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Abstract
Cascade disasters can destroy urban infrastructures, kill thousands of people, and perma-
nently displace millions of people. The paramount goal of disaster relief programs is to 
save lives, reduce financial loss, and accelerate the relief process. This study proposes a bi-
level two-echelon mathematical model to minimize pre-disaster costs and maximize post-
disaster relief coverage area. The model uses a geographic information system (GIS) to 
classify the disaster area and determine the optimal number and location of distribution 
centers while minimizing the relief supplies’ inventory costs. A simulation model is used 
to estimate the demand for relief supplies. Initially, vulnerable urban infrastructures are 
identified, and then the interaction among them is investigated for cascade disasters. The 
aims of this study are threefold: (1) to identify vulnerable urban infrastructures in cascade 
disasters, (2) to prioritize urban areas based on the severity of cascade disasters using a 
GIS, and (3) to develop a bi-objective multi-echelon multi-supplies mathematical model 
for location, allocation, and distribution of relief supplies under uncertainty. The model 
is solved with an epsilon-constraint method for small and medium-scale problems and the 
invasive weed optimization algorithm for large-scale problems. A case study is presented 
to demonstrate the applicability and efficacy of the proposed method. The results confirm 
the difficulty of relief operations during the night as the cost of night-time relief operations 
is higher than daytime. In addition, the results show the coverage area increases as the 
demand surges. Therefore, establishing more distribution centers will increase operating 
costs and expand coverage are.
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1 Introduction

Cascading disasters are high-impact events that progress over time and produce subsequent 
unanticipated disasters intensified by physical and social infrastructure breakdown. Cascading 
effects can destroy transportation and communications systems and have irreparable effects 
on the and infrastructure. Cascading disasters’ side effects can sometimes be more severe and 
destructive than the primary disaster (Gong et al., 2020; Tang et al., 2019). For example, Japan 
was hit by a tsunami that damaged a nuclear power plant (Ohnishi, 2012; Yamashita & Shige-
mura, 2013). This cascading disaster killed thousands, or a flood in central Europe in 2002 led 
to the emission of toxic and dangerous gases from a nuclear power plant (Pescaroli & Alexan-
der, 2015).

One of the main strategies in increasing disaster relief operations’ efficiency and reduc-
ing delays and shortages is the pre-positioning of distribution centers and establishing these 
centers to distribute relief supplies (Ghasemi et al., 2019a, b; Goodarzian et al., 2020). Deter-
mining the location of distribution centers and deciding on the inventory stored in these cent-
ers, allocating distribution centers to the affected areas, and mapping the flow between dis-
tribution centers and demand points are essential measures in the pre-disaster preparedness 
phase (Barzinpour & Esmaeili, 2014; Goodarzian et  al., 2021). The planners must identify 
suitable and safe locations for establishing distribution centers during the preparedness phase 
(Baser & Behnam, 2020; Du et al., 2020). Uncertainty in demand for relief supplies during the 
occurrence of a disaster has always been a significant problem in disaster relief (Baharmand 
et al., 2019). Shortage of relief supplies can directly impact efficiency during cascade disasters 
(Zhang et al., 2019). The severity of the destruction directly correlates with the needed sup-
plies’ quantity (Hasani & Mokhtari, 2018). The number of vulnerable infrastructures in large 
cities often complicates forecasting demand and relief operations (Sarma et al., 2020). Disas-
ter relief operations can be managed more efficiently if vulnerable urban infrastructures can be 
identified and carefully studied before a cascade disaster (Oh et al., 2010).

This study presents a bi-level stochastic model for locating distribution centers, allocating 
them to the demand points, and managing the flow of relief supplies in the event of cascade 
disasters, including earthquakes, floods, and radiological incidents. The objectives of this 
study are to minimize pre-disaster costs and maximize post-disaster coverage area. The aims 
of this study are threefold. The first aim is to identify vulnerable urban infrastructures in cas-
cade disasters such as floods, earthquakes, and radiological incidents. The second aim is to 
prioritize urban areas based on the severity of cascade disasters using a geographic informa-
tion system (GIS). And the third aim is to develop a bi-objective multi-echelon multi-supplies 
mathematical model for location, allocation, and distribution of relief supplies under uncer-
tainty. The remainder of this paper is organized as follows. Section 2 presents the literature 
review. The problem is described and formulated in Sect. 3. Section 4 presents the simulation 
model. The mathematical model and solution methods are described in Sects. 5 and 6. We 
present a case study in Sect. 7 to demonstrate the applicability and efficacy of the proposed 
method. Section 8 concludes with our conclusions and future research directions.

2  Literature review

Yang et al. (2021) presented a dynamic multi-objective mathematical model for the pre-
disaster supply chain management by considering the time-variant penalty function for the 
lost times in the relief operation. Their primary objective was to locate the relief supplies 
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and minimize the supply chain costs using a robust optimization model to handle uncertain 
demand. They accomplished this objective by transforming their non-deterministic model 
into a deterministic chance-constrained model. Zhan et al. (2021) proposed a mathematical 
model for disaster logistics management problems with unbalanced demand and supply for 
relief supplies. Their model handled the demand–supply imbalance in disaster relief supply 
chains, located the distribution centers, and delivered the necessary needs to the affected 
areas. Arslan et  al. (2021) used a cycle-canceling algorithm and a branch-price-and-cut 
method to address refugee camp location analysis in disasters and minimize the camps’ 
reopening costs and routing. The results showed that as the number of refugees increases in 
the camps, the supply chain costs rise exponentially.

Yu (2020) presented a multi-objective mathematical model for locating facilities in the 
disaster preparedness phase by considering max-flow and shortest path concepts. This 
model aims to maximize the minimum reachability guarantee and minimize location costs 
while road destruction is considered an uncertain parameter. Velasquez et al. (2020) pre-
sented a robust two-stage model for disaster management in the southeast United States. 
The location of distribution centers and the pre-positioned amount of relief supplies were 
determined in the first stage. The distribution of relief supplies to the affected areas was 
designated in the second stage. The first stage was related to the pre-disaster phase, and 
the second stage was associated with the post-disaster phase. The main objective of the 
model is to minimize the pre-disaster and post-disaster costs. They solved this model with 
the column-and-constraint generation algorithm. Erbeyoğlu and Bilge (2020) presented a 
two-echelon mixed-integer linear model for locating and determining warehouses’ inven-
tory levels in the pre-disaster phase. Minimizing the costs of transporting, locating, and 
determining the inventory levels were the model’s objectives. The model was solved with 
the Benders decomposition approach considering service adequacy and fairness.

Ghasemi et al., (2019a, b) presented a multi-objective stochastic model for distribution 
management and evacuation planning during earthquake disasters. Simulation was used to 
estimate uncertain demand, and the non-dominated sorting genetic algorithm II (NSGA-
II) was utilized to solve the problem. Doodman et al. (2019) presented a multi-objective 
two-stage stochastic model for pre and post-disaster planning. Equity and fairness were 
considered in the proposed model, in addition to improving the costs of relief. Their main 
idea was to consider lateral transshipment under uncertainty and the possibility of failure 
of distribution centers. The relief costs were minimized in the first level of the model, and 
the victim’s satisfaction was considered in the second level of the model. Doan and Shaw 
(2019) investigated resource allocation when several disasters coincide. Risk analysis of 
the accessibility to the relief resources is done according to limited resources. The objec-
tive is to reduce the risk of a shortage of resources and minimize the risk of buying addi-
tional resources.

