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Abstract
Queueing inventory models are extensively analysed since 1992. Very few among these
discuss multi-commodity system. In this paper, we present a multi-commodity queueing
inventory problem involving one essential and a set of m optional item(s). Immediately after
the service of an essential item, the customer either leaves the system with probability p or
with probability 1-p he goes for optional item(s). However, in the absence of an essential item,
service will not be provided. More than one optional item can be demanded by the customer.
The i th optional item or i th and j th optional items or i th, j th and kth and so on or all the
optional items together, could be demanded by a customer, with probabilities pi , pi j , pi jk
. . . p12...m respectively. If the demanded optional item(s) is(are) not available, the customer
leaves the system after purchasing the essential item. With the arrival of customers forming
Markovian Arrival Process (MAP), service time of essential item Phase type distributed
and that for optional items exponentially distributed( depending on the type(s) of item(s)),
all given by the same (single) server, we analyse the system. Then we obtain the system
state probability distribution. In-order to get a picture of how the system performs, we derive
several characteristics of the system. With control policies for essential and optional items
determined respectively, by (s, S) and (si ,Si ),i = 1, 2, 3,…,m, we investigate the optimal
values of s, S, si and Si s’. To this end, we set up a cost function, involving these control
variables.
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1 Introduction

Inventory with positive service time or Queueing Inventory (QI) got attention of researchers
since 1992 (Melikov and Molchanov 1992; Sigman and Simchi-Levi 1992). Subsequently
Berman and Kim (1999), Berman et al. (1993), Berman and Sapna (2002) and later many
others contributed to this area of research. A breakthrough occurred when product form
solution was introduced in queuing inventory models. The pioneers in this direction are
SchwarzM, Daduna H et al. (see their publications Schwarz et al. 2006; Schwarz andDaduna
2006; Schwarz et al. 2007). A few others (such as Saffari et al. 2013; Krishnamoorthy and
Viswanath 2013; Baek andMoon 2014 etc.) also contributed to this direction of thoughts. An
extensive survey on QI is given in Krishnamoorthy et al. (2019). Unfortunately they missed
three papers of the Daduna group. These are given as references Otten et al. (2020), Daduna
and Krenzler (2020) and Daduna (2020).

The above mentioned work are all based on a single type commodity. To the best of our
knowledge no work is so far reported on multi-commodity QI. Unlike classical inventory
on multi commodity, Queueing Inventory with multi-commodity set up looks more complex
and hence challenging. In this paper we introduce such a model. Real life examples of the
model considered are abundant:

1. Consider a dealer of automobiles, for example car. Assume that all stocked items are base
models. Thus only the very essential items are in it. Customers, buying the cars, could ask
for optional (not essential) items at additional cost. They have the freedom to buy item(s)
of their choice. They may prefer not to buy the demanded optional items, in case, one or
more of them are out of stock. However, this assumption is not required, though we have
introduced that in the modelling.

2. An agency sells a single type machines. This is the main item customers ask for. There
are m optional items also that customers demand while purchasing the main item. Thus
we have an inventory of m+1 items, of which item one is the main which is required by
all customers. Some customers do not purchase optional items, others go for one or more
of these, depending on the individual taste. We investigate this system in depth.

3. Tiller for ploughing fields. Tiller, with minimum required materials for its operation, is
on sales. Customers could buy additional items for further safety. A few may opt not to
buy any of these, a few others may buy exactly one such item, or two additional items and
so on, a few may opt to buy all those additional items.

First we give a glimpse of what has been done in multi-commodity inventory models. We
do not claim this list to be complete. Faiz and Hwang (2007) discuss Inventory constrained
maritime routing and scheduling for liquidmulti-commodity in bulk. They formulate amodel
for finding a minimum cost routing in a network for a heterogeneous fleet of ships engaged
in pickup and delivery of several liquid bulk products. This especially happens while trans-
porting oil and some byproducts from a main port to various other ports. The problem is
formulated as a mixed integer non-linear programming problem.

Sadjady and Davoudpour (2012) examine a two-echelon, multi-commodity supply chain
network design with mode selection, lead-times and inventory costs. The authors analyse
a two-echelon supply chain network design problem in deterministic, single-period, multi-
commodity contexts. The problem involves both strategic and tactical levels of supply chain
planning including locating and sizing manufacturing plants and distribution warehouses,
assigning the retailers’ demands to the warehouses, and the warehouses to the plants and,
finally selecting transportation modes. The authors formulate the problem as a mixed integer
programming model, which integrates the above mentioned decisions. The authors aim at
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minimizing total cost of the network including transportation, lead-times, and inventory
holding costs for products, as well as opening and operating costs for facilities. Further they
develop an efficient Lagrangian based heuristic solution algorithm for solving the real-sized
problems in reasonable computational time.

