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Abstract
We examine the risk spillovers in the Chinese financial system by adopting a time-varying 
copula-CoVaR approach. We first identify the systemically important financial institu-
tions for each industry group in China’s financial sector in a dynamic context. We then 
find strong evidence of upside and downside risk spillovers between these key institutions 
and the financial system, by quantifying value at risk (VaR), conditional VaR (CoVaR) and 
delta CoVaR (ΔCoVaR) through time-varying copulas. The empirical results further reveal 
asymmetric downside and upside risk spillover effects, indicating asymmetric hedging 
strategies for investors during market upturns and downturns.

Keywords  Financial system · Systemically important financial institution · Risk spillovers · 
Copula · Delta CoVaR

1  Introduction

The issue of curbing systemic risk in the financial system has been central to regulatory 
and supervisory frameworks in various countries since the 2008 financial crisis. Com-
pared to ex-post recovery and taxpayer bailouts, it is well realized that effective ex ante 
measures can curb systemic risk before it builds up and propagates across the system, thus 
sufficiently reducing the negative externalities and heavy social costs following a massive 
market meltdown (Acharya et al., 2012). Despite the fast-growing techniques and booming 
literature of modelling the sources of systemic risk and its various contagion trajectories, 
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the definition of systemic risk is yet to gain a consensus among policy makers, regulators, 
market participants and academics, due to its complexity, fast evolution and fuzzy nature. 
Notwithstanding, as identified by the Financial Stability Board (FSB, 2009) and European 
Central Bank (ECB, 2010), there are two fundamental aspects of systemic risk: the distress 
of parts or the entire financial system, and a potential of material negative externalities to 
the rest of the economy and social welfare.

The concept of systemic risk can thus be regarded to involve both risks stemming from 
a particular source and the contagion as a result of interactions between agents (nodes) 
within a network structure. Regarding these two fundamental aspects of systemic risk, this 
study seeks to identify the financial institutions with systemic importance in China’s finan-
cial system, and depict the time-varying risk spillovers between those key firms and the 
financial system. According to the Financial Stability Board (FSB, 2010), financial insti-
tutions whose disorderly failures contribute most significantly to financial instability and 
more widely economic disruption are identified as systemically important financial insti-
tutions (SIFIs). These institutions may only be a few, but due to their size, low level of 
substitutability, global scope, complexity and systemic interconnectedness (BCBS, 2013), 
their distress or collapses could be contagious and lead to a massive systemic failure (Billio 
et al., 2012; Sedunov, 2016). After the financial crisis, regulators not only pay attention to 
the risks of a single financial institution, but more importantly attempt to monitor the risk 
spillover dynamics between the financial system and individual institutions. This macro-
prudential supervision seeks to identify the connectivity of a particular financial institution 
to determine its systemic importance and to further forecast or trace the possible conta-
gion channels of risk and distress through a risk map. This is opposed to traditional micro-
prudential supervision, which focuses on firm-level oversight through capital requirement, 
on-site examination, etc. Alongside with on-going policy updates, a growing body of aca-
demic research has emerged on how to measure and score SIFIs, both in a single country 
context (for example, Hmissi et al., 2017) and against a wider global backdrop.

On the other hand, there are voluminous studies focusing on the contagion effects of 
systemic risk. At the market level, Philippas and Siriopoulos (2013) argue that contagion 
occurs in the forms of increased cross-market linkages or transmission of shocks across 
markets in the wake of a systemic event. Both this study and Pragidis et  al. (2015) use 
correlations of asset prices as systemic risk indicator and test time-varying volatility rela-
tionships between asset returns across the European Monetary Union economies during 
the European debt crisis. In addition, the many specifications of the multivariate GARCH 
model have been employed to measuring cross-market risk contagion (Mensi et al., 2017; 
Reboredo & Ugolini, 2015).

Our adoption of the dataset accounts for the growing importance of the fast internation-
alized and liberalized China’s equity market on global financial stability (Glick & Hutch-
ison, 2013; Yao et al., 2018; Zhang, 2017). Risk spillovers in developed economies, such 
as European (Ghulam & Doering, 2018; Shahzad et al., 2018) and US (Billio et al., 2012; 
Low, 2018) markets, have already drawn much attention. Sparse studies, however, have 
made efforts on exploring the Chinese market, despite the critical roles of the Chinese 
financial sector in fueling the country’s economic growth and its international importance 
to systemic risk and financial stability in the global market.

Despite unprecedented economic growth in the past decades, China’s economy has been 
facing perpetuating problems such as outsize debt expansion, housing bubbles (Zhang & 
Fan, 2018; Zhang et al., 2017) and excess industrial capacity, and new challenges such as 
slowdown in growth and increasing economic policy uncertainties in the wake of the US-
China trade war (Zhang et  al., 2018). These have led to mounting anxiety and fear of a 



121Annals of Operations Research (2023) 330:119–153	

1 3

financial calamity, which may not take the same course as, for example, the Lehman Broth-
ers episode, due to China’s unique political, economic and legal attributes, but can inflict no 
less damage on domestic economy and threaten global financial stability. Furthermore, com-
pared to some previous studies focusing on a specific crisis, several recent market crises in 
the China market are covered by our sample period. Our empirical evidence shows that dur-
ing these turmoil periods, risk spillover effects within the system were drastically amplified.

In this study, we test the bidirectional upside and downside risk spillovers between the 
SIFIs and their corresponding industry groups using VaR, CoVaR and ΔCoVaR (Adrian & 
Brunnermeier, 2016) estimated by time-varying copulas. Institutions exhibiting the strong-
est spillover effects on their affiliated industry groups, as evidenced by the greatest value 
of CoVaR, are identified as SIFI in the financial system. To the best of our knowledge, this 
study is the first to apply the CoVaR-copula approach to detecting risk spillover effects in 
the Chinese financial system. Our adoption of time-varying copulas to estimate CoVaR well 
accounts for the time-varying characteristics of risk spillovers in the fast-evolving finan-
cial market (Zhang, 2017), and tackles the non-normally distributed characteristics of most 
financial data. Due to the advantages of copulas in measuring both average movements 
across marginal and extreme upward and downward joint movements, the copula-CoVaR 
methodology enables us to flexibly estimate the dynamic and asymmetric tail dependence 
between data (Patton, 2006), in our case, the upside ad downside risk spillovers in the Chi-
nese financial system. Compared to other methods used to estimate CoVaR in the litera-
ture, such as quantile regression (Fan et al., 2017), tail risk networks (Wang et al., 2018a), 
multivariate GARCH model (Huang et al., 2017), the combination of copula functions and 
CoVaR has many advantages (Bernardi et al., 2017; Mainik & Schaanning, 2014; Reboredo 
& Ugolini, 2015). By separately estimating the marginal distribution and dependence of the 
two groups of variables, it captures the nonlinear tail dependence between variables and 
makes the calculation of VaR and CoVaR more convenient.

By using this copula-CoVaR methodology, we also focus on the spillovers of extreme 
risks within a financial network. The importance of the spillovers of extreme risks is 
more highlighted than ever in the wake of the 2015 stock market crash in China (Fang 
et  al., 2018; Wu, 2019). The financial crises and market crashes demonstrate that a tail 
event could rapidly propagate across the market and trigger system-wide disruption and 
malfunctioning, implying that extreme risk matters more than simple (mean) correla-
tions, especially for financial surveillance and regulatory purposes (Betz et al., 2016). In 
recent studies, increasing emphasis has been placed on tail event driven network models, 
such as Hautsch et al. (2014) and Härdle et al. (2016). The latter describes the tail-driven 
spillover effects across US financial institutions by combining the CoVaR model and net-
work dynamics. Fang et al. (2018) used relevant models to study the extreme risk spillover 
between financial institutions in China.

While most existing studies on the Chinese market focus on risk spillovers across firms 
(Fang et al., 2018; Wang et al., 2018a, 2018b) or sectors (Wu, 2019; Wu et al., 2019), we 
investigate the risk spillovers between the financial institutions and the subsectors they belong 
to, motivated by the current financial segregation in the Chinese financial system and the 
evidence in the literature. Though financial convergence has become increasingly popular 
in some developed economies, such as the US, the financial system in China is featured by 
business segregation arising from legal separation between businesses conducted by financial 
institutions. For example, the Law of the People’s Republic of China on Commercial Banks 
imposes legal barriers between investment and commercial banking activities. In this frame-
work, institutions in one financial sector cannot engage in businesses in other sectors. On the 
other hand, Zhang et al. (2020) depict the risk relationships across the financial institutions 
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in the Chinese financial markets from a network topology perspective and find that financial 
institutions within the same industrial group tend to be more interconnected. Motivated by this 
finding, we attempt to depict the risk transmission patterns from a within-industry perspective, 
based on the conjecture that risk spillovers tend to occur first across the firms within a sector 
and then ripple further out to firms in other sectors.

