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Abstract
Financial institutions, investors, mining companies and related firms need an effective 
accurate forecasting model to examine gold price fluctuations in order to make correct 
decisions. This paper proposes an innovative approach to accurately forecast gold price 
movements and to interpret predictions. First, it compares six machine learning models. 
These models include two very recent methods: the eXtreme Gradient Boosting (XGBoost) 
and CatBoost. The empirical findings indicate the superiority of XGBoost over other 
advanced machine learning models. Second, it proposes Shapley additive explanations 
(SHAP) in order to help policy makers to interpret the predictions of complex machine 
learning models and to examine the importance of various features that affect gold prices. 
Our results illustrate that the utilization of XGBoost along with SHAP approach could pro‑
vide a significant boost in increasing the gold price forecasting performance.

Keywords Gold price · XGBoost · CatBoost · Shapley additive explanations

JEL Classification C22 · C45 · C53 · G12

1 Introduction

Gold has been an important precious metal for centuries. It is a major financial asset for 
countries and a key component of the global monetary reserves for trading and currency 
hedging (Capie et al., 2005; Wen et al., 2017). It also plays a prominent role in investments, 
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especially to hedge against adverse financial events. Indeed, in times of financial turmoil 
leading stock indices to decrease, the prices of precious metals tend to move in the oppo‑
site direction. Furthermore, forecasting gold price fluctuations is a crucial issue for inves‑
tors, for mining projects and related companies and in general for any agent who sees gold 
as an indicator of the future performance of the world economy.

Up to now, several studies have been performed to predict the commodity price as 
gold price. There are three main categories of prediction methods: (1) classical methods 
(2) artificial intelligence methods (3) hybrid approaches. First, traditional mathematical 
models such as Autoregressive Integrated Moving Average (Parisi et al., 2008), jump and 
dip diffusion (Shafiee & Topal, 2010a, 2010b) and the multi‑linear regression (Escribano 
& Granger, 1998; Kearney & Lombra, 2009) have been used for gold price forecasting. 
Those classical methods mostly describe the linear relationship between variables through 
specific ex ante analytical formulation. Second, with the recognition of the nonlinear and 
complex characteristics of the gold price system (Alameer et al., 2019), intelligent models, 
especially artificial neural networks have been useful to predict volatile financial variables, 
which are quite difficult to guess with classical statistics and econometrics. They are one 
of the most important types of machine learning models, which have been introduced and 
examined for forecasting commodity prices (Khashei & Bijari, 2010; Lineesh et al., 2010; 
Parisi et  al., 2008). The characteristics of artificial intelligence methods that make them 
appropriate for prediction are their nonlinear structure, flexibility and data‑driven learning 
process. Third, the hybrid approaches are a combination of artificial neural networks and 
several models to forecast the fluctuations of a variable such commodity prices, market 
returns, etc. For example, Kristjanpoller and Hernandez (2017) proposed a hybrid model 
(hybrid ANN‑GARCH) to predict the volatility of the spot prices of gold, silver, and cop‑
per. To forecast long term gold price fluctuations, Alameer et al. (2019) used a whale opti‑
mization algorithm as a trainer to learn the multilayer perceptron neural network.

The main novelty of this study is twofold. It assesses the performance of machine learn‑
ing models to show the success of XGBoost in forecasting the gold price. Then it is the 
first, to the best of our knowledge, to analyze the importance of individual features of gold 
price fluctuation using SHAP (SHapley Additive exPlanation). Gold price has significant 
nonlinear, time‑varying, many influence factors in consequence it is especially important 
to detect the most influential factors first and then to combine them in order to improve 
prediction accuracy. Other studies aim to accomplish this task by using hybrid models: 
one kind of method is used to detect factors and machine learning to combine them. For 
instance, Chen and Zhang (2019) use a Projection Pursuit (PP) algorithm for the factors 
and Neural Network for prediction.