Jin et al. (2009) discuss optimal model and algorithm for multi-commodity logistics net-
work design considering stochastic demand and inventory control. A simultaneous approach
that incorporates inventory control decision into facility location model is proposed. This is
used to solve the multi-commodity logistics network design problem. Based on the assump-
tion that the stochastic demands of the retailers are normally distributed, a non-linear mixed
integer programming model, that simultaneously describe the inventory decision and the
facility location decision, is presented. In this, the objective is to minimize the total cost
that include location costs, inventory costs, and transportation costs under the certain ser-
vice level. The Combined Simulated Annealing (CSA) algorithm is developed to solve the
problem.

Askin et al. (2014) examine a multi-commodity warehouse location and distribution plan-
ning with inventory consideration. The problem of designing a distribution network for a
logistics provider that acquires products frommultiple facilities and then delivers those prod-
ucts to many retail outlets is discussed. Potential locations for consolidation facilities that
combine shipments for cost reduction and service improvements are considered. The problem
is formulated with direct shipment and consolidation opportunities. A novel mathematical
model is derived to solve a complex facility location problem determining: (i) the location
and capacity level of warehouses to open; (ii) the distribution route from each production
facility to each retailer outlet; and (iii) the quantity of products stocked at each warehouse
and retailer. A genetic algorithm and a specific problem heuristic are designed, tested and
compared on several realistic scenarios.

Araya-Sassi et al. (2020) discuss a multi-commodity inventory-location problemwith two
different review inventory control policies and modular stochastic capacity constraints. They
introduced two novel multi-commodity inventory-location models considering continuous
and periodic review inventory control policies and modular stochastic capacity constraints.
The models address a logistic problem in which a single plant supplies a set of commodities
to warehouses where they serve a set of customers or retailers. The problem consists of deter-
mining which warehouses should be opened, which commodities are assigned, and which
customers should be served by the located warehouses as well as their reorder points and
order sizes in order to minimize costs of the system while satisfying service level require-
ments. This problem is formulated as a mixed-integer nonlinear programming model, which
is non-convex in terms of modular stochastic capacity constraints and the objective function.
A Lagrangian relaxation and the subgradient method solution approach is proposed. They
consider the relaxation of three sets of constraints, including customer assignment, warehouse
demand, and variance constraints. Thus a Lagrangian heuristic to determine a feasible inte-
ger solution at each iteration of the subgradient method is developed. An experimental study
shows that the proposed algorithm provides good quality gaps and near-optimal solutions
in a short time. It also evinces significant impacts of the selected inventory control policy
into total costs and network design, including risk pooling effects, when it is compared with
different review period values and continuous review.

Zadeh et al. (2013) examine a dynamic multi-commodity inventory and facility location
problem in steel supply chain network design. This paper focuses on strategic and tactical
design of Steel Supply Chain (SSC) networks. Ever-increasing demand for steel products
enforces the steel producers to expand their production and storage capacities. The main
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purpose of the paper includes preparing a countrywide production, inventory distribution,
and capacity expansion plan to design an SSC.

Salient features of this paper are:-

• It considers multi-commodity inventory with positive service time.
• First paper to introduce optional items for service.
• Except for one item(essential), all others are optional.
• Customer demand process forms a Markovian arrival process (MAP).
• Service time of customers, being served with the essential inventory, follows phase type

distribution and that w.r.t optional item(s) follows exponential distribution. The latter has
parameter, depending on the specific item(s) demanded by the customer.

The rest of the paper is arranged as follows. Mathematical formulation is taken up in
Sect. 2, which includes stability condition and steady state probability vector. Some important
performance measures are derived in Sect. 3. A cost function for optimizing the control
variables is given in Sects. 4 and 5 deals with numerical illustrations which includes the
numerical analysis of cost function. Section 6 gives the conclusion and it is followed by
References.

Some notations and abbreviations used in the sequel:

• (s, S) ordering policy:Maximum inventory level is S andwhen the inventory level comes
down to s, order for replenishment is placed.

• e = Column vector of 1′s of appropriate order.
• 0̄ = Zero matrix of appropriate order.
• In = Identity matrix of order n.
• [A]i j = (i, j)th element of the matrix A.
• CTMC : Continuous time Markov chain.
• L I QBD : Level Independent Quasi-Birth and Death process.
• MAP= Markovian arrival process.
• The Kronecker product of two given matrices Am×n and Bp×q is A ⊗ B = ([A]i j B) of

order mp × nq .
• The Kronecker sum of two square matrices C and D of orders m and n respectively is

C ⊕ D = C ⊗ In + Im ⊗ D.
• Customer arrival process : MAP(D0, D1) of order m2.
• Service time of customers w.r.t essential inventory: PH(γ, T ) of order m1.
• Service time of customers w.r.t optional inventories: exp(μi ) for 1 ≤ i ≤ m.