The contributions of our study are threefold: First, to the best of our knowledge, sparse 
studies in extant literature have tried to explore systemic risk spillovers in the Chinese finan-
cial system using the CoVaR-copula approach. This approach tackles the issue of identifying 
the source of and key contributors to systemic risk from a new perspective. It enables us to 
capture risk spillover patterns in a dynamic fashion. Based on CoVaR and ΔCoVaR computed 
by time-varying copulas, we manage to address possible time variations in risk spillovers and 
identify the SIFI in this system by taking into account its own evolution and market dynam-
ics. The information is highly relevant for financial investors when attempting to forecast 
the multivariate distributions of an asset portfolio to support investment decisions and risk 
management.

Second, this study investigates risk spillovers within the three subsectors in the Chinese 
financial system: commercial banks, insurance and diversified financials. The empirical evi-
dence shows that Shanghai Pudong Development Bank (SPDB) is the SIFI in the Chinese 
banking industry, while Pacific Securities Co., Ltd. (PS) and Ping An Insurance (Group) Co. 
of China, Ltd. (PAI) are identified as SIFIs for diversified financials and insurance, respec-
tively. According to the 2018 G-SIBs list released by the Financial Stability Board, China 
Construction Bank, Industrial and Commercial Bank of China, Bank of China and Agricul-
tural Bank of China are recognized as global systemically important banks (FSB, 2018). The 
different rankings between our results and the G-SIBs implies that the systemic importance of 
an individual financial institution may differ significantly in the global and domestic contexts.

Third, we find evidence of strong bidirectional upside and downside risk spillovers, where 
downside and upside risk spillovers demonstrate asymmetric and time-varying patterns. These 
findings are of policy implications for regulators to diagnose systemic weakness and source of 
risk spillover during both bullish and bearish periods, so as to enhance resilience of the whole 
system and promote financial market governance. For stock market participants in the China 
market, they should bear in mind systemic risk of both SIFI and the sector/industry groups for 
effective risk management. The asymmetric upside and downside risk spillover effects within 
the financial system also imply that savvy investors should accordingly predict systemic risk 
and effectively adjust their hedging strategies and positions to protect portfolios from risk 
spillovers.

The remainder of the paper is organized as follows. In Sect. 2, we review relevant literature 
on risk spillovers within the Chinese financial system. In Sect. 3, we introduce the methodolo-
gies used in the empirical application. In Sect. 4, we present the data and discuss the empirical 
results. Section 5 summarizes our empirical results and concludes with policy and investment 
implications.

2 � Literature review

Based on the manifold nature of systemic risk, models dedicated to measuring systemic 
risk are highly heterogeneous with focuses on capturing different facets of systemic risk. 
It is sometimes hard to distinguish models of measuring systemic risk versus detecting its 
contagion, as they tend to combine together (Wu, 2019). Traditionally, methods such as 
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correlation coefficient and copula functions are used to measure systemic risk by adopt-
ing low-frequency data, such as bilateral exposure data (Kanno, 2015) and supervision 
data (Glasserman & Young, 2015). One most notable limitation arising from low data fre-
quency is that it is hard to timely capture the dynamic changes in the financial system or 
to conduct real-time detection and measurement of systemic risk. In recent years, a series 
of breakthroughs have been made in the methodologies of modelling systemic risk and 
its contagion. Some recently developed techniques rely on market available data to assess 
to what extent an individual bank contributes to the systemic risk in the financial system, 
namely, their marginal risk contribution to systemic risk, and vice versa. Prominent exam-
ples of market-data based measures from a portfolio perspective are conditional value-at-
risk (CoVaR) (Adrian & Brunnermeier, 2016), marginal expected shortfall (MES) (Acha-
rya et al., 2017), component shortfall (CES) (Banulescu & Dumitrescu, 2015), and SRISK 
(Brownlees & Engle, 2017).

Among existing literature focusing on measuring systemic risk and identifying the net-
work structure in the Chinese financial system, the Diebold and Yılmaz (2014) method is 
employed to find evidence of strong interconnectedness in the commercial banking sec-
tor in China (Wang et al., 2018b). Gang and Qian (2015) measure systemic risk of finan-
cial institutions by marginal expected shortfall (Acharya et al., 2017), while several oth-
ers focusing on China’s banking sector (Fan et  al., 2017; Huang et  al., 2017; Xu et  al., 
2018) adopt MES, CoVaR, VI and SII as systemic risk measures. In this study, we measure 
systemic risk and capture its spillover effects in the Chinese financial system by dynamic 
copula-CoVaR models. Using this approach, we manage to analyse the bidirectional risk 
spillovers between individual institutions and the financial sector. By measuring the sys-
tem’s VaR conditional on a single firm being in distress, we detect the transmission of 
extreme risk from a bottom-up perspective, which is different from other top-down models 
such as MES, CES and SRISK, which examine the extent to which firms are exposed when 
the system is in distress. Notably, these directions of risk transmission do not reveal any 
causal relationship but only tail risk dependence.

While existing China-related studies quantifying CoVaR by, for example, quan-
tile regression (Fan et  al., 2017), tail risk networks (Wang et  al., 2018a) or multivariate 
GARCH model (Huang et al., 2017), we use CoVaR and ΔCoVaR characterized and esti-
mated by time-varying copulas to capture risk spillover patterns in the Chinese financial 
system. To the best of our knowledge, this CoVaR-copula approach has not been used in 
the existing literature to detect risk spillover effects in the Chinese financial system.

Within the framework of copula, Patton (2006) is a pioneering study adopting time-
varying copulas to studying the dynamics of asymmetric dependence structure of exchange 
rates. Detailed reviews of the copula families can be found in Joe (1997), Nelsen (2006) 
and Patton (2012). With its strength in detecting dependence structure and its evolution, 
the copula approach has gained increasing popularity in empirical finance research (see for 
example, Reboredo & Ugolini, 2015; Liu et al., 2017; Mensi et al., 2017; Ji et al., 2018).

Mainik and Schaanning (2014) first propose to use copula to represent CoVaR. The 
extant literature has shown that the calculation of CoVaR can benefit from using copu-
las (Bernardi et  al., 2017; Patton, 2006). Copula has its advantages in capturing the 
non-normal characteristics of the joint distributions present in many common economic 
variables (Patton, 2006). By separately modelling marginal distribution and dependence, 
copula models render the flexibility to obtain different dependence measures with varied 
tail dependence features which linear correlation coefficients fail to capture, thus facilitat-
ing the computation of VaR and CoVaR. Furthermore, the various model specifications of 
time-varying copulas allow for time variation in the associated dependency parameters, 
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making it possible to detect the dynamics of the market network structure. Drawn on the 
advantages of copulas in measuring both average movements across marginal and extreme 
upward and downward joint movements, the copula-CoVaR methodology enables us to 
flexibly and fully estimate both upside ad downside risk spillovers in the Chinese financial 
system, which helps to build an effective early warning system and emergency risk man-
agement system.

In terms of the regulatory frameworks, the FSB identifies the G-SIBs by an indica-
tor-based assessment methodology published by the BCBS in 2013 (FSB, 2018). In this 
framework, the systemic importance of an individual bank is scored based on five equally 
weighted indicators including a bank’s size, interconnectedness, substitutability, the level 
global activity and complexity (BCBS, 2013). The bank is then allocated to one of the four 
equally sized buckets based on its score of systemic importance and is subject to the loss 
absorbency requirement specifically applicable to that bucket. Both the systemic impor-
tance score and bucket allocation are subject to annual review.

Compared to the indicator-based method proposed by the BCBS, there are some advan-
tages of the copula-CoVaR approach adopted in this study. By equally weighing the signifi-
cance of these five indicators, the indicator-based approach cannot address the potentially 
greater impact of a particular indicator on a bank’s systemic importance and may poten-
tially cause bias on the evaluation of firm-level systemic importance. The copula-CoVaR 
method avoids this problem, as it captures the tail dependence across financial institutions 
without having to make prior assumption of the weight of any firm-level contributor to the 
systemic importance. Another drawback of the indicator-based approach is the lags in the 
risk measure arising from constructing the indicators of a current year by the accounting 
data of the previous fiscal year. By contrast, using market asset prices can convey forward-
looking information to facilitate the detecting of early warning signals and ex ante regulat-
ing. Moreover, the indicator-based method measures a bank’s level of interconnectedness 
mainly by interbank exposure arising from lending and borrowing positions in the inter-
bank market, which in many cases are firm-level private information and are not available 
to the public. Using the copula-CoVaR approach does not require us to acquire the exact 
cross-positions between financial institutions, or to assume time-invariant assets or liabili-
ties over the given period (Wu, 2019).

3 � Methodology

There are three steps in the analysis. We first adopt the ARMA-GARCH models to esti-
mate the marginal distribution for each return series. We then apply the time-varying copu-
las to characterize the joint distributions of the return series and tail dependence, allowing 
the dependence parameters to change over time (Mensi et al., 2017). Following Reboredo 
and Ugolini (2015) and Reboredo et  al. (2016), we estimate the downside and upside 
CoVaRs by the time-varying copula functions to measure the risk relationship between two 
variables.