This paper makes two major contributions to the literature. The first is beginning the 
forecast with six machine learning models and to compare their performance in the gold 
price prediction. Those models are linear regression, neural networks, random forest, and 
three gradient methods based on decision trees that are Light Gradient Boosting Machine 
(LightGBM), CatBoost algorithm and eXtreme Gradient Boosting (XGBoost). To the best 
of our knowledge, this research represents the first attempt to use CatBoost, LightGBM and 
XGBoost models for forecasting gold price fluctuations. The best fit model is identified 
according to the performance criteria including coefficient of determination  (R2), mean 
absolute error (MAE), and root mean square error (RMSE). We show that XGBoost per‑
forms better than other machine learning techniques to predict the gold price. We provide 
evidence of the benefits of using artificial intelligence to improve forecasting and more 
specifically show that XGBoost is a successful forecasting procedure. Second, in terms of 
model interpretation—which is especially important when using machine learning models 
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that are often difficult to interpret—several studies have started to take advantage of SHAP 
(Ribeiro et al., 2016; Štrumbelj and Kononenko, 2014). We have applied SHAP for the first 
time. To the best of our knowledge, SHAP interaction values have not yet been applied 
to analyze financial data set. Several studies have shown that gold prices may be affected 
by many predictors, such as inflation (Alameer et al., 2019; Beckmann & Czudaj, 2013), 
currencies (Beckmann & Czudaj, 2013; Kristjanpoller & Minutolo, 2016), metals (Bha‑
tia et al., 2018; Schweikert, 2018), crude oil (Elie et al., 2019; Kanjilal & Ghosh, 2017; 
Sephton & Mann, 2018) and exchange rates (Akbar et al., 2019; Singhal et al., 2019). The 
SHAP method allows assigning each factor an importance value for gold price prediction. 
Applying methods based on explanations for a complex model to interpret gold price fore‑
casts is of great interest as it allows understanding how the model behaves.

The rest of this paper is structured as follows. Section 2 provides a literature review of 
the time series forecasting models and factors that influence gold prices. Section 3 provides 
a description of the data. Section 4 presents the methodology and summarizes six machine 
learning models to forecast gold price and the method to interpret the predictions generated 
by these complex models. The results obtained are discussed in Sect. 5. Finally, the conclu‑
sion is put forward in Sect. 6.

2  Related literature

In order to improve the quality of gold price predictions, our study examines two important 
steps of a prediction process: first, the choice of the most relevant input variables and sec‑
ond, the choice of the best statistical model. Even if no consensus has emerged on which 
macroeconomic variables should be taken into account as primary drivers of gold‑price 
fluctuations, empirical studies often use a common set of variables such as exchange rates, 
precious metals and mineral commodities prices, oil prices, and inflation. In their survey, 
O’Connor et al. (2015) show that gold prices have a broad range of predictors, covering the 
fields of commodities, financial variables, macroeconomic data, and interest rates.

The literature has demonstrated that exchange rates have a strong power for forecast‑
ing commodity prices (Chen et  al., 2010) and especially gold‑price fluctuations (Pukth‑
uanthong & Roll, 2011; Reboredo, 2013). Bodart et  al. (2015) provided evidence of the 
relationship between exchange rates and commodity prices for developing countries that 
export these commodities. Ciner (2017) confirmed that the exchange rate of South Afri‑
can rand has a significant predictive power to forecast palladium and platinum prices, and 
to a lesser degree silver prices. Sari et al. (2010) argued that precious metals respond to any 
shock in the exchange rate or shock in the prices of other precious metals.

In effect, the relationship between gold and other precious metals is complex. Studies 
report a co‑integration relationship between gold and silver and the role of financial cri‑
ses, but empirical studies do not reach a consensus concerning the direction of causality. 
Bhatia et al. (2018), in contrast to Sensoy (2013), show the existence of two‑way causal‑
ity among precious metals. Studies also found that there are cointegrating relationships 
between prices of mineral commodities (Kucher & McCoskey, 2017; Liu et al., 2019; Rob‑
erts, 2009; Rossen, 2015; Wu & Hu, 2016; Yue et al., 2015). Batten et al. (2015) report 
evidence of time‑varying spillover effects between precious metal prices, which can be 
interpreted as evidence of time‑varying market integration.

Several studies have confirmed that, because oil still being one of the most popular 
sources of energy used, crude oil prices are the leading cause of commodity price volatility 
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(Abd Elaziz et al., 2019; He et al., 2010; Lardic & Mignon, 2008; Shafiee & Topal, 2010a, 
2010b). Behmiri and Manera (2015) examined the influence of oil price shocks on metal 
(including gold and silver) price volatility. They found that the price volatility of these 
metals has been influenced by oil price shocks. The oil price is considered as one (with 
inflation) of the main macroeconomic variables that influence the gold price (Batten et al., 
2010; Tully & Lucey, 2007). It is generally recognized that there is a positive correla‑
tion between gold and crude oil prices (Teetranont et al., 2018). That is also the case in 
a recent study of Mo et al., (2018) that explored the dynamic linkages between the USD 
and the gold and crude oil markets. Bedoui et al. (2019) also found that gold, oil and USD 
exchange rates have strong connections during a period of crisis. Furthermore, Cologni 
and Manera (2008) observed that the rising oil prices increase metal prices by the inflation 
effects.

