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Abstract
The redundancy allocation problem (RAP) is an intriguing area in the field of reliability 
optimization to which a lot of research has been devoted in recent years. In this paper, 
a bi-objective model is developed for RAP with a heterogeneous backup scheme and a 
mixed redundancy strategy. Elimination of the lower bound estimation and the exact cal-
culation of the reliability of the mixed strategy forms one of the most striking features of 
the proposed model. Investigating the optimal sequence of components in each subsystem, 
the study modifies a non-dominated sorting genetic algorithm (NSGA-II), as a powerful 
multi-objective evolutionary one, to solve the proposed bi-objective model. Two numeri-
cal examples will then be used to verify the efficiency of the model in achieving enhanced 
system reliability. Finally, the results of Pareto optimal set are used to demonstrate that 
the assumptions made enable the proposed model to improve system reliability by offering 
various structures while simultaneously considering system limitations.

Keywords Mixed strategy · Redundancy allocation problem · Bi-objective model · Markov 
chain · Sequence optimization

1 Introduction

All high-tech engineering fields are nowadays witnessing a growing need for ingenious 
system structure designs that are capable of dealing with problematic and elaborate relia-
bility analysis. Given the fact that the reliability of a product is mainly affected by the deci-
sions made in the system design process (O’Connor & Kleyner, 2012) and, further, that 
enhanced system reliability is a costly decision, optimization of system reliability requires 
principles to be employed in the design process that consider not only the total budget 
available but the associated limitations as well. A useful technique used in this process 
comes under the rubric of reliability optimization problem (ROP) that might be realized 
through one of four general approaches: i) procuring redundant units in parallel, ii) enhanc-
ing component reliability, iii) a mixture of these two approaches, and iv) reassignment of 
interchangeable components (Chambari et  al., 2012). The first approach, known as the 
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Redundancy Allocation Problem (RAP), is a popular topic in the field a brief description of 
which follows.

In RAPs, the policy of using redundant components is known as the redundancy strat-
egy that comes in the two conventional types of active and standby. The standby redun-
dancy strategy has the three cold, warm, and hot sub-types. A detailed description of the 
different kinds of cold strategy may be found in Refs. (Levitin et  al., 2013a; Tavakkoli-
Moghaddam et al., 2008). A general redundancy strategy, called the mixed strategy, was 
recently introduced by Ardakan and Hamadani (2014). This new strategy not only outper-
forms its rival conventional active and standby strategies but also subsumes them as its 
special cases (Abouei Ardakan et al., 2016; Guilani et al., 2020).

Generally speaking, all the redundant components in a standby strategy are sequentially 
activated by a switching system. Detection of a faulty unit and the subsequent switching to 
a substitute one in the standby strategy may be accomplished by either of two mechanisms. 
The first type of mechanism (T1) involves a continuous detecting system with a reliability 
of �(t) , while in the second type (T2), the switch is activated whenever needed so that the 
failure of the switch occurs with a constant probability of � (Kuo & Prasad, 2000).

Previous studies were mainly focused on optimizing the single objective redundancy 
allocation problem (SORAP) mostly formulated based on identical components under 
either an active or a standby strategy (Ardakan et al., 2015). A considerable interest has 
been recently shown in the multi-objective redundancy allocation problem (MORAP). Kul-
turel-Konak et  al. (2003) were among the first to employ a Tabu Search (TS) algorithm 
for solving the RAP with the multiple objective functions of minimizing system cost and 
weight as well as maximizing system reliability. A number of studies have been devoted 
to improvement of system reliability of the MORAP under both active and cold-standby 
strategies (Chambari et al., 2012; Garg & Sharma, 2013; Liang & Lo, 2010; Okafor & Sun, 
2012; Safari, 2012; Soylu & Ulusoy, 2011; Wang et al., 2009). However, the main limita-
tion in most of these studies, however, is that they considered a predetermined active or 
standby redundancy strategy and tried to enhance system reliability by finding better struc-
tures. In a recent study, Ardakan et al. (2015) proposed a new mathematical model of the 
MORAP and introduced for the first time the mixed strategy in a bi-objective RAP context 
aimed at maximizing system reliability and minimizing system cost.

A major advance in dealing with RAPs is their classification into the two main catego-
ries of homogeneous ones, in which all the components employed in each system (or sub-
system) are identical in type, and the heterogeneous ones, in which one type of component 
can be replaced by different types of functionally-equivalent components. It is worth men-
tioning that all the papers reviewed in this study were found to have investigated homoge-
neous systems. Among the first works to deal with a heterogeneous backup scheme, one 
can refer to (Amari & Dill, 2009; Cha et al., 2008) that focused primarily on warm standby 
systems. Several studies also entertained the opportunity of accomplishing reliable systems 
in RAP with heterogeneous (i.e., mixed) components (RAPMC) (Hsieh & Yeh, 2012; Sad-
jadi & Soltani, 2012; Soltani et al., 2014, 2015; Yeh, 2014; Zhao et al., 2015; Zhuang & Li, 
2015). The main shortfall in the mentioned papers is that they employed an active strategy, 
in which the sequence of components has no bearing on system reliability. In contrast, Cha 
et al. (2008), Amari and Dill (2009), Zhai et al. (2015), and Levitin et al. (2013a) studied 
the warm strategy in the standby mode with a perfect switching system and considered the 
impact of sequencing components on system reliability. Also, Levitin et al. (2013b) studied 
the optimal standby component sequencing problem (SESP) with a perfect switching sys-
tem for the cold-standby strategy. Moreover, in the pioneering studies of the RAPMC, Kim 
and Kim (2017a) and Kim (2018) proposed a novel method based on the Markov theory 
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to calculate the reliability of a system with heterogeneous components in the cold-standby 
redundancy strategy with an imperfect switching system. A summary of the most impor-
tant studies in the literature and a comparison with the present study is shown in Table 1.

As already mentioned in Table 1, all the above papers in the RAPMC studied the sin-
gle-objective model. The present paper is, however, different in that it is focused on the 
effect of component ordering on the reliability of a system with the mixed strategy. Fur-
thermore, the model proposed in this case is a bi-objective one that aims to accomplish 
a comprehensive analysis of both system cost and system reliability. This approach will 
expectedly be of much interest to system designers due to the potential impacts component 
sequencing might have on both system cost and its reliability. Additionally, the reliability 
function in the present study is formulated based on the continuous-time Markov chain 
(CTMC) model, which calculates the exact reliability of the RAPMC with a mixed strategy 
in a timely manner. According to Chern (1992), the RAP belongs to the NP-hard class of 
optimization problems, for whose solution meta-heuristic algorithms have been commonly 
used in the literature. Accordingly, a modified version of the well-known multi-objective 
algorithm, called NSGA-II, is used in the present study for solving the problem.

The rest of the paper is organized as follows. Section 2 reviews the mixed redundancy 
strategy as a superior one used in this work. A new methodology is outlined in Sect. 3 for 
evaluating system reliability in a RAPMC with a mixed strategy using the CTMC model. 
Section 4 provides an overview of the NSGA-II meta-heuristic algorithm as the solution 
method employed. Section 5 presents the analysis of a popular RAP as a case study and, 
finally, conclusions are presented in Sect. 6.