3.1 � The marginal distribution model

Our starting point is to estimate marginal distributions/densities of each return series in the 
full sample, which is characterized by an ARMA(p, q)-GARCH(m, n) specification:
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where ri,t is the return of institution i at time t; �0 is a constant; p and q are the number of 
lags, which are non-negative integers; �j and �i are the autoregressive (AR) and moving 
average (MA) parameters, respectively; and �2

i,t
 is the conditional variance with its dynam-

ics given by a GARCH model:

where �0 is a constant; n and m are the number of lags, which are non-negative integers; 
�2
t−h

 and �2
t−k

 are the ARCH and GARCH components, with �h and �k being the param-
eters, respectively. The numbers of lags (p, q, m and n) are decided by Akaike information 
criteria.

Considering non-normality characteristics of the GARCH model residuals (Boller-
slev & Wooldridge, 1992), and possible time-varying parameters of the error distribution, 
we build our univariate margin model based on Hansen’s skewed Student-t distribution 
(Hansen, 1994) to allow for a control of asymmetry and fat-tailedness of the return series 
and to obtain time-varying higher moments (Liu et al., 2017; Reboredo et al., 2016). Hans-
en’s model is specified as:

where f
(
zi,t;�, �

)
 is the density function for the random variable Z; � is the degree-of-free-

dom parameter; � is the symmetric parameter; the intervals for the distribution parameters 
are 2 < 𝜐 < ∞ , −1 < 𝜂 < 1 ; a, b and c are defined as a ≡ 4�c

(
�−2

�−1

)
,b2 ≡ 1 + 3�2 − a2 , and 

c ≡ Γ
�

�+1

2

�
∕
√
�(� − 2)Γ

�
�

2

�
 , respectively.

3.2 � Time‑varying copula models

In the family of copulas, there are diverse specifications able to capture complex patterns 
of dependence in tails. To address its non-linear, asymmetric and dynamic characteristics 
of the market dependence structure, we employ seven well-known and widely adopted 
time-varying copula models to characterize and compute the risk measures (Mensi et al., 
2017; Patton, 2006).

Let C(u, v) denote the basic form of static copula, and FX(x) and FY(y) denote the con-
tinuous marginal distributions of random variables x and y, respectively. The bivariate joint 
cumulative distribution function (c.d.f.) of x and y is decomposed as:

(1)ri,t = �0 +

p∑
j=1

�jri,t−j + �i,t −

q∑
i=1

�i�i,t−j

(2)�i,t = �i,tzi,t

(3)�2
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m∑
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�h�
2
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+

n∑
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�k�
2
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(4)f
�
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�
=

⎧
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bc
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1
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�
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�
1 +

1
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�
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�2
�−(𝜐 + 1)∕2

if zi,t ≥ −a∕b

(5)FXY(x, y) = C(u, v) = C
(
FX(x), FY(y)

)
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where the copula function C(u, v) couples together the marginal distributions of x and y and 
form a bivariate joint distribution of x and y, FXY(x, y) . The bivariate joint probability den-
sity function (p.d.f.) of x and y, fXY(x, y) , is decomposed as:

where c(u, v) = �2C(u, v)∕�u�v; fX(x) and fY (y) are the marginal probability density func-
tions for x and y, respectively. Using copula models, we can characterize the joint distribu-
tions of return series and quantify their tail dependence.

Much evidence shows that conditional correlations between financial asset returns fluc-
tuate through time, and it is necessary to consider the potential time variation of the cop-
ula functions. Drawn on Patton (2006, 2012), Mensi et al. (2017), Liu et al. (2017) and Ji 
et al. (2018), we construct seven time-varying copula models in this study, derived from 
their static counterparts using specific evolution equations to allow the model parameters 
to evolve over time while keeping the functional form of copula fixed during the sample 
period.1 The seven copula specifications are time-varying Gaussian, Clayton, Rotated Clay-
ton, Gumbel, Rotated Gumbel, SJC and Student-t. Following Patton (2006) and Liu et al. 
(2017), the evolution equations for the dependence parameters in each copula are specified 
as follows. To estimate the copula model parameters, we adopt maximum likelihood, while 
the most fitting copula is selected by minimizing the AIC value.

For the Gaussian and Student-t copulas, the evolution of the dependence parameter �t is 
assumed to follow an ARMA (1, q)-type process:

where Λ(x) = (1 − e−x)(1 + e−x)−1 is the modified logistic transformation that retains �t 
in (−1, 1) ; Φ−1(x) is the normal distribution quantile function. For the Student-t copula, 
the dynamics for �t is characterized by the same specification, only that Φ−1(x) is substi-
tuted by t−1

n
(x) , which is the quantile function of the univariate Student-t distribution with 

degree-of-freedom n.
The evolution of the dependence parameters of Clayton, Gumbel and their rotated ver-

sions is also assumed to follow an ARMA (1, q)-type process:

where for time-varying Clayton and Rotated Clayton, Λ(x) = x2 to retain �t in (0,+∞); for 
time-varying Gumbel and Rotated Gumbel, Λ(x) = 1 + x2 so that �t is kept in (1,+∞).

For the SJC copula, the evolution of the two dependence parameters is assumed to 
follow:

(6)fXY(x, y) = c(u, v)fX(x)fY (y)

(7)�t = Λ

(
�0 + �1�t−1 + �2

1

q

q∑
j=1

Φ−1
(
ut−j

)
⋅Φ−1

(
vt−j

))

(8)�t = Λ

(
� + ��t−1 + �

1

q

q∑
j=1

|||ut−j − vt−j
|||
)

1  It should be mentioned that there are several alternative methods when estimating the time-varying 
parameters of the copula models. On the other hand, the regime switching copulas allow the changes of 
functional forms of couples over time. A detailed review can be found in Manner and Reznikova (2012). 
The detailed description of these approaches, however, is beyond the scope of this study.
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where Λ(x) = (1 + e−x)−1 is the logistic transformation to retain �U
t

 and �L
t
 in (0, 1).

3.3 � Testing structural breaks in dependence

As the sample period covers several prominent systemic events, such as the global finan-
cial crisis and the stock market turbulence during 2014 and 2015, it is a natural concern 
that there might exist structural changes through time in the copula dependence between 
the financial institutions and the financial system.2 While the time-varying copula func-
tions introduced above capture the temporal variation of the copula dependence over time, 
it may not directly reveal substantial structural changes of the dependence relationships 
(Ji et  al., 2019). To address this concern, we follow the method of Dias and Embrechts 
(2009), Liu et al. (2017) and Ji et al. (2019) to detect if there are any structural breaks of 
the dependence by the following steps.

For a random vector U
t
=
(
U1t,U2t

)
 in [0, 1]2 with univariate uniformly distributed mar-

gins and copula C
(
u;�t

)
 , where 𝜃t ∈ Θ ⊆ Rn , the following hypothesis is proposed to test 

the existence of structural changes of the copula function parameter series:

If the null hypothesis H0 is rejected by the test results, these is evidence at a given level 
of significance that a structural change of the copula parameter series occurs at time k∗ . 
The likelihood ratio statistic is constructed as:

Given L
�
�

�

, �
���

=
∑

1≤t≤k log
�
c
�
ut, �

���
+
∑

k≤t≤T log
�
c
�
ut, �

���� and 
L0(�) =

∑
1≤t≤T

log
�
c
�
ut, �

��
 , we then have:

The value of 2 logΛ(k) is estimated by the maximum log-likelihood method. The null 
hypothesis H0 will be rejected if the value of 2 logΛ(k) is high enough at a given level of 
sgnificance � . The structural change point is idenifed by the statistic ZT = max

1≤k≤T
2 logΛ(k) , 

where the distribution of Z1∕2

T
 is:

(9)�U
t
= Λ

(
�U + �U�

U
t−1

+ �U
1

q

q∑
j=1

|||ut−j − vt−j
|||
)

(10)�L
t
= Λ

(
�L + �L�

L
t−1

+ �L
1

q

q∑
j=1

|||ut−j − vt−j
|||
)

(11)H0 ∶ �1 = �2 = ⋯ = �T VS.HA ∶ �1 = ⋯ = �k∗ ≠ �k∗+1 = ⋯ = �T

(12)Λ(k) =

sup

(�� ,��� )∈Θ×Θ

∏
1≤t≤k c

�
ut, �

��∏
k≤t≤T c

�
ut, �

���
sup

�∈Θ

∏
1≤t≤T c

�
ut, �

�

(13)2 logΛ(k) = 2
(
sup

(�� ,��� )∈Θ×Θ
L
(
�

�

, �
��)

−
sup

�∈Θ
L0(�)

)

2  We thank an anonymous reviewer for this comment.
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where h = l = logT3∕2∕T  , Given a significance level � and the statistic’s value z1∕2
T

 , the null 
hypothesis will be rejected if Pr

(
Z
1∕2

T
≥ z

1∕2

T

)
≤ � , and the location of the structural 

change point is then detected by:

If a structural break is detected, we then divide the full sample into subperiods using the 
time point of the structural change, and then test the null hypothesis in each of the subperi-
ods. We continue this segmentation process until no further structural changes are detected 
in the subsamples.

