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Abstract
The existence of contaminants in metal alloys products is the main problem affecting the 
product quality, which is an important requirement for competitiveness in industries. This 
paper proposes the application of a relevance vector machine for regression (RVR) and a 
support vector machine for regression (SVR) optimized by a self-adaptive differential evo-
lution algorithm for regression to model the phosphorus concentration levels in a steelmak-
ing process based on actual data. In general, the appropriate choice of learning hyperpa-
rameters is a crucial step in obtaining a well-tuned RVM and SVM. To address this issue, 
we apply a self-adaptive differential evolution algorithm, which is an evolutionary algo-
rithm for global optimization. We compare the performance of the RVR and SVR models 
with the ridge regression, multiple linear regression, model trees, artificial neural network, 
and random vector functional link neural network models. RVR and SVR models have 
smaller RMSE values and better performance than the other models. Our study indicates 
that the RVR and SVR models are adequate tools for predicting the phosphorus concentra-
tion levels in the steelmaking process.
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1  Introduction

Ensuring product and process quality is a constant challenge in industrial organizations. 
One of the main impurities found in the steel making process is phosphorus. A high phos-
phorus content can considerably reduce the quality of steel alloys. Therefore, a method 
for process analysis and control to ensure high process reliability and quality is necessary 
(Barella et al. 2017).

Regression models can be used to predict output data based on various input data and 
explain the underlying phenomenon behind the collected data. Regression models are used 
for monitoring response variables as functions of one or more input variables.

Most statistical methods are parametric in that they make assumptions about the distri-
butional properties and autocorrelation structure of the process parameters. Several dis-
tribution-free or nonparametric methods based on machine learning techniques have been 
proposed in the literature. These methods are nonparametric in that they do not need to 
assume specific probability distributions for implementation (Camci et al. 2008). Artificial 
neural networks (ANNs), support vector machines (SVMs), and relevance vector machines 
(RVMs) are the most commonly used machine learning techniques.

ANNs can be defined as information processing systems based on the behavior of the 
human nervous system (Vapnik 1998). Haykin (2009) suggested a decision rule to mini-
mize the error in the training data based on the general induction principle. Mazumdar 
and Evans (2009) described modern steelmaking processes along with physical model-
ling, mathematical modelling, and applications of ANN and genetic algorithm. Ghaedi and 
Vafaei (2017) reviewed the applications of ANN, SVM, and adaptive neuro fuzzy inference 
system (ANFIS) for adsorption removal of dyes from aqueous solution.

In recent years, SVMs have been introduced as one of several kernel-based techniques 
available in the field of machine learning for classification, prediction, and other learning 
tasks (Vapnik 1998). Kernel-based methods are based on mapping data from the original 
input feature space to a kernel feature space of higher dimensionality and then solving a 
linear problem in the feature space (Schölkopf and Smola 2002). SVMs were first intro-
duced by Vapnik for solving classification problems. Support vector techniques have since 
been extended to the domain of regression. These techniques are called support vector 
regression (SVR) (Vapnik 1998).

Applications of SVR to model different chemical and industrial processes have been 
presented in recent years. Ghaedi et al. (2014) proposed a multiple linear regression (MLR) 
and least square support vector regression (LS-SVM) method for modeling of methylene 
blue dye adsorption using copper oxide loaded on activated carbon. Zaidi (2015) pro-
posed a unified data-driven model for predictioning the boiling heat transfer coefficient in 
a thermosiphon reboiler using SVR as the modeling method. Ghaedi et al. (2016b) stud-
ied the predictive ability of a hybrid SVR and genetic algorithm optimization model for 
the adsorption of malachite green onto multiwalled carbon nanotubes. Cheng et al. (2016) 
performed a study which suggested that the SVR model can provide an important theoreti-
cal and practical guide for experimental design and for controlling the tensile strength of 
graphene nanocomposites via rational process parameters. Ghaedi et al. (2016a) presented 
the application of least squares support vector regression (LS-SVR) and MLR for modeling 
removal of methyl orange onto tin oxide nanoparticles loaded on activated carbon and acti-
vated carbon prepared from Pistacia atlantica wood. Jia et al. (2017) proposed a mathemat-
ical model for optimizing the dividing wall column process with a combination of SVM 
and particle swarm optimization algorithm. Ghugare et al. (2017) performed a study that 
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utilized genetic programming, ANN, and SVR for developing nonlinear models to predict 
the carbon, hydrogen, and oxygen fractions of solid biomass fuels.

Tipping (2000) introduced the relevance vector machine (RVM), a Bayesian sparse ker-
nel technique for regression and classification of functional forms identical to the SVMs. 
The RVM for regression, called relevance vector regression (RVR), constitutes an approxi-
mation that can be used to solve nonlinear regression models.

In recent years, some applications of RVR to model and predict industrial processes 
applied to different areas of engineering have been reported. Zhang et al. (2015) utilized 
an RVM to estimate the remaining useful life of a lithium-ion battery based on denoised 
data. He et al. (2017) presented a new fault diagnosis method based on RVM to handle 
small-sample data. The results showed the validity of the proposed method. Liu (2017) 
utilized just-in-time (JIT) and RVM for soft-sensor modeling. The proposed methodolo-
gies were successfully applied for predicting hard-to-measure variables in wastewater 
treatment plants. Verma et al. (2017) utilized three different kernel-based models (SVR, 
RVR, and Gaussian process regression) to predict the compressive strength of cement. 
The performance of SVR and RVR was found to be comparable to that of ANN. Imani 
et  al. (2018) examined the applicability and capability of extreme learning machine 
(ELM) and RVR models for predicting sea level variations and compared their perfor-
mances with the SVR and ANN models. The results showed that the ELM and RVR 
models outperformed the other methods.