Cao et al. (2018) presented a multi-objective model for the distribution of relief supplies 
in the event of a disaster. Considering the sustainability of disaster and calculating the ben-
eficiary perspective on sustainability are among their contributions. Minimizing deviation 
on perceived satisfaction for distribution centers is the most important objective in their 
proposed relief chain. Finally, the genetic algorithm was used to solve the model. Feng and 
Xiang-Yang (2018) developed the concepts of relief in cascade disasters using case-based 
reasoning. The results indicated that the proposed approach anticipated and addressed 
the possible escalations of secondary disasters. The case study was a Typhoon in China, 
which included winds and heavy rains that could cause landslides, water supply failure, 
and power outage. Haghi et al. (2017) presented a robust multi-objective model for man-
aging the pre and post-disaster distribution of relief supplies. The considered uncertainty 
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included demand and transportation costs. Considering the failure of distribution centers 
was one of their most important contributions. Their most important objective was to min-
imize the preparedness phase’s costs and increase the disaster victims’ satisfaction. The 
NSGA-II and multi-objective genetic simulated annealing (MOGASA) algorithms were 
used to solve the problem.

Berariu et al. (2015) examined the effect of cascade disasters on disaster relief opera-
tions. They identified vulnerable urban infrastructures, considered transportation, electric-
ity, and healthcare infrastructures, and investigated the disaster’s cascading effect using 
system dynamics. Oh et al. (2010) examined the effect of natural disasters on vulnerable 
urban infrastructures and industries. They examined the impact of disasters on education, 
agriculture, and banking by studying water, gas, electricity, and transportation infrastruc-
tures (Table 1).

3  Problem description

Disaster relief logistics management is the timely delivery of sufficient relief supplies to 
pre-positioned areas. The efficient distribution of relief supplies requires that distribu-
tion centers be established in appropriate and pre-positioned locations. This study pre-
sents a two-echelon mathematical model, including distribution centers and affected areas 
(demand points). This research aims to maximize the covered areas and minimize the costs 
of establishing distribution centers and transportation costs in the preparedness phase, 
while more populated areas are a priority. In addition to the distribution centers’ location, 
the supplies’ quantity transported from the distribution centers to the affected areas, the 
supplies’ quantity stored in the distribution centers, the allocation of distribution centers 
to the affected areas, and the shortage of relief supplies are examined. The demand for 
relief supplies has been considered uncertain. The distribution functions of demand for 
relief supplies are estimated by simulation based on the severity of each area’s destruction 
and population. The considered relief supplies include food, tents, water, medicine, and 
blankets that do not require special maintenance equipment. The distribution function of 
demand for relief supplies is the simulation model output, which enters the mathematical 
model as a parameter. Figure 1 shows a view of the proposed disaster relief chain.

Figure 1 shows the location-allocation and distribution of relief supplies in two echelons 
includes distribution centers and demand points. Different colors are used to indicate the 
severity of destruction in different geographical areas determined by the GIS. The ARC-
GIS software and RADIUS model are used to divide the considered area into different sec-
tions. This software provides a powerful platform for damage estimation functions. The 
Japan International Cooperation Agency (JICA) database is utilized in the GIS to retrieve 
the population of the area, the number of buildings, the type of structure, and the type of 
soil, among others.

Figure 2 presents the proposed framework. The first step is to identify the urban infra-
structures affected by the disaster. ARC-GIS and the RADIUS model are used to deter-
mine the destruction severity of the vulnerable urban areas. Next, the interactions among 
the infrastructures are examined using the simulation model and Enterprise Dynamic (ED) 
software. The simulation model provides an estimate of the demand for relief supplies. The 
distribution functions of the estimated relief supplies are used in the mathematical model 
as uncertain parameters. The chance-constrained programming approach is used to con-
vert uncertain results into precise outputs. The proposed model is then solved by an exact 
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model and GAMS software for small and medium-scale problems and by a multi-objective 
invasive weed model and MATLAB software for large-scale problems.

4  Simulation model

This section presents the simulation model used to estimate the demand for relief supplies.

Fig. 1  Relief chain configuration
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4.1  Infrastructure vulnerability analysis

Five types of flows have been used in designing the interaction among the urban infrastruc-
tures according to Table 2 (Abhijeet et al., 2011; Baloye & Palamuleni, 2017; McCormak 
et al., 1997):

a. Population flow representing shelters, hospitals, and healthcare infrastructures.
b. Cash flow representing agricultural and economic infrastructures.
c. Material flow representing transportation infrastructures, bridges, and supply chains.
d. Energy flow representing infrastructures of water, gas, electricity, and dams.
e. Information flow representing communication infrastructures.

The interaction of the three phenomena of earthquake, flood, and radiological inci-
dents are depicted in Fig. 3. This figure shows earthquakes can lead to “transportation 
infrastructure destroyed.” This is followed by “destroyed supply chain” and “global pro-
duction loss,” which lead to demand for relief supplies such as “water, food, medicine, 
blanket, and tent.” Earthquakes can also lead to “building damage,” in which case relief 
supplies such as “water, food, medicine, blanket and tent” are needed. If an earthquake 
causes “dam failure,” there will be demand for “water,” and if it causes “gas supply 

Fig. 2  Proposed framework
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destruction,” there will be demand for “water and blanket.” If an earthquake causes 
“fire,” a “temporary shelter” needs to be established, which in turn leads to the demand 
for supplies such as “water, food, medicine, and blanket.”

When an earthquake occurs, a “flood” may occur due to changes in the underground 
layers and heavy rainfall, and even dam destruction. The flood can cause “sewer destruc-
tion” and “water supply destruction,” which lead to demand for “water.” After a flood, 
a “shortage of healthcare resources” may occur, which increases the demand for “medi-
cine” and “hospital destruction,” which also increases the demand for “medicine, tent, 
and blanket.”

Earthquakes can damage “nuclear facilities.” In addition to earthquakes, floods can 
damage nuclear power plants by causing damage to the power generator. “Nuclear 
power plant incident” leads to exposure to “radiations,” which can have “long-term 
effects on agriculture and fishing” and “food exports,” which increases the demand for 
“food.” Nuclear radiations also cause “harm to people,” leading to demand “water, food, 
medicine, blankets, and tents.” In addition, if the nuclear effects intensify, there may be 

Table 2  Vulnerable urban flows and infrastructures

Urban flow Urban system

Population flow Shelter—buildings—hospitals and healthcare system
Cash flow Agriculture system—global production loss
Material flow Transportation system—bridges-supply chains
Energy flow Gas supply system—electricity supply chain—water 

supply system—dam system

Fig. 3  Interaction of vulnerable urban infrastructures in the event of a cascade disaster
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“fires,” which lead to demand for “water, food, medicine, and blankets” after the estab-
lishment of temporary shelters.

4.2  Infrastructures interaction simulation

ED software is very powerful in simulating discrete event systems. The atoms in the ED 
software can cover all simulation processes. One of this software’s successful applications 
is given in Shahabi et al. (2019) and Rooeinfar et al. (2019).