3.4 � Risk spillovers and CoVaR

To investigate risk spillovers in the Chinese financial system, we adopt three risk measures: 
value at risk (VaR), conditional value at risk (CoVaR), and delta conditional value at risk 
(ΔCoVaR), which are to be characterized and computed by copulas. The standard firm-
level risk measure VaR quantifies the maximum possible loss of a given portfolio within 
a set time horizon at a given confidence level, assuming normal market conditions and no 
trading in the portfolio. The given significance level � indicates that the probability of a 
loss greater than the VaR is less than or equal to � . The VaR measure is related to downside 
risk (the lower tail of the return’s distribution) for an investor holding a long position, or 
upside risk (the upper tail) for an investor holding a short position. The CoVaR measure 
proposed by Adrian and Brunnermeier (2016) is then constructed based on the VaRs of any 
two components in the financial system.

The downside VaR�
i,t

 and upside VaR1−�
i,t

 for returns of institution i at time t are defined 
as:

Further, the downside and upside VaRs are computed as:

where �i,t and �i,t are the conditional mean and standard deviation of returns, computed 
based on results from Eqs. (1) and (3), respectively; t−1

�,�
(�) and t−1

�,�
(1 − �) are � and 1 − � 

quantiles of a skewed-t distribution in Eq. (4).
While VaR measures a single asset/firm’s risk in isolation, the CoVaR measure con-

siders losses in total assets/all firms. Drawn from the definition of CoVaR in Adrian and 
Brunnermeier (2016), the conditional value-at-risk (CoVaR) of a financial institution i rela-
tive to another financial institution j is defined as the VaR of j, conditional on i being in 
distress as measured by its VaR (namely, when i’s return is less than the �-quatile).

(14)Pr
(
Z
1∕2

T
≥ x

)
≈

xn ⋅ exp
(
−

x2

2

)

2
n

2 ⋅ Γ
(

n

2

) ⋅

(
log

(1 − h)(1 − l)

hl

)
+

4

x2
+ o

(
1

x4

)
⋅ x → ∞

(15)k̂ = min
(
1 ≤ k < T ∶ 2 logΛ(k) = zT

)

(16)P
(
ri,t ≤ VaR�

i,t

)
= P

(
ri,t ≥ VaR1−�

i,t

)
= �

(17)VaR�
i,t
= �i,t + t−1

�,�
(�)�i,t

(18)VaR1−�
i,t

= �i,t + t−1
�,�
(1 − �)�i,t
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More generally, when CoVaR adopts a conditional change in VaR in the financial sys-
tem and estimates the potential financial system losses conditional on the extreme move-
ments of a particular financial institution, it depicts marginal risk contribution of the indi-
vidual institution to the wider system, and vice versa. Considering the focus of this study, 
CoVaR is an informative tool to serve our purpose.

The downside CoVaR�

j,t
 and upside CoVaR1−�

j,t
 are defined by the � quantile of the condi-

tional probability distribution of rj,t:

Computing CoVaR thus requires determination of the quantile of a conditional distribu-
tion. Equation (19) can be expressed as an unconditional bivariate distribution:

Given by Eq.  (16) that P
(
ri,t ≤ VaR�

i,t

)
= P

(
ri,t ≥ VaR1−�

i,t

)
= � , Eq.  (20) is trans-

formed to:

In this study we follow Reboredo and Ugolini (2015) and several others to compute 
CoVaR by copulas. The joint probability in Eq. (21) can then be rewritten as:

where CoVaR�

j,t
 and CoVaR1−�

j,t
 denote the downside and upside CoVaRs; Frj,t

 and Fri,t
 are the 

marginal distribution functions of returns of institutions i and j. Using a two-step approach 
in Reboredo and Ugolini (2015) and Reboredo et al. (2016), we first calculate the value of 
Frj,t

(
CoVaR

1−�

j,t

)
 by solving Eqs.  (22) and (23), based on the given significance levels 

� and � and the selected copula function form. Then by computing F−1
(
Frj,t

)
 , the values of 

downside and upside CoVaRs can be obtained.
ΔCoVaR is further used to captures the part of systemic risk in institution j that can 

be attributed to institution i’s risk, and thus can measure tail-dependence between the two 
institutions. It is calculated as the change in CoVaR of j, conditional on i’s return shifting 
from its median state (i.e., 50% quantile with � = 0.5 ) to a distressed state (i.e., adverse 
VaR�

i,t
):

(19)P
(
rj,t ≤ CoVaR

�

j,t
|ri,t ≤ VaR�

i,t

)
= P

(
rj,t ≥ CoVaR

1−�

j,t
|ri,t ≥ VaR1−�

i,t

)
= �

(20)
P
(
rj,t ≤ CoVaR

�

j,t
, ri,t ≤ VaR�

i,t

)

P
(
ri,t ≤ VaR�

i,t

) =
P
(
rj,t ≥ CoVaR

1−�

j,t
, ri,t ≥ VaR1−�

i,t

)

P
(
ri,t ≥ VaR1−�

i,t

) = �

(21)P
(
rj,t ≤ CoVaR

�

j,t
, ri,t ≤ VaR�

i,t

)
= P

(
rj,t ≥ CoVaR

1−�

j,t
, ri,t ≥ VaR1−�

i,t

)
= ��

(22)C
(
Frj,t

(
CoVaR

�

j,t

)
,Fri,t

(
VaR�

i,t

))
= ��

(23)
C
(
Frj,t

(
CoVaR

1−�

j,t

)
,Fri,t

(
VaR1−�

i,t

))
− Frj,t

(
CoVaR

1−�

j,t

)
− Fri,t

(
VaR1−�

i,t

)
+ 1 = ��

(24)ΔCoVaR
�

j|i,t =

(
CoVaR

�

j|i,t − CoVaR
�|�=0.5
j|i,t

)

CoVaR
�|�=0.5
j|i,t
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In Eqs. (20)–(24), i and j can be generalized from representing an individual institution 
to representing an industry group or the whole financial sector, equivalent to a portfolio 
composed of all financial institutions in that group or sector.

4 � Empirical results

4.1 � Sample analysis

The dataset employed in our empirical study is collected from WIND financial database. It 
consists of daily returns of 22 publicly traded financial institutions from 2 January 2008 to 
20 August 2018. The financial institutions in our sample are categorized into three finan-
cial industry groups based on the four-level industrial structure defined in WIND. These 
industry groups are banks, diversified financials, and insurance II, with each group’s index 
provided by WIND to represent group returns. All three industry groups belong to the 
Financials sector. Table 1 lists the trading codes, full names and abbreviations of the 22 
financial institutions and three industry groups within the financial system in China.

Prior to 2008, many financial institutions in China had not been listed, including sev-
eral important ones such as China Construction Bank, China CITIC Bank, Industrial Bank, 
Bank of Beijing, Bank of Nanjing, and Bank of Ningbo. Taking into account the complex-
ity and importance of these financial institutions, our sample period starts from the begin-
ning of 2008. In addition, our sample period covers a period of over ten years. Several 
systemic events inflicting stock market turbulence and crashes in the recent decade are cov-
ered by the time span (Wu, 2019).

Table 2 reports the descriptive statistics of the returns of each individual financial insti-
tution and indices of the industry groups. Seen in the table, mean returns for all series are 
positive during the sample period, except the Pacific Securities Co., Ltd. (PS) and China 
Life Insurance Co., Ltd. (CLI). Anshan Trust and Investment Co., Ltd. (ATI) has the high-
est mean returns among all. All series appear to be leptokurtic with kurtosis exceeding 
three as in a normal distribution, indicating excess kurtosis and fat tails in all series. The 
non-normality features are further corroborated by the Jarque–Bera statistics which sig-
nificantly reject the null hypothesis of normality at 1% level for all series, thus validating 
our choice of Hansen’s model for specifying marginal distributions. The return series are 
shown to be stationary and autocorrelated with the presence of the ARCH effect, all at 
the 1% significance level, according to the ADF, Ljung-Box and ARCH effect statistics, 
respectively.