In effect, inflation is another major macroeconomic variable that influences gold prices 
(Batten et al., 2010; Fortune, 1987; Mahdavi & Zhou, 1997). Following Shafiee and Topal 
(2010a, 2010b), the two most important variables that explain gold price behavior are the 
oil price and the inflation rate. Correlation between gold price and inflation rate is negative 
(Shafiee & Topal, 2010a, 2010b). In a recent study, Alameer et al. (2019) indicate that all 
the previously presented variables (crude oil, iron, silver, and copper prices, exchange rates 
and inflation rates of US and China) have a high forecasting power on gold prices. Finally, 
it is also well known that precious metals play a prominent role especially to hedge against 
adverse financial events, the so‑called “safe haven” hypothesis in the literature (Baur & 
Lucey, 2010; Baur & McDermott, 2010). Kang et  al. (2017) demonstrate that gold and 
silver could apparently also benefit from a flight‑to‑quality phenomenon during financial 
crises. It is the reason why authors introduced market indices to explain gold price fluc‑
tuations (Liu et al., 2017; Pierdzioch et al. 2016; Kristjanpoller & Minutolo, 2015). Akbar 
et al. (2019) in Pakistan and Singhal et al. (2019) in Mexico demonstrate the same effect by 
studying the dynamic relationships among gold price, stock price index and exchange rate. 
In very recent studies (Risse, 2019; Zhang & Ci, 2020) combine CPI of U.S., the federal 
funds rate, crude oil future price, the nominal effective exchange rate and the Dow Jones 
index, as inputs for gold price forecasting.

Numerous statistical approaches have already been used to predict gold price fluctu‑
ations. Artificial neural networks (NN) are one of the most important types of machine 
learning methods, which have been examined for forecasting commodity prices (Khashei & 
Bijari, 2010; Lineesh et al., 2010; Parisi et al., 2008). Recent studies have combined Arti‑
ficial Neural Networks with other machine learning approaches in order to improve predic‑
tion efficiency. Ramyar and Kianfar (2017) demonstrated the superiority of the MLP neural 
network compared to the vector autoregressive model (VAR) to forecast crude oil prices. 
Alameer et al. (2019) compared to a recent meta‑heuristic method called whale optimiza‑
tion algorithm (WOA) as a trainer to learn the multilayer perceptron neural network to 
other models, including the classic NN, particle swarm optimization for NN (PSO–NN), 
genetic algorithm for NN (GA–NN), and grey wolf optimization for NN (GWO–NN). 
Deep learning is another approach to improve the predicting ability of traditional ANN. 
Deep learning algorithms has three main advantages: they improve the speed of network 
training, they avoid being trapped in local minima and they solve the multi‑layer network 
training problems (Sezer et  al., 2020). Recently, these methods have been used in time 
series forecasting.

Zheng et al. (2019) proposed an improved Deep Belief Networks (DBN) for forecasting 
exchange rates and determined that it worked better than traditional methods. Zhang and 
Ci (2020) show the superiority of a DBN model (compared to ARIMA or classical NN), 
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composed of restricted Boltzmann machines (RBM) for pre‑training and a layer of super‑
vised back‑propagation (BP) for fine‑tuning, in gold price forecasting. Chen et al. (2020) 
went a step further in this direction by using extreme learning machine (ELM) for time 
series forecasting and specifically gold price. Compared with most of the other machine 
learning algorithms such as support vector machine and deep learning method, ELM boast 
a faster learning speed.

Besides linear regression and NN models, we have chosen to implement trees boosting 
methods. Those hybrid models are able to overcome the limitations of the individual mod‑
els and increase the forecasting accuracy by combining the advantages of both linear and 
nonlinear models (Khashei & Bijari, 2011). Hybrid models have already been used to pre‑
dict gold price: Wen et al. (2017) used ensemble empirical mode decomposition (EEMD), 
SVM and ANN to analyze and predict the gold price series, Herawati et al. (2017) utilized 
a traditional recurrent neural network (RNN) and EEMD, Zhu and Zhang (2018) developed 
a hybrid model using an ANN, principal component analysis (PCA) and genetic algorithm 
(GA) Hybridization of times series analysis methods and machine learning has also been 
used to predict gold prices. Several papers (see Kumar, 2018 for a recent example and the 
references) propose to combine of ARIMA (for the linear part of the time series) and ANN 
(for the nonlinear component), more original is the combination of discrete wavelet trans‑
form with support vector machine made by Risse (2019). Very recently, Du et al. (2020) 
combine ELM and hybrid approaches to analyze the traits of metal prices. On the whole, 
these aforementioned scholars have confirmed the higher prediction performance of hybrid 
models than that of the individual methods.