Figure 4 depicts a view of the infrastructure interaction simulation structure in the event 
of cascading disasters in the ED software. Thirty-four atoms are used to simulate the pro-
posed structure in the simulation software. This includes 32 servers, a source, and a sink. 
In simulating the proposed structure, each earthquake synapse is considered an entity. The 
disaster starts with an earthquake, and an earthquake will cause a flood. Flood and earth-
quake will simultaneously affect nuclear facilities. Therefore, the earthquake is considered 
a source atom, and flood and “nuclear power plant” are considered servers. There are also 
five atoms related to relief supplies, including blankets, water, food, tents, and medicine. 
These atoms count the amount of demand for relief supplies from each scenario. In this 
study, one blanket, 2  L of water, 2  kg of food, 0.125 tents, and 0.2  kg of medicine are 
considered per person daily. The simulation method considered in this study is a separate 
run. The simulation’s warm-up period is 10,000 h, the observation time (simulation time) 
is 100,000 h, and the number of replications is five in this study. The warm-up period is 
before the simulation starts collecting results (Grassmann, 2014; Law, 2020). The meas-
urement performance function includes AvgContent (cs) and Output (cs). The AvgContent 
(cs) index represents the interaction between the simulation infrastructures, and Output (cs) 
index represents the demand for relief supplies and system output. The separate run simu-
lation conduct conducts and collects data on concurrent simulations.

The time interval between synapses (inter-arrival time) in the simulation is considered 
equal to the negative exponential function with parameter 20. The entry time for the first 
entity (synapse) until the start of the simulation time is zero. The number of entities (num-
ber of products) is also considered unlimited. Also, in the server atom (flood) case, consid-
ering that it has one input channel and eight output channels, the batch value is equal to 8, 
and the batch rule is “1 in B out”. The input channel to this server has been “earthquake.” 
The output channels include “power generator failure,” “sewer destruction,” “water supply 

Fig. 4  Structure of simulation model
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destruction,” “shortage of healthcare resources,” “hospital destruction transportation,” 
“destroyed infrastructure,” “damage of communication network,” and “building damage.”

4DScript codes are used to calculate the interaction among the infrastructures. For 
example, the calculation of 4DScript codes for gas supply destruction atom is based on 
Eq. (1) (Goda et al., 2016):

where Rm(PGV) = damage ratio (points∕km) , PGV: Peak Ground Velocity (kine = cm/
sec), R(PGV) = 3.11*10−3*(PGV − 15)1.3 , Cp = pipeline material coefficient . 
Cg = ground condition coefficient , Cl = liquefaction coefficient,

The values of the parameters in this equation vary based on the pipelines’ material and 
are determined based on Table 3.

As mentioned, Eq. (1) shows the extent of earthquake damage to the gas infrastructure 
based on peak ground velocity (PGV). The reason for using the PGV index to show the 
extent of damage to gas pipelines is that it has a relatively high correlation relative to peak 
ground acceleration (PGA). Figure 5 shows the damage function estimate for welded gas 
pipelines in Iran. In this figure, the vulnerability of natural gas pipelines exposed to seismic 
wave propagation is assessed and evaluated (Komak Panah & Hafezi Moghadas, 1993).

5  Mathematical modeling

Indices

r = 1, 2,… ,R Urban sub-regions.
c = 1, 2,… ,C Relief supplies.
a = 1, 2,… ,A The horizontal axis of the map.
b = 1, 2,… ,B The vertical axis of the map.
e = 1, 2,… ,E The severity of the disaster (failure) is shown in different colors.
i = 1, 2,… , I Distribution centers.
s = 1, 2,… , S Scenario.
Parameters

(1)Rm(PGV) = R(PGV) ⋅ Cp ⋅ Cg ⋅ Cl

Table 3  The values of the 
parameters based on the material 
of gas pipelines

Parameters Material of pipelines Parameter value

Cp Concrete 1
Steel 0.3
Ductile iron 0.3
Galvanized iron 1
Polyethylene 0.1
High density polyethylene 0

Cd For less than 90 mm 1.6
For 100 mm to 175 mm 1
For 200 mm to 450 mm 0.8
For over 500 mm 0.5

Cg For Yd, Sd, Ym 1.5
For Qal, Ksf, Qa, Q 1
For others 0.4
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pe(a,b)s 1 if the coordinates (a, b) in the scenario s are under the severity e, otherwise it is 
0.
ar(a,b)s 1 if the coordinates (a, b) in scenario s belong to sub-region r, otherwise it is 0.
gir(a,b),(a� ,b�)s 1 if the distribution center i in (a, b) ∈ r is allowed to serve 

(
a′, b′

)
 ∈ r in sce-

nario s, otherwise it is 0 gir(a,b),(a� ,b�)s = ar(a,b)s ⋅ ar(a� ,b�)s ∀i, r, (a, b) ∈ r,
(
a�, b�

)
∈ r, s

ci(a,b)s The setup cost of the distribution center i located in coordinates (a, b) in the sce-
nario s.
L(a,b),(a� ,b�) The distance between the coordinates (a, b) and the coordinates 

(
a′, b′

)
.

tccs Transportation cost of relief supplies c per distance unit in scenario s.
csc(a,b)s Shortage cost of relief supplies c in coordinates (a, b) in scenario s.
vc The volume of relief supplies c.
capis The capacity of the distribution center i in scenario s.
hic(a,b)s Holding cost of relief supplies c in the distribution center i placed in the coordi-
nates (a, b) in the scenario s.
Pop(a,b) Population size in coordinates (a, b).
D′

ces
 Coefficient of demand of relief supplies c is at the severity level e in the scenario s.

Dc(a,b)s Demand for relief supplies c in coordinates (a, b) in the scenario s 

Dc,(a,b)s = Pop(a,b).

�
∑

e

ar(a,b)s.D
�
ces

�

 ∀(a, b), c, s

ps Probability of occurrence of scenario s.

Decision variables
xi(a,b)s 1 if the coordinates (a, b) in the scenario s are covered by the distribution center i, 
otherwise it is 0.
yi(a,b)s 1 if the distribution center i is established in the coordinates (a, b) in the scenario 
s, otherwise it is 0.
zic(a,b),(a� ,b�)s The relief supplies quantity c transported from the distribution center i 
located in the coordinates (a, b) in the scenario s to the demand point in the coordinates (
a′, b′

)
.

Fig. 5  Probability of damage to 
pipelines based on peak ground 
velocity
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Iic(a,b)s The relief supplies quantity c stored in the distribution center i located in coordi-
nates (a, b) in the scenario s.

shc(a,b)s Shortage of relief supplies c in demand point in coordinates (a, b) in the scenario 
s

The objective function (2) maximizes the coverage of each area. According to this 
objective function, the area that has a larger population is given priority in coverage. The 
objective function (3) minimizes the setup cost of distribution centers, transportation 
costs, holding costs, and shortage costs. Constraint (4) states that only established distribu-
tion centers can store relief supplies, and the amount of storage will be less than the total 
demand. Constraint (5) expresses the volume capacity limit of relief supplies in distribu-
tion centers. Constraint (6) states that the supplies’ quantity transported from distribution 

(2)Max F1 =
∑

(a,b)

∑

i

∑

s

ps
(
Pop(a,b)xi(a,b)s

)

(3)

Min F2 =
∑

s

ps

[
∑

(a,b)

∑

i

ci(a,b)syi(a,b)s +
∑

i

∑

(a,b),(a� ,b�)

∑

c

tccs ⋅ L(a,b),(a� ,b�) ⋅ zic(a,b),(a� ,b�)s

+
∑

i

∑

(a,b)

∑

c

(
hic(a,b)sIic(a,b)s + csc(a,b)s ⋅ shc(a,b)s

)
]

(4)Iic(a,b)s ≤
∑

e

Dc(a,b)s ⋅ yi(a,b)s ∀c, i, s, (a, b)