4.2 � Marginal model results

The results of marginal model estimates are reported in Table  3, using Eqs.  (1)–(3) in 
Sect. 3.1. The lag values of p and q are considered ranging from zero to a maximum of 
three, while m and n range from zero to a maximum of two. These lag values are then 
selected so as to minimize the AIC values. The return series tend to have different best 
ARMA fits, and the selections of p and q vary across series. For example, ARMA (1,1) 
is the best fitting model for Bank of Ningbo (BNB), while ARMA (1, 3) is the best fit for 
Shanghai Pudong Development Bank (SPDB). For the GARCH model specification, m and 
n are selected as one, with GARCH (1,1) being the best fitting model for all series. Several 
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goodness-of-fit tests are conducted and the results are reported in the last few columns 
in Table 3. Marginal distributions for most return series exhibit asymmetry, evidenced by 
the significantly positive symmetry parameter λ at 5% level, except for PS and SIT. The 
Ljung–Box and Engle’s LM test statistics cannot reject the null hypotheses of no serial cor-
relation or ARCH effects in the standardized residuals and squared standardized residuals, 
each taking 10 lags. The p values of the Kolmogorov–Smirnov (KS) test (Abadie, 2002) 
cannot reject the null hypothesis of the correct specification of the marginal distribution 
model at the 5% significance level (Bernal et al., 2014). These tests verify the adequacy of 
the skewed Student-t distribution and rules out the possibility of model misspecification.

Table 1   Sample description

The table reports the basic information including trading codes, full names and abbreviations of the 22 
financial institutions and the three industry groups (Banks, Diversified financials, and Insurance) as defined 
by WIND database in our sample

Code Name Abbreviations

Panel A: banks
000001 Ping An Bank Co Ltd PAB
002142 Bank of Ningbo BNB
600000 Shanghai Pudong Development Bank SPDB
600015 Hua Xia Bank co., Limited HXB
600016 China Minsheng Banking Corporation CMBC
600036 China Merchants Bank Co Ltd CMB
601009 Bank of Nanjing BNJ
601166 Industrial Bank Co Ltd IBC
601169 Bank of Beijing Co Ltd BB
601328 Bank of Communications Co. Ltd BCM
601398 Industrial & Commercial Bank of China (the)—

ICBC
ICBC

601939 China Construction Bank Corporation Joint 
Stock Company

CCB

601988 Bank of China Limited CB
601998 China CITIC Bank Corporation Limited CITIB
Panel B: diversified financials
600030 CITIC Securities Company Limited CITIS
601099 The Pacific Securities Co., Ltd PS
000563 Shaanxi International Trust Co., Ltd SIT
600643 Shanghai AJ Group Co., Ltd SAJ
600816 Anshan Trust and Investment Co., Ltd ATI
Panel C: insurers
601318 Ping An Insurance (Group) Co. of China, Ltd PAI
601601 China Pacific Insurance (Group) Co., Ltd CPI
601628 China Life Insurance (Group) Co., Ltd CLI
Panel D: Industrial group indices
882115 Banks industry group index Banks
882116 Diversified financials industry group index Diversified financials
882117 Insurance industry group index Insurance
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4.3 � Time‑varying copula results

Considering the time-varying market conditions and internal structure, we estimate time-
varying versions of copula models where dependence parameters are allowed to be ren-
dered time-varying. The evolution equations for copula parameters are shown in Sect. 3.2. 
Model parameters are estimated using maximum likelihood. The best copula fit for each 
pair composed of a financial institution and its affiliated industry group is selected based 
on minimum AIC values. Table 4 shows the coefficient estimates of the best time-varying 
copula fits for pairwise returns. Among totally 22 pairs, the best fitting model for 12 pairs 
is the time-varying Student-t copula (54.5%). The time-varying SJC is the best fit for 6 
pairs (27.3%), while it is Gumbel for 3 pairs and Rotated Gumbel for 1 pair.

Compared to static copulas, time variations of the dependence are heeded by the time-
varying copulas. We thereby circumvent the problem of possible one-time changes, or 
structural breaks, in the copula at some time in the sample period. To test the robustness of 
our main results based on time-varying copulas, we test the structural changes of the pair-
wise dependence in the static copula framework, which is discussed in Sect. 6.1.

4.4 � CoVaR and ΔCoVaR results

4.4.1 � Determining SIFI by ΔCoVaR

As larger magnitudes of ΔCoVaR indicate higher risk spillover effects, the financial insti-
tution with the largest temporal ΔCoVaR value should be identified as the temporal SIFI. 
Based on this logic, we use the best time-varying copula fits shown in Table 4 to com-
pute temporal ΔCoVaRs of each financial institution to its affiliated industry group, which 
determines the institution’s risk contribution to the system at each time point.3 We then 
rank the financial institutions within each industry group based on the magnitudes of their 
temporal ΔCoVaRs. Those with the highest ΔCoVaRs are identified as the top risk con-
tributor at that particular time point. The dynamics of top risk contributors in each industry 
group are shown in Fig. 1.

Seen in Fig.  1, the financial institutions exhibiting the largest risk spillovers tend to 
vary over time. With the presence of time variation in top risk contributors, conclusions 
on which is the SIFI cannot be drawn by simply comparing temporal risk contributions 
across institutions but ignoring the time dimension. A more convenient way is to compare 
the frequency of each financial institution appearing as the top risk emitter in its industry 
group during the whole sample period. Figure 2 shows the ranking of financial institutions 
in each industry group in a descending order, according to their frequency of exhibiting 
temporal highest risk spillovers. The left panel reveals that among all banks, SPDB has the 
highest frequency of being the top emitter in banks sector (46.3% of the sample period), 
and thus is identified as the most systemically important bank. Similarly, shown in the right 
upper and lower panels, we manage to identify PS and PAI as SIFIs in diversified financials 
and insurance, with 49.8% and 62% frequencies, respectively.

Given that the three financial institutions, SPDB, PS and PAI, are identified as the SIFIs 
in their own affiliated industry groups based on findings of the copula-ΔCoVaR method, 

3  The empirical analysis is based on the 5% VaR. When using the 1% VaR, our main findings remain 
robust. For brevity, the results using the 1% VaR are not reported here but can be provided upon request.



138	 Annals of Operations Research (2023) 330:119–153

1 3

Ta
bl

e 
4  

C
oe

ffi
ci

en
ts

 e
sti

m
at

es
 o

f t
he

 o
pt

im
al

 ti
m

e-
va

ry
in

g 
co

pu
la

s

O
pt

im
al

 c
op

ul
a

Ph
i1

Ph
i2

Ph
i3

Ph
i4

Ph
i5

Ph
i6

lo
gL

A
IC

PA
B

-b
an

ks
TV

P-
SJ

C
1.

59
7*

**
 

(0
.0

01
)

 −
 6.

85
1*

**
 

(0
.0

23
)

0.
00

1*
**

 
(0

.0
00

)
3.

68
1*

**
 

(0
.0

21
)

 −
 12

.6
46

**
* 

(0
.0

53
)

 −
 2.

08
4*

**
 

(0
.0

12
)

16
99

.3
53

 −
 33

92
.7

1

B
N

B
-b

an
ks

TV
P-

stu
de

nt
-t

 −
 1.

75
1*

**
 

(0
.2

50
)

0.
03

4*
**

 
(0

.0
13

)
4.

90
4*

**
 

(0
.3

23
)

5.
51

0*
**

 
(0

.6
73

)
14

65
.2

56
 −

 29
24

.5
1

SP
D

B
-b

an
ks

TV
P-

SJ
C

0.
88

6*
**

 
(0

.0
00

)
 −

 8.
75

7*
**

 
(0

.0
01

)
1.

42
0*

**
 

(0
.0

01
)

3.
82

9*
**

 
(0

.0
01

)
 −

 8.
80

7*
**

 
(0

.0
04

)
 −

 2.
49

4*
**

 
(0

.0
01

)
20

58
.7

15
 −

 41
11

.4
3

H
X

B
-b

an
ks

TV
P-

SJ
C

 −
 0.

58
0*

**
 

(0
.0

00
)

 −
 2.

86
9*

**
 

(0
.0

01
)

2.
56

6*
**

 
(0

.0
00

)
1.

88
5*

**
 

(0
.0

00
)

 −
 10

.2
83

**
* 

(0
.0

04
)

0.
22

9*
**

 
(0

.0
00

)
18

63
.8

11
 −

 37
21

.6
2

C
M

B
C

-b
an

ks
TV

P-
stu

de
nt

-t
 −

 1.
83

7 
 

(7
.1

90
)

0.
09

3 
 

(0
.5

44
)

5 
 (9

.2
62

)
5.

29
5*

* 
 

(2
.4

79
)

18
18

.9
31

 −
 36

31
.8

6

C
M

B
-b

an
ks

TV
P-

stu
de

nt
-t

 −
 1.

65
3*

  
(0

.8
64

)
0.

02
7 

 
(0

.0
34

)
5.