The main idea of trees boosting methods is to combine decision tree methods repre‑
sented in our paper by random forests and gradient boosted methods. The interest for ran‑
dom forests remain important, for instance in a very recent paper, Pierdzioch and Risse 
(2020) use multivariate random to forecasts of a vector of returns of four precious metal 
prices (gold, silver, platinum, and palladium). They show that multivariate forecasts are 
more accurate than univariate forecasts. Gradient represents the slope of the loss function, 
so if gradients are large in some points, it means that these points are important for finding 
the optimal split point. Recent research (Pierdzioch et al., 2015a, b) already uses the boost‑
ing approach to study the determinants of returns of the price of gold. The combination of 
decision trees and gradient boosting methods has the advantages of good training effect 
and not easily over‑fitting. Specifically, in this paper, we will compare XGBoost, with two 
very recent boosting methods: LightGBM and CatBoost. These algorithms use different 
splitting methods in order to increase learning speed, prevent overfitting and improve per‑
formance.1 They have already been used to analyze financial data sets (Basak et al., 2019; 
Ma et al., 2018; Huck, 2019) but never to predict commodity price fluctuations.

In practical financial decision situations, decision makers not only need to make accu‑
rate predictions, they also have to justify how predictions are obtained and why a given 
decision is taken (for instance to refuse a loan based on the financial status of the bor‑
rower; or to buy/sell a financial asset, in our example gold). In the academic world, it is 
also important to understand the causal relationships between variables and the hierarchy 
of causes. To answer these practical and theoretical concerns, we use SHAP to explain 
the output of the machine learning model. The idea of SHAP is to show the contribution 
of each feature to run the model output from the base value of explanatory variables to 

1 More detailed features of these algorithms will be presented in the methodology section.
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the model output value. In short, SHAP values represent a feature’s responsibility for a 
change in the model output. Features pushing the prediction higher are distinguished from 
those pushing the prediction lower. To our knowledge, SHAP interaction values have not 
yet been applied to analyze financial data set.

3  Data and variables

In this paper, we investigate the effect of several explanatory variables on gold price, which 
is given in US dollars. The data covers the period from January 1986 to December 2019, 
including 408 monthly observations. This study has been divided into training (80%) and 
test (20%) samples in order to compare the performances of different machine learning 
models. We randomly partition the dataset by selecting 80% of the data as the training 
data set and the remaining 20% as the testing set. This method is commonly used in many 
of the previous research (e.g. Abellán & Mantas, 2014; Antunes et al., 2017; Ben Jabeur 
et  al, 2020). Also, Gholamy et  al., (2018) show that that the best results are obtained if 
we use 20–30% of the data for testing, and the remaining 70–80% of the data for training. 
Table 1 gives more information about data and variables used in this study. Table 2 pro‑
vides descriptive statistics of time series data and Table 3 presents the correlation matrix 
between variables. It is clear that gold price is significantly correlated with all the predictor 
variables.

Table 1  Data and variables

Variables Signification Period Source ( Freely available)

Gold Gold price Monthly https:// www. gold. org
Silver Silver price Monthly https:// www. inves ting. com
Oil Crude oil price Monthly https:// www. eia. gov
USD_EUR Exchange rate (USA/EUR) Monthly https:// fxtop. com/
USD_CNY Exchange rate (USA/CNY) Monthly https:// fxtop. com/
Inflation Inflation Rate (US) Monthly https:// tradi ngeco nomics. com
SP_500 S&P 500 Monthly https:// www. inves ting. com
Iron_Ore Iron Ore Monthly https:// www. inves ting. com

Table 2  Descriptive statistics

The table reports descriptive statistics of full sample

Gold Inflation Iron_Ore Oil Silver SP_500 USD_CNY USD_EUR

Mean 701.96 184.46 1244.92 43.68 10.94 1154.11 6.77 0.84
Median 415.95 182.20 18.80 31 6.47 1128.20 6.83 0.83
Maximum 1813.50 258.501 15,360.02 133 48.58 3230.78 8.72 1.17
Minimum 254.80 108.70 0.05 11 3.56 211.78 3.20 0.63
Std. Dev 454.012 43.41 2503.114 29.12 8.21 710.66 1.52 0.11
Skewness 0.79  0.04 2.73 0.86 1.52 0.76  0.72 0.85
Kurtosis 2.10 1.77 11.57 2.61 5.21 3.05 2.55 3.56
Observations 408 408 408 408 408 408 408 408

https://www.gold.org
https://www.investing.com
https://www.eia.gov
https://fxtop.com/
https://fxtop.com/
https://tradingeconomics.com
https://www.investing.com
https://www.investing.com
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4  Methodology

In this section, we present six machine learning models to forecast the gold price. We 
describe the metrics that can be used to evaluate their performance. We also present the 
SHAP approach to interpret the results provided by machine learning models.