(5)
∑

c

Iic(a,b)s ⋅ vc ≤ capis ⋅ yi(a,b)s ∀(a, b), i, s

(6)
∑

(a,b)

gir(a,b),(a� ,b�)s.zic,(a,b),(a� ,b�)s ≤ Iic(a,b)s ∀r, i, c, s, (a, b) ∈ r

(7)xi(a� ,b�)s ≤
∑

(a,b)∈r

gir(a,b),(a� ,b�)s.yi(a,b)s, ∀r, i, s,∀
(
a�, b�

)
∈ r

(8)
∑

i

yi(a,b)s ≤ 1 ∀ (a, b), i, s

(9)shc(a� ,b�)s = Dc(a� ,b�)s −
∑

i

∑

(a,b)

gir(a,b),(a� ,b�)s.zic(a,b),(a� ,b�)s ∀
(
a�, b�

)
, s

(10)
∑

(a,b)

gir(a,b),(a� ,b�)s.yi(a,b)s.zic(a,b),(a� ,b�)s ≥ Dc(a� ,b�)s.xi(a� ,b�)s ∀r, c, i, s,
(
a�, b�

)
∈ r

(11)shc(a,b)s, zic(a,b),(a� ,b�)s, Iic(a,b)s ≥ 0

(12)xi(a ,b )s, yi(a,b)s = 0 or 1 ∀i, s, (a , b )
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centers to demand centers must be less than the supplies’ quantity stored in that center. 
Constraint (7) guarantees that if a distribution center is established in coordinates (a, b) 
then it can cover the demand area 

(
a′, b′

)
 . Constraint (8) indicates that at most, one distri-

bution center should be established in each location. Constraint (9) indicates the amount of 
shortage of relief supplies in each scenario. This amount is equal to the difference between 
the amount of demand and the supply of relief supplies. Constraint (10) guarantees that if 
a demand area is covered, its demand must be met by allocated centers. Constraints (11) 
and (12) express the type of decision variables. Given that the Constraint (10) is nonlinear, 
the integer variable γc(a,b),(a′,b′) is defined as the Constraint (13). Therefore, to linearize the 
model, Constraints (13)–(18) must replace Constraint (10).

6  Solution methods

In this section, the proposed stochastic model is first converted to a deterministic model 
using the chance-constrained programming approach. The proposed model is then solved 
in small and medium scale using the epsilon-constraint method and on a large scale (case 
study) using the multi-objective invasive weed optimization algorithm approach. Figure 6 
shows the interaction between the inputs and outputs in the simulation algorithm. The pro-
posed simulation–optimization method operates by inputting the three phenomena of the 
earthquake, flood, and radiological incidents into the mathematical model. The simula-
tion inputs include the population flow, cash flow, material flow, and energy flow catego-
ries. The population flow inputs include data on the shelters, buildings, hospitals, and the 
healthcare system, and the cash flow inputs include the global production loss data and the 
agriculture system. The material flow inputs include transportation system data, and the 
energy flow inputs include gas supply system, electricity supply chain, water supply sys-
tem, and dam system data. The simulation model’s output comprises the demand distribu-
tion functions for the relief supplies, including food, medicine, blankets, tents, and water. 
The distribution function of demand for relief supplies is the output of the simulation 
model. The input of the mathematical model includes parameters such as cost, distance, 
capacity, the population of affected areas, and demand for relief commodities. The output 

(13)�c(a,b),(a� ,b�)is = yi(a,b)s.zic(a,b),(a� ,b�)s ∀(a , b ),
(
a�, b�

)
, i, c, s

(14)
∑

(a,b)

gir(a,b),(a� ,b�)s.�c(a,b),(a� ,b�)is ≥ Dc(a� ,b�)s.xi(a� ,b�)s ∀
(
a�, b�

)
, i, c, r, s

(15)�c,(a,b),(a� ,b�)is ≤ zic(a,b),(a� ,b�)s ∀(a , b ),
(
a�, b�

)
, i, c, s

(16)�c,(a,b),(a� ,b�)is ≤ M.yi(a,b)s ∀(a , b ),
(
a�, b�

)
, i, c, s

(17)�c(a,b),(a� ,b�)is ≥ zic(a,b),(a� ,b�)s −M
(
1 − yi(a,b)s

)
∀(a , b ),

(
a�, b�

)
, i, c, s

(18)�c,(a,b),(a� ,b�)is = Integer ∀(a , b ),
(
a�, b�

)
, i, c, s
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of the mathematical model is the data on the location and allocation of distribution centers, 
the number of relief commodities used and stored, and the shortage amount.

6.1  Stochastic chance‑constrained programming

The stochastic mathematical models must first be converted to deterministic models to be 
solved. There are several methods for converting stochastic models to deterministic mod-
els. One of the most popular and widely used methods is stochastic chance-constrained 
programming, first introduced by Charnes and Cooper (1959). In stochastic models, at 
least one of the parameters is uncertain (Elçi & Noyan, 2018). The minimization model is 
assumed with the parameters dij , akj and fi . The symbol ∼ indicates the uncertainty of the 
parameter. The probability of occurrence of a constraint is defined by Eq. (19):

Therefore, the model is rewritten as Eqs. (20)–(23):

(19)p

(
n∑

j=1

dijyj ≥ e∼
i

)

≥ �i i = 1, 2,… ,m

(20)min fk = E

(
n∑

j=1

a∼
kj
yj ≥ e∼

i

)

k = 1,… ,K; i = 1, 2,… ,m

(21)p

(
n∑

j=1

d∼
ij
yj ≥ e∼

i

)

≥ �i i = 1, 2,… ,m

(22)y =
(
y1,… , yn

)

(23)y ≥ 0

Fig. 6  Interaction between the inputs and outputs in the simulation and optimization algorithm
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A summary of the results of chance-constrained programming for minimization and maxi-
mization problems is in the form of Eqs. (24)–(26). For more information on this algorithm, 
see Reza-Pour and Khalili-Damghani (2017).

So that f −
k
= min

n∑

j=1

a∗
kj
yj.

So that f +
k
= max a∗

kj
yj

Based on Constraints (24)–(26), the multi-objective chance-constrained model is defined as 
Eqs. (27)–(29) at the � % level for Constraints (4), (9), and (10), respectively:

6.2  Epsilon‑constraint method

The Epsilon-constraint method is one of the most popular and widely used approaches for 
solving multi-objective problems on a small and medium scale. In this method, one of the 
objective functions is selected as the main function, and the problem is solved each time 
according to one of the functions (Tavana et al., 2018). The interval between the two optimal 
values of the secondary functions is divided into a predetermined number, and each time the 
problem is solved for each of the values �2, … , �n . Finally, Pareto solutions are obtained. 
The mathematical model of this approach is as Eq. (30) (Rath & Gutjahr, 2014):

(24)E

�
n�

j=1

a∗
kj
yj − f −

k

�

− �
−1(�k)

√
Var

�
n�

j=1

a∗
kj
yj − f −

k

�

≥ 0 k = 1,… ,K

(25)E

�
n�

j=1

a∗
kj
yj − f +

k

�

+ �
−1(�k)

√
Var

�
n�

j=1

a∗
kj
yj − f +

k

�

≤ 0 k = 1,… ,K

(26)E

�
n�

j=1

d∼
ij
yj − e∼

i

�

− �
−1(1 − �i)

√
Var

�
n�

j=1

d∼
ij
yj − e∼

i

�

≥ 0 i = 1, 2,… ,m

(27)Iic(a,b)s ≤

(
∑

e

E(Dc(a,b)s) + �
−1
(
1 − �i

)
.