00
0*

**
 

(1
.0

24
)

4.
45

7*
**

 
(0

.5
97

)
20

90
.8

74
 −

 41
75

.7
5

B
N

J-
ba

nk
s

TV
P-

stu
de

nt
-t

1.
37

1 
 

(4
.0

92
)

0.
01

7 
 

(0
.0

29
)

1.
19

8 
 

(4
.8

63
)

4.
06

3*
**

 
(0

.3
72

)
16

20
.0

7
 −

 32
34

.1
4

IB
C

-b
an

ks
TV

P-
stu

de
nt

-t
 −

 1.
61

8 
 

(5
.4

32
)

0.
04

6 
 

(0
.0

45
)

5 
 (6

.1
16

)
4.

84
9*

**
 

(0
.6

34
)

22
28

.0
9

 −
 44

50
.1

8

B
B

-b
an

ks
TV

P-
stu

de
nt

-t
 −

 1.
81

6*
**

 
(0

.4
03

)
0.

04
5*

* 
 

(0
.0

22
)

5.
00

0*
**

 
(0

.5
15

)
4.

41
3*

**
 

(0
.4

86
)

16
43

.1
64

 −
 32

80
.3

3

B
C

M
-b

an
ks

TV
P-

stu
de

nt
-t

1.
45

1 
 

(4
.8

02
)

0.
00

5 
 

(0
.0

04
)

1.
50

5 
 

(5
.4

33
)

5.
47

4*
**

 
(0

.6
99

)
20

36
.4

62
 −

 40
66

.9
2

IC
B

C
-b

an
ks

TV
P-

SJ
C

3.
85

7*
**

 
(0

.2
01

)
 −

 11
.7

56
**

* 
(1

.1
50

)
 −

 2.
43

7*
**

 
(0

.1
68

)
2.

68
1*

**
 

(0
.1

35
)

 −
 9.

52
1*

**
 

(0
.2

27
)

 −
 1.

18
7*

**
 

(0
.0

18
)

17
24

.9
11

 −
 34

43
.8

2

C
C

B
-b

an
ks

TV
P-

stu
de

nt
-t

 −
 1.

81
5*

**
 

(0
.4

98
)

0.
05

5*
* 

 
(0

.0
25

)
5.

00
0*

**
 

(0
.6

22
)

5.
20

4*
**

 
(0

.7
20

)
16

91
.7

54
 −

 33
77

.5
1

C
B

-b
an

ks
TV

P-
stu

de
nt

-t
 −

 1.
83

2*
**

 
(0

.0
00

)
0.

06
2*

**
 

(0
.0

02
)

4.
99

8*
**

 
(0

.0
00

)
5.

48
2*

**
 

(0
.6

60
)

16
39

.2
51

 −
 32

72
.5

C
IT

IB
-b

an
ks

TV
P-

stu
de

nt
-t

5.
00

0*
**

 
(1

.5
70

)
 −

 0.
09

9 
 

(0
.0

87
)

 −
 3.

01
4*

 
(1

.7
57

)
4.

59
4*

**
 

(0
.5

46
)

15
60

.5
86

 −
 31

15
.1

7

C
IT

IS
-d

iv
er

si
-

fie
d 

fin
an

ci
al

s
TV

P-
G

um
be

l
1.

32
1*

**
 

(0
.0

69
)

0.
17

5*
**

 
(0

.0
07

)
 −

 3.
00

7*
**

 
(0

.3
77

)
31

69
.5

45
 −

 63
33

.0
9



139Annals of Operations Research (2023) 330:119–153	

1 3

Th
is

 ta
bl

e 
re

po
rts

 c
oe

ffi
ci

en
ts

 e
sti

m
at

es
 o

f t
he

 o
pt

im
al

 ti
m

e-
va

ry
in

g 
pa

ra
m

et
er

 (T
V

P)
 c

op
ul

as
 fo

r e
ac

h 
pa

ir 
co

m
po

se
d 

of
 a

 fi
na

nc
ia

l i
ns

tit
ut

io
n 

an
d 

its
 a

ffi
lia

te
d 

in
du

str
y 

gr
ou

p
**

*,
 *

* 
an

d 
*I

nd
ic

at
e 

re
je

ct
io

n 
of

 th
e 

nu
ll 

hy
po

th
es

is
 a

t 1
%

, 5
%

 o
r 1

0%
 le

ve
ls

, r
es

pe
ct

iv
el

y

Ta
bl

e 
4  

(c
on

tin
ue

d) O
pt

im
al

 c
op

ul
a

Ph
i1

Ph
i2

Ph
i3

Ph
i4

Ph
i5

Ph
i6

lo
gL

A
IC

PS
-d

iv
er

si
fie

d 
fin

an
ci

al
s

TV
P-

stu
de

nt
-t

 −
 1.

79
8*

**
 

(0
.5

28
)

0.
03

8 
(0

.0
24

)
5.

00
0*

**
 

(0
.6

65
)

3.
34

0*
**

 
(0

.2
97

)
17

31
.9

53
 −

 34
57

.9
1

SI
T-

di
ve

rs
ifi

ed
 

fin
an

ci
al

s
TV

P-
ro

ta
te

d 
G

um
be

l
0.

41
9*

**
 

(0
.0

56
)

0.
35

1*
**

 
(0

.0
16

)
 −

 0.
80

1*
**

 
(0

.1
53

)
93

4.
95

06
 −

 18
63

.9

SA
J-

di
ve

rs
ifi

ed
 

fin
an

ci
al

s
TV

P-
SJ

C
0.

56
6 

 
(0

.6
35

)
 −

 7.
07

6*
* 

(3
.2

66
)

 −
 0.

12
7 

 
(0

.0
79

)
2.

60
4*

**
 

(0
.6

70
)

 −
 11

.2
41

**
* 

(2
.2

42
)

 −
 1.

65
1*

  
(0

.8
88

)
55

3.
54

24
 −

 11
01

.0
8

A
TI

-d
iv

er
si

fie
d 

fin
an

ci
al

s
TV

P-
SJ

C
0.

65
9 

 
(0

.4
15

)
 −

 7.
90

7*
**

 
(2

.2
34

)
0.

02
3*

**
 

(0
.0

08
)

 −
 1.

92
2*

**
 

(0
.0

33
)

 −
 0.

45
7*

**
 

(0
.1

39
)

4.
00

3*
**

 
(0

.0
47

)
53

7.
44

21
 −

 10
68

.8
8

PA
I-

in
su

ra
nc

e
TV

P-
G

um
be

l
1.

53
8*

**
 

(0
.0

54
)

0.
15

7*
**

 
(0

.0
04

)
 −

 4.
66

4*
**

 
(0

.4
55

)
37

03
.4

26
 −

 74
00

.8
5

C
PI

-in
su

ra
nc

e
TV

P-
stu

de
nt

-t
5.

00
0 

 
(4

2.
87

3)
(0

.0
51

)  
(0

.3
53

)
(2

.3
52

)  
(4

7.
70

2)
5.

16
7*

**
 

(0
.6

24
)

20
75

.0
79

 −
 41

44
.1

6

C
LI

-in
su

ra
nc

e
TV

P-
G

um
be

l
1.

10
9*

**
 

(0
.0

47
)

0.
20

5*
**

 
(0

.0
06

)
 −

 2.
82

3*
**

 
(0

.2
92

)
22

62
.9

03
 −

 45
19

.8
1



140	 Annals of Operations Research (2023) 330:119–153
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we proceed to analyze bidirectional risk spillover effects between the SIFIs and their affili-
ated industry groups. We couple each SIFI to its industry group and form three pairs, and 
quantify upside and downside VaRs, CoVaRs and ΔCoVaRs to evaluate bidirectional 
downside and upside risk spillovers in each pair.

Fig. 1   Tracking top risk contributors by industry groups

Fig. 2   Frequency of financial institutions being the top risk contributor
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Summary statistics of average values of bidirectional upside and downside VaR, CoVaR 
and ΔCoVaR are reported in in Table 5, with standard errors shown in the parentheses. 
Panel A reports risk spillovers from SIFIs to their corresponding industry groups, while 
Panel B reports risk spillovers from the opposite direction.

4.4.2 � Risk spillovers from SIFI to the financial system

For more in-depth analysis on risk spillovers, we examine directional risk spillovers from 
SIFIs to the financial system. Specifically, it is measured by risks transmitted from SIFIs 
to their corresponding industry groups. Panel A in Fig. 3 depicts the dynamics of upside 
and downside VaRs and CoVaRs for all three pairs during the sample period. Noticeably, 
all exhibit that downside CoVaRs are systemically below downside VaRs during the entire 
sample period. We corroborate this finding by the KS test, as these differences are reported 
as significant by the test in all cases, shown in column 2 of Panel A in Table 6. This indi-
cates that extreme downward movements in SIFIs’ returns have spillover effects on their 
corresponding industrial indices, whose VaRs drop by significant amounts following 
extreme downturns of SIFI returns, although to different extents (measured by magnitudes) 
across industry groups.