Notation
i, j Subsystem and component indicators, 

respectively
RS(t, seq) System reliability at time t regarding 

the defined sequence
�(t), � Switch reliability at time t and con-

stant switch reliability, respectively
expm Matrix exponential function

Tsys System lifetime �⃗1 Column vector for which all entries are 
equal to unity

nAi
 , nSi Number of active and standby com-

ponents in subsystem i, respectively
⊕,⊕ Kronecker tensor product and Kro-

necker tensor sum, respectively
ni Redundancy level of subsystem i Nstart Number of the first population gener-

ated
Zi Index of component choice applied 

for subsystem i
Maxiter Final iteration of the meta-heuristic 

algorithm
Yj,i Index of component choice used for 

position j of subsystem i
C,W Maximum total system cost and 

weight, respectively
OA , OS Arrangement vector of components 

in active and standby strategies, 
respectively

�, � Penalty coefficients

�j Failure rate of component j
� Continuous phase-type distribution 

set of state spaces
Nomenclature

�T , �A Transient and absorbing set of state 
spaces, respectively

CTMC Continuous-time Markov chain

�i Initial state probability distribution RAPMC Redundancy allocation problem with 
mixed components

Q Infinitesimal generator matrix TRM Transition rate matrix
D Transition rate matrix TTF Time-to-failure
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d Absorbing rate matrix PHD Phase-type distribution
Ix Identity matrix of size x NSGA-II Non-dominated sorting genetic algo-

rithm II
m Cardinal number of �T TPM Transition probability matrix
mi,d Cardinal number of the transient set 

of state spaces in the switch/fault 
detector of subsystem i

MORAP Multi-objective redundancy allocation 
problem

ri,j(t) Reliability of component j in sub-
system i

SORAP Single-objective redundancy allocation 
problem

2  Mixed strategy

As already explained, the mixed strategy is a general form subsuming both the conven-
tional active and standby strategies. Assuming that subsystem i under a mixed redundancy 
strategy comprises various levels of active and standby redundant components denoted by 
nAi

 and nSi , the redundancy level ( ni ) in this subsystem is then considered as a decision vari-
able that can be computed by ni = nAi

+ nSi . Given the assumption that heterogeneous com-
ponents may be employed in each subsystem, it will be necessary to consider a sequence 
according to which these components are activated. In this study, the orders in subsystem 
i for the active and standby components are denoted by OAi

 and OSi
 , respectively. Thus, to 

achieve both objectives of maximizing system reliability and minimizing its cost, the com-
ponents will need to be properly ordered and convenient redundancy levels be defined.

Coit (2003) was among the first to explore the link between reliability of the cold-
standby strategy and that of the active strategy in a given subsystem as mainly affected by 
redundancy level. The fact is that both the strategies have their own strengths and weak-
nesses both of which are shared by a strategy formed as a combination of the two. Such 
a combined strategy, referred to in the present paper as the mixed strategy (Ardakan et al. 
2015), may be applied to subsystems in order to improve the overall system performance. 
Figure 1 provides a detailed schematic of a sample structure of a heterogeneous series–par-
allel system under a mixed strategy, where the green and white cells indicate active and 
cold-standby components, respectively, and the number in each cell implies the component 
type. The proposed system in this series–parallel structure will work until all subsystems 
are operating, and only one online component in each subsystem is needed to have such 
subsystem.

In the mixed strategy, all the nAi
 primary components are simultaneously activated 

in subsystem i at time zero while the subsystem is capable of satisfactory operation 
with only one component in operation. At the failure of the last active component, the 
switching mechanism replaces the failed component with the first standby one accord-
ing to a predetermined order. As a result, the subsystem fails in a perfect switching case 
when the nth

i
 malfunction occurs.

All types of redundancy strategies are based on the assumptions that each subsystem 
contains at least one active component (i.e., nAi

≥ 1 ) and that there is no limit on the 
number of cold-standby units (i.e., nSi ≥ 0 ). Table 2 lists the five redundancy strategies 
derived on the basis of these assumptions. Clearly, the mixed strategy as a generalized 
form of both the active and standby ones yields structures that offer a more flexibility 
pleasing to system designers.
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According to Ref. (Ardakan et al. 2015), exact calculation of reliability for a system 
under the mixed strategy is a complicated and time-consuming process. A lower bound 
formulation is, therefore, proposed as in Eq. (1) for calculating the reliability of a sub-
system with identical components under a mixed strategy, albeit the calculation is still 
complex and time-consuming.

where f (j)
iki

 represents the probability density function for the jth failure in subsystem i when 
a component of type ki is used and f Max,nAi

iki
 is the probability density function for the maxi-

mum failure times of nAi number of independent and identical components in subsystem i 
when a type ki is utilized.

The major drawback Ardakan and Hamadani (2014) found with Eq.  (1) was that it 
could just be used for calculating the lower bound of the whole system reliability. They 
also claimed that the equation could have been more useful if it were able to handle sub-
systems with non-identical components. To overcome these inadequacies, Guilani et al. 
(2020) proposed an exact reliability formulation for the mixed strategy, which calculated 
system reliability based on a matrix analytic method. This approach, which can also be 
used for systems with heterogeneous components, is adopted in the present study for the 
exact calculation of system reliability, a detailed description of which follows.

3  Exact calculation of system reliability

The mathematical formulation proposed for calculating the exact reliability of a system 
under a mixed strategy with heterogeneous components is an innovative alternative to that 
presented in Ardakan et al. (2015). Of particular interest in this model is the short time it 

(1)

Riki,Mixed(t; nAi; nski ) =
(
1 − (1 − riki (t))

nAi
)
+ �i(t)

t

∫
0

riki (t − u) × f
Max,nAi
iki

(u)du

+ �i(t)

nski
−1∑

j=1

t

∫
0

t

∫
t1

riki (t − u) × f
(j)

iki
(u − t1) × f

Max,nAi
iki

(t1)dudt1

Fig. 1  A sample structure of a heterogeneous system with the mixed redundancy strategy

Table 2  Types of redundancy 
strategies

Alternatives nAi
nSi Redundancy strategy

None = 1 = 0 No redundancy
Ac > 1 = 0 Active redundancy strategy
St = 1 ≥ 1 Cold-standby redundancy strategy
M1 = 2 = 1 Mixed redundancy strategy
M2 = 2 = 2 Mixed redundancy strategy



281Annals of Operations Research (2022) 312:275–304 

1 3

takes to calculate the exact reliability value of a system with heterogeneous backup scheme 
under a mixed strategy. Moreover, the model is capable of considering a sequence accord-
ing to which the components are activated.

From a reliability point of view, possible states and transitions form the two main parts 
of a Markov model, with states representing the current working component(s) and transi-
tions representing the connection paths among the states. A simplified view of a Markov 
model for a non-repairable system with two states is presented in Fig. 2, where the system 
can shift from State 1 to State 2 through a given transition path.

3.1  Individual reliability

Previous studies of the problem commonly considered an exponential distribution for the 
time-to-failure (TTF) of components. This leads to the following formulation for the reli-
ability of component j in subsystem i at a given time t:

where � represents failure rate.

3.2  Subsystem reliability

In the present paper, a structured continuous-time Markov chain (CTMC) model is devel-
oped for the exact calculation of each subsystem’s reliability. In this case, the TTF of sub-
system i with ni components can be modeled based on a continuous phase-type distribution 
(PHD) supported by a set of state spaces �i = {�iT ,�iA} . The set �i is composed of mi + 1 
finite and countable states, whereas the set of transient states �iT =

{
1.2.… .mi

}
 contains 

mi states as phases and the absorbing set of states �iA = {A} contains one as either the 
absorbing or the final state. In the proposed reliability model, the state transitions among 
all ni components capture the deterioration process of subsystem i . Accordingly, failure in 
the subsystem is interpreted by entering the absorbing state. In this regard, the TTF of a 
particular unit may be analyzed using a random variable of PHD as PH(�,� ), where � is 
the initial state probability distribution and D is a square matrix of size m containing the 
transition rates among the phases. In addition, the infinitesimal generator, Q, of the CTMC 
model can be expressed as in (3):

(2)ri,j(t) = exp(−�ijt)

Fig. 2  A simple illustration of a 
Markov model for a non-repaira-
ble two-unit system
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where d is a column vector of entering rates into absorbing states. Based on the funda-
mental PHD features, Eqs. (4–6) below can be derived as the probability density, cumula-
tive distribution, and reliability functions, respectively, for a given component at time t 
(Latouche & Ramaswami, 1999).

where the initial probability at which the system starts in a failed state is denoted by �SA . In 
all cases, this variable is taken to be �SA = 0.

3.3  Mixed redundancy strategy formulation

A subsystem with n components and a mixed strategy combines both conventional strate-
gies, where nA components are in operation and nS = n − nA components are kept immune 
from operational stress. Additionally, when all the initially launched components fail, the 
standby components are sequentially put into operation in a predetermined order. Across 
these sequential activations, a switching system is needed to sense and detect a failing 
component and to substitute it with a standby one (Ardakan & Hamadani, 2014). In this 
study, the first type of switching mechanism (T1) is employed with an exponentially dis-
tributed TTF.