4.1  Machine learning models

4.1.1  Linear regression

Linear regression is a statistical analysis that analyzes the effect of selected independent 
variables2 on an explanatory dependent variable. Linear regression uses the ordinary least 
squares method to estimate the linear relationship between variables. The function of fore‑
casting models are expressed as follows:

where  Yt is the expected value at time t,  Xt is a vector of k predictors variables at time t, βj 
is the estimated coefficients, and εt is a random error term at time t.

Several previous studies have shown that linear regression is less accurate in forecasting 
compared to advanced methods (Risse, 2019) and suffers from various statistical restric‑
tions, such as endogeneity and multicollinearity (Baker et  al., 2020; Pesaran & Smith, 
2019).

4.1.2  Neural networks

Artificial neural networks are widely used in forecasting commodity prices (Ewees et al., 
2020; Kristjanpoller & Minutolo, 2015, 2016). Neural networks (NN) are a set of formal 
neurons associated with layers and operating in parallel. In a network, each subgroup pro‑
cesses independently from the others and transmits the result of its analysis to the next 
subgroup. The first layer is called the input layer. It will receive the source data that we 
want to use for the analysis. Its size is therefore directly determined by the number of input 
variables. The second layer is a hidden layer, in the sense that it has only an intrinsic utility 
for the network and has no direct contact with the outside. The third layer is called the out‑
put layer. It gives the result obtained after compilation by the network of the data entered in 
the first layer. Each neuron collects the information provided by the neurons of the previous 
layer and then calculates its activation potential. This potential is then transformed by a 
function to determine the pulse sent to the neurons of the next layer. The output of the hid‑
den layer is calculated as follows:

Yt = �0 + �1X1 +…+ �nXn + �t

Yt =
1�

1 + e−(
∑N

i=1
wtixj−bj)

�

2 Semantically, we note that the terms variable and feature are identical. The former tends to be used in sta‑
tistics and the latter tends to be used in computer science.
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where  wti is the weight of the ith hidden neuron and  bj is the base of the second hidden 
layer. Multi‑layer perceptrons are the most commonly used models. Several processing lay‑
ers allow them to realize non‑linear relationships between input and output.

4.1.3  Random forest

Recently, several studies have shown the effectiveness of random forest regression (RF) 
in economics and finance (Krauss et al., 2017; Loureiro et al., 2018; Mercadier & Lardy, 
2019). RF is a tree‑based regression approach. According to Babar et al. (2020), RF has 
been extensively used in recent years due to its robust performance compared to other tra‑
ditional models. It is an ensemble learning framework proposed by Breiman (2001), which 
is built on the association of a multitude of regression trees. RF can be constructed by 
randomly sampling a feature subgroup for each decision tree. Based on bootstrap sampling, 
the generation of a random subset of each base tree model and the pruning of linear nodes 
is created on the same sample. After the training process, the predicted values of gold price 
are expressed as follows:

where  lk(x) is a set of kth learner random tree learners and X is the vector of T input vari‑
ables. The trees are constructed using the binary recursive partitioning.

4.1.4  Light gradient boosting machine (LightGBM)

LightGBM is a novel gradient boosting framework proposed by Ke et al. (2017). It employs 
gradient‑based one‑side sampling to fix the split point via computing variance gain. The 
LightGBM algorithm built two novel approaches, which are the gradient‑based one‑side 
sampling and the exclusive feature bundling (Sun et al., 2019). The estimated function of 
LightGBM integrates a number of T regression trees and defined as follows:

where  ft(x) denotes the regression trees. In LightGBM, Newton’s method was used to esti‑
mate the objective function.

Several studies showed that the LightGBM provides more efficient and accurate per‑
formance than advanced machine learning algorithms. According to Sun et al. (2019), the 
advantages of LightGBM can be reflected in fast training speed, low memory consumption 
and good model accuracy.