Similarly, the average upside CoVaR values are systemically greater than the aver-
age upside VaR values though with different magnitudes, also corroborated by the KS 
statistics reported in column 3 of Panel A in Table 6. It provides evidence of upside 
risk spillovers from SIFIs to the financial system, meaning that extreme upward move-
ments of SIFIs’ returns have significant positive impacts on the returns of the financial 
system.

Fig. 3   Upside and downside VaRs and CoVaRs between SIFIs and the financial system. Panel A: Upside 
and downside VaRs of industrial indices and CoVaRs from SIFIs to affiliated industry groups, Panel B: 
Upside and downside VaRs of SIFI returns and CoVaRs from industry groups to corresponding SIFIs
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4.4.3 � Risk spillovers from the financial system to SIFI

Considering risk spillovers from the financial system to SIFIs, the movements of VaRs 
and CoVaRs again exhibit similar trends in both downside and upside cases during the 
sample period based on the graphic evidence. Overall, SIFIs’ returns are significantly 
affected by risk spillovers from the financial system. Considering downside risk spillo-
vers, downside VaR values are above the downside CoVaR values in a systematical and 
significant fashion for all three pairs, corroborated by the KS statistics reported in col-
umn 2 of Panel B in Table 6. The finding of significant downside risk spillovers from 
industrial groups to the SIFIs implies that extreme downturns in the industrial indices 
have significant negative systemic impacts on SIFIs’ returns.

With regard to upside risk spillovers, the average values of upside CoVaR are sys-
temically and significantly higher than upside VaR, as confirmed by the KS test results 
in column 3 of Panel B in Table  6. This indicates that extreme upward movements 
in sectoral and industrial returns are accompanied by a significant increase in SIFIs’ 
returns, proving existence of upside risk spillover effects from the financial system to 
SIFIs. The extreme upward movements in industrial returns have positive impacts on 
SIFIs’ returns.

Table 6   Risk spillovers and asymmetric downside and upside effects based on time-varying copulas

This table reports the Kolmogorov–Smirnov statistics for testing bidirectional downside and upside risk 
spillovers, as well as symmetry of upside and downside CoVaRs and △CoVaRs, based on the 5% VaR and 
the optimal time-varying copulas. Panel A reports test results for risk spillovers from SIFIs to their affiliated 
industry groups, while Panel B reports results for the opposite direction
***Indicates rejection of the null hypothesis at the 1% significance level

Downside Upside

H0: 
CoVaR = VaR

H0: CoVaR = VaR H0: CoVaR/
VaR(Down) = CoVaR/
VaR(Up)

H0: DeltaCoVaR
(Down) = DeltaC
oVaR(Up)

H1: 
CoVaR < VaR

H1: CoVaR > VaR H1: CoVaR/
VaR(Down) < CoVaR/
VaR(Up)

H1: DeltaCoVaR
(Down) < DeltaC
oVaR(Up)

Panel A: VaR of financial system returns, CoVaR and △CoVaR from SIFI to financial system
Banks ← SPDB 0.657*** (0.000) 0.692*** (0.000) 0.662*** (0.000) 0.686*** (0.000)
Diversified finan-

cials ← PS
0.688*** (0.000) 0.713*** (0.000) 0.634*** (0.000) 0.654*** (0.000)

Insurance ← PAI 0.686*** (0.000) 0.718*** (0.000) 0.419*** (0.000) 0.456*** (0.000)
Panel B: VaR of SIFI returns, CoVaR and △CoVaR from financial system to SIFI
Banks → SPDB 0.664*** (0.000) 0.693*** (0.000) 0.915*** (0.000) 0.929*** (0.000)
Diversified finan-

cials → PS
0.746*** (0.000) 0.759*** (0.000) 0.738*** (0.000) 0.755*** (0.000)

Insurance → PAI 0.720*** (0.000) 0.737*** (0.000) 0.367*** (0.000) 0.406*** (0.000)
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4.4.4 � Asymmetric risk spillovers

In addition, upside and downside risk spillover effects are shown to be asymmetric in bidi-
rectional risk spillover cases. We confirm this asymmetry by testing the significant differ-
ences between the downside CoVaRs normalized by the downside VaRs and the upside 
CoVaRs normalized by the upside VaRs. The KS test results are summarized in column 
4 in Table  6. The KS statistics provide evidence that there exists significant asymmetry 
between normalized downside and upside CoVaRs, suggesting asymmetric downside and 
upside risk spillover effects from SIFIs to the financial system and vice versa.

Considering risk spillovers from SIFIs to the financial system, the results in Panel A in 
Table 6 imply that SIFIs’ downward systemic impacts on the financial system are lower 
than its upward systemic impacts, and market participants may be more susceptible to 
upside risk than downside risk passing down following SIFIs’ extreme movements.

Likewise, in the cases of risk spillovers from the financial system to SIFIs, down-
side risk spillovers are lower than upside risk spillovers, corroborated by the KS statis-
tics shown in Panel B in Table 6. Empirical results imply that capital outflows following 
extreme sectoral downturns can affect SIFIs’ returns to a lower extent than capital inflows 
following a soaring sectoral index.

4.4.5 � ΔCoVaR analysis

The average values of upside and downside ΔCoVaRs for bidirectional spillovers are 
reported in Table 5. Average downside ΔCoVaR values are shown to be lower than aver-
age upside ΔCoVaR values in all cases. These significant differences between upside and 
downside ΔCoVaR are corroborated by KS tests reported in column 5 in Table 6. These 
findings of asymmetric downside and upside ΔCoVaRs are consistent with our previous 
results obtained by quantifying bidirectional CoVaRs.

5 � Discussion

Our empirical analysis shows that Shanghai Pudong Development Bank (SPDB) is the 
most systemically important financial institution in China’s Banking industry, as it exhibits 
the strongest risk spillover effects on the banking industry over the sample period. While 
from a global perspective, CB, ICBC, Agricultural Bank of China and CCB are identified 
as G-SIBs (FSB, 2018), our analysis find evidence that within the banking sector in China, 
SPDB exhibits highest systemic importance. This difference may be attributed to different 
business focuses and expansion modes between the G-SIBs and the domestic SIFI, which 
can be of further research interest. Similarly, Pacific Securities Co., Ltd. (PS) and Ping An 
Insurance (Group) Co. of China, Ltd. (PAI) are identified as SIFIs for diversified financials 
and insurance, respectively. The latter is consistent with the findings in the 2016 G-SIIs list 
(FSB, 2016), implying PAI’s systemic importance in both local and global contexts.

Based on the strong evidence of bidirectional downside and upside risk spillovers 
between these SIFIs and their industrial groups, the risk spillover effects are notice-
ably stronger during the 2008 global financial crisis, indicating risk influence from the 
global market to Chinese market as a consequence of increasing integration of China’s 
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economy into world’s economy. Also, during the Chinese stock market turbulence 
periods in 2009, 2013 and 2015, systemic risk spillovers are shown to be remarkably 
stronger than calm periods, implying increased risk flows between the stock market and 
the financial sector.

The extreme risk spillovers from the financial system to the SIFIs can be explained 
by the phenomenon that substantial reduction in industrial indices triggers low mar-
ket valuations and investors’ expectation of a bearish trend. Due to the flight-to-quality 
effect (Bernanke et  al., 1996), capital flees out from the financial sector, leading to a 
considerable drop in stock price and returns of SIFIs.

Regarding downside risk spillovers from SIFIs to the financial system, portfolios 
composed of assets diversified across financial industry groups may still be highly sus-
ceptible to systemic risk contributed largely by SIFIs. Simply holding portfolios com-
posed of non-SIFI stocks is rarely sufficient to protect portfolios against downside 
risk transmitted from SIFIs to the financial sector. Investors should consider down-
side risks of both SIFIs and those affected industry groups and take short positions on 
SIFIs’ returns, to hedge downside risk spillovers. For upside risk spillovers, the practi-
cal implications are similar, but considering taking long rather than short positions on 
SIFIs’ returns.

Notably, both CoVaR and ΔCoVaRs asymmetries demonstrate that upside systemic 
impacts exceed downside systemic impacts in all industrial groups, irrespective of the 
direction of risk spillovers. To take the higher level of the upside spillovers than the 
downside spillovers from the SIFIs to the financial system as an example, a plausible 
explanation can be the asymmetric reactions by investors to upward and downward 
extreme conditions when formulating momentum investing strategies. Given upside risk 
spillovers, excessively high SIFI returns cause capital inflows into its affiliated industry 
due to the trend-chasing effect, boosting a bullish market and an overall upward move-
ment of sectoral returns. In an opposite scenario, investors perceive high risks signaled 
by abruptly declined SIFI returns, leading to capital outflows from SIFIs and the wider 
system due to the flight-to-quality effect and pessimistic sentiment among investors, 
pushing down the market to a bearish status.