As a matter of fact, the working conditions of each component and switch indicate the 
states of the CTMC reliability model; hence, the following two situations may be envi-
sioned based on the switch operating conditions.

Situation 1: The switching system of subsystem i functions properly. The subsystem, 
therefore, operates properly until the last redundant unit fails. In this case, the lifetime of a 
system with nA active and nS cold-standby redundant units is given by:

where the term Max
(
Tj;j ∈ nA

)
 expresses the lifetime of the initially launched components 

and the term 
∑

k∈nS
Tk denotes that of the cold-standby units. System failure occurs by the 

time all the n components reach their absorbing states. This requires, then, an infinitesimal 
generator matrix to cover all the possible combinations of states in the active units for the 
term Max

(
Tj; j ∈ nA

)
 ; this yields the relation �A = ⊕j𝜖nA�j . Thus, the matrix format of 

�sys may be modeled as follows:

(3)� =

[
� �

0 0

]

(4)f (t) =

{
𝜋
�A
, for t = 0

�expm(�t)�, for t > 0

(5)F(t) = 𝜋
�A

+ 1 − �expm(�t) �⃗�, for t ≥ 0

(6)R(t) = 1 − F(t) = �expm(�t) �⃗�, for t ≥ 0

Tsys = Max
(
Tj;j ∈ nA

)
+
∑
k∈nS

Tk
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where �A and �A are intensity vectors to absorbing state and the sub-transition rate matrix 
(TRM) among the transient states for active components, respectively; �k, �k, and �k are 
the intensity vectors to absorbing state, TRM among transient states, and the initial prob-
ability distribution vector for cold-standby components, respectively.

As mentioned earlier, the TTFs for all the components are taken in this study to be 
exponentially distributed; hence, �k = −�k, �k = �k, and �k = [1].

Situation 2: In this case, the switching system of subsystem i is in a failure state. Sub-
system i, therefore, functions properly until the failure of either the last active component 
or an online standby one. In other words, the possibility for replacing a failed online com-
ponent with a new one is not available. As a result, system failure occurs upon either of two 
events: first, by the time all the nA primary components reach their absorbing states (i.e., 
�A ), or second, when an activated cold-standby component fails (i.e., �k∈nS ). Consequently, 
�sys in this situation may be formulated as in (8) below:

The proposed formulation can be illustrated with a simple example of a subsystem with 
four non-identical components. Such a subsystem will have the four different redundant 
structures shown in Fig. 3. To cover all the possible combinations for the proposed exact 
model, the structure with two active and two standby components (i.e., the second subsys-
tem in Fig. 3) is selected for discussion. This subsystem is under a mixed redundancy strat-
egy. The related states of the CTMC model for this structure are coded as follows:

(7)�A =

�
�A �A
0 0

�
,�sys =

⎡
⎢⎢⎢⎢⎢⎢⎣

�A �A�k=1

�k=1 �k=1�k=2

�k=2 �k=2�k=3

⋱ ⋱

�k=nS
�k=nS

� 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(8)�sys =

⎡
⎢⎢⎢⎢⎢⎢⎣

�A �A
�k=1 �k=1

�k=2 �k=2
⋱ ⋮

�k=nS
�k=nS

� 0

⎤⎥⎥⎥⎥⎥⎥⎦

Fig. 3  Different types of redundancy strategies in a subsystem with four components
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State  SA = All the active components are online;
State  Si = Only component i is online;

Absorbing State = The final state of the CTMC method, which implies system failure.
As explained earlier, the mechanism might be in either of two situations based on the 

functioning states of the switching system. The infinitesimal generator of the structure 
assumed in Situation 1 is expressed by Eq. (9). The evidence from this matrix implies 
perfect operation of the switching system such that the system operates up to the failure 
of the last redundant component.

The schematic view of the Markov model for this situation is presented in Fig. 4.
Accordingly, the infinitesimal generator matrix for Situation 2 may be outlined as in 

(10) below.

This matrix indicates that the switching mechanism has failed and that the system 
functions properly until the failure of the current online components; this is depicted in 
Fig. 5.

As noted above, in the CTMC model, the operation state of subsystem i is affected 
by the operation states of both the switching system and the components. This calls 
for a method to determine the overall transition rate matrix (TRM) of subsystem i by 
integrating the infinitesimal generator matrices of both situations. For this purpose, the 
transition probability matrices (TPM), �T and �A , are introduced. �T is the one used 
for retaining the current state of the components when the state transition occurs in the 
switch while �A is used to imply that the state of the switch has already arrived at an 

(9)Qi,1 =

�
�i,1 �i,1
� 0

�
=

⎡
⎢⎢⎢⎢⎢⎢⎣

−�1 − �2 �1 �2
−�2 �2

−�1 �1
−�3 �3

−�4 �4
� 0

⎤⎥⎥⎥⎥⎥⎥⎦

(10)Qi,2 =

�
�i,2 �i,2
� 0

�
=

⎡
⎢⎢⎢⎢⎢⎢⎣

−�1 − �2 �1 �2
−�2 �2

−�1 �1
−�3 �3

−�4 �4
� 0

⎤⎥⎥⎥⎥⎥⎥⎦

Fig. 4  State transitions in Situation 1
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absorbing state and that the transition happens only in the online component(s). The 
relationship between �T and �A can be established by an identity matrix of size 2, such 
that �T + �A = �2.

The sub-TRM �T
i
 in subsystem i for the integrated situation can be determined using 

Eq. (11):

where, the term �T ⊗ �1 +�switch ⊗ ��1
 calculates the possible transitions of the inte-

grated phases of the components while the switch is functioning, ��1
 is an identity matrix 

of size sub-TRM �1 , and the sub-TRM for describing the mechanism in Situation 2 is 
expressed by �A ⊗ �2 . Furthermore, the initial probability vector for subsystem i is indi-
cated by �T

i
= [�1,�2]. It was assumed in this model that subsystem i never starts with a 

failed switching system; therefore, �2 = 0  and, consequently, �T
i
= [�1, 0] . As a result, 

Eq. (6) would seem to imply that the subsystem’s reliability, Ri(t) , for a mixed redundancy 
strategy with a heterogeneous backup scheme may be determined using Eq. (12):

3.4  Fundamental assumptions

It is assumed in this study that the system is of the 1-out-of-n:G type in which at least one 
operating component is needed in each subsystem to discharge the mission successfully. It 
is further assumed that each subsystem involves n parallel components with nA active and 
nS cold-standby units, where n = nA + nS . The active components start operation at time 
zero, while the cold-standby ones come into operation sequentially by an imperfect switch-
ing mechanism.

�T =

[
1 0

0 0

]
, �A =

[
0 0

0 1

]

(11)

�T
i
= �T ⊗ �1 +�switch ⊗ ��1

+ �A ⊗ �2

= ��switch
⊗ �1 +�switch ⊗ �� + �A ⊗

(
�2 − �1

)

= �switch ⊕ �1 + �A ⊗
(
�2 − �1

)

(12)Ri(t) = �
T
i
expm

(
�T

i
.t
)
1⃗, for t ≥ 0

Fig. 5  State transitions in Situation 2
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In addition, the following assumptions are made in the analysis of the problem:

 (i) The components have TTFs that are independently distributed.
 (ii) Mission time is predetermined and cannot be changed during the mission.
 (iii) The sequence of components is fixed.
 (iv) An imperfect switching system of the first type (T1) is considered with exponentially 

distributed TTFs.
 (v) The switching and restoration times of components are negligible.
 (vi) The possibility of using non-identical components in each subsystem is available.
 (vii) The switching system and components are non-repairable.

4  Solution method: non‑dominated sorting genetic algorithm II 
(NSGA‑II)

Rooted in biological genetics, Genetic Algorithm (GA), as one of the most well-known 
evolutionary algorithms, was first introduced by Holland (1975). Combining an elitist 
archive and the rules for adaptation assignment transformed the fast non-dominated sorting 
genetic algorithm (NSGA-II) into an effective multi-objective evolutionary algorithm (Deb 
et al. 2002) that was chosen as one of the most practical solution methods for solving reli-
ability problems (dos Santos Coelho, 2009; Konak et al. 2006; Salazar et al. 2006). Herein, 
the proposed NP-hard problem is also solved using NSGA-II.