The performance of RVR and SVR models depends heavily on the choice of the 
hyperparameters. In actual applications, many practitioners select the hyperparameters 
in RVR and SVR empirically by trial and error or use a grid search technique together 
with a cross-validation method. Apart from consuming enormous amounts of time, such 
procedures for selecting the hyperparameters may not result in the best performance. 
Here, we use a differential evolution algorithm to optimize the RVR and SVR hyper-
parameters with different kernel functions. Differential evolution (DE) is a variant of 
evolutionary algorithms proposed by Storn and Price (1997).

There is no consistent methodology for determining the control parameters in DE 
(scale factor F, crossover rate Cr, and population size Np). These parameters are fre-
quently arbitrarily set within predefined ranges. The control parameters are, in general, 
key factors affecting the convergence of DE (Price at el. 2006). Das et al. (2016) sum-
marized and organized the current developments in DE, and presented recent proposals 
for parameter adaptation in DE algorithms.

This work is an applied study to predict the phosphorus concentration levels in the 
manufacture of FeMnMC in a Brazilian steelmaking company. For the same process, 
Pedrini and Caten (2010) have developed seven models with the MLR, and Acosta et al. 
(2016) have developed a multilayer perceptron (MLP) neural network to predict the 
phosphorus concentration levels.

The main objectives of this study are to apply RVR and SVR techniques to predict 
the phosphorus concentration level in the steelmaking process. In addition, we applied 
a DE algorithm to optimize the RVR and SVR hyperparameters with different kernel 
functions. To the best of our knowledge, no previous studies have analyzed the use of 
RVR and SVR combined with a self-adaptive DE approach to predict phosphorus con-
centration levels in the steelmaking process.

The main contributions of this paper can be summarized as follow: (i) RVR, and SVR 
models are proposed for the predictive modeling of phosphorus concentration levels in 
a steelmaking process with actual data, (ii) a self-adaptive DE algorithm is utilized to 
optimize the RVR and SVR hyperparameters with different kernel functions, and (iii) 
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the performance of the RVR and SVR models are compared with ridge regression, 
MLR, model trees, ANN, and random vector functional link (RVFL) neural network.

The rest of this paper is organized as follows: Section  2 presents the fundamental 
theory of SVR, RVR, and DE; Section 3 presents the proposed monitoring strategy; and 
Section 4 presents an applied study with a brief description of the steelmaking process, 
the implementation of the models, and a comparison with the ridge regression, MLR, 
model trees, ANN, and RVFL. Finally, Section 5 presents the conclusions of the study.

2 � Background

2.1 � Support vector regression

This section describe the fundamental theory of SVR. For more details on SVM, please 
refer to Vapnik (1998), Kecman (2001), Schölkopf and Smola (2002), Smola and Schölkopf 
(2004) and Cherkassky and Mulier (2007). Basak et al. (2007) have reviewed the existing 
theory, methods, developments, and scope of SVR. The principle idea in SVR is to com-
pute a linear regression function in a high-dimensional feature space which the input data 
are mapped into via a nonlinear function.

The construction of SVR uses the ε-insensitive loss function proposed by Vapnik 
(1998),

where y is the measure (target) value and f (x) is the predicted value.
Vapnik´s ε-insensitive loss function in Eq. (1) defines a tube with radius ε fitted to the 

data, called the ε-tube. Consider training data 
{(

x1, y1
)
,… ,

(
xN , yN

)}
 , where ℵ denotes 

the space of the input. A linear function f (x) can be written in the form of (Smola and 
Schölkopf 2004)

where ⟨., .⟩ denotes the dot product in ℵ and b is the bias.
The problem can be written as a convex optimization problem formulated using slack 

variables ( �i and �∗
i
 ) to measure the deviation of the training samples outside the ε-insensi-

tive zone (Vapnik 1998),

The regularization parameter C influences the tradeoff between the approximation error 
and the weight vector norm ||�|| . Fig. 1 illustrates the SVR model. According to Smola and 
Schölkopf (2004), only the points outside the ε-tube (shaded region) contribute to the cost, 
insofar as the deviations are penalized linearly.

The optimization problem in Eq. (3) can be transformed into a dual problem utilizing 
Lagrange multipliers 

(
�n, �

∗
n

)
 (Vapnik 1998; Smola and Schölkopf 2004)

(1)|y − f (x)|� =
{

0 if |y − f (x)| ≤ �

|y − f (x)| − � otherwise

(2)f (x) = ⟨𝜔 , x⟩ + b with 𝜔 ∈ ℵ, b ∈ ℜ

(3)minimize
1

2
�����2 + C

��N

n=1

�
�i + �∗

i

��
subject to

⎧⎪⎨⎪⎩

yi − ⟨�, xi⟩ − b ≤ � + �i⟨�, xi⟩ + b − yi ≤ � + �∗
i

�i, �
∗
i
≥ 0
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where �n and �∗
n
 are Lagrange multipliers, k

(
xn, x

)
 is a kernel function and b is the bias. The 

support vectors (SVs) are the points that appear with nonzero coefficients in Eq. (5). There-
fore, SVR has a sparse solution (Schölkopf and Smola 2002).

The kernel function k
(
xn, x

)
 in Eq. (5) is a symmetric function satisfying Mercer’s con-

ditions and is defined as a linear dot product of the nonlinear mapping (Vapnik 1998). A 
nonlinear function is learned by a linear learning machine in the kernel-induced feature 
space, while the capacity of the system is controlled by a parameter that does not depend 
on the dimensionality of the space.