2 Mathematical formulation

Consider a single servermulti-commodity queueing inventory systemconsisting of one essen-
tial and m optional inventories where the essential and optional inventories are under the
control policies (s, S) and (si ,Si ) for i = 1, 2, 3, . . . ,m, respectively. Customers arrive
according to the Markovian arrival process (MAP)(see Chakravarthy 2001) with represen-
tation (D0,D1) of order m2. The arrival in MAP is a special class of semi-Marlov process
with underlying CTMC (δ(t), t ≥ 0) on the state space { 1, 2, 3, . . . ,m2} with generator
D = D0+D1 such that D0 governs transitions corresponding to no arrivals and D1 accounts
for transitions corresponding to arrivals. These matrices, D0 and D1, are of the form given
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by

D0 =

⎡
⎢⎢⎢⎢⎣

d(0)
11 d(0)

12 · · · d(0)
1m2

d(0)
21 d(0)

22 · · · d(0)
2m2

...
...

. . .
...

d(0)
m21

d(0)
m22

· · · d(0)
m2m2

⎤
⎥⎥⎥⎥⎦

,

D1 =

⎡
⎢⎢⎢⎢⎣

d(1)
11 d(1)

12 · · · d(1)
1m2

d(1)
21 d(1)

22 · · · d(1)
2m2

...
...

. . .
...

d(1)
m21

d(1)
m22

· · · d(1)
m2m2

⎤
⎥⎥⎥⎥⎦

where,

d(0)
i i = −

⎛
⎝

m2∑
j=1, j �=i

d(0)
i j +

m2∑
j=1

d(1)
i j

⎞
⎠ .

Thus d(1)
i j , 1 ≤ i, j ≤ m2 represents the rate of transition from i to j through an arrival,

while d(0)
i j , 1 ≤ i, j ≤ m2, represents the rate of transition from i to j without an arrival.

Note that transition from i to i is possible only through an arrival and not otherwise. Let η be
the steady state probability vector of D. Then, η satisfy ηD=0 and ηe=1. The fundamental
rate λ of this MAP is given by λ= ηD1e which gives the expected number of arrivals per
unit of time.

Service time of customers being served with the essential inventory is phase type dis-
tributedwith representation (γ, T )of orderm1. This service time canbe interpreted as the time
untill the underlyingMarkov chain (ζ(t), t ≥ 0)with a finite state space { 1, 2, 3, . . . ,m1+1}
gets absorbed into the single absorbing state m1 + 1, conditioned on the fact that the initial
state of this process is selected as one of the states { 1, 2, 3, . . . ,m1} according to the initial
probability vector γ=(γ1, γ2, . . . , γm1 ). The transition rates within the set {1, 2, 3, . . . ,m1}
are defined by the generator T and the absorption rates from the individual transient states
to the absorption state is given by T 0 = −T e. The mean service time of the customer is
calculated by μ′=−γ T−1e (see Neuts 1981).

Service time of customers, being served with the optional inventories, are exponentially
distributed with parameter μi , where i ∈ {i1, i1i2, i1i2i3, . . . , i1i2i3 . . . im} in which no
element has any order preference, for example i j ik = ik i j with j �= k where each ik ∈
{1, 2, 3, . . . ,m} for j, k ∈ {1, 2, 3, . . . ,m}.

In this model, after the service of the essential inventory, we assume that, with probability
p the customer leaves the system or goes for optional item with complementary probability
1− p. Each customer demands exactly one unit of the essential inventory whereas, demand
for more than one type of optional inventories is permitted with a restriction of maximum
one unit from each optional inventories. The i th optional item, i th and j th optional items
so on and all the optional items together could be demanded with probability pi , pi j and
p12...m respectively. If the demanded optional item(s) is(are) not available, the customer
leaves the system after purchasing the essential item as well as whatever optional items
he/she demanded are available. It is assumed that the server remains idle when there is no
customer in the system and/or when there is no essential inventory. The lead time for both
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Fig. 1 Pictorial representation of the model

essential and optional inventories are exponentially distributed with parameters β and βi for
1 ≤ i ≤ m respectively.

The structure of the system under study is given in Fig. 1.
Let N (t), I (t), Ik(t),J1(t) and J2(t) denote respectively, the number of customers in the

system, the number of items in the essential inventory, the number of items in the kth optional
inventory for 1 ≤ k ≤ m, phase of essential service and phase of arrival of the customer
arrival process at time t . Also for any time t define the random variable C(t) to denote the
status of the server as,

C(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0∗ Idle server
0 Essential service
1 1st optional service
...

jk j th and kth optional service together
...

jkl j th, kth and lth optional service together
...

123, ...,m All optional service together

Let � be the collection of all the possible combinations of optional items restricted to one
from each kind and Cu denotes the server status for u optional items, 1 ≤ u ≤ m . Thus
the process 	={(N (t), I (t),C(t), I1(t), I2(t), . . . , Im(t), J1(t), J2(t))), t ≥ 0} is a Con-
tinuous time Markov chain (CT MC) which is a Level Independent Quasi-Birth and Death
process(L I QBD) with state space