Using a fast non-dominated sorting procedure, the algorithm assigns ranks to individu-
als in a population of size N. This ranking method attaches special importance to the good 
individual as an attempt to generate a multitude of such solutions. Diversity in NSGA-II 
is provided throughout the crowding distance designated by points of the same rank. The 
value of this index is directly related to the crowd in the solution space. Therefore, the 
point with the highest crowding distance is selected from among a group of those with 
the same rank and using the index, thus, avoids the focus on limited regions of the search 
space. NSGA-II is clearly a convenient meta-heuristic method for obtaining Pareto optimal 
sets (Chambari et al., 2012; Safari, 2012). The related pseudo code and flowchart are repre-
sented in Figs. 6 and 7, respectively.

1. Design the chromosome. In order to decrease the CPU time, the size of the chromo-
some is compacted to a matrix of size Max

(
ni
)
× S , in which Max(ni) represents the 

maximum allowable redundancy level for all the subsystems and S is the total number 
of subsystems. Each column of the matrix represents a subsystem, and the value of the 
element in each column indicates the component type in that subsystem. It must be men-
tioned that the proper values for nA and nS in each subsystem are optimally determined 
by the proposed algorithm rummages through the available combinations in search 
of the best choice among them. The matrix elements are coded numbers representing 
the component choices from Table 7. Clearly, the element 0 in a chromosome means 
no components are selected. Figure 8 shows the chromosome structure of the system 
represented in Fig. 1, where Max

(
ni
)
= 4 and S = 14..

In order to shrink the solution space of the proposed model, the size of the chromo-
some was reduced. This reduction is made by removing the decision variable of redun-
dancy strategy from the chromosome. By doing so, the possible redundancy strategies 
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are identified based on other remained variables (i.e., type of the component, and the 
total number of components in each subsystem), and the reliabilities of all possible 
redundancy strategies are calculated and compared. For instance, consider the fourth 
subsystem in Fig. 8, where four components with the sequence of {1,4,1,4} are selected. 
Consequently, four different redundancy strategies can be fitted to this subsystem as Ac, 
St, M1, and M2 strategies. The subsystem reliabilities under all four different redun-
dancy strategies are calculated and then the best one is selected. This procedure of com-
parison is implemented in the objective function of NSGA-II algorithms.

As shown in Fig. 8, the first subsystem ( i = 1 ) consists of three parallel components 
including one of type 2 and two of type 3 ordered in the sequence 2, 3, 3. The element 0 
in the last entry means that no components are chosen. Hence, decoding the component 
types according to Table 7 yields the reliability sequence [0.93, 0.91, and 0.91] for this 
subsystem. Finally, the algorithm chooses the best redundancy strategy with the highest 
reliability value considering these three components and their sequence. For example, 
Fig. 1 shows that the algorithm chooses the mixed strategy for the first subsystem with 
nA1 = 2, and nS1 = 1 , or consider the fourth subsystem where a cold-standby strategy 
with nA4 = 1 , and nS4 = 3 and a sequence of 1–4-1–4 is selected.

Fig. 6  NSGA-II procedure
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2. Generate Nstart chromosomes randomly as the initial population.
3. Evaluate the fitness function (ff) of the population. The ff is defined as the summation 

of the objective functions and a dynamic penalty function expressed as the associated 
infeasibility. Consequently, by performing an infeasible solution, a penalty value is 
applied to both objective functions. Effecting penalty values in ff reduces the probability 
for infeasible solutions selected in the remaining algorithm processes, while the feasi-
bility of the final solution is guaranteed. For optimizing the considered problem, two 
objective functions as maximizing the system reliability, and minimizing the system cost 
are considered. Also, two constraints as cost and weight limitations are granted in this 
mathematical model. All regarded equations of the considered problem will be expressed 
further in Sect. 5.2. Equation (13) describes the penalty function. A penalty coefficient 
is applied to the amount of infeasibility and considered in the objective function in case 

Fig. 7  NSGA-II flowchart

Fig. 8  Encoded representation of 
a chromosome
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of constraint violation. For example, the following relations are derived for cost and 
weight penalties, respectively:

4. Select the candidate chromosomes for mutation and crossover operations. In this algo-
rithm, the tournament procedure, which involves running several tournaments among 
the chromosomes, is performed on the population to select the candidate chromosomes. 
Further information can be found in Ref. (Ardakan & Hamadani, 2014).

5. Apply the crossover procedure by selecting two chromosomes as parents to produce 
new ones as offspring. This procedure allows for the inheritance of some basic features 
of the parent strings by the offspring. Each iteration of the crossover procedure leads to 
the selection of two parents to generate four offspring. The two premium chromosomes 
out of the six now available will be moved to the next step (i.e., mutation procedure). 
The proposed NSGA-II uses two crossover operators identified as the uniform and the 
max–min functions. In the max–min crossover, a rank-based selection scheme is adopted 
on parents’ chromosomes to mark the best and the worst subsystems according to their 
reliability values and all the genes thus marked are exchanged with the same genes in the 
other parent. This type of crossover operator is presented in Fig. 9. Further information 
on this operation may be obtained from Refs. (Ardakan & Hamadani, 2014; Gholinezhad 
& Hamadani, 2017).

6. Apply the mutation procedure to one chromosome selected; this procedure results in the 
slightest changes in the chromosome structure while maintaining solution diversity. The 
procedure is meant to avoid premature convergence to a local optimum but to facilitate 
irregular jumps in the solution space. In this version of NSGA-II, the three simple, 
max–min, and sort functions are utilized as the mutation procedures. Throughout the 
max–min mutation, the best and the worst subsystems in terms of reliability value are 
changed randomly (Fig. 10). The sort mutation then sorts all the components in each 
subsystem in decreasing order of reliability values such that the most reliable component 

(13)

cost penalty = � ×max (0, system cost − maximum budget)

weight penalty = � ×max(0, system weight − maximum allowable weight)

ff = 1 − Total Reliability + penalty for the violation of cost limitation

+ penalty for the violation of weight limitation

Fig. 9  Max–min crossover operator



290 Annals of Operations Research (2022) 312:275–304

1 3

of subsystem i is located in the first position of the arrangement, and so on. Figure 11 
details this function by assuming a direct relationship between component reliability 
and its index.

7. Apply the selection procedure that compares the new offspring with the current popula-
tion, selects the superior one, and discards the remaining. The selected population is 
transferred to the next iteration.

8. Return to step 4 to start a new iteration.
9. Stop the algorithm after running Maxiter iterations.

5  Numerical experiments

In this section, two numerical examples are presented to illustrate the proposed contribu-
tions. The first example addresses the idea of optimal sequencing of components in a bi-
objective problem and explains the application of the proposed CTMC method to sequence 
optimization. The second numerical example, which is a well-known benchmark problem, 
focuses on developing an improved Pareto optimal set by applying the modified NSGA-II.

5.1  Sequence optimization

The heterogeneous components allowed in a parallel subsystem instigate the idea of opti-
mal component sequencing. In the recent numerical example, all the combinations of four 
components in a parallel subsystem are analyzed to determine the impacts of component 
sequencing on both subsystem reliability and total purchasing cost. This yields the set of 
five components with different reliabilities and different purchasing costs as reported in 
Table 3. The objective functions of the problem try to minimize the subsystem cost and to 
maximize its reliability, taking into account a cost limitation of 130 units. Moreover, four 

Fig. 10  Max–min mutation operator

Fig. 11  Sort mutation operator
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components at most are allowed to be allocated to the subsystem. Table 4 reports the five 
different component choices with their corresponding purchasing costs.