Table  1 shows the kernel functions and their parameters used in this study. u is 
the parameter needed for polynomial and sigmoid-type kernels, d is the degree of the 

(4)
maximize

�
−

1

2

∑N

n,j=1

�
�n − �∗

n

��
�j − �∗

j

�
k
�
xn, x

�

−�
∑N

n=1

�
�n + �∗

n

�
+
∑N

n=1
yn
�
�n − �∗

n

�
subject to

∑N

n=1

�
�n − �∗

n

�
= 0 and �n, �

∗
n
∈ [0,C]

(5)f (x) =

N∑
n=1

(
�n − �∗

n

)
k
(
xn, x

)
+ b

Fig. 1   SVR model. (a) ε-tube (shaded region) and slack variables �i , (b) ε-insensitive loss function 
(Schölkopf and Smola 2002)

Table 1   Kernel functions

Kernel Equation Kernel 
param-
eters

Linear k
(
xn, x

)
= xT

n
x –

Polynomial k
(
xn, x

)
=
(
�xT

n
x + u

)d � , u, d

Laplacian k
(
xn, x

)
= exp

(
−

1

2r2
||xn − x||

)
= exp

(
−� ||xn − x||) �

Gaussian radial basis function 
(RBF)

k
(
xn, x

)
= exp

(
−

1

2r2
||xn − x||2

)
= exp

(
−� ||xn − x||2) �

Sigmoid k
(
xn, x

)
= tanh

(
�xT

n
x + u

)
� , u
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polynomial, � = 1∕2r2 and r > 0 is a parameter that defines the kernel width. The kernel 
parameters are determined during the training phase.

The performance of SVR generalization depends on the correct specification of the 
free hyperparameters, namely, the value of the ε-insensitivity, the regularization param-
eter C, and the kernel parameters. Usually, the kernel type is first selected by the user 
based on the properties of the application data, and then the SVR hyperparameters are 
selected using some computational or analytic approaches.

Cherkassky and Ma (2004) summarized many practical approaches for setting the 
values of the regularization parameter C and the ε-insensitivity. They proposed the ana-
lytical selection of the C parameter directly from the training data, the analytical selec-
tion of the ε parameter based on the (known or estimated) level of noise in the training 
data and the (known) number of training samples, and the selection of the RBF kernel 
width parameter to reflect the input range of the training/test data.

2.2 � Relevance vector regression

In this section, the fundamental theory of relevance vector regression is introduced. For 
more details on RVM, readers can refer to Tipping (2000, 2001), Schölkopf and Smola 
(2002), Tipping and Faul (2003), and Bishop (2006).

The approach uses a dataset of input and output (target) pairs 
{
xn, tn

}N

n=1
 follows a prob-

abilistic formulation and assumes p
(
tn|x

)
= N

(
tn|f

(
xn
)
, �2

)
 , where the notation specifies 

a Gaussian distribution over tn with mean f
(
xn
)
 and variance �2 . The approach considers 

functions similar in type to those implemented by SVM, i.e., (Tipping 2000),

where �n are the model weights, k
(
xn, x

)
 is a kernel function and �0 is the bias. In this 

study, we use the kernel functions given in Table 1.
The RVR is a Bayesian treatment of Eq. (6). RVR adopts a fully probabilistic frame-

work and introduces a prior on the model weights governed by a set of hyperparameters, 
each of which is associated with a weight and whose most probable values are iteratively 
estimated from the data. The likelihood estimation of the dataset can then be written as 
(Tipping 2001),

where � =
(
t1,… , tN

)T , � =
(
�0,… ,�N

)T and  ϕ is the Nx(N + 1) ‘design’ matrix with 
� =

[
�
(
x1
)
,�

(
x2
)
,… ,�

(
xN

) ]T , wherein �
(
xn
)
=
[
1, k

(
xn, x1

)
, k
(
xn, x2

)
,… , k

(
xn, xN

) ]T
.

According to Tipping (2000), the maximum-likelihood estimation of � and �2 from Eq. 
(7) will result in severe overfitting. Here, he prefer to use smoother (less complex) func-
tions by defining a zero-mean Gaussian prior distribution over the weights. The introduc-
tion of an individual hyperparameter �n for each weight parameter �n is the key feature of 
RVR. Thus, the weight prior takes the form of

(6)f (x) =

N∑
n=1

�nk
(
xn, x

)
+ �0

(7)p
(
�|�, �2

)
=
(
2��2

)
exp

{
−

1

2�2
||� − ��2||

}

(8)p(�|�) = ∏N

n=0
N
(
�n|0, �−1

n

)
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where � is a vector of N + 1 hyperparameters and �n represents the precision of the corre-
sponding parameter �n (Bishop 2006). The marginal likelihood for the hyperparameters is 
obtained by integrating the weights (Tipping 2001)

where A = diag
(
�0, �1,… , �N

)
.

The values of � and �2 are determined using type-II maximization likelihood, in which 
the marginal likelihood function is maximized by integrating out the weight parameters. In 
the RVR method, a proportion of the hyperparameters 

{
�n
}
 is driven to large values. The 

weight parameters �n corresponding to these hyperparameters thus have posterior distribu-
tions with means and variances both equal to zero (Bishop 2006). Thus, these parameters 
are removed from the model, and sparsity is realized. In the case of models with the form 
of Eq. (6), the inputs xn corresponding to the remaining nonzero weights are called the rel-
evance vectors (RVs) and are analogous to the support vectors (SVs) of a SVR.

According to Tipping (2000), some advantages of RVRs over the SVRs are: (i) they can 
produce probabilistic output, (ii) there is no need to define the regularization parameter C 
and the insensitivity parameter � , and (iii) non-Mercer kernel functions can be used. The 
most compelling feature of the RVR is that it is capable of generalization performance 
comparable to that of an equivalent SVR using, in most cases, significantly smaller number 
of RVs than the number of SVs used by an SVR to solve the same problem. More signifi-
cantly, in RVR, the parameters governing complexity and noise variance ( � ’s and �2 ) are 
automatically estimated by the learning procedure, whereas in SVR, it is necessary to tune 
the hyperparameters C and � (Tipping 2001; Tipping and Faul 2003; Bishop 2006).