{(0, i, 0∗, i1, i2, . . . , im, j2), 0 ≤ i ≤ S, 0 ≤ ir ≤ Sr for1 ≤ r ≤ m, 1 ≤ j2 ≤ m2}⋃
{(n, 0, 0∗, i1, i2, . . . , im, j2), n ≥ 1, 0 ≤ ir ≤ Sr for1 ≤ r ≤ m, 1 ≤ j2 ≤ m2}⋃
{(n, i, 0, i1, i2, . . . , im, j1, j2), n ≥ 1, 1 ≤ i ≤ S, 0 ≤ ir ≤ Sr for1 ≤ r ≤ m, 1 ≤ j1 ≤

m1, 1 ≤ j2 ≤ m2}⋃
{(n, i,C1, i1, i2, . . . , im, j2), n ≥ 1, 1 ≤ i ≤ S,C1 ∈ �, 1 ≤ j2 ≤ m2,

for ifC1 = l where 1 ≤ l ≤ m then 0 ≤ ik ≤ Sk for k ∈ {1, 2, . . . ,m}−{l} and 1 ≤ il ≤ Sl}⋃
{(n, i,C2, i1, i2, . . . , im, j2), n ≥ 1, 1 ≤ i ≤ S,C2 ∈ �, 1 ≤ j2 ≤ m2, for if C2 = l j

where l �= j, 1 ≤ l, j ≤ m then 0 ≤ ik ≤ Sk for k ∈ {1, 2, . . . ,m} − {l, j} and 1 ≤ ik ≤ Sk
for k ∈ {l, j}}⋃

{(n, i,C3, i1, i2, . . . , im, j2), n ≥ 1, 1 ≤ i ≤ S,C3 ∈ �, 1 ≤ j2 ≤ m2, for if C3 = hjl
where h �= j �= l, 1 ≤ h, j, l ≤ m then 0 ≤ ik ≤ Sk for k ∈ {1, 2, . . . ,m} − {h, j, l} and
1 ≤ ik ≤ Sk for k ∈ {h, j, l}}⋃ . . .

⋃
{(n, i, 12 . . .m, i1, i2, . . . , im, j2), n ≥ 1, 1 ≤ i ≤

S, 12 . . .m ∈ �, 1 ≤ j2 ≤ m2, 1 ≤ ik ≤ Sk for k ∈ {1, 2, . . . ,m}}.
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The transitions rates are:

1. Transitions due to arrival of customers.

(a) (0, i, 0∗, i1, i2, . . . , im, j2) → (1, i, 0, i1, i2, . . . , im, j1, j
′
2) at the rate γ j1 [D1] j2 j ′2

for 1 ≤ j1 ≤ m1 and 1 ≤ j2, j
′
2 ≤ m2 where 1 ≤ i ≤ S; 0 ≤ ir ≤ Sr for1 ≤ r ≤ m.

(b) (n, i, 0, i1, i2, . . . , im, j1, j2) → (n+1, i, 0, i1, i2, . . . , im, j
′
1, j

′
2) at the rate [D1] j2 j ′2

for j1 = j
′
1 and rate is 0 when j1 �= j

′
1 for 1 ≤ j1, j

′
1 ≤ m1 and 1 ≤ j2, j

′
2 ≤ m2

where n ≥ 1; 1 ≤ i ≤ S;
0 ≤ ir ≤ Sr for 1 ≤ r ≤ m.

(c) (n, i,Cu, i1, i2, . . . , im, j2) → (n + 1, i,Cu, i1, i2, . . . , im, j
′
2) at the rate [D1] j2 j ′2

for 1 ≤ j2, j
′
2 ≤ m2 where 1 ≤ i ≤ S and, when

u = 1 and C1 = l; 1 ≤ l ≤ m, then 0 ≤ ik ≤ Sk for k ∈ {1, 2, . . . ,m} − {l}
and1 ≤ il ≤ Sl ;
u = 2 and C2 = l j, l �= j, 1 ≤ l, j ≤ m; then 0 ≤ ik ≤ Sk for k ∈ {1, 2, . . . ,m} −
{l, j} and1 ≤ ik ≤ Sk for k ∈ {l, j};
u = 3 and C3 = hjl, h �= j �= l, 1 ≤ h, j, l ≤ m;then 0 ≤ ik ≤ Sk for k ∈
{1, 2, . . . ,m} − {h, j, l} and1 ≤ ik ≤ Sk for k ∈ {h, j, l}; . . . etc.
u = m and Cm = 123 . . .m;then 1 ≤ ik ≤ Sk for k ∈ {1, 2, . . . ,m}.

2. Transitions due to the service of essential and optional items.

(a) (1, i,Cu, i1, i2, . . . , il , . . . , im, j2) → (0, i, 0∗, i∗1 , i∗2 , . . . , i∗l , . . . , i∗m, j
′
2) at the rate

μCu

for 1 ≤ j2, j
′
2 ≤ m2 where 1 ≤ i ≤ S and, when

u = 1 and C1 = l; 1 ≤ l ≤ m, then i∗k = ik and 0 ≤ ik ≤ Sk for k ∈ {1, 2, . . . ,m} −
{l} and i∗l = il − 1, 1 ≤ il ≤ Sl ;
u = 2 and C2 = l j, l �= j, 1 ≤ l, j ≤ m; then i∗k = ik , 0 ≤ ik ≤ Sk for
k ∈ {1, 2, . . . ,m} − {l, j} and i∗k = ik − 1, 1 ≤ ik ≤ Sk for k ∈ {l, j};
u = 3 and C3 = hjl, h �= j �= l, 1 ≤ h, j, l ≤ m; then, i∗k = ik , 0 ≤ ik ≤ Sk for
k ∈ {1, 2, . . . ,m} − {h, j, l} and i∗k = ik − 1, 1 ≤ ik ≤ Sk for k ∈ {h, j, l}; . . . etc.
u = m and Cm = 123 . . .m, then i∗k = ik − 1, 1 ≤ ik ≤ Sk for k ∈ {1, 2, . . . ,m}.