According to Table 4, just two out of the five choices (i.e., choices 2 and 3) are con-
sidered as feasible sets due to the assumed limitation on cost. In other words, there are 
two feasible sets for allocation to this subsystem. In this situation, the sequence with 
the maximum reliability should be defined for both feasible sets by trying all the pos-
sible combinations of the orders. Considering a mission time of 100 time units and an 
imperfect switching system with a reliability of �i(100) = 0.99 , one obtains subsystem 
reliability values, Rs , for all the available component orders of sets 2 and 3 reported 
in Tables  5 and 6, respectively. The first two components in each sequence, marked 
in bold typeface in these Tables, represent active units while the rest are cold-standby 
ones. According to Table 5, the Rs values for the first feasible set vary from 0.997235 to 
0.998041 while those for the second feasible set, and also reported in and Table 6, vary 
from 0.997993 to 0.999036 under the mixed redundancy strategy. The results obtained 

Table 3  Input data of the first 
numerical example

Component number Reliability Pur-
chasing 
cost

1 0.9 60
2 0.8 50
3 0.7 30
4 0.6 20
5 0.5 10

Table 4  Details of component 
choices

Set number Component choices Sum of 
purchasing 
costs

1 1,2,3,4 160
2 2,3,4,5 110
3 3,4,5,1 120
4 4,5,1,2 140
5 5,1,2,3 150

Table 5  System reliability for set #2

Subsystem Reliability Subsystem Reliability Subsystem Reliability Subsystem Reliability

2,3,4,5 0.998041 3,2,4,5 0.998041 4,2,3,5 0.997939 5,2,3,4 0.997836
2,3,5,4 0.998035 3,2,5,4 0.998035 4,2,5,3 0.997922 5,2,4,3 0.997825
2,4,3,5 0.997939 3,4,2,5 0.997709 4,3,2,5 0.997709 5,3,2,4 0.997547
2,4,5,3 0.997922 3,4,5,2 0.997670 4,3,5,2 0.997670 5,3,4,2 0.997515
2,5,3,4 0.997836 3,5,2,4 0.997547 4,5,2,3 0.997257 5,4,3,2 0.997235
2,5,4,3 0.997825 3,5,4,2 0.997515 4,5,3,2 0.997235 5,4,2,3 0.997257
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Table 6  System reliability for set #3

subsystem Reliability Subsystem Reliability Subsystem Reliability Subsystem Reliability

3,4,5,1 0.998450 1,3,4,5 0.999036 4,5,1,3 0.998036 5,4,1,3 0.998036
3,4,1,5 0.998500 1,3,5,4 0.999033 4,5,3,1 0.997993 5,4,3,1 0.997993
3,5,4,1 0.998282 1,4,3,5 0.998984 4,3,1,5 0.998500 5,3,1,4 0.998330
3,5,1,4 0.998330 1,4,5,3 0.998976 4,3,5,1 0.998450 5,3,4,1 0.998282
3,1,4,5 0.999036 1,5,3,4 0.998932 4,1,3,5 0.998984 5,1,3,4 0.998932
3,1,5,4 0.999033 1,5,4,3 0.998927 4,1,5,3 0.998976 5,1,4,3 0.998927

Fig. 12  The Pareto optimal set of the first numerical example

Table 7  Input data of the benchmark problem

Subsystem Choice 1 (j = 1) Choice 2 (j = 2) Choice 3 (j = 3) Choice 4 (j = 4)

rij cij wij rij cij wij rij cij wij rij cij wij

1 0.90 1 3 0.93 1 4 0.91 2 2 0.95 2 5
2 0.95 2 8 0.94 1 10 0.93 1 9 – – –
3 0.85 2 7 0.90 3 5 0.87 1 6 0.92 4 4
4 0.83 3 5 0.87 4 6 0.85 5 4 – – –
5 0.94 2 4 0.93 2 3 0.95 3 5 – – –
6 0.99 3 5 0.98 3 4 0.97 2 5 0.96 2 4
7 0.91 4 7 0.92 4 8 0.94 5 9 – – –
8 0.81 3 4 0.90 5 7 0.91 6 6 – – –
9 0.97 2 8 0.99 3 9 0.96 4 7 0.91 3 8
10 0.83 4 6 0.85 4 5 0.90 5 6 – – –
11 0.94 3 5 0.95 4 6 0.96 5 6 – – –
12 0.79 2 4 0.82 3 5 0.0.85 4 6 0.90 5 7
13 0.98 2 5 0.99 3 5 0.97 2 6 – – –
14 0.90 4 6 0.92 4 7 0.95 5 6 0.99 6 9
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clearly provide an insight into the impact of component ordering on reliability. Further-
more, it is seen that the Rs values for the first and second feasible sets will be equal to 
0.988 and 0.994 when using an active strategy; hence, the superiority of the mixed strat-
egy over the active one with respect to the reliability values gained.

It may be noted in Tables 5 and 6 that it is only the order of the standby components 
that affects subsystem reliability value while that of active ones has no effect. As an 
example, Rs remains unaffected when the order of active components in the sequence 
2,3,4,5 is changed to 3,2,4,5, whereas Rs value changes as a result of changing the 
order of the cold-standby components from 2,3,4,5 to 2,3,5,4. The reason that might be 
claimed for this is that the switching system activates the first cold-standby component 
after all the online ones fail. In other words, the switching system activates the first 
cold-standby component when all the active ones have reached their maximum lifetimes 
regardless of their sequence.

Another point worth noting in Tables 5 and 6 is that the maximum Rs values recorded 
for the first and second feasible sets are equal to 0.998041 and 0.999036 and that the 
corresponding sums of purchasing costs are 110 and 120, respectively. This allows the 
system designer to choose his preferred sequence for either maximizing system reliabil-
ity or minimizing system cost. Figure 12 illustrates the Pareto optimal set of this numer-
ical example. The most remarkable result to emerge from the example is that consider-
ing the problem in a bi-objective mode is crucial for system designers since what they 
find as the best system structure will not be achieved unless a tradeoff is made between 
the priorities assigned to system reliability and system cost.

From the viewpoint of system reliability, attaining the maximum possible value for 
Rs in the presence of an imperfect switching mechanism presupposes a method to sort 
the components in a decreasing order of their reliability values. For example, the maxi-
mum possible value of Rs reported in Table  6 is obtained when the components are 
sorted as in the sequences 1,3,4,5 and 3,1,4,5. These results support the rules previously 
reported by Kim (2018) and Levitin et al. (2013b).

5.2  Benchmark problem

In order to confirm the superiority of the proposed heterogeneous backup scheme in 
the mixed redundancy strategy over the previously studied MORAP, a popular test 
problem is considered that was originally introduced by Fyffe et al. (1968) and widely 
studied elsewhere (Chambari et al., 2012; COIT, 2001, 2003; Safari, 2012; Tavakkoli-
Moghaddam et  al. 2008). This test problem contains a series–parallel system with 14 
subsystems. The input data for the components of each subsystem such as cost, weight, 
and reliability are reported in Table 7. In this table, the characteristics of component j in 
subsystem i such as reliability ( rij ), cost ( cij ) and weight ( wij ) are reported. For example, 
there are three component choices available for the second subsystem. It means, just 
these mentioned components with the specified characteristics can be allocated to the 
second subsystem. Furthermore, it is assumed that unlimited supply of each component 
are available and the limitations are on the cost and weight of the system.

The problem also has the two objective functions of maximizing system reliability 
and minimizing system cost subject to constraints on system weight (W ≤ 170) and sys-
tem cost (C ≤ 130). Furthermore, an imperfect switching mechanism with a reliability 
of 0.99 at 100 time units is considered for each subsystem, which permanently monitors 
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system performance in order to remove failed components and replace them with new 
ones (T1). It is finally assumed that six components can at most be allocated to each 
subsystem ( nMax,i = 6 ). Based on the assumptions made in Subsection (3.4), the math-
ematical model for this MORAP will be as follows:

Equation (14) as the first objective function of the model is meant to improve system 
reliability by maximizing it and the exact reliability of each subsystem is calculated using 
Eq. (12). The second objective function, Eq. (15), aims to minimize system cost consider-
ing the two practical cost and weight constraints the maximum values for which are calcu-
lated from Eqs. (16) and (17), respectively. The size of the set is measured by the function 
card(.); Eq.  (18), therefore, guarantees that at least one active component is allocated to 
each subsystem. Finally, the arrangement of the components in subsystem i is denoted by 
seqi , which includes the orders of both active, OAi

 , and cold-standby, OSi
 , components.