√
var

(
Dc(a,b)s

)
)

.yi(a,b)s ∀c, i, s, (a, b)

(28)
shc(a� ,b�)s =E

(
Dc(a� ,b�)s

)
+ �

−1
(
1 − �i

)
.

√
var

(
Dc(a� ,b�)s

)

−
∑

i

∑

(a,b)

gir(a,b),(a� ,b� )s.zic(a,b),(a� ,b� )s ∀
(
a�, b�

)
, s

(29)

∑

(a,b)

gir(a,b),(a� ,b� )s.zic(a,b),(a� ,b� )s ≥

(

E
(
Dc(a� ,b� )s

)
+ �

−1
(
1 − �i

)
.

√
var

(
Dc(a� ,b� )s

)
)

.xi(a� ,b� )s ∀r, c, i, s,
(
a�, b�

)
∈ r
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6.3  Multi‑objective invasive weed optimization algorithm

The invasive weed optimization algorithm was first introduced by Mehrabian and Lucas 
(2006). Weeds are plants whose invasive growth is a significant threat to crops. Weeds 
are very stable and adaptable to environmental changes. This algorithm mimics the 
adaptability and randomness of weed populations (Maghsoudlou et al., 2016). The con-
vergence to Pareto optimal front and the proper spread of the solutions after produc-
ing several generations in evolutionary algorithms have caused this algorithm to solve 
multi-objective problems. This algorithm’s steps are as follows (Goli et  al., 2019). In 
the first step, the initial population (a certain number of seeds) are produced and scat-
tered. In the second step, the scattered seeds are grown and become plants, and then, 
depending on their fitness and competence, they themselves produce seeds. In the third 
step, the offspring seeds are scattered and grow around their parent. Finally, the second 
and third steps are repeated to the extent that the population does not exceed a certain 
limit (available range), otherwise more competent plants will remain, and the rest will 
be destroyed. The steps of the multi-objective invasive weed optimization algorithm are 
as follows:

1. Initialization In this step, each solution is represented by the length r (representing urban 
areas) and l (representing distribution centers). The first string of numbers contains r 
non-repetitive random natural numbers from the set 1 to r. The second string consists of 
l random numbers that indicate the locations of the distribution centers. It is important 
to note that the second string’s numbers are always incremental and non-repetitive, and 
the last number in this string is always equal to r. The following figure shows the multi-
objective invasive weed algorithm’s coding structure for a network with nine areas and 
two distribution centers.

As shown in Fig. 7, in the first string, the sequence of numbers is between 1 and 9. 
Cells 4 and 9 in the second string are first identified as the distribution centers’ loca-
tions. Areas 4 and 7, located inside cells 4 and 9, are then identified as distribution cent-
ers in the first string. Because the allocation of distribution centers is not specified, the 
remaining areas are allocated to the distribution center on their right side. For example, 
areas 1, 2, and 3 are allocated to distribution center 4. One of the advantages of this 
method is that the probability of infeasible solution is minimized, and there is no need 
to check the next weed for feasibility after each production.

2. Propagation of seeds based on fitness value (reproduction) All weeds produced should 
be evaluated and ranked based on their fitness values. The higher the weed’s fitness is, 
the more seeds it produces. Here, two points are randomly selected for reproduction, 
according to Fig. 8, then the corresponding cells are moved.

(30)

min f1(x)

x ∈ X

f2(x) ≤ �2

⋮

fn(x) ≤ �n
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Constraint handling strategy Some constraints are satisfied by the definitions in the 
initialization and reproduction sections. A penalty strategy is used to satisfy other con-
straints. For example, the calculation of violation for Constraints (5) and (6) is as Eqs. 
(31) and (32). The calculated violation is added to the objective functions and makes 
them worse. Index j is the number of objective functions.

The calculated total violation is equal to the sum of the violations, according to Eq. (33).

(31)Aj = O5
rcs(a,b)

= max
∀rcs(a,b)

{

0,
∑

(a,b)

gir(a,b),(a� ,b� )s.zic,(a,b),(a� ,b� )s − Iic(a,b)s

}

∀j = 1, 2

(32)Bj = O7
(a,b)s

= max
∀(a,b)s

{

0,
∑

c

Iic(a,b)s.vc − capis.yi(a,b)s

}

∀j = 1, 2

Fig. 7  Coding structure of invasive weed

Fig. 8  Representation of weed reproduction
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The main idea on constraint handling is inspired by the perishable product supply chain 
model proposed by Khalili et al. (2015). The violation value in Eq. (33) is a dynamic value 
dependent on the iteration value. Accordingly, the higher the iteration, the greater the vio-
lation value will be. Consequently, Eq. (33) represents the value of the ultimate objective 
functions for penalized chromosomes. As the algorithm iteration continues, the violated 
chromosome is penalized harder. Given that the amount of violation defined is dynamic 
and varies based on the number of iterations, the objective function’s final value is, accord-
ing to Eq. (34).

3. Calculating the number of seeds a plant-based can produce seeds on the plant’s compe-
tence, according to Eq. (35).

      where �initial The initial value of the standard deviation, �final The final value of the 
standard deviation, �iter The value of standard deviation in the current step, itermax 
Maximum number of iterations, n Nonlinear modulation index, ter The current itera-
tion number of the algorithm.

4. Competitive exclusion When the maximum number of seeds in the colony (P-max) is 
reached, each seed can produce seeds according to the mechanism expressed in the 
reproduction section. When all the seeds have found their location in the search space, 
they will adapt to their parents (the colony of seeds). Then the seeds with the least 
competence are removed to reach the most acceptable population in the colony. This 
mechanism allows the plants with less competence to reproduce, and if the competence 
of the offspring is suitable in the colony, they will survive.

5. Go to step 2 and continue until the stopping criterion is met

6.3.1  Stopping criterion

In this study, the algorithm stops if one of the following conditions are met:

• Stopping after a certain number of iterations (Max Iteration), or
• Stopping if, after a certain number of iterations, no improvement will be applied to the 

values of the objective function.

The results of parameter tuning of the proposed algorithm using the Taguchi approach 
are as follows: (Table 4).

(33)Violationj =
(
Aj + Bj

)
∗ iteration

(34)fj = fj + penalty ∗ Violationj ∀j = 1, 2

(35)�iter =
(itermax − iter)n

(itermax)
n

(
�initial − �final

)
+ �final
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6.4  Metrics to evaluate algorithm efficiency

The Mean Ideal Distance (MID) and Spacing Metric (SM) are used to assess the accuracy 
of the proposed multi-objective invasive weed algorithm. These metrics have been used in 
many studies to measure the performance of multi-objective algorithms.

• Spacing Metric (SM) This metric calculates the standard deviation of the distance 
between the solutions and the Pareto points. This metric is defined as Eq. (36) (Zitzler, 
1999):

 where n is the number of Pareto points, di is the Euclidean distance between the two 
adjacent Pareto points, and d  is the mean Euclidean distance of the solution points. 
The closer this value is to zero, the closer the Pareto points are, and the better the per-
formance of the algorithm.

• Mean ideal distance (MID) Calculates the convergence rate of Pareto points to the ideal 
point (0.0). This metric is defined as Eq. (37) (Zitzler & Thiele, 1998):

 where fji is the value of jth objective function for ith Pareto front. fmax
j,total

 and fmin
j,total

 are 
respectively the highest and lowest values of j-th objective function among Pareto 
points. So the lower the MID value, the better the performance of the algorithm will be.