4.1.5  CatBoost algorithm

CatBoost is also a new gradient descent algorithm proposed recently by Prokhorenkova et al. 
(2018). This supervised machine learning algorithm consists in classifying categorical data 
using the gradient boosting on decision trees. The decision tree is created by dividing the train‑
ing data set into similar instances. According to Prokhorenkova et al. (2018), CatBoost uses 
ordered boosting and an innovative algorithm for processing categorical features. CatBoost 

Yt =
1

T

T∑

h=1

lk(x)

Yt =

T∑

h=1

ft(x)
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outperforming other boosting techniques in terms of performances. The function of decision 
tree h can be written as:

where  Xk is the random vector of N input variables,  Yk is the outcome, and f function is 
a least squares approximation by the Newton method. Moreover, CatBoost uses oblivious 
decisions in order to improve the efficiency, to enhance execution speed and to solve the 
problem of over‑fit.

4.1.6  XGBoost algorithm

Recently, XGBoost has been utilized in various disciplines, such as, energy (De Clercq et al., 
2020; Ma et al., 2020), health care (Guo et al., 2019; Singh et al., 2019), and credit scoring 
(Jiang et al., 2019; Xia et al., 2017). XGBoost, developed by Chen and Guestrin (2016), is 
an algorithm that incorporates the boosting model proposed by Friedman (2001). Normaliza‑
tion is used in the objective function to reduce model complexity, to prevent overfitting and to 
make the learning process faster. Importantly, XGBoost is an ensemble model which consists 
of an efficient implementation of decision trees, in order to produce a combined model whose 
predictive performance is better than individual techniques used alone. According to Mo et al. 
(2019), the output function is calculated as follows:

where ŶT−1
i

 is the generated tree, fT
(
xi
)
 is the newly created tree model, and T is the total 

number of tree models.
In XGBoost, several parameters need to be regulated to maximize the power of model per‑

formance and to prevent overfitting problems. Cross‑validation technique has been used to 
find the optimal combination of parameters. In our study, for parameter tuning we use tenfold 
cross‑validation. The optimal hyper‑parameters values selected after cross‑validation are col 
sample by tree: 0.7; learning rate: 0.05; number of iterations: 500, max depth: 5, subsample: 
0.7; minimum sum for instance weight needed in a child: 4; number of parallel threads: 4, and 
silent: 1.

4.2  Performance metrics of models

The forecasting performance of the six machine learning models is evaluated by five com‑
mon evaluation metrics: the root mean square error (RMSE), mean square error (MSE), mean 
absolute error (MAE), and the coefficient of determination  (R2). The specific definition of 
each of these metrics can be calculated as follows:
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4.3  SHAP (SHapley Additive exPlanation) approach for results interpretation

Machine learning has great potential in forecasting times series data. But  researchers do 
not usually explain their predictions, which is a barrier to the adoption of machine learn‑
ing. To overcome this problem, Lundberg and Lee (2017) proposed a SHAP approach for 
interpreting predictions for different techniques including LightGBM, NGBoost, CatBoost, 
XGBoost, and Scikit‑learn tree models. SHAP helps users to interpret the predictions of 
complex models. SHAP was initially proposed by Shapley in 1953 and it is based on game 
theory (Shapley, 1953). It allows us to explain the prediction of a specific input (X) by 
calculating the impact of each feature to the prediction.  The estimated Shapley value is 
calculated as follows:

where ĝ
(
xm
+j

)
 is the prediction for x, but with a random number of feature values.

Lundberg et al., (2018) proposed TreeSHAP, for gradient boosting models, among them 
XGBoost. TreeSHAP offers a rich visualization of each feature attribution that improves 
over classic feature importance and partial dependence plots. According to Lundberg et al., 
(2018) the TreeSHAP interaction values can be estimated as follows:

when I when i ≠ j, �ij(S) = fx(S ∪ {i, j} − fx(S ∪ {i} − fx(S ∪ {j} + fx(S) , M is the number of 
features, and S all feature subsets. SHAP values advance our understanding of tree mod‑
els by including feature importance, feature dependence plots, local explanations and sum‑
mary plots.
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(Ŷh − Yh)
2

MAE =
1

N

N∑

h=1
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5  Results analysis

5.1  Comparison of models’ performance

We have estimated model performance using the root mean square error (RMSE), mean 
square error (MSE), mean absolute error (MAE), and the coefficient of determination  (R2). 
To compare the six machine learning models, a validation test sample (20%) has been 
used. The findings confirm the high capacity of explanatory variables to predict gold price, 
which  R2 ranging from 0.807 for linear regression to 0.994 for XGBoost shown in Table 4.