A considerable progress has been made by various researchers regarding the different 
structures that can be obtained for this series–parallel problem. The first study on RAP 
solved a version of this problem with an active redundancy and achieved a system reliabil-
ity of 0.9700 (Fyffe et al., 1968). Also, its solution with a cold-standby strategy yielded a 
system reliability of 0.9863 (COIT 2001). It was suggested in (Coit, 2003) that the choice 
of the redundancy strategy be treated as a decision variable, a suggestion that proved use-
ful since its implementation raised system reliability to 0.9875. Many attempts have been 
made toward improving system reliability of RAPs in the single objective mode via mod-
ifying the meta-heuristic algorithms available, yielding system reliability values as high 
as 0.9875 (Chambari et al., 2012, 2013; Coit, 2003; Safari, 2012; Tavakkoli-Moghaddam 
et  al., 2008). In a recent study of the problem in its bi-objective mode, Ardakan et  al. 
(2015) investigated the RAP with identical components under a mixed redundancy strategy 
to obtain a system reliability of 0.99233.

Based on try and error procedure, the algorithm parameters were in this study set 
to Nstart = 500 , MaxIter = 300 , Mutationrate = 0.2 , and Crossoverrate = 0.25 . As men-
tioned in Sect. 4, in this study, the uniform and max–min operators are used in crossover 

(14)MaxRS(t, seq) =

S∏
i=1

Ri(t, seqi)

(15)min CS(seq) =

S∑
i=1

cost(seqi)

(16)

Subject to:

S∑
i=1

cost(seqi) ≤ C

(17)
S∑
i=1

weight(seqi) ≤ W

(18)
card(OAi

) ≥ 1 i = 1, ..., S

seqi = {OAi
,OSi

} set of integer numbers, i = 1, ..., S
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process, and the simple, max–min, and newly developed sort operators are implemented 
for mutation process. In uniform crossover operator, %80 genes of selected subsystem 
are nominated to perform the function. This amount in simple and max–min mutation 
operators for each selected subsystem is %30. Regarding the stochastic nature of the 
proposed NSGA-II, four trials were performed on each problem to ensure the standard 
deviation was negligible and that a good Pareto front would be reported. Figure 13 illus-
trates these four independent runs and provides the details of the randomly generated 
initial population and the ultimate population as a Pareto front provided by the modified 
NSGA-II for each independent run. It may be noted that the different initial populations 
lead to almost the same Pareto fronts. This phenomenon is the graphical representation 
of the capability and robustness of the modified NSGA-II for solving the proposed RAP. 
Run #4 is randomly selected among the four runs and the progress changes in the Pareto 
front as a result of the iterations for this run are depicted in Fig. 14. Table 8 lists some 
of the data on Run #4.

To save space, only five detailed structures out of the forty-five Pareto optimal set 
alternatives are reported in Table  8. In this table, the sequence order and preferred 
strategy of each subsystem is reported, where St, M1 and M2 stand for cold-standby, 
and Mixed strategy with one and two standby components, respectively. The structure 
of each solution is based on input data reported by Table  7. Discovering the compo-
nent reliability is same as chromosome decoding, which explained earlier in Sect.  4. 
The structures in Table 8 might yield improved flexibility in the system design process 
because a specific system with desirable levels of reliability and cost is created in each 
case. Since these alternatives are non-dominated populations, the designer is free to 
choose the ideal solution from among them based on the reliability improvement or cost 
reduction achieved. For instance, if the designer selects the first solution, a system with 
a cost of 112 units and a reliability of 0.984636 obtains, whereas choosing the third 
option leads to a system with a cost decreased to 110 units and a system reliability equal 
to 0.983881. Moreover, in the benchmark problem it is assumed that a subsystem can 
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Fig. 13  Four independent runs of the modified NSGA-II for solving the benchmark problem
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be designed with any combination of components. The 4th subsystem of the structure 
#4 in Table  8 reveals this situation. According to Table  7, there are three component 
choices as {1,2,3} for this specific subsystem. Also, based on benchmark’s assumption, 
i.e. nMax,i = 6 , there are  36 different combinations for this subsystem. After applying 
the proposed NSGA-II, the sequence {3,3,1} has been selected among all the poten-
tial choices. So, in this subsystem, a combination of homogeneous and heterogeneous 
components is utilized. Hence, the proposed method of combination, makes the system 
designer more flexible to opt the desired structure.
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Fig. 14  Progress changes in Pareto front for different iterations in Run #4
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There is indeed no guarantee that a better solution is obtained using the multi-
objective optimization method rather than the single-objective one. However, the 
structures obtained in this study were found to outperform those obtained even in pre-
vious instances of the single-objective problem, this may be attributed to the two con-
tributions of the new approach: I) using a new redundancy strategy with a heterogene-
ous backup scheme, and II) taking account of component sequencing. It is worthwhile 
noting that some of the results reported in recent publications had been obtained based 
on the lower bound formula with non-exponential components (Ardakan et al., 2015; 
Coit, 2003; Fyffe et  al., 1968; Safari, 2012; Tavakkoli-Moghaddam et  al., 2008). In 
order to make a fair comparison between the results of the present study and those 
reported in other premium studies, all the reported structures were recalculated using 
the proposed exact CTMC method (i.e., Eq. 12) with an exponential TTF (Kim & Kim, 
2017b). Run #4 yielded three solutions out of the 45 non-dominated populations that 
led to system reliabilities better than the value of 0.98382 reported in Ardakan et al. 
(2015). The Pareto optimal set thus obtained is presented in Fig. 15. Comparison of the 
present results with those previously reported (Fig. 15) confirms not only the superior-
ity of the newly proposed redundancy strategy with non-identical components but the 
utility of the modified solution algorithm as well.

In multi-objective problems, the decision maker (DM) has to select a particular solution 
as the final one from among those in the Pareto optimal set. A number of methods have 
been developed to help DMs find their most desirable solution. In this paper, the  L2-norm 
criteria (Ardakan et al., 2015; Kasprzak & Lewis, 2000; Safari, 2012) and the minimum 
distance selection method (TMDSM) (Dammak & El Hami, 2019; Sun et al., 2011) were 
used to select the most satisfactory point and to illustrate the good performance of the 
modified algorithm toward diversifying the Pareto optimal set when compared with those 
reported in similar works (Ardakan et al., 2015; Kasprzak & Lewis, 2000; Safari, 2012).

In order to apply the  L2-norm criteria, all the objective functions have to be in their 
minimizing mode. Hence, the objective of maximizing system reliability needs to be 
changed into minimizing system unreliability. Run #4 yields the 45 non-dominated solu-
tions reported in Table 9 along with their corresponding  L2 norms. It seems almost all the 
DM has to do is to look for the solution with the minimum  L2 value and select it as the 
best alternative. Accordingly, the  L2 norm of the best solution in Run #4 from the DM’s 
viewpoint is solution No. 35, for which  L2 = 0.28898 that is smaller than those reported 
elsewhere as in (Ardakan et al., 2015; Safari, 2012).

Another conventional approach to find the most satisfactory point (termed the “knee 
point”) is the TMDSM that measures the distance from each solution point to an “utopia 
point” obtained based on the optimal values of each individual objective. The method then 
selects the minimum distance among them and, finally, converts the maximizing reliability 
objective function to one of minimizing unreliability in order to be consistence with the 
results reported in similar studies. A schematic view of this method is shown in Fig. 16.

The knee point thus obtained, corresponding to the  35th solution in Table  9, has the 
shortest distance to the utopia point and presents a tradeoff among the competing cost and 
reliability objectives.

A Pearson correlation coefficient (PCC) significance test was conducted to confirm sta-
tistically the tradeoff between the objective function values of the Pareto frontier points. 
PCC measures the strengths of the linear correlation (i.e., �X,Y ) between two given vari-
ables, X and Y, here denoted by cost and reliability, respectively. For the points reported in 
Table 9, the PCC was obtained as �X,Y = 0.7684 . A hypothesis test checks the significance 
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of the correlation obtained, in which the null and the alternative hypotheses are determined 
as follows:

The probability value is P_value = 0.000. By assuming the 5% level of significance, the 
�X,Y obtained is significant since the P_value is smaller than the significance level; hence, 
the null hypothesis is rejected.