2.3 � Differential evolution

The differential evolution (DE) algorithm, proposed by Storn and Price (1997), is an evo-
lutionary algorithm (EA) for global optimization, which has been widely applied in many 
scientific and engineering fields (Qin et al. 2009).

The DE algorithm involves the three main operations of mutation, crossover, and selec-
tion (Storn and Price 1997). DE is a scheme for generating trial parameter vectors. Muta-
tion and crossover are used to generate new vectors (trial vectors), and selection then deter-
mines which of the vectors will survive into the next generation.

The original version of DE can be defined by the following constituents (Storn 2008):

•	 Population: DE is a population-based optimizer that attacks the starting point problem 
by sampling the objective function at multiple, randomly chosen initial points. DE aims 
to evolve the population of Np D-dimensional vectors, which encodes the gth genera-
tion candidate solutions, towards the global optimum (Price et al. 2006).

•	 Once the population is initialized, DE mutates and recombines the population to pro-
duce a population of Np trial vectors. The scale factor, F ∈ (0,1+) , is a positive real 
number that controls the rate at which the population evolves (Price et al. 2006).

•	 Following the mutation operation, crossover is applied to the population. The crossover 
probability, Cr ∈ [0,1] , is a user-defined value that controls the fraction of parameter 
values copied from the mutants (Price et al. 2006).

(9)p
(
�|�, �2

)
= (2�)−N∕2

|||�
2� + ϕA−1ϕT|||

−1∕2
exp

{
−
1

2
�T
(
�2� + ϕA−1ϕT

)−1
�

}
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•	 Selection: If the trial vector has an equal or lower objective function value than that of 
its target vector it replaces the target vector in the next generation g+1; otherwise, the 
target retains its place in the population for at least one more generation.

The mutation strategies can vary with the type of individual modified to form the donor 
vector, the number of individuals considered for the disorder and the type of crossing used. 
The mutation strategy is denoted by DE∕�∕�∕�, where (Santos et al. 2012):

•	 � denotes the vector to be disturbed,
•	 � determines the number of weighted differences,
•	 � denotes the crossover type.

The setting of the DE control parameters is crucial for the performance of the algo-
rithm. According to Storn and Price (1997), DE is much more sensitive to the choice of 
scale factor F than it is to the choice of crossover probability Cr.

According to Eiben et  al. (2007), there are two major approaches for setting the 
parameter values: parameter tuning and parameter control. Parameter tuning is a com-
monly practiced approach that tries to find good values for the parameters before the 
algorithm runs and then runs the algorithm using these values, which remain fixed dur-
ing the run. In parameter control, the values for the parameters are changed during the 
run. The methods for changing the values of the parameter scan be classified into one of 
three categories: deterministic parameter control, adaptive parameter control, and self-
adaptive parameter control.

In self-adaptive parameter control, the parameters to be adapted are encoded into 
chromosomes and undergo mutation and recombination. Better values of these encoded 
parameters lead to better individuals, which are in turn more likely to survive and pro-
duce offspring and hence propagate these better parameter values.

The algorithm proposed in Brest et  al. (2006), the jDE algorithm, employs a self-
adaptive scheme to perform the automatic setting of the scale factor F and crossover 
rate Cr control parameters. The control parameter population size Np does not change 
during the run. The algorithm implements the DE/rand/1/bin mutation strategy.

In our study, we use the jDE algorithm proposed by Brest et  al. (2006) and imple-
mented by Conceição and Mächler (2015). The latter implementation differs from the 
DE algorithm proposed by Brest et al. (2006) most notably in the use of the DE/rand/1/
either-or mutation strategy (Price et  al. 2006) and a combination of jitter with dither 
(Storn 2008), and the immediate replacement of each worse parent in the current popu-
lation by its newly generated better or equal offspring (Babu and Angira 2006) instead 
of updating the current population with all the new solutions simultaneously as in clas-
sical DE.

3 � Proposed modeling strategy

In actual applications, many practitioners select the RVR and SVR hyperparameters empir-
ically by trial and error or by using a grid search (exhaustive search) technique with a cross-
validation method. These procedures are computationally intensive and may not result in 
the best performance. Choosing the optimal values for the RVR and SVR hyperparameters 
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is important in obtaining accurate modeling results. In this study, we apply a self-adaptive 
DE algorithm to optimize the RVR and SVR hyperparameters for modeling the phosphorus 
concentration levels in the steelmaking process.

Fig. 2 shows the flowchart for implementing the RVR and SVR models optimized by the 
DE algorithm. The procedure is as follows:

Step 1: Collect the database of the process, select the variables, normalize the observa-
tions, and divide the dataset into the training and test datasets.
Step 2: Select the training dataset. Select the kernel function and set the initial RVR ker-
nel parameters or free SVR hyperparameters (C, ε, and kernel parameters).
Step 3: Set the population size Np (Np = 10 x np) in the self-adaptive DE algorithm, 
where np is the number of RVR or SVR parameters, and set the stopping criterion: max-
imum number of iterations (200 x np) and tolerance (1 x 10-7).
Step 4: Train the RVR or SVR and calculate the fitness function value. The fitness func-
tion is defined as the root mean square error (RMSE) and the objective is to minimize 
the RMSE

where yi is the observed value measured during the process, ŷi is the predicted value esti-
mated by the model, et is the residual, and n is the number of observations used in fitting the 
model.

Step 5: If the maximum number of iterations or tolerance for the stopping criterion is 
reached, the smallest RMSE is selected, and the best parameter estimates of RVR or 
SVR are output.
Step 6: Train RVR or SVR with the best parameter estimates and obtain the optimized 
model.
Step 7: Obtain the predicted values for the training and test datasets using the optimized 
RVR or SVR model.
Step 8: Using the predicted values and residuals, perform a performance analysis of the 
model.
Step 9: If the model is valid, the RVR or SVR model to predict the phosphorus concen-
tration levels in the steelmaking process is obtained.