Table 4 presents a comparison of the predictive capacity of the six models. The model 
with the lowest values of RMSE, MSE and MAE, and the highest value of  R2 is considered 
the best forecasting model. As depicted in Table 4, XGBoost provides the highest  R2 value 
coupled with the lowest RMSE, MSE and MAE among all the models used in this study. 
XGBoost is followed by CatBoost and RF, whereas linear regression and neural networks 
lead to the worst results. This indicates the advantage of the XGBoost over traditional fore‑
casting techniques used in time series data. To assess the predictive power of our analysis, 
we have also illustrated the performance of different models in Fig. 1. This figure shows 
that the gold price forecasted using XGBoost is extremely near to reality for the test data. 
These findings are in line with the results of Xia et al. (2017) and Climent et al., (2019) 
who reported the performance of XGBoost compared to traditional models in bankruptcy 
prediction and credit scoring. Nerveless, the worst results of neural networks could be 
explained by the small size of the sample. According to Lago et al. (2018), deep learning 
models require large amounts of data to be correctly computed.

5.2  Feature analysis

SHAP allows interpreting the effect of the influence of the input variables in the output. 
SHAP helps policymakers to interpret machine learning models; it calculates the variables’ 
importance.

Figure 2 displays the SHAP summary plot that orders variables based on their impor‑
tance to affect the gold price. We can see that the silver price is the most important feature 
in the model. This result supports the findings in Schweikert (2018) who reported a strong 
dependence on the long‑run relationship between gold and silver prices. Additionally, 

Table 4  Machine learning 
models performance on testing 
dataset

This table presents forecasting performance of the six machine learn‑
ing models used: the root mean square error (RMSE), mean square 
error (MSE), mean absolute error (MAE), and the coefficient of deter‑
mination  (R2)

Models RMSE MSE MAE R2

XGBoost 34.921 1219.500 21.968 0.994
CatBoost 36.285 1316.636 23.488 0.993
Random Forest 42.113 1773.566 26.787 0.991
LightGBM 45.592 2078.698 28.793 0.990
Neural Network 195.961 38,400.748 155.425 0.807
Linear Regression 71.325 5087.391 53.693 0.974
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higher values of silver price result in higher SHAP values, which relate to a higher prob‑
ability that gold price increases. Inflation is the next most important feature, in that order, 
and higher values of this variable correspond to higher chance that gold price increases. 
This is in line with the results of Kristjanpoller and Minutolo (2015) who documented that 
inflation is correlated with gold price fluctuations. In contrast, lower values of iron ore cor‑
respond to a higher chance of gold price increases. This finding is in contrast with Alameer 

Fig. 1  Performances of six machine learning models over test sample
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et al., (2019), who found a positive relationship between iron ore and gold price. The rela‑
tionship between gold price and crude oil price is particularly evident when higher gold 
price results in increased crude oil price. Again, this finding is consistent with the results 
of Kanjilal and Ghosh (2017) and Singhal et  al. (2019), who documented that crude oil 
price is a major macroeconomic determinant to guide gold price movement. Finally, SHAP 
importance variables in Fig. 2 indicate that high values of gold price results in low values 
of S&P 500. This result is consistent with the findings reported by Piñeiro‑Chousa et al. 
(2018), who found that gold returns and the S&P 500 index is negatively related.

To further examine the relationship between features and the outcome, SHAP depend‑
ence plots show how a variable’s value impacts the prediction (y axis) of every observation 
in the dataset. We display SHAP dependence plots in Fig. 3. SHAP dependency plots may 
depict both the major impact of individual predictor variables as well as the interactions 
between them. By global interpretability, we can see on the whole sample, the positive 
or negative contribution of each feature to the prediction score. For example, in Fig. 3‑d, 
we can examine the impact of China’s exchange rate when the price of crude oil increases 
from 20 to 80. The red points display higher values of crude oil price, and the blue points 
represent lower ones, which reveal that increasing China’s exchange rate increases the vol‑
atility of gold price. When China’s exchange rate is low, SHAP values for high crude oil 
prices are above zero, which suggests that increasing China’s exchange rate increases the 
gold price. In contrast, SHAP values for low crude oil price are under zero, which indicates 
that increasing China’s exchange rate while crude oil price is low reduces the chance of 
increasing gold price.

Figure 3‑g shows the effect of S&P 500 and inflation on the movements of gold price. 
The SHAP values indicate that the impact of S&P 500 starts positively; that is, increasing 
S&P 500 when it is below 30, results in higher gold price. Between 0 and  30, the linkage 
becomes negative, and an increase in S&P 500 causes a high gold price. In addition, high 
values of S&P 500 and inflation show that the gold price tends to be higher.