Based on the result obtained from the hypothesis test, a system designer can consider a 
tradeoff between reliability and cost values. As an instance, comparison of the knee point 
and the first point in Table 9 reveals that the cost increases by 43.6% (from 78 to 112) in 
response to a 3.2% enhancement in reliability value (from 0.9544 to 0.9846).

Table 10 compares the solution with the maximum system reliability obtained in Run 
#4 and those reported elsewhere. The results in this Table highlight the advantages of both 
the mixed redundancy strategy with a heterogeneous backup scheme and the component 
sequencing. According to Table 10, the best solution for this benchmark problem is a sys-
tem with a reliability of 0.984636 (obtained in the present study).

Regarding the redundancy type of each subsystem, the model selected the mixed redun-
dancy strategy for six subsystems and the cold-standby strategy for the other eight. It may 
be noted that subsystems 7 and 13 utilized heterogeneous components. Moreover, each of 
these two subsystems had one primary and one offline component, which means that the 
cold-standby and the mixed strategies behaved similarly for these two subsystems. Further-
more, the components in these subsystems were arranged in a decreasing order of compo-
nent reliability. This is while a substantial reduction in cost was also achieved in this case 
when compared with that in the premium study (Ardakan et al., 2015). As expected, con-
sidering orders of non-identical components in the mixed strategy led to higher reliability 
values and lower system costs, which is of vital importance to high-tech system designers 
(Zio, 2007).

{
H0∶ �X,Y = 0

Ha∶ �X,Y ≠ 0

Fig. 15  A graphical comparison of non-dominated solutions obtained in Run #4 versus reported in the lit-
erature
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Table 9  Non-dominated solutions in Run #4 together with the corresponding  L2 norms

Bold values indicate the best solution regarding the calculated  L2-norm

Solution No Reliability Cost L2 Solution No Reliability Cost L2

1 0.984636 112 1 24 0.973553 89 0.481741
2 0.984488 111 0.977273 25 0.973048 88 0.459669
3 0.983881 110 0.954556 26 0.971791 87 0.438432
4 0.98349 109 0.931843 27 0.970836 86 0.417132
5 0.983342 108 0.909123 28 0.970235 85 0.395615
6 0.982887 107 0.886424 29 0.968982 84 0.375206
7 0.982636 106 0.863717 30 0.967993 83 0.354798
8 0.982369 105 0.841016 31 0.966742 82 0.335275
9 0.982177 104 0.818311 32 0.964195 81 0.31917
10 0.981974 103 0.79561 33 0.962405 80 0.302689
11 0.981767 102 0.772913 34 0.958525 79 0.293741
12 0.981161 101 0.750281 35 0.954417 78 0.28898
13 0.980723 100 0.72764 36 0.946743 77 0.303198
14 0.98054 99 0.704961 37 0.945134 76 0.295791
15 0.980034 98 0.68236 38 0.937329 75 0.321528
16 0.979217 97 0.659868 39 0.901755 74 0.50816
17 0.978883 96 0.63727 40 0.892362 73 0.556721
18 0.978701 95 0.614637 41 0.884337 72 0.599333
19 0.978097 94 0.59217 42 0.865522 71 0.706822
20 0.97766 93 0.569674 43 0.841912 70 0.844199
21 0.977053 92 0.54729 44 0.83305 69 0.895605
22 0.976842 91 0.52475 45 0.815326 68 1
23 0.975581 90 0.502852

Fig. 16  The knee point on the Pareto optimal set
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6  Conclusion

The mixed redundancy strategy with a heterogeneous backup scheme was investigated for 
the multi-objective redundancy allocation problem (MORAP). Two objective functions of 
maximizing system reliability and minimizing system cost were considered for the prob-
lem. Maximizing system reliability was modeled using the continuous-time Markov chain 
(CTMC) method that is sensitive to the sequencing of components. In addition, the exact 
value of system reliability in the mixed strategy was calculated using the CTMC method. 
The proposed non-linear integer programming mathematical model was tested on a well-
known benchmark problem. A modified version of the NSGA-II meta-heuristic algorithm 
was employed as the solution for the problem at hand categorized with the NP-hard class 
of reliability optimization problems. The numerical results obtained revealed the advan-
tages of utilizing heterogeneous components for improving the overall system reliability. 
In addition, the findings of the present study lent support to the idea of considering the 
sequencing of standby components in a mixed strategy to enhance the reliability of each 
subsystem. The final Pareto optimal set was found to suggest several courses of action to 
help designing complex high-tech industrial machines with structures of various levels of 
system reliability and system costs.

To further our research, one can apply the CTMC method to components with non-
exponential TTFs. The suggested problem would become more challenging if non-identi-
cal components with an Erlang TTF are used in each subsystem. Finally, the effect of time 
dependent reliability in the mixed strategy will worth exploring when the CTMC method is 
employed, as was first explored in Ref. (Abouei Ardakan et al., 2017).

References

Abouei Ardakan, M., Mirzaei, Z., Zeinal Hamadani, A., & Elsayed, E. A. (2017). Reliability optimization 
by considering time-Dependent reliability for components. Quality and Reliability Engineering Inter-
national, 33(8), 1641–1654.

Abouei Ardakan, M., Sima, M., Zeinal Hamadani, A., & Coit, D. W. (2016). A novel strategy for redundant 
components in reliability–redundancy allocation problems. IIE Transactions, 48(11), 1043–1057.

Amari, S. V, & Dill, G. (2009). A new method for reliability analysis of standby systems. In Reliability and 
Maintainability Symposium, 2009. RAMS 2009. Annual (pp. 417–422). IEEE.

Ardakan, M. A., & Hamadani, A. Z. (2014). Reliability optimization of series–parallel systems with mixed 
redundancy strategy in subsystems. Reliability Engineering & System Safety, 130, 132–139.

Ardakan, M. A., Hamadani, A. Z., & Alinaghian, M. (2015). Optimizing bi-objective redundancy allocation 
problem with a mixed redundancy strategy. ISA transactions, 55, 116–128.

Cha, J. H., Mi, J., & Yun, W. Y. (2008). Modelling a general standby system and evaluation of its perfor-
mance. Applied Stochastic Models in Business and Industry, 24(2), 159–169.

Chambari, A., Najafi, A. A., Rahmati, S. H. A., & Karimi, A. (2013). An efficient simulated annealing 
algorithm for the redundancy allocation problem with a choice of redundancy strategies. Reliability 
Engineering & System Safety, 119, 158–164.

Chambari, A., Rahmati, S. H. A., & Najafi, A. A. (2012). A bi-objective model to optimize reliability and 
cost of system with a choice of redundancy strategies. Computers & Industrial Engineering, 63(1), 
109–119.

Coit, D. W. (2003). Maximization of System Reliability with a Choice of Redundancy Strategies. IIE Trans-
actions, 35(6), 535–543. https:// doi. org/ 10. 1080/ 07408 17030 4420.

COIT, D. W. . (2001). Cold-standby redundancy optimization for nonrepairable systems. IIE Transactions, 
33(6), 471–478. https:// doi. org/ 10. 1080/ 07408 17010 89368 46.

Dammak, K., & El Hami, A. (2019). Multi-objective reliability based design optimization of coupled acous-
tic-structural system. Engineering Structures, 197, 109389.

https://doi.org/10.1080/07408170304420
https://doi.org/10.1080/07408170108936846


303Annals of Operations Research (2022) 312:275–304 

1 3

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algo-
rithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182–197.

dos Santos Coelho, L. (2009). An efficient particle swarm approach for mixed-integer programming in 
reliability–Redundancy optimization applications. Reliability Engineering & System Safety, 94(4), 
830–837.

Fyffe, D. E., Hines, W. W., & Lee, N. K. (1968). System reliability allocation and a computational algo-
rithm. IEEE Transactions on Reliability, 17(2), 64–69.

Garg, H., & Sharma, S. P. (2013). Multi-objective reliability-redundancy allocation problem using particle 
swarm optimization. Computers & Industrial Engineering, 64(1), 247–255.

Gholinezhad, H., & Hamadani, A. Z. (2017). A new model for the redundancy allocation problem with 
component mixing and mixed redundancy strategy. Reliability Engineering & System Safety, 164, 
66–73.