Table 5 shows the values of the objective functions, solution time, percentage error, 
and MID and SM values for the two Epsilon-constraint and multi-objective invasive weed 
optimization methods for small and medium-scale problems. According to this table, the 
first 5 Pareto points are for small-scale problems and the second 5 Pareto points are for 
medium-scale problems. As the problem’s scale increases, the objective functions’ values 
increase in both methods, but the calculated percentage error for each of the ten problems 
is less than 1 percent. The solving time for the epsilon-constraint method has exponentially 

(36)SM =

∑n−1

i=1

����
di −

−

d
����

(n − 1)
−

d

(37)
MID =

∑n

i

��
f1i−f

best
1

fmax
1,total

−fmin
1,total

�2

+

�
f2i−f

best
2

fmax
2,total

−fmin
2,total

�2

n

Table 4  Parameter tuning Parameters Value

Initial numbers of populations (n-pop) 100
Maximum number of seeds (S-max) 3
Minimum number of seeds (S-min) 0
Initial value of standard deviation(�initial) 0.4 *n
Final value of standard deviation ( �final) 2
Nonlinear modulation index (n) 4
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increased, while for multi-objective invasive weed optimization, it has increased at a much 
slower and more reasonable speed. Comparing the two approaches’ performance evalua-
tion metrics suggests that the average SM for the two Epsilon-constraint and multi-objec-
tive invasive weed optimization methods is 0.399 and 0.402, respectively. The average 
MID for Epsilon-constraint and multi-objective invasive weed optimization methods is 
6.47 and 6.50, respectively. These reasons confirm the accuracy and validity of the pro-
posed algorithm for solving large-scale problems.

7  Case study

This study was conducted for the Iranian Red Crescent Society (IRCS) in Tehran, the capi-
tal of Iran. The city has around 9 million residents, and 15 million live in the city’s larger 
metropolitan area. District 1 in Tehran has ten regions and 26 urban areas. This district 
is 60 square kilometers without its surroundings and 210 square kilometers with its sur-
roundings (Akbari et al., 2021). The existence of 29 embassies, schools, organizations, and 
various government agencies and corporate headquarters in this district has made it one of 
Tehran’s sensitive and strategic districts. The area with four faults of Mosha, north Tehran, 
south Ray and floating has been selected as the case study in this research.

Table  6 shows the earthquake, flood, and radiological incidents scenarios considered 
in the case study. Different studies have considered different scenarios for disaster relief 
operations. In this study, the approaches used by Khojasteh and Macit (2017) for defin-
ing the earthquake scenario, Schroeder et  al. (2016) for defining the flood scenario, and 
Caunhye et al. (2015) and Hrdina et al. (2009) for defining the radiological scenario have 
been used. Therefore, the earthquake scenario is defined based on four faults, two types of 
occurrence time (day and night), and earthquake severity. The magnitude of the earthquake 
is defined from 6 to 10 Richter with an accuracy of 0.1 (41 scenarios). The flood sever-
ity is divided into five categories used by Schroeder et al. (2016). Finally, three scenarios 
have been defined concerning radiological incidents. The total number of scenarios is 4920 
(4 × 2 × 41 × 5 × 3 = 4920).

Figure  9 present the demarcation of radiation zones. With a radiation rate of over 
10 rem/hr, the inner zone causes the most financial and human losses due to its proximity 
to the disaster location. Intermediate zone with radiation rate between 1 rem/hr to 10 rem/
hr causes less financial and human losses. Finally, the outer zone, which is farthest from 
the disaster location, has the least damage than the other two zones. Therefore, a 7-Richter 
earthquake in the morning at the Mosha fault is analyzed in this section with the flood 
severity of the “severe” and the radiological incident of the “inner zone.”

Figure 10 presents the output of the Arc GIS software and the Radius model. As shown 
in this figure, District 1 is divided into ten regions and 64 sub-regions (pixels). According 
to software forecasts, the red sections are critical sub-regions where more than 400 build-
ings have been destroyed. Similarly, the yellow sections are the sub-regions with 250 to 
400 buildings destroyed, and the green sections are the sub-regions where between 100 to 
250 buildings are destroyed. Eventually, the blue sub-regions, which are safer than the rest 
of the areas, have less than 100 buildings destroyed. White sub-regions are areas where no 
information is available.

Given that the divided sections are discrete, the location is discrete, and the coordinates 
of the sub-region centers are considered the coordinates of that pixel. The entire district is 
divided into several regions, and it is assumed that each established distribution center can 
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only cover its region. This assumption will prevent unnecessary travel between regions. 
According to the output of the GIS software, 20 pixels are marked in red, 12 pixels in yel-
low, 6 pixels in green, and 19 pixels in blue.

Table 7 shows the parameters related to relief supplies. The coefficient of demand for 
relief supplies, the volume of each relief supply, the cost of transportation per distance unit, 
and the penalty for the shortage of relief supplies are presented in this table. Table 8 shows 
the cost of establishing distribution centers in each sub-region.

It should be noted that ARC GIS also calculates the distance between the areas, and 
the number of distribution centers is 15. Also, the capacity of the distribution centers con-
sidered in this scenario is 20,000 m3 for all areas. Figure 11 shows the results of estimat-
ing the distribution functions of relief supplies by simulation. The simulation results are 
for the scenario with a 7-Richter earthquake in the morning for the Masha fault, moderate 

Fig. 9  Demarcation of radiation zones

Fig. 10  Damage estimation output for urban district
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flood, and radiological incidents with an intermediate zone. As can be seen, the distribu-
tion of water, food, medicine, blankets, and tents are normal, with a correlation coefficient 
of 0.975, 0.990, 0.910, 0.950, and 0.960, respectively. The Anderson–Darling test was used 
and defined as follows:

H0  The data follow a normal distribution.

H1 The data do not follow the normal distribution..

This figure shows that the AD statistics for water, food, medicine, blankets, and tents 
are 0.359, 0.403, 0.232,0.311, and 0.287, respectively. Also, the calculated p-values are 
0.467, 0.473, 0.294, 0.397, and 0.355, respectively. By comparing the values of AD and 
p-value, we can conclude the null hypothesis is not rejected. Therefore, the distribution 
function for all relief commodities follows a normal distribution function.

Figure 12 is used to validate the proposed simulation model by comparing it with the 
real system. The JICA data and simulation software have been used for this comparison. 