We also use the grid search technique and cross-validation method to select the optimal 
parameters for the RVR and SVR models with the Gaussian RBF and Laplacian kernel func-
tions. Because SVR has three free hyperparameters (C, ε, and kernel parameter γ ) to tune, the 
use of a grid search technique with a cross-validation method allows the selection of the opti-
mal parameters that have the smallest mean squared error (MSE). RVR has a kernel parameter 
γ to be tuned, for which we use a cross-validation method to select the optimal parameter that 
has the smallest MSE.

Regression models with good fits present little discrepancies between the observed and 
predicted values. The adequacy of a model is also an essential aspect because the relation 
between the response and the factors should be significant and independent of the number 
or type of input variables. The standard regression model assumes that the residuals are 

(10)RMSE =

√√√√1

n

n∑
i=1

(
yi − ŷi

)2
=

√√√√1

n

n∑
i=1

(
et
)2
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Fig. 2   Flowchart to implement RVR and SVR models optimized by DE algorithm
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independent and identically distributed (i.i.d) normal random variables with zero mean and 
constant variance.

To evaluate the generalization capacity of the models, the following error minimization 
strategies are used: the RMSE (Eq. 10), the mean squared error (MSE), the mean absolute 
error (MAE), and the mean absolute percentage error (MAPE). The latter three are given 
by Eq. (11) to Eq. (13), where yi is the observed value, ŷi is the predicted value and n is the 
number of observations.

4 � Applied study

This section presents the implementation of the models. First, we briefly describe the case 
study of the phosphorus concentration levels in the steelmaking process. Next, we present 
the implementation of the RVR and SVR models described in Section 3. We also com-
pare the RVR and SVR models developed in this study with the ridge regression, MLR, 
model tree, ANN, and RVFL models. Simulations and calculations were performed with 
the open-source software R® (R 2018). The SVR implementation used LIBSVM, a library 
for support vector machines (Chang and Lin 2011). All programs ran on a personal com-
puter with an Intel Core i7-2670QM, 2.2 GHz, 8 GB DDR3-1333 SDRAM, Windows 7 
Professional 64-bit.

4.1 � Case study

The implementation of the models is illustrated through an applied study for modeling the 
phosphorus concentration levels in the steelmaking process for Medium-Carbon Ferroman-
ganese (FeMnMC). The study was carried out in a Brazilian steelmaking company. One of 
the main factors affecting the product quality in steelmaking companies is the existence of 
contaminants in alloy steel.

The refining process in the study uses high-purity oxygen to reduce the carbon level in 
High-Carbon Ferromanganese (FeMnHC) originating from FeMnMC, which has a higher 
market value. During this process, changes occur in the proportion of several elements, 
including that of phosphorus in the final product.

Phosphorus (P) is one of the main contaminants that interferes with the steelmaking 
processes. Ferromanganese alloys are the major sources of P contamination during the 
steelmaking process, which requires limited use of this type of alloy during the process 

(11)MSE =
1

n

n∑
i=1

(
yi − ŷi

)2

(12)MAE =
1

n

n∑
i=1

||yi − ŷi
||

(13)MAPE =
1

n

n∑
i=1

||||
yi − ŷi

ŷi

||||×100
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(Um et al. 2014). Increased phosphorus levels can significantly affect the physical aspects 
of alloy steel and severely compromise its quality. P-rich steel compounds usually exhibit: 
(i) increased hardness, (ii) decreased ductility, (iii) ghost lines in carbon-rich alloy steels, 
and (iv) increased frailty of steel bonds at high and low temperatures (Chaudhary et  al. 
2001).

The FeMnMC steelmaking process has 21 initial input variables that are relevant for 
modeling the dephosphorization process. These input variables were grouped as follow: (i) 
composition of FeMnHC alloys used as raw materials for the converter, (ii) composition 
of slag, (iii) composition of loads, and (iv) levels of alkalinity: binary, quaternary e opti-
cal basicity. The output variable is the proportion of phosphorus (P) in the final process of 
FeMnMC steelmaking. The selected database covers a sample of 257 observations. Table 2 
shows the variables related to the steelmaking process.

Pedrini and Caten (2010) developed seven MLR models to predict the phosphorus con-
centration level in this process. The refining process of ferromanganese consists of a decar-
burization reaction between liquid metal and oxygen injected in the metallic bath. To real-
ize the dephosphorization process, CaO is dissolved during decarburization to reduce the 
proportion of phosphorus in the final product.

Pedrini and Caten (2010) adopted the suggestion of an engineer from the company to 
developed the MLR model called Model 8. This model uses the natural logarithm of the 
difference between the phosphorus concentration in the final process for FeMnMC and the 
phosphorus concentration of FeMnHC, the raw material in the refining process. The MLR 
(Model 8) model found to predict the phosphorus concentration levels is

For the same process, Acosta et al. (2016) have developed a MLP neural network to pre-
dict the phosphorus concentration levels. For the ANN model, they used an MLP network 
with 11 neurons in one hidden layer, the logistic activation function, the learning rate of 
0.01 and the momentum rate of 0.1. The ANN gave a RMSE of 0.0151986 on the training 
dataset.

4.2 � Implementation of the models

To develop this study, we used a database created from the information system of the com-
pany. This database contains all the variables related to the FeMnMC steelmaking process, 
as shown in Table 2.