Guilani, P. P., Juybari, M. N., Ardakan, M. A., & Kim, H. (2020). Sequence optimization in reliability 
problems with a mixed strategy and heterogeneous backup scheme. Reliability Engineering & Sys-
tem Safety, 193, 106660. https:// doi. org/ 10. 1016/j. ress. 2019. 106660.

Hsieh, T.-J., & Yeh, W.-C. (2012). Penalty guided bees search for redundancy allocation problems 
with a mix of components in series–parallel systems. Computers & Operations Research, 39(11), 
2688–2704.

Kasprzak, E. M., & Lewis, K. E. (2000). An approach to facilitate decision tradeoffs in pareto solution 
sets. Journal of Engineering Valuation and Cost Analysis, 3(1), 173–187.

Kim, H. (2018). Maximization of system reliability with the consideration of component sequencing. 
Reliability Engineering & System Safety, 170(Supplement C), 64–72. https:// doi. org/ 10. 1016/j. ress. 
2017. 10. 020

Kim, H., & Kim, P. (2017a). Reliability models for a nonrepairable system with heterogeneous com-
ponents having a phase-type time-to-failure distribution. Reliability Engineering & System Safety, 
159, 37–46. https:// doi. org/ 10. 1016/j. ress. 2016. 10. 019.

Kim, H., & Kim, P. (2017b). Reliability–redundancy allocation problem considering optimal redundancy 
strategy using parallel genetic algorithm. Reliability Engineering & System Safety, 159(Supplement 
C), 153–160. https:// doi. org/ 10. 1016/j. ress. 2016. 10. 033

Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using genetic algorithms: A 
tutorial. Reliability Engineering & System Safety, 91(9), 992–1007.

Kulturel-Konak, S., Smith, A. E., & Coit, D. W. (2003). Efficiently solving the redundancy allocation 
problem using tabu search. IIE Transactions, 35(6), 515–526.

Kuo, W., & Prasad, V. R. (2000). An annotated overview of system-reliability optimization. IEEE Trans-
actions on Reliability, 49(2), 176–187.

Latouche, G., & Ramaswami, V. (1999). Introduction to matrix analytic methods in stochastic modeling 
(Vol. 5). SIAM.

Levitin, G., Xing, L., & Dai, Y. (2013). Optimal sequencing of warm standby elements. Computers & 
Industrial Engineering, 65(4), 570–576. https:// doi. org/ 10. 1016/j. cie. 2013. 05. 001.

Levitin, G., Xing, L., & Dai, Y. (2013). Cold-standby sequencing optimization considering mission cost. 
Reliability Engineering & System Safety, 118, 28–34.

Liang, Y.-C., & Lo, M.-H. (2010). Multi-objective redundancy allocation optimization using a variable 
neighborhood search algorithm. Journal of Heuristics, 16(3), 511–535.

O’Connor, P., & Kleyner, A. (2012). Practical reliability engineering. . Wiley.
Okafor, E. G., & Sun, Y.-C. (2012). Multi-objective optimization of a series–parallel system using GPSIA. 

Reliability Engineering & System Safety, 103, 61–71. https:// doi. org/ 10. 1016/j. ress. 2012. 03. 014.
Sadjadi, S. J., & Soltani, R. (2012). Alternative design redundancy allocation using an efficient heuristic 

and a honey bee mating algorithm. Expert Systems with Applications, 39(1), 990–999. https:// doi. 
org/ 10. 1016/j. eswa. 2011. 07. 099.

Safari, J. (2012). Multi-objective reliability optimization of series-parallel systems with a choice of 
redundancy strategies. Reliability Engineering & System Safety, 108, 10–20.

Salazar, D., Rocco, C. M., & Galván, B. J. (2006). Optimization of constrained multiple-objective reliability 
problems using evolutionary algorithms. Reliability Engineering & System Safety, 91(9), 1057–1070.

Soltani, R., Sadjadi, S. J., & Tofigh, A. A. (2014). A model to enhance the reliability of the serial paral-
lel systems with component mixing. Applied Mathematical Modelling, 38(3), 1064–1076. https:// 
doi. org/ 10. 1016/j. apm. 2013. 07. 035.

Soltani, R., Safari, J., & Sadjadi, S. J. (2015). Robust counterpart optimization for the redundancy allo-
cation problem in series-parallel systems with component mixing under uncertainty. Applied Math-
ematics and Computation, 271, 80–88. https:// doi. org/ 10. 1016/j. amc. 2015. 08. 069.

https://doi.org/10.1016/j.ress.2019.106660
https://doi.org/10.1016/j.ress.2017.10.020
https://doi.org/10.1016/j.ress.2017.10.020
https://doi.org/10.1016/j.ress.2016.10.019
https://doi.org/10.1016/j.ress.2016.10.033
https://doi.org/10.1016/j.cie.2013.05.001
https://doi.org/10.1016/j.ress.2012.03.014
https://doi.org/10.1016/j.eswa.2011.07.099
https://doi.org/10.1016/j.eswa.2011.07.099
https://doi.org/10.1016/j.apm.2013.07.035
https://doi.org/10.1016/j.apm.2013.07.035
https://doi.org/10.1016/j.amc.2015.08.069


304 Annals of Operations Research (2022) 312:275–304

1 3

Soylu, B., & Ulusoy, S. K. (2011). A preference ordered classification for a multi-objective max–min 
redundancy allocation problem. Computers & Operations Research, 38(12), 1855–1866.

Sun, G., Li, G., Zhou, S., Li, H., Hou, S., & Li, Q. (2011). Crashworthiness design of vehicle by using 
multiobjective robust optimization. Structural and Multidisciplinary Optimization, 44(1), 99–110.

Tavakkoli-Moghaddam, R., Safari, J., & Sassani, F. (2008). Reliability optimization of series-parallel 
systems with a choice of redundancy strategies using a genetic algorithm. Reliability Engineering 
& System Safety, 93(4), 550–556.

Wang, Z., Chen, T., Tang, K., & Yao, X. (2009). A multi-objective approach to redundancy allocation 
problem in parallel-series systems. In 2009 IEEE Congress on Evolutionary Computation (pp. 582–
589). IEEE.

Yeh, W.-C. (2014). Orthogonal simplified swarm optimization for the series–parallel redundancy allocation 
problem with a mix of components. Knowledge-Based Systems, 64, 1–12. https:// doi. org/ 10. 1016/j. 
knosys. 2014. 03. 011.

Zhai, Q., Yang, J., Peng, R., & Zhao, Y. (2015). A Study of Optimal Component Order in a General 1-Out-
of-$ n $ Warm Standby System. IEEE Transactions on Reliability, 64(1), 349–358.

Zhao, J., Zeng, S., Guo, J., & Yang, C. (2015). Redundancy allocation with non-identical component and 
uncertainty. In 2015 Annual Reliability and Maintainability Symposium (RAMS) (pp. 1–6). https:// doi. 
org/ 10. 1109/ RAMS. 2015. 71050 92

Zhuang, J., & Li, X. (2015). Allocating Redundancies to k-out-of-n Systems with Independent and Het-
erogeneous Components. Communications in Statistics - Theory and Methods, 44(24), 5109–5119. 
https:// doi. org/ 10. 1080/ 03610 926. 2013. 813046.

Zio, E. (2007). An introduction to the basics of reliability and risk analysis (Vol. 13). World scientific.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1016/j.knosys.2014.03.011
https://doi.org/10.1016/j.knosys.2014.03.011
https://doi.org/10.1109/RAMS.2015.7105092
https://doi.org/10.1109/RAMS.2015.7105092
https://doi.org/10.1080/03610926.2013.813046

	Bi-objective sequence optimization in reliability problems with a matrix-analytic approach
	Abstract
	1 Introduction
	2 Mixed strategy
	3 Exact calculation of system reliability
	3.1 Individual reliability
	3.2 Subsystem reliability
	3.3 Mixed redundancy strategy formulation
	3.4 Fundamental assumptions

	4 Solution method: non-dominated sorting genetic algorithm II (NSGA-II)
	5 Numerical experiments
	5.1 Sequence optimization
	5.2 Benchmark problem

	6 Conclusion
	References