Table 7  Parameters related to relief supplies

Supplies D′
ce vc

(
m3

)
tcc(cost per unit) Penalty cost 

for shortage
e = 1 e = 2 e = 3 e = 4

Water 0.9 0.7 0.5 0.3 0.5 1000 30,000
Food 0.9 0.7 0.5 0.3 0.4 1500 25,000
Medicine 0.9 0.7 0.5 0.3 0.3 2000 30,000
Blanket 0.9 0.7 0.5 0.3 0.6 700 20,000
Tent 0.9 0.7 0.5 0.3 0.6 700 20,000

Table 8  The cost of establishing distribution centers based on each sub-region

Sub-region Cost Sub-region Cost Sub-region Cost Sub-region Cost

3 200,000 21 375,000 36 360,000 51 280,000
6 220,000 22 350,000 37 420,000 52 280,000
7 200,000 23 315,000 38 400,000 53 350,000
8 240,000 24 375,000 39 390,000 54 210,000
9 200,000 25 350,000 40 220,000 55 200,000
10 200,000 26 225,000 41 350,000 56 250,000
11 300,000 27 250,000 42 200,000 57 320,000
12 250,000 28 300,000 43 400,000 58 360,000
13 240,000 29 325,000 44 180,000 60 300,000
14 250,000 30 250,000 45 200,000 61 380,000
15 235,000 31 200,000 46 250,000 62 360,000
17 300,000 32 350,000 47 175,000 63 300,000
18 350,000 33 415,000 48 250,000
19 220,000 34 400,000 49 265,000
20 250,000 35 388,000 50 300,000
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The model is implemented 100 times with a simulation time of 1000,000 h. Figure 12 
compares the performance of the simulation model with the real system with a con-
fidence interval of 0.95. The vertical axis shows the estimated amount of supplies in 
the two states. Taking into account the normality and 95% confidence interval and the 
hypothesis test of H0 ∶ � = �0 against H1 ∶ � ≠ �0 , it can be concluded that the pro-
posed model is an accurate example of the performance of the real system. The value of 
�0 represents the expected value of the estimated parameters. The Maan Whitney non-
parametric test for the null and two-sided research hypotheses was used and defined as 
follows:

(a) (b)

(c) (d)

(e)

Fig. 11  Simulation results
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H0 The two populations are equal.

H1 The two populations are not equal.

The calculated p-values are 0.267, 0.365, 0.317, 0.408, and, 0.228 respectively. Accord-
ing to the results presented in Fig. 12, we do not reject H0 because sig (p-value) > 0.05. As 
a result, we do not have sufficient evidence to conclude that the two populations are not 
equal.

Figure 13 shows a set of 20 Pareto points obtained from solving the case study. The ver-
tical axis shows the second objective function’s values, and the horizontal axis shows the 
values of the first objective function. The mean Pareto points for the first objective function 
is 280,227.85, and for the second objective function, it is 135,482,902.20. Figure 14 shows 

(a) (b)

(c) (d)

(e)

Fig. 12  A 95% confidence interval for results obtained by simulation and real system
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the location of 16 distribution centers (D1–D16) in different sub-regions (locations 7, 8, 
10, 12, 18, 26, 27, 28, 31, 32, 36, 40, 54, 56, 58, and 61).

Table  9 shows the allocation of affected areas to distribution centers. For example, 
D1 has been established in Region 1, covering sub-regions 5, 6, 16, 17, and 18. Also, in 
Region 2, two distribution centers, D2 and D3, have been established. The D2 distribution 
center covers sub-regions 1, 2, 7, 19, and 20, and the D3 distribution center covers sub-
regions 8, 9, and 21.

Table  10 shows the number of distribution centers established in each region, the 
injured coverage percentage, and the relief supplies quantity stored in each region. The 
total number of established distribution centers is 16. The injured coverage is 100% for 
all regions except for Region 9. As for the stored relief supplies quantity, 517,280 L 
of water, 4520  kg of medicine, 338,705  kg of food, 32,850 blankets, and 8220 tents 

Fig. 13  Pareto solutions

Fig. 14  Location of distribution centers
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are stored in Region 1. The total amount of relief supplies needed for relief operations 
in Region 1 is 58602600 L of water, 72,058  kg of medicine, 4,538,504  kg of food, 
755,953 blankets, and 2,015,544 tents.

Table 9  Allocation of affected 
areas to distribution centers

Region Distribution center Covered sub-regions

1 D1 5-6-16-17-18
2 D2 1-2-7-19-20

D3 8-9-21
3 D4 10-11-22-23

D5 3-12-24
4 D6 4-14-15-27

D7 13-25-26
5 D8 28-29
6 D9 30-31-43-44
7 D10 32-33-34-45

D11 46-47-56-57-64
8 D12 35-48-58

D13 36-37-49-50
9 D14 38-39-40-51

D15 59-60-61–52-53
10 D16 41-42-54-55-62-63

Table 10  Computational results

Region Number of distri-
bution centers

Covered 
people %

Storage

Water Medicine Food Blanket Tent

1 1 100 5,172,800 4520 338,705 32,850 8220
2 2 100 6,101,270 8840 460,120 66,460 21,150
3 2 100 6,233,900 9850 558,931 138,765 35,442
4 2 100 6,405,000 7316 485,138 80,700 22,300
5 1 100 3,561,000 4932 310,246 29,630 7065
6 1 100 4,887,800 4950 385,730 15,578 4768
7 2 100 6,803,760 7842 475,776 92,171 23,714
8 2 100 7,504,920 9726 569,790 145,680 38,790
9 2 88.2 7,824,950 10,280 590,100 142,465 37,005
10 1 100 4,107,200 3802 363,968 11,654 3100
Total 16 58,602,600 72,058 4,538,504 755,953 201,554
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7.1  Sensitivity analysis

Sensitivity analysis is performed to confirm the model’s robustness and validity by 
changing various parameters in the model and examining these changes’ effects on the 
variables and the objective functions (Maghfiroh & Hanaoka, 2020).

7.1.1  Sensitivity analysis of the simulation model

In this section, various scenarios are used to study the changes in average demand for relief 
supplies. Table 11 shows the results. The scenarios related to flood and radiological inci-
dents are constant (severe and inner, respectively). Meanwhile, earthquake scenarios are 
variable for three different types of the severity of occurrence (6, 7, and 8 Richter), the 
two faults of Mosha and north Tehran, and two morning and night states. Table 11 shows 
the average supplies required for a 6-Richter earthquake are less than those of a 7-Richter 
quake, and the supplies needed for a 7-Richter earthquake are less than those of an 8-Rich-
ter earthquake. For example, the amount of food required during the day for the Mosha 
fault is 2,826,412 kg for a 6-Richter earthquake, 4,538,504 kg for a 7-Richter earthquake, 
and 9,569,608 for an 8-Richter earthquake. It should be noted that the estimated amount of 
supplies for the night state in this fault is more than the day state. For example, the number 
of tents required for a 7-Richter earthquake for the north Tehran fault is 125,460 during the 
day and is 192,752 during the night. This shows the difficulty of relief operations during 
the night compared to the day. Also, due to the larger extent of the Mosha fault and more 
buildings and infrastructures than north Tehran, the estimated amount of relief supplies is 
more than the north Tehran fault.

Table 12 examines the average demand for relief supplies in terms of changes in radio-
logical incidents’ severity. In this table, the scenarios related to the flood are constant and 
equal to “severe.” A 7-Richter scenario for the two south Ray and floating faults in both day 
and night states has been investigated for the earthquake. This is while the scenario of radi-
ological incidents varies in three states: “inner, intermediate, and outer.” As can be seen, 
the change in radiological incidents scenarios greatly affects the demand for relief supplies. 
For example, in the morning state at south Ray fault, in the outer zone, the required number 
of tents was 38,995, while in the intermediate zone, the number of tents was 83,410, and 
in the inner zone, it was 16,4555. Therefore, the closer we get to a radiological incidents 
zone, the more the demand increases. At night, the need for relief supplies usually is higher 
than in the day. Because the floating fault is wider than the south Ray fault and the more 
urban infrastructures exist in this fault, the estimated amount of relief supplies is more than 
the south Ray fault.