Let’s see how SHAP can help us to obtain local knowledge. By local interpretability, we 
can measure how the feature values contribute to the prediction score of each observation 

Fig. 2  On the left, SHAP summary plot of the XGBoost model. The higher SHAP value of a feature, the 
higher gold price levels. On the right, the relative importance for each feature, obtained by taking the aver‑
age absolute value of the SHAP values
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in the sample separately. The traditional attribute importance algorithm, like linear models, 
only gives the importance value of a global attribute over the whole dataset, while SHAP 
value will provide importance value for each observation separately. Figure 4 shows the 
marginal effect of seven features on the predicted gold price level of the XGBoost model 
in the training dataset. In Fig. 4, the red color represents that the feature increased the gold 

Fig. 3  SHAP dependence plots. The x‑axis is the value of the feature pressure and the y‑axis is the SHAP 
value. The red values represent the high values of the variable, whereas the blue signifies the low values
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price, while the blue color shows that the feature decreased the gold price. We have cho‑
sen the first observation prediction by XGBoost for illustration. The gold price prediction 
is equal to 834.32 significantly higher as the features have the following characteristics: 
China’s exchange rate (7.019), inflation (257.9) and S&P 500 (3.141) located in the blue 
zone, which indicates those variables driving the gold price towards lower values. Features 
located in the red zone; Silver (17.11), Iron Ore (0.145) and crude oil (57), which indicate 
those features, push the gold price towards higher values.

6  Conclusion

In this paper, we compare six different machine learning models to determine which one 
is more suitable to predict the gold price. The findings show that XGBoost, which pro‑
vides the best result over the other competitive techniques and outperforms all well‑known 
benchmark models. Furthermore, the results provide significant correlations among gold 
prices and all the predictor variables considered, i.e. crude oil, iron and silver price, USD_
EUR and USD_CNY exchange rates, S&P 500 and inflation rate of US. This result dem‑
onstrates that those variables display a high capacity to forecast future gold price volatility.

Moreover, this study presents the SHAP method to unify the field of interpretable 
machine learning. Indeed, the proposed technique provides a rich visualization of indi‑
vidualized feature attributions that improves the interpretability of gold price fluctuations. 
Moreover, Tree SHAP’s advance our understanding of tree models. It offers an insight‑
ful means to interpret the findings from a complex framework such as XGBoost and also 
extract nonlinear relationships of features on the output of a model. We show how Shapley 
additive explanations can be used to interpret the outputs of XGBoost designed to predict 
the gold price.

As practical implications, our results offer some meaningful implications to the inves‑
tors and policy makers. First, the choice of an accurate technique should represent an effec‑
tive forecasting tool for central banks and investors. Central banks need to know the gold 
price movements in order to secure certain transactions or to make strategic reserves. For 
investors, gold helps to diversify the portfolio and serves as insurance in the case of risk 
and volatility, in other words, gold can be used as investors’ safe haven. If the direction of 
the gold market is successfully predicted, the investors might be better guided and earn a 
safe return. Second, our findings suggest that traders may benefit from the XGBoost algo‑
rithm and SHAP interaction values in their decisions. Successful forecasting procedure 
empowers traders to make decisions and plan for the future in order to enhance favorable 
scenarios. Third, our study will profit to policy makers as it gives a list of factors including 
oil as indicators for gold price. The SHAP method offers a powerful and insightful measure 
of the importance of every input variable in the prediction of future gold price fluctuations.

Fig. 4  Explanation of the first prediction generated by the XGBoost model using tree SHAP
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Our study presents a limitation common to all similar studies. Although the model pro‑
posed can achieve very accurate predictions, it should also be acknowledged that markets 
rely on a number of variables, like geopolitical decisions that can result in unpredictable 
movements.

Finally, future research might extend our work by considering additional variables, 
such as political or commercial factors as well as phases of economic instability, which 
are generally determining factors of the price of gold. Also, as another direction for future 
research is the application of the proposed model in forecasting other commodities prices. 
Moreover, it would be interesting to include one or more computational cost factors in the 
comparison of different forecasting models. A mathematical formulation based upon some 
operational research process would allow a more objective comparison. It would also be 
promising to equip some of the approaches presented above with a preprocessing stage 
to provide some hybrid adaptive approach (Saâdaoui, 2012). Moreover, developing mul‑
timodal extensions by first proceeding with an unsupervised clustering could also lead to 
sufficiently robust approaches to better capture the outliers present in the data (Saâdaoui, 
2012). Metaheuristic optimization methods could therefore be useful to identify and esti‑
mate this type of method (Rabbouch et al., 2020).
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