Our findings thus support the argument in extant literature that besides market fun-
damentals, other factors such as investors’ sensitivities to news and their sentiments can 
affect and enhance risk spillovers patterns (for example, Mensi et al., 2017; Reboredo 
et  al., 2016). While several other studies find evidence of stronger market reaction to 
bearish news (Jin, 2018; Reboredo et al., 2016), we find that investors in the China mar-
ket also exhibit more sentiment to market upturns than downturns and react more to 
good news than to bad news. These differed reactions thus make the whole system more 
sensitive to extreme upturns (upside risk) than downturns (downside risk).

To sum up, we provide evidence that changes in capital flows in the stock market 
and investors’ expected returns reinforce upside risk spillovers to a greater extent than 
downside spillovers in the Chinese financial system. This suggests a stronger trend-chas-
ing effect than the flight-to-quality effect, and the latter is possibly offset by the disposi-
tion effect among China’s market participants. Based on the above evidence of signifi-
cant asymmetric downside and upside risk spillovers from both directions, stock market 
investors can assess to what extent the portfolio might be affected by extreme move-
ments in the sectoral/industrial indices by looking at the downside and upside VaR and 
CoVaR measures, or how the extreme loss/gain of a SIFI’s stock tends to spread across 
the sector, thus enabling better asset allocation across sectors and industry groups.
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6 � Robustness analysis

In this section, a structural change test is applied to identifying and locating any breaking 
points of the pairwise dependence relationships. The whole sample is then divided into 
subsamples by the breaking points, for which all the modeling process and calculation are 
then repeated to test the robustness of the main results. We also use second best time-vary-
ing copulas to test if the main conclusions still hold.

6.1 � Structural breaks of dependence

As discussed in Sect. 3.3, potential structural changes of the copula dependence may exist 
during the sample period. We thus test the existence of any structural breaks in the depend-
ence by the method of Dias and Embrechts (2009), Liu et al. (2017) and Ji et al. (2018) 
shown in Sect. 3.3. To the best of our knowledge, potential structural breaks of depend-
ence can only be tested using a single copula (Liu et al., 2017). To avoid the disturbance 
of using different copulas to run the tests, the dependence over the full sample is estimated 
by seven static copula candidates corresponding to their time-varying counterparts intro-
duced in Sect. 3.4. The test results are reported in Table 7. Penal A reports the best fitting 
copula functions for each pair of SIFI and the industrial group,4 selected by minimizing the 
value of AIC. The full-sample optimal copula functions for the banks-SPDB and diversi-
fied financials-PS are static Student-t copula, while it is static Gumbel for insurance-PAI.

Table 7   Structural change tests for dependence between SIFIs and the industrial groups

The optimal static copula functions identified by minimizing the AIC values are shown in bold numbers in 
Panel A

Pairs Gaussian Clayton Rot Clayton Gumbel Rot Gumbel SJC Student-t

Panel A: optimal copula selection (by minimizing AIC values)
Banks-SPDB  − 3790.1  − 3147  − 3108.6  − 3786.1  − 3818.1  − 3901.3  − 4057.4
Diversified financials-

PS
 − 3064.9  − 2716.5  − 2397.8  − 3069.1  − 3255.4  − 3197.1  − 3448.8

Insurance-PAI  − 6575.3  − 5721.9  − 5837.4  − 6787.6  − 6744.9  − 6743  − 6656.6

Period p T Z
1∕2

T Pr

(
Z
1∕2

T
≥ z

1∕2

T

)
H0 (0.95) Time point of change

Panel B: structural change tests
Banks-SPDB (best-fitting copula) I: 2 Jan 2008–20 Aug 2018
I 2 2589 5.452 0.000 Reject 1 September 2015
II1 2 1866 3.413 0.134 Not reject –
II2 2 723 3.343 0.136 Not reject –
Diversified Financials—PS I: 2 Jan 2008–20 Aug 2018
I 2 2589 2.964 0.424 Not reject –
Insurance-PAI I: 2 Jan 2008–20 Aug 2018
I 1 2589 2.305 0.548 Not reject –

4  The SIFIs identified for each of the three industrial groups using the static copula-CoVaR approach are 
the same institutions as identified by the time-varying copula CoVaR approach, namely, SPDB, PS and PAI 
for banks, diversified financials and insurance, respectively. The estimation process is not shown here for 
brevity.
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The test results of structural changes of the copula dependence are reported in Panel B 
of Table 4. The null hypothesis of no structural changes of the dependence is not rejected 
for both the diversified financials and insurance pairs, while rejected for the banks-SPDB 
pair at the 5% significance level, where the only structural break is identified to be 1 Sep-
tember 2015 for the full sample. We then divide the whole sample periods into two subpe-
riods, and test for structural changes for each subsample. The tests cannot reject the null 
hypothesis of no structural changes in each of the subsamples, as shown in Panel B of 
Table 7. Notably, for each subsample, we opt for applying the Student-t copula function as 
for the full sample to make the results comparable.

This structural break corresponds to the major crash of the Chinese stock market in 
the summer of 2015 starting from June. The benchmark Shanghai Stock Exchange (SSE) 
Composite Index plunged from a peak on 12 June to over 40% of loss by the end of August. 
The steep market decline triggered severe market turbulences, extreme volatility and rat-
tled market sentiment (Wu, 2019), despite the various measures taken by the Chinese gov-
ernment including imposing a lock-up period, reining in short-sellers, and installation of 
circuit breakers, etc. It is thus not surprising that a structural break of the dependence tran-
spires at the time close to the end of the biggest market crash during the sample period, 
significantly changing the dependence mechanism between the banking sector and the sec-
toral SIFI (Fig. 4).

To test the robustness of the main results based on time-varying copula models, we cal-
culate VaR, CoVaR and ΔCoVaR by the optimal static copula models shown in Table 7. 
For the dependence between diversified financials and PS or insurance and PAI, no struc-
tural changes are identified and the optimal copula models are identical in the dynamic and 
static contexts (being Student-t and Gumbel for each pair respectively). The robustness of 

Fig. 4   Upside and downside ΔCoVaR between SIFIs and the financial system. Panel A: ΔCoVaR from 
SIFIs to affiliated industry groups, Panel B: ΔCoVaR from industry groups to corresponding SIFIs
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the main results remains for those two pairs.5 As one structural break is detected for the 
dependence between banks and SPDB, the full sample is divided into two subperiods by 
1 September 2015. The summary statistics of CoVaR and ΔCoVaR for each subperiod are 
reported in Panel A of Table 8, while the tests of risk spillovers and asymmetric downside 
and upside spillover effects are reported in Panel B. Comparing the results in Table 8 to 
those in Tables 5 and 6, the general trends and asymmetric downside and upside spillover 
effects of the main analysis remain robust in both subsamples.

It is worth mentioning that the AIC values of the optimal time-varying copulas for all 
the three pairs composed of the SIFIs and the industrial groups (shown in Table  4) are 
universally smaller than those of the optimal static copulas shown in Table 7. This further 
corroborates our application of the time-varying copula specifications in the main analysis 
to calculating VaR, CoVaR and ΔCoVaR.

6.2 � Estimating risk spillovers by suboptimal time‑varying copulas

The suboptimal time-varying copulas are Student-t for banks-SPDB and Rotated Gumbel 
for both diversified financials-PS and insurance-PAI. We use these second-best copulas to 
estimate VaR, CoVaR and ΔCoVaR to test if the main conclusions still hold. The results 
are reported in Table  9 and are consistent with the findings using the best fitting time-
varying copulas.

7 � Conclusion

In this study, we first attempt to identify the systemically important financial institution 
(SIFI) in China based on CoVaR values of firms to their corresponding industries, and 
further examine upside and downside risk spillovers between SIFI and the financial system 
as a whole. We find strong evidence of bidirectional downside and upside risk spillovers 
between SIFIs and the financial system, which are noticeably stronger during market tur-
bulences. Our findings are consistent with the fact that while SIFIs are individual institu-
tions, their returns tend to co-move with the sectoral/industrial trend. Due to their systemic 
importance, their own extreme movements can also trigger market reactions and signifi-
cantly affect sectoral returns.

Our results further reveal that downside and upside risk spillovers are asymmetric, with 
upside spillover effects stronger than downside counterparts in all cases. Market partici-
pants should take into account the asymmetric patterns of risk spillovers and accordingly 
hedge and adjust their positions to reduce risk exposure of portfolios.

From the regulatory and supervisory perspectives, identifying SIFI and the risk spillo-
ver trajectories is also of great importance. First, it can help policy practitioners precisely 
locate the most influential risk elements in the financial sector, who act as the bellwether 
dominating systemic risk flows and leading the trend of movements of many others and the 
entire system at large. Second, policies and regulations will be able to target the riskiest 
parts of the system and take preemptive actions before systemic risk escalates to impair 
the functioning of the financial system. Our findings hope to help regulators improve the 

5  For brevity, the results of risk spillover and tests of asymmetric effects for diversified financials-PS and 
insurance-PAI are not reported here.
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governance of the financial sector and impose more proper macro-prudential regulations to 
bolster financial stability.
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