(b) (1, i, 0, i1, i2, . . . , il , . . . , im, j1, j2) → (0, i − 1, 0∗, i∗1 , i∗2 , . . . , i∗l , . . . , i∗m, j
′
2) at

the rate Tj1

for 1 ≤ j1 ≤ m1;1 ≤ j2, j
′
2 ≤ m2 where 1 ≤ i ≤ S and ik = i∗k = 0 for

k ∈ {1, 2, . . . ,m}.
(c) (1, i, 0, i1, i2, . . . , 0, . . . , im, j1, j2) → (0, i −1, 0∗, i∗1 , i∗2 , . . . , 0, . . . , i∗m, j

′
2) at the

rate ηl Tj1 for 1 ≤ j1 ≤ m1; 1 ≤ j2 ≤ m2 where 1 ≤ i ≤ S; 1 ≤ ik = i∗k ≤ Sk for
k ∈ {1, 2, . . . ,m} and ηl = p+ (1− p)

∑
pl̄ , where

∑
pl̄ is the sum of probabilities

of all possible combinations of optional inventories including lth optional inventory.
(d) (1, i, 0, i1, i2, . . . , il , . . . , im, j1, j2) → (0, i − 1, 0∗, i∗1 , i∗2 , . . . , i∗l , . . . , i∗m, j

′
2) at

the rate pTj1
for 1 ≤ j1 ≤ m1; 1 ≤ j2 ≤ m2 where 1 ≤ i ≤ S; 1 ≤ ik = i∗k ≤ Sk for
k ∈ {1, 2, . . . ,m}.

(e) (n, i,Cu, i1, i2, . . . , il , . . . , im, j2) → (n−1, i,Cu, i∗1 , i∗2 , . . . , i∗l , . . . , i∗m, j
′
2) at the

rate μCu

for 1 ≤ j2, j
′
2 ≤ m2 where n ≥ 2; 1 ≤ i ≤ S and, when

u = 1 and C1 = l; 1 ≤ l ≤ m, then i∗k = ik and 0 ≤ ik ≤ Sk for k ∈ {1, 2, . . . ,m} −
{l} and i∗l = il − 1, 1 ≤ il ≤ Sl ;
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u = 2 and C2 = l j, l �= j, 1 ≤ l, j ≤ m; then i∗k = ik , 0 ≤ ik ≤ Sk for
k ∈ {1, 2, . . . ,m} − {l, j} and i∗k = ik − 1, 1 ≤ ik ≤ Sk for k ∈ {l, j};
u = 3 and C3 = hjl, h �= j �= l, 1 ≤ h, j, l ≤ m; then, i∗k = ik , 0 ≤ ik ≤ Sk for
k ∈ {1, 2, . . . ,m} − {h, j, l} and i∗k = ik − 1, 1 ≤ ik ≤ Sk for k ∈ {h, j, l}; . . . etc.
u = m and Cm = 123 . . .m, then i∗k = ik − 1, 1 ≤ ik ≤ Sk for k ∈ {1, 2, . . . ,m}.

(f) (n, 1, 0, i1, i2, . . . , il , . . . , im, j2) → (n − 1, 0, 0∗, i∗1 , i∗2 , . . . , i∗l , . . . , i∗m, j
′
2)

at the rate Tj1

for 1 ≤ j1 ≤ m1;1 ≤ j2, j
′
2 ≤ m2 where n ≥ 2; 1 ≤ i ≤ S and ik = i∗k = 0 for

k ∈ {1, 2, . . . ,m}.
(g) (n, 1, 0, i1, . . . , il , . . . , im, j1, j2) → (n−1, 0, 0∗, i∗1 , . . . , i∗l , . . . , i∗m, j

′
2) at the rate

ηl Tj1 for 1 ≤ j1 ≤ m1; 1 ≤ j2 ≤ m2 where n ≥ 2; 1 ≤ i ≤ S; 1 ≤ ik = i∗k ≤ Sk for
k ∈ {1, 2, . . . ,m} − {l}, il = i∗l = 0 and ηl = p + (1 − p)

∑
pl̄ , where

∑
pl̄ is the

sum of probabilities of all possible combinations of optional inventories including
lth optional inventory. Similarly for 1 ≤ l ≤ m.