7.1.2  Sensitivity analysis of the mathematical model

Figure 15 shows the effect of increasing earthquake severity on relief costs. As can be seen, 
the scenarios related to floods and radiological incidents are considered as constant in this 
table. The flood severity is moderate, and the area under study during radiological incidents 
is in the inner zone. Four faults in day and night situations are considered for the severity 
of the earthquake from 3 to 10 Richter. According to this table, increasing the severity 
of the quake will increase the relief costs exponentially. For example, the estimated cost 
for a 4-Richter earthquake in the morning for the North Tehran fault is $ 388,731, for an 
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8- Richter earthquake for the same fault is $ 6435,197, and for a 10- Richter earthquake 
is $ 82,269,440. Due to the larger size of the Mosha fault, its relief costs are much higher 
than other faults and increase at a higher rate. The cost of relief operations during the night 
for all faults is higher than during the day. For example, the cost of relief operations for a 

Fig. 15  The effect of increasing earthquake severity on relief costs

Fig. 16  Effects of changes in demand on the coverage of affected areas



136 Annals of Operations Research (2022) 309:103–141

1 3

9- Richter earthquake in the Mosha fault during the day is $ 35,618,523 and during the 
night is $ 58,617,510.

Figure 16 shows the effects of changes in demand on the coverage of affected areas. The 
severity of the flood is severe, and the area under study during radiological incidents is in 
the intermediate zone. It should be noted that the data considered is for a 7-Richter earth-
quake. As can be seen, with the increase in demand, the value of the first objective function 
(coverage amount) has increased, while the coverage rate has remained almost constant. 
For example, with the increase in demand from 30 to 50 percent, the coverage increases 
from 468,250 units to 736,482 units for the North Tehran fault and the morning state. This 
shows the accuracy of the model behavior.

Figure 17 shows the effect of increasing the demand for relief supplies on the number of 
established distribution centers in a 7-Richter earthquake scenario during the night for dif-
ferent faults. The severity of the flood is catastrophic, and the radiological incident area is 
the inner zone. As can be seen, as the demand increases and more distribution centers are 
needed to meet demand. The largest number of established centers is in Mosha and float-
ing faults. The reason is that these two faults are larger than the others. With the increase 
in demand for relief supplies from − 50 to 50 percent, the number of distribution centers 
established in the Mosha fault has increased from 6 to 33 centers. With the increase in 
demand for relief supplies from − 50 to 50 percent for north Tehran, south Ray, and floating 
faults, the number of established distribution centers has increased from 5, 4, and 5 cent-
ers to 30, 22, and 29 centers. Establishing more distribution centers will increase costs and 
expand coverage.

Fig. 17  The effect of increasing the demand for relief supplies on the number of established distribution 
centers
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8  Conclusion

This study presents a bi-objective mathematical model for the location, allocation, and dis-
tribution of relief supplies in the event of cascade disasters. Disasters considered include 
earthquakes, floods, and radiological incidents. The objectives of this study are to mini-
mize pre-disaster costs and maximize post-disaster coverage area. The proposed stochastic 
model is scenario-based, and the scenarios are defined based on the severity of the occur-
rence of cascade disasters. The distribution functions of demand for relief supplies are esti-
mated using a simulation model. The simulation model presented based on the interaction 
of vulnerable urban infrastructures has estimated the required water, food, medicine, blan-
kets, and tents. The distribution functions of water, food, medicine, blankets, and tents are 
normal, with correlation coefficients of 0.975, 0.990, 0.910, 0.950, and 0.960. The simula-
tion results have been compared with the real system results at a 95% confidence interval 
to validate the model. The results support the accuracy of the estimated values. One of this 
study’s contributions is to determine the severity of damage in different geographical areas 
specified by the GIS system. The output of the RADIUS model indicates that more than 
400 buildings in 20 sub-regions have been destroyed as predicted. Also, 250–400 buildings 
in 12 sub-regions, 250–100 buildings in 6 sub-regions, and less than 100 buildings in 19 
sub-regions have been destroyed.

The proposed mathematical model has been solved on a small and medium scale by 
the epsilon-constraint method and GAMS software. A multi-objective invasive weed 
optimization algorithm and MATLAB software are used for the case study. The perfor-
mance evaluation of the two approaches shows that the average SM for the two epsilon-
constraint and multi-objective invasive weed optimization methods is 0.399 and 0.402, 
respectively. The average MID for epsilon-constraint and Multi-objective invasive weed 
optimization methods is 6.47 and 6.50, respectively. Therefore, according to MID and 
SM’s values, the average solution time and percentage error of less than 1% validate 
the results. In the case study, the mean Pareto point for the first objective function is 
280,227.85 dollars, and for the second objective function, it is 135,482,902.20 dollars. 
Then, distribution centers have been allocated to the affected areas. For example, two 
distribution centers, D6 and d7, have been established in area 4. Pixels 4, 14, 15, and 27 
are allocated to center D6, and pixels 13, 25, and 26 are allocated to center D7. Sixteen 
distribution centers have been established for district 1 of Tehran, so the water, medi-
cine, food, tents, and blankets required for these centers are 58,602,600 cubic meters in 
volume, 72,058 kg, 4,538,504 kg, 755,953, and 2,015,544, respectively. The sensitivity 
analysis results show that as the severity of earthquakes, floods, and proximity to the 
radiological incidents increases, the demand for supplies also increases. Also, the esti-
mated amount of relief supplies for the night state is more than the daytime state, and 
for Mosha fault is more than other faults due to its larger size. Also, with the increase 
in the severity of the earthquake, relief costs increase exponentially, while the cover-
age increases at the same rate. Increasing demand will also lead to the establishment of 
more distribution centers and, consequently, an increase in relief costs.

The results from this study were used by the IRCS. The sensitivity analysis indicated 
that the Mosha fault possesses the most devastating destruction in a probable earthquake 
occurrence. This information helps the government agencies and relief organizations to 
prepare in advance given the high probability of mild to severe quakes in the region. The 
model proposed in this study is generic, structured, and easy to use. It can be adopted by 
disaster relief efforts and agencies, blood transfusion services, emergency management 
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establishments, hospitals and health services agencies, fire and rescue departments, and 
utility companies. The ability to divide the affected area into different pixels and con-
sider the maximal coverage of the disaster-stricken areas can help relief and emergency 
management organizations to divide the resources and responsibilities effectively. Policy-
makers and emergency organizations can use this information to identify the vulnerable 
urban infrastructure and prepare the health, energy, and public work agencies for the worst. 
Although the proposed model can effectively help cities and governments prepare for dis-
asters, it has several limitations. The mathematical model proposed here does not imply a 
deterministic approach to emergency preparedness and management. While the proposed 
method helps policymakers and emergency organizations prepare for imminent disasters, 
it should be adopted and implemented with care. The effectiveness of any mathematical 
model depends on the assumptions and good data. As with any quantitative model, policy-
makers, managers, and decision-makers must be aware of the following limitations of the 
model:

• The availability of accurate data is always a problem in developing countries. For 
example, there was no official database for several cost elements, including transporta-
tion costs. We had to use unofficial estimates and expert opinions in these situations.

• Similarly, we had limited access to traffic data, and the mathematical and simulation 
models in this study assumed traffic-free conditions.

• Furthermore, due to the unavailability of geographical information on volcanic activi-
ties and data, volcanic eruptions are not considered cascade effects in the simulation.

Finally, we provide the following suggestions for future research. Researchers could 
consider:

• Other objectives such as maximizing the equity in distribution planning and minimiz-
ing response time in the model,

• Sustainability in the disaster relief supply chain by considering a wide range of envi-
ronmental, social, and economic factors,

• Vehicle routing in the model to avoid the disaster-damaged roads and regions, and
• Using other approaches such as robust optimization instead of chance-constrained pro-

gramming for solving uncertain problems.
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