The data preprocessing phase to for the RVR and SVR models consisted of correlation 
analysis between the process input variables and the phosphorus concentration in the final 

(14)ln (P − P∗) = −0.804 ln (Fe∗) + 0.371 ln (MnO) − 0.656 ln (CaO)

Table 2   Variables related to the 
steelmaking process

Group Specifications Unit

Alloy composition Si*, P*, Fe*, Ti*, C*, O2 %
Slag composition MgO, MnO, CaO, SiO2, Al2O3, 

BaO, K2O, TiO2, FeO
wt-%

Load composition Initial, Liquid, Dross Nm3

Alkalinity levels BB, BQ, BO Nm3

Output P %
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process by applying the lasso method (Tibshirani 1996). The input variables selected are 
as follows: percentage of initial phosphorus in the alloy composition (P*), percentage of 
initial carbon in the alloy composition (C*), percentage of manganese oxide in the slag 
composition (MnO), percentage of calcium oxide in the slag composition (CaO), and liq-
uid volume in the load composition (Liquid). The output variable is the phosphorus (P) 
concentration in the final process.

The 257 observations were normalized into the interval [0, 1]. The observation set was 
then randomly divided into two parts: a training dataset composed of 205 (80%) observa-
tions and a test dataset composed of the remaining 52 (20%) observations. The training 
dataset was used to estimate the regression models representing the phosphorus concentra-
tion in the actual steelmaking process, and the test dataset was used to evaluate and com-
pare the predictive power of the regression models.

For the RVR and SVR models, we used the kernel functions in Table 1. A flowchart 
of the RVR and SVR parameter selection is presented in Fig.  2. For the optimization 
tasks using the self-adaptive DE algorithm (Conceição and Mächler 2015), we used the 
RMSE as the fitness function of the training dataset, Eq. (10).

The search space of the control parameters for the RVR is � ∈ [0.001;1] , u ∈ [0;10] 
and d ∈ [1;5] . To tune the SVR parameters with the RBF kernel using the training 
data, we first used the procedure proposed by Cherkassky and Ma (2004) to obtain the 
three free hyperparameters (C, � and RBF kernel parameter � ) and identify the best 
search region. The search space of the control parameters for the SVR is: C ∈ [1;50] , 
� ∈ [0.001;1] , � ∈ [0.001;1] , u ∈ [0;10] and d ∈ [1;5].

Table  3 shows the best RVR and SVR model parameters for the kernel functions, 
where DE represents optimization by the self-adaptive DE algorithm and GS represents 
selection by the 10-fold cross-validation method. We used the CPU running time (sec-
onds) to evaluate the speed to select the hyperparameters in the RVR and SVR models. 
According to results listed in Table 3, the CPU time was reduced when we used a DE 
algorithm to optimize the RVR and SVR hyperparameters. The tuning of RVR involves 
only the kernel parameters, whereas SVR has more parameters for tuning (C, � and ker-
nel parameters). Because of this, the CPU times of RVR models have smaller values of 
the CPU times of SVR models.

From Table 3, the DE-RVR Laplacian kernel has a smaller RMSE value than the other 
RVR models and DE-SVR RBF kernel has a smaller value of RMSE than those of other 
SVR models. We observe that the DE-RVR Laplacian kernel performed slightly better than 
the DE-SVR RBF kernel, but the DE-RVR Laplacian kernel produced a smaller number of 
RVs (10) compared to the number of SVs (135) in the DE-SVR RBF kernel. The number 
of SVs is 65.8% of the training dataset, which can be considered as an indication of the 
goodness of fit and the adequacy of the model because a large number of SVs can cause 
overfitting of the model. The number of RVs is 4.9% of the training dataset, and the num-
ber of SVs is nearly thirteen times greater than the number of RVs.

From Table 3, it can be seen that the: (i) DE-RVR Laplacian and DE-RVR RBF kernels 
have smaller values of RMSE than the GS-RVR Laplacian and GS-RVR RBF kernels, (ii) 
the DE-SVR Laplacian and DE-SVR RBF kernels have smaller RMSE values than the GS-
SVR Laplacian and GS-SVR RBF kernels, (iii) GS-RVR Laplacian and GS-RVR RBF ker-
nels performed slightly better than the GS-SVR Laplacian and GS-SVR RBF kernels, and 
(iv) RVR Linear has the greatest value of RMSE.

Based on the error indices (Table 3), the selected RVR model is the DE-RVR Laplacian 
kernel with the optimal kernel parameter � = 0.002224. The number of RVs is 10, and the 
RMSE on the training dataset is 0.0137368. The SVR model selected is the DE-SVR RBF 
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kernel with the optimal parameters C = 3.3651, ε = 0.3449 and � = 0.04175. The number 
of SVs is 135, and the RMSE on the training dataset is 0.0140385. These optimized RVR 
and SVR models were used to model the phosphorus concentration levels in the steelmak-
ing process.

In this study, the performance of regression models was evaluated using both residual 
analysis and error minimization strategies. We tested the normality of the residuals of the 
fitted models using the Shapiro–Wilk test for the training data, and obtained a p-value 
higher than 0.4 for the two models, which indicates that the residuals are normally distrib-
uted. We examined the autocorrelation of the residuals using the Durbin-Watson test for 
the training data, and the results indicate no significant correlations in the residuals of the 
models. We used the Levene test to check homoscedasticity and obtained a p-value higher 
than 0.5, which means that residuals can be considered as having constant variances. After 
these tests, we concluded that the residuals of the RVR and SVR models are independent 
and identically distributed (i.i.d) normal random variables with constant variances. This is 
an evidence for the goodness of the fits, and shows that the models are appropriate for the 
observations. Therefore, the models can be utilized to predict the phosphorus concentration 
levels in the final process.