(h) (n, 1, 0, i1, i2, . . . , il , . . . , im, j1, j2) → (n − 1, 0, 0∗, i∗1 , i∗2 , . . . , i∗l , . . . , i∗m, j
′
2) at

the rate pTj1
for 1 ≤ j1 ≤ m1; 1 ≤ j2 ≤ m2 wheren ≥ 2; 1 ≤ ik = i∗k ≤ Sk for k ∈ {1, 2, . . . ,m}.

(i) (n, i, 0, i1, . . . , il , . . . , im, j2) → (n − 1, i − 1, 0, i∗1 , . . . , i∗l , . . . , i∗m, j1, j2)
at the rate Tj1
for 1 ≤ j1 ≤ m1;1 ≤ j2 ≤ m2 where n ≥ 2; 1 ≤ i ≤ S and ik = i∗k = 0 for
k ∈ {1, 2, . . . ,m}.

(j) (n, i, 0, i1, . . . , il , . . . , im, j1, j2) → (n − 1, i − 1, 0, i∗1 , . . . , i∗1 , . . . , i∗m, j
′
2)

at the rate ηl Tj1
for 1 ≤ j1 ≤ m1; 1 ≤ j2 ≤ m2 where n ≥ 2; 2 ≤ i ≤ S; 1 ≤ ik = i∗k ≤ Sk for
k ∈ {1, 2, . . . ,m} − {l}, il = i∗l = 0 and ηl = p + (1 − p)

∑
pl̄ , where

∑
pl̄ is the

sum of probabilities of all possible combinations of optional inventories including
lth optional inventory. Similarly for 1 ≤ l ≤ m.

(k) (n, i, 0, i1, . . . , il , . . . , im, j1, j2) → (n − 1, i − 1, 0, i∗1 , . . . , i∗l , . . . , i∗m, j
′
2) at the

rate pTj1
for 1 ≤ j1 ≤ m1; 1 ≤ j2 ≤ m2 where n ≥ 2; 2 ≤ i ≤ S; 1 ≤ ik = i∗k ≤ Sk for
k ∈ {1, 2, . . . ,m}.

3. Transitions due to replenishments of the essential and optional items.

(a) (0, i, 0∗, i1, . . . , il , . . . , im, j2) → (0, i, 0∗, i1, . . . , Sl , . . . , im, j2)
at the rate βl
for 1 ≤ j2 ≤ m2 where 0 ≤ i ≤ S; 0 ≤ ik ≤ Skfor k ∈ {1, 2, . . . ,m} − {l};
0 ≤ il ≤ sl . Similarly for 1 ≤ l ≤ m.

(b) (0, i, 0∗, i1, . . . , il , . . . , im, j2) → (0, S, 0∗, i1, . . . , il , . . . , im, j2)
at the rate β

for 1 ≤ j2 ≤ m2 where 0 ≤ i ≤ s; 0 ≤ ik ≤ Sk for k ∈ {1, 2, . . . ,m}.
(c) (n, 0, 0∗, i1, . . . , il , . . . , im, j2) → (n, 0, 0∗, i1, . . . , Sl , . . . , im, j2)

at the rate βl
for1 ≤ j2 ≤ m2 where n ≥ 1; 0 ≤ ik ≤ Sk for k ∈ {1, 2, . . . ,m} − {l}; 0 ≤ il ≤ sl .
Similarly for 1 ≤ l ≤ m.

(d) (n, 0, 0∗, i1, . . . , il , . . . , im, j2) → (n, S, 0, i1, . . . , il , . . . , im, j1, j2)
at the rate γ ⊗ β Im2

for 1 ≤ j1 ≤ m1; 1 ≤ j2 ≤ m2 where n ≥ 1; 0 ≤ ik ≤ Sk for k ∈ {1, 2, . . . ,m}.
(e) (n, i, 0, i1, . . . , il , . . . , im, j1, j2) → (n, i, 0, i1, . . . , Sl , . . . , im, j1, j2) at the rate βl
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for 1 ≤ j1 ≤ m1; 1 ≤ j2 ≤ m2 where n ≥ 1; 1 ≤ i ≤ S; 0 ≤ ik ≤ Sk for
k ∈ {1, 2, . . . ,m} − {l}; 0 ≤ il ≤ sl . Similarly for 1 ≤ l ≤ m.

(f) (n, i,Cu, i1, . . . , il , . . . , im, j2) → (n, i,Cu, i1, . . . , Sl , . . . , im, j2) at the rate βl
for 1 ≤ j2 ≤ m2 where n ≥ 1; 1 ≤ i ≤ S;
u = 1 and C1 = l; 0 ≤ ik ≤ Sk for k ∈ {1, 2, . . . ,m}−{l} and0 ≤ il ≤ sl . Similarly
for1 ≤ l ≤ m.
u = 2 and C2 = l j; 0 ≤ ik ≤ Sk for k ∈ {1, 2, . . . ,m} − {l} and 1 ≤ il ≤ sl ; 1 ≤
i j ≤ S j . Similarly for l �= j, 1 ≤ l, j ≤ m.
u = 3 and C3 = hjl 0 ≤ ik ≤ Sk for k ∈ {1, 2, . . . ,m} − {l} and 1 ≤ il ≤ sl; 1 ≤
ik ≤ Sk for k ∈ {h, j}. Similarly for h �= j �= l, 1 ≤ h, j, l ≤ m. . . . etc.
u = m and Cm = 123 . . .m, 1 ≤ ik ≤ Sk for k ∈ {1, 2, . . . ,m} − {l};
1 ≤ il ≤ sl .

