.0042 0.0017 0.0016 0.0017 0.0026

The mean absolute error (MAE) and root-mean-square error (RMSE)
are used to evaluate the three-factor model’s performance considering
F2, F4, F6 and F8
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Table 5 Parameter estimates for
the two factor model

Parameter Estimate

μ 0.2752

σ1 0.3310

κ 0.7912

α 0.1299

σ2 0.1530

ρ 0.8482

λ 0.0956

Table 6 In-sample comparison of
log price:
26/04/2010–28/01/2019

F1 F3 F5 F7 F9 ALL

Two factor model

MAE 0.0020 0.0017 0.0015 0.0008 0.0015 0.0015

RMSE 0.0028 0.0023 0.0021 0.0011 0.0020 0.0021

Three factor model

MAE 0.0062 0.0017 0.0002 0.0004 0.0005 0.0018

RMSE 0.0084 0.0023 0.0004 0.0008 0.0008 0.0039

The mean absolute error (MAE) and root-mean-square error (RMSE)
are used to evaluate the model fit

the estimates3 are close to each other except for the spot price volatility. In the two factor
model, the spot price volatility σ1 is a constant, while in our three-factor model it is treated as
a stochastic variable. Nevertheless, the long run mean of spot volatility θ in the three factor
model is close to σ1 in the two factor model, so the estimates are consistent. Moreover, the
effectiveness of the model as well as the comparison between the two-factor and the three-
factor model, is given in Tables 6 and 7. Table 6 contains an in-sample comparison of F1, F3,
F5, F7 and F9; while Table 7 contains a cross-section comparison of F2, F4, F6 and F8, i.e.,
the contracts that are not used in the calibration. According to these results, we may conclude
that both models are useful in pricing Brent crude oil. Nevertheless, as shown in Table 6, the
MAE and RMSE for futures contracts with longer maturity (F3 and above) are much smaller
when using the three factor model, indicating that our model is more effective in dealing
with contracts that have longer maturities. However, the two factor model performs slightly
better than the three factor in cross-section comparison, see Table 7.

4 Risk premium

In this section we investigate the futures risk premium for Brent crude oil. The risk premium
can be defined as the extra payoff required by a risk averse agent relative to a risk neutral
agent. Mathematically it corresponds to the difference of the expected spot price under the

3 In terms of the actual meaning of parameter, we should compare μ in the two factor model with μ in the
three factor model; κ in the two factor model with κ1 in the three factor model; α in the two factor model with
α in the three factor model; σ2 in the two factor model with σ1 in the three factor model; ρ in the two factor
model with ρ1 in the three factor model and λ in the two factor model with λ in the three factor model.
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Table 7 Cross-section
comparison of log price:
26/04/2010–28/01/2019

F2 F4 F6 F8 All

Two factor model

MAE 0.0011 0.0010 0.0008 0.0010 0.0010

RMSE 0.0015 0.0014 0.0012 0.0014 0.0014

Three factor model

MAE 0.0032 0.0011 0.0011 0.0012 0.0016

RMSE 0.0042 0.0017 0.0016 0.0017 0.0026

The mean absolute error (MAE) and root-mean-square error (RMSE)
are used to evaluate the model fit of cross-section

real-world measure and the expected spot price under the risk neutral (pricing) measure:

π(T ) = E(S(T )) − EQ(S(T )) (18)

Here EQ(S(T )) can be identified with the futures price F .
The futures risk premium derived from our three factor model is given by

πThree
T = F(S, δ, V , T ) ·

(

exp

(

(μ − r)T − λ

(

T

κ1
+ e−κ1T − 1

κ2
1

)

− 1

+ β

[

(κ1 − κ2)σ1ρ1T

bf κ1
+ σ1ρ1(1 − ebT )

b2 f
+ (κ2σ1ρ1 − σ1σ2ρ1ρ2)(eκ1T − 1)

b f κ2
1 e

κ1T

]

)

− 1

)

.

(19)

As a comparison the futures risk premium in the Schwartz (1997) two factor model is
given by

πTwo
T = F(S, δ, T ) ·

(

exp

[

(μ − r)T − λ

(

T

κ
+ e−κT − 1

κ2

)]

− 1

)

. (20)

A descriptive statistics of the two risk premia based on the two-factor and three-factor
models is provided in Table 8. Compared to the Schwartz (1997) two factor model, the risk
premium associated with the three factor model is lower. The risk premia obtained from both
models and the difference between them are presented in Fig. 6. Comparing expression (19)
and (20) we see that the market price of volatility risk β along with the various correlations
and the difference in the speed of mean reversion in convenience yield and volatility mainly
determine the difference in the risk premia formula. This is important to keep in mind when
using our model or the Schwartz (1997) model for forecasting. The conclusion that we can
draw from our results here is that the Schwartz (1997) model generally forecasts with an
upward bias as compared to our model.

5 Conclusion

In this paper, we developed a new three factor model to price commodity futures contracts,
which allows not only convenience yield but also volatility to be stochastic. This new three
factor model has a closed form solution for future prices. We have calibrated our model
to price data for Brent crude oil using extended Kalman filter methodology. Our empirical
results demonstrate that our three factor model can fit market prices very well and better than
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Fig. 6 Risk premium: a two factor model; b three factor model; c difference
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Table 8 Descriptive statistics:
risk premia,
26/04/2010–28/01/2019

F1 F3 F5 F7 F9

Two factor model

Mean 0.82 4.19 7.49 10.73 13.90

Median 0.72 4.20 7.47 10.70 13.99

Maximum 2.57 7.39 12.47 17.19 21.87

Minimum 0.00 1.01 2.42 3.90 5.49

Std. Dev. 0.59 1.44 2.41 3.33 4.20

Skewness 0.64 0.08 –0.04 –0.06 –0.06

Kurtosis –0.37 –1.12 –1.34 –1.42 –1.46

Three factor model

Mean 0.78 3.94 6.87 9.50 11.78

Median 0.69 3.96 6.83 9.46 11.86

Maximum 2.44 6.92 11.37 15.08 18.28

Minimum 0.00 0.95 2.24 3.51 4.75

Std. Dev. 0.56 1.35 2.20 2.93 3.54

Skewness 0.64 0.08 –0.05 –0.07 –0.07

Kurtosis –0.38 –1.13 –1.36 –1.44 –1.48

Descriptive statistics of daily futures risk premia based on Schwartz two
factor model and our three factor model. We use a similar notation as
in Schwartz (1997) and denote with F1 the contract closest to maturity
counting up to F9 which represents the contract farthest to maturity

the conventional (Schwartz 1997) two factor model. We further detect a positive relationship
between spot price and convenience yield, which provides empirical evidence for the theory
of storage. Furthermore, we have assessed the two models in terms of their predicted risk
premia and observed that relative to our model, the Schwartz (1997) overestimates risk
premia. Our results are important for the valuation of financial derivatives aswell as designing
hedging and investment strategies. This study can be extended in a number of ways. One is
to include a structural break, possibly in a regime-switching framework. Another is to study
how financialization of commodities affects commodity prices.
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A explicit expression for A(T)

A(T ) = A1 + A2 + A3 + A4 + A5 + A6 − A7 (21)

A1 = rT − α̂T − α̂e−κ1T

κ1
(22)

A2 = κ2θ̂σ1ρ1T

bf
− κ2θ̂σ1ρ1ebT

b2 f
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b3 f 2
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