Table 4 shows the statistical properties of the phosphorus concentration levels obtained 
by applying the models on the training and test datasets. The statistical properties obtained 
from the models were found to be similar to those obtained experimentally. Fig. 3 shows 

Table 3   Best RVR and SVR model parameters

Model Kernel parameters CPU 
time (s)

� d u C ε RVs/
SVs(%)

RMSE

RVR RVR Linear – – – – – 7 (3.4) 0.0292070 1.66
DE-RVR Poly-

nomial
0.019960 1 5.6122 – – 3 (1.5) 0.0144930 147.72

DE-RVR 
Laplacian

0.002224 – – – – 10 (4.9) 0.0137368 83.10

DE-RVR RBF 0.003713 – – – – 7 (3.4) 0.0142890 119.97
DE-RVR 

Sigmoid
0.045197 – 0.4746 – – 4 (1.9) 0.0150930 95.21

GS-RVR 
Laplacian

0.002824 – – – – 9 (4.4) 0.0143510 739.41

GS-RVR RBF 0.002510 – – – – 19 (9.2) 0.0144207 945.26
SVR DE-SVR 

Linear
– – – 1.6382 0.2537 135 (65.8) 0.0151627 57.63

DE-SVR Poly-
nomial

0.02227 1 3.2336 44.6386 0.2529 136 (66.3) 0.0151633 1402.60

DE-SVR 
Laplacian

0.01854 – – 6.7758 0.2656 138 (67.3) 0.0142609 700.58

DE-SVR RBF 0.04175 – – 3.3651 0.3449 135 (65.8) 0.0140385 726.60
DE-SVR 

Sigmoid
0.00551 – 0.0014 15.8328 0.3422 114 (55.6) 0.0151339 969.14

GS-SVR 
Laplacian

0.00503 – – 7.7224 0.2445 144 (70,2) 0.0148802 1559,25

GS-SVR RBF 0.01050 – – 4.0025 0.0300 138 (67.3) 0.0147601 1229.04
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the predicted values against the observed values for the training and test datasets for these 
models. These goodness of fit graphs confirm the good predictive performance of the 
models.

Compared with traditional ANNs, SVR possesses some advantages: it has high gener-
alization capability and avoids local minima, it always has a solution, does not need the 
network topology to be determined in advance, and it has a simple geometric interpretation 
and provides a sparse solution. SVR provides good performance when the model parame-
ters are well tuned. The disadvantages of SVR are that it requires the tuning of many model 
parameters, and the results obtained are not probabilistic (Wang et al. 2003; Tipping 2000).

There are some advantages associated with RVR. The generalization performance 
of RVR is comparable to an equivalent SVR. Furthermore, RVR produces probabilistic 
output, and there is no need to tune the regularization parameter C and the insensitivity 
parameter � necessary in SVR. RVR yields sparse models with fewer relevance vectors 
(Tipping 2000).

Ridge regression (RR) is one of the methods to shrink the coefficients of correlated pre-
dictors towards each other (Marquardt and Snee 1975). The lambda (λ) parameter is the 
regularization penalty, and a cross-validation method can be used to select λ (Friedman, 

Table 4   Statistical properties of 
the phosphorus concentration 
levels predicted from models

Phosphorus concentration levels

Experimental RVR SVR

Maximum 0.3240 0.3044 0.3045
Minimum 0.2040 0.2237 0.2186
Mean 0.2599 0.2597 0.2596
Median 0.2590 0.2554 0.2582
Standard deviation 0.02546 0.02045 0.02031
Variance 0.0006483 0.0004185 0.0004125

Fig. 3   Predicted values against observed values for the training and test datasets: (a) RVR model, (b) SVR 
model
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Hastie and Tibshirani 2010). We also used RR to model the phosphorus concentration lev-
els using the training dataset. The λ is 0.001811864, and the RMSE on the training dataset 
is 0.0151184. The test dataset was used with the RR model to predict the future values of 
the phosphorus concentration levels.

Pao et al. (1994) proposed a random vector functional link (RVFL) neural network. The 
RVFL is an extension of single layer feedforward neural (SLFN) networks with additional 
direct connections from the input layer to the output layer (Qiu et al. 2018). The RVFL net-
work has a set of nodes called enhancement nodes, which are equivalent to the neurons in 
the hidden layer in the conventional SLFN. In RVFL the actual values of the weights from 
the input layer to hidden layer are randomly generated in a suitable domain and kept fixed 
in the learning stage (Zhang and Suganthan 2015). The number of enhancement nodes 
(hidden neurons) were determined by a cross-validation method in order to avoid over-
fitting. The number of enhancement nodes is 8, and the RMSE on the training dataset is 
0.0146759.

Model trees (MT) use recursive partitioning to build a piecewise linear model in the 
form of a model tree (Quinlan 1992). The idea is to split the training cases in much the 
same way as when growing a decision tree, using a criterion of minimizing intra-subset 
variation of class values rather than maximizing information gain. M5 (Quinlan 1992) 
builds tree-based models but, whereas regression trees (Breiman et al. 1984) have values at 
their leaves, the trees constructed by M5 can have multivariate linear models. In this work, 
we used the M5 rule based model with boosting and corrections based on nearest neigh-
bors in the training dataset (Quinlan 1993, Fernández-Delgado et al. 2019). The M5 tun-
able hyperparameters were selected by a cross-validation method. The number of training 
committees is 2, the number of neighbors for prediction is 0, and the RMSE on the training 
dataset is 0.0152490.

In order to compare the models with the MLR model proposed by Pedrini and Caten 
(2010), the test dataset was used to predict future values of the phosphorus concentra-
tion levels. The coefficient models were estimated by the least square method based on 
the t-student statistical test at 5%, Eq. (14). The RMSE of the training dataset is equal to 
0.0161804.

Table  5 summarizes the statistical measures of the error minimization results. Fig.  4 
shows the predicted values against the observed values on the test dataset for the RVR, 
SVR, ANN, RVFL, RR, MLR, and MT models. Fig. 4 confirms that the RVR and SVR 
models have better performance than the other models.