(g) (n, i, 0, i1, . . . , il , . . . , im, j1, j2) → (n, S, 0, i1, . . . , il , . . . , im, j1, j2) at the rate β

for 1 ≤ j1 ≤ m1; 1 ≤ j2 ≤ m2 where n ≥ 1; 1 ≤ i ≤ s; 0 ≤ ik ≤ Sk for
k ∈ {1, 2, . . . ,m} for k ∈ {1, 2, . . . ,m}.

(h) (n, i,Cu, i1, . . . , il , . . . , im, j2) → (n, S,Cu, i1, . . . , il , . . . , im, j2) at the rate β

for 1 ≤ j2 ≤ m2 where n ≥ 1; 1 ≤ i ≤ s;
u = 1 and C1 = l; 0 ≤ ik ≤ Sk for k ∈ {1, 2, . . . ,m} Similarly for1 ≤ l ≤ m.
u = 2 and C2 = l j; 0 ≤ ik ≤ Sk for k ∈ {1, 2, . . . ,m} Similarly for l �= j, 1 ≤
l, j ≤ m.
u = 3 andC3 = hjl 0 ≤ ik ≤ Sk for k ∈ {1, 2, . . . ,m}. Similarly for h �= j �= l, 1 ≤
h, j, l ≤ m. . . . etc.
u = m and Cm = 123 . . .m, 1 ≤ ik ≤ Sk for k ∈ {1, 2, . . . ,m}.

The infinitesimal generatorQ of the system 	 with entries as described above is obtained
to be

Q =

⎡
⎢⎢⎢⎣

A00 A01

A10 A1 A0

A2 A1 A0
. . .

. . .
. . .

⎤
⎥⎥⎥⎦

A00 is a square matrix of order a and it contains transitions within level 0. A01 represents
transitions from level 0 to level 1 and it’s a matrix of order a × b. Matrix A10 represents
transitions from level 1 to level 0 and is of order c × a. A0 and A1 are square matrices of
order c representing transitions from level n to level n+ 1 and within level n respectively for
n ≥ 1 and finally A2 is again a square matrix of order c representing transitions from level n
to level n−1 for n ≥ 2 where a = (S+1)
m

k=1(Sk +1)m2, b = (S+1)
m
k=1(Sk +1)m1m2

and c = 
m
k=1(Sk + 1)m2 + S

∑
u∈� lu .

When u = i, then li = πm
k=1,k �=i (Sk + 1)Sim2 for 1 ≤ i ≤ m.

When u = i j, then li j = πm
k=1,k �=i, j (Sk + 1)
k∈{i, j}Skm2 for 1 ≤ i, j ≤ m

When u = hi j, then lhi j = πm
k=1,k �=h,i, j (Sk + 1)
k∈{h,i, j}Skm2 for 1 ≤ h, i, j ≤ m and so

on. When u = 12 . . .m, then l12...m = πm
k=1Skm2.
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The structure of A00, A01, A10, A0, A1 andA2 are obtained as

A00 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 · · · s s + 1 · · · S
0 Z0 Ẑ
1 Ẑ1 Ẑ
...

. . .
...

s Ẑ1 Ẑ
s + 1 Ẑ2
...

. . .
S Ẑ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A01 =
⎛
⎜⎜⎜⎝

0 1 · · · S
0 0̄
1 L∗
...

. . .
S L∗

⎞
⎟⎟⎟⎠

, A10 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 2 · · · S
0 0̄
1 M0 M̂
2 M0 M̂
...

. . .
. . .

S M0 M̂

⎞
⎟⎟⎟⎟⎟⎟⎠

A0 =
⎛
⎜⎜⎜⎝

0 1 · · · S
0 0̄
1 L
...

. . .
S L

⎞
⎟⎟⎟⎠

, A2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 2 · · · S
0 0̄
1 M0 M̄
2 M M̄
...

. . .
. . .

S M M̄

⎞
⎟⎟⎟⎟⎟⎟⎠

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 · · · s s + 1 · · · S
0 Z0 Z0

1 Z1 Z
...

. . .
...

s Z1 Z
s + 1 Z2
...

. . .
S Z2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The entries in A01 and A2 are as given in transition due to the arrival of customers. The entries
in A10 and A0 are as given in transition due to the service of essential and optional items.
The entries in A00 and A1 are as given in transition due to replenishment of the essential
and optional items. In addition, the diagonal entries in A00 and A1 are non-positive, having
value equal to but with negative sign the sum of other elements of the same row found in
A01, A10,A0 and A2.