Table 5   Statistical measures of 
error minimization results

Test dataset

Model MSE RMSE MAE MAPE(%)

RVR 0.000222690 0.0149220 0.0121490 4.614
SVR 0.000223762 0.0149594 0.0118265 4.522
ANN 0.000238135 0.0152254 0.0122523 4.670
RVFL 0.000236267 0.0153710 0.0123570 4.682
RR 0.000236665 0.0153834 0.0125313 4.811
MLR 0.000247714 0.0157389 0.0127920 4.851
MT 0.000259726 0.0161160 0.0131768 5.061
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We analyzed the results from Table  3, Table  4, Table  5, Fig.  3, and Fig.  4. We can 
observe that the RVR, SVR, ANN, RVFL, RR, MLR, and MT models achieved good per-
formance in the predicting the phosphorus concentration levels. In Fig.  3, we note that 
there is a substantial agreement between the training results and the test results, indicating 
that there are no overfitting problems with the RVR and SVR models.

Analyzing the results in Table 5 from the test dataset, it can be seen that the:

(i)	 RVR model has smaller values of MSE, and RMSE than the other models,
(ii)	 SVR model has smaller values of MAE, and MAPE than the other models;
(iii)	 The ascending order of RMSE is:

	 RVR < SVR < ANN < RVFL < RR < MLR < MT
(iv)	 The ascending order of MAE is:
	   SVR < RVR < ANN < RVFL < RR < MLR < MT
(v)	 the machine learning techniques (RVR and SVR) have better performance than the 

statistical methods (RR and MLR).

Statistical tests are employed to give a detail analysis about the performance differ-
ences among all the regression models. Parametric tests assume a series of hypotheses 
on the data on which they are applied (independence, normality, and homoscedasticity). 
If such assumptions do not hold, the reliability of the tests is not guaranteed. Nonpara-
metric tests do not assume particular characteristics for the underlying data distribu-
tion. Nonparametric tests can perform two classes of analysis: pairwise comparisons 
and multiple comparison (Derrac et al. 2011, Latorre et al. 2020).

The Friedman test is a nonparametric test analogue of the parametric two-way analy-
sis of variance (Garcia et al. 2010). To calculate the statistic, the Friedman test ranks the 
model performance for each problem and compute the average of each model between 
problems (Carrasco et al. 2020). The null-hypothesis states that all the models have the 
same performance. Once Friedman’s test rejects the null hypothesis, we can proceed 

Fig. 4   Predicted values against 
observed values for the test 
dataset for the models
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with the Bergmann-Hommel post-hoc test in order to find the pairs of models which 
produce differences (N × N comparisons) (Derrac et al. 2011).

We used the Friedman test with the seven models (RVR, SVR, ANN, RVFL, RR, 
MLR, and MT) and the p-value reported by this test is 0.0033, which is significant at 
the significance level (α = 0.05). Then, we proceed to perform the Bergmann-Hommel 
post-hoc test in order to determine the location of the differences between these models.

Fig.  5 shows the adjusted p-values using the Bergmann-Hommel post-hoc test for 
multiple comparisons. The null hypothesis is rejected if the adjusted p-value is less than 
the significance level (α = 0.05). The p-values below 0.05 indicate that the respective 
models differ significantly in prediction errors. We can observe that are significant dif-
ferences between the RVR and MLR, RVR and MT, SVR and MLR, SVR and ML. The 
difference is not significant between RVR, SVR, ANN and RVFL.

5 � Conclusions

The impurities in the metal alloys interfere with the steelmaking process. High levels 
of phosphorus can severely affect the physical integrity of steel bonds and threaten the 
quality of the final product.

In this work, we applied relevance vector machine for regression (RVR) and support 
vector machine for regression (SVR) optimized by a self-adaptive differential evolution 
algorithm to the predictive modeling of phosphorus concentration levels in a steelmak-
ing process based on actual data.

In the past decade, relevance vector machines have gained the attention of many 
researchers. Relevance vector machine (RVM) is a Bayesian sparse kernel technique 
for regression and classification of identical functional form to the support vector 
machine (SVM). The RVR and SVR generalization performance depends on the correct 
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Fig. 5   Adjusted p-values using the Bergmann-Hommel post-hoc test for multiple comparisons
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specification of the hyperparameters. One of the most widely used approaches to select 
the RVR and SVR hyperparameters is the grid search technique with a cross-validation 
method. Differential evolution (DE) has also been used to optimize the RVR and SVR 
hyperparameters. It is essential to choose the best control parameters for DE to achieve 
the optimal algorithm performance. Thus, we used a self-adaptive scheme to tune the 
DE parameters automatically.

We used five kernel functions and applied a self-adaptive DE algorithm to optimize 
the RVR and SVR hyperparameters. Based on the error indices, the RVR model selected 
is the DE-RVR Laplacian kernel and the SVR model selected is the DE-SVR RBF 
kernel.

We compared the performance of the RVR and SVR models with the RR, MLR, ANN, 
MT, and RVFL models. The comparative analysis shows that RVR and SVR have better 
performance than the RR, MLR, ANN, MT, and RVFL models in the predicting the phos-
phorus concentration levels in the steelmaking process.

We used the Friedman test and Bergmann-Hommel post-hoc test. We can observe that 
are significant differences between the RVR and MLR, RVR and MT, SVR and MLR, SVR 
and ML. The difference is not significant between RVR, SVR, ANN and RVFL.

RVR has slightly better performance than the other models. RVR has nearly the same 
performance as SVR, but RVR produced nearly thirteen times fewer RVs than the SVs 
produced by SVR. Furthermore, the tuning of RVR involves only the kernel parameters, 
whereas SVR has more parameters for tuning (C, � and kernel parameters).

The results of this study indicate that the RVR and SVR models are adequate tools for 
predicting the phosphorus concentration levels in the steelmaking process. The proposed 
approach provides an effective strategy to support practitioners in modeling other chemical 
and industrial processes.
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