I l lust rat i on : (1) : when m=2, the state space and transition rates are explicitely,
{(0, i, 0∗, i1, i2, j2), 0 ≤ i ≤ S, 0 ≤ i1 ≤ S1, 0 ≤ i2 ≤ S2, 1 ≤ j2 ≤ m2}⋃
{(n, 0, 0∗, i1, i2, j2), n ≥ 1, 0 ≤ i1 ≤ S1, 0 ≤ i2 ≤ S2, 1 ≤ j2 ≤ m2}⋃
{(n, i, 0, i1, i2, j1, j2), n ≥ 1, 1 ≤ i ≤ S, 0 ≤ i1 ≤ S1, 0 ≤ i2 ≤ S2, 1 ≤ j1 ≤ m1, 1 ≤

j2 ≤ m2}

123



Annals of Operations Research (2022) 315:2089–2114 2099

⋃
{(n, i, 1, i1, i2, j2), n ≥ 1, 1 ≤ i ≤ S, 1 ≤ i1 ≤ S1, 0 ≤ i2 ≤ S2, 1 ≤ j2 ≤ m2}⋃
{(n, i, 2, i1, i2, j2), n ≥ 1, 1 ≤ i ≤ S, 0 ≤ i1 ≤ S1, 1 ≤ i2 ≤ S2, 1 ≤ j2 ≤ m2}⋃
{(n, i, 12, i1, i2, j2), n ≥ 1, 1 ≤ i ≤ S, 1 ≤ i1 ≤ S1, 1 ≤ i2 ≤ S2, 1 ≤ j2 ≤ m2}
and the transitions rates are:

1. Transitions due to arrival of customers.

(a) (0, i, 0∗, i1, i2, j2) → (1, i, 0, i1, i2, j1, j
′
2) at the rate γ j1 [D1] j2 j ′2 for 1 ≤ j1 ≤ m1

and 1 ≤ j2, j
′
2 ≤ m2 where 1 ≤ i ≤ S; 0 ≤ i1 ≤ S1; 0 ≤ i2 ≤ S2

(b) (n, i, 0, i1, i2, j1, j2) → (n + 1, i, 0, i1, i2, j
′
1, j

′
2) at the rate [D1] j2 j ′2 for j1 = j

′
1

and rate is 0 when j1 �= j
′
1 for 1 ≤ j1, j

′
1 ≤ m1 and 1 ≤ j2, j

′
2 ≤ m2 where

n ≥ 1; 1 ≤ i ≤ S; 0 ≤ i1 ≤ S1; 0 ≤ i2 ≤ S2
(c) (n, i,C(t), i1, i2, j2) → (n + 1, i,C(t), i1, i2, j

′
2) at the rate [D1] j2 j ′2

for 1 ≤ j2, j
′
2 ≤ m2 where 1 ≤ i ≤ S and, when C(t) = 1 −→ 1 ≤ i1 ≤ S1; 0 ≤

i2 ≤ S2;
C(t) = 2 −→ 0 ≤ i1 ≤ S1; 1 ≤ i2 ≤ S2;
C(t) = 12 −→ 1 ≤ i1 ≤ S1; 1 ≤ i2 ≤ S2

2. Transitions due to the service of essential and optional items.

(a) (1, i, 1, i1, i2, j2) → (0, i, 0∗, i1 − 1, i2, j2) at the rate μ1

for 1 ≤ j2 ≤ m2, where 1 ≤ i ≤ S; 1 ≤ i1 ≤ S1; 0 ≤ i2 ≤ S2
(b) (1, i, 2, i1, i2, j2) → (0, i, 0∗, i1, i2 − 1, j2) at the rate μ2

for 1 ≤ j2 ≤ m2 where 1 ≤ i ≤ S; 0 ≤ i1 ≤ S1; 1 ≤ i2 ≤ S2
(c) (1, i, 12, i1, i2, j2) → (0, i, 0∗, i1 − 1, i2 − 1, j2) at the rate μ12

for 1 ≤ j2 ≤ m2 where 1 ≤ i ≤ S; 1 ≤ i1 ≤ S1; 1 ≤ i2 ≤ S2
(d) (1, i, 0, 0, 0, j1, j2) → (0, i − 1, 0∗, 0, 0, j2) at the rate Tj1

for 1 ≤ j1 ≤ m1; 1 ≤ j2 ≤ m2 where 1 ≤ i ≤ S
(e) (1, i, 0, 0, i2, j1, j2) → (0, i − 1, 0∗, 0, i2, j2) at the rate η1Tj1

for 1 ≤ j1 ≤ m1; 1 ≤ j2 ≤ m2 where 1 ≤ i ≤ S; 1 ≤ i2 ≤ S2 and η1 =
p + (1 − p)(p1 + p12)

(f) (1, i, 0, i1, 0, j1, j2) → (0, i − 1, 0∗, i1, 0, j2) at the rate η2Tj1
for 1 ≤ j1 ≤ m1; 1 ≤ j2 ≤ m2 where 1 ≤ i ≤ S; 1 ≤ i1 ≤ S1 and η2 =
p + (1 − p)(p2 + p12)

(g) (1, i, 0, i1, i2, j1, j2) → (0, i − 1, 0∗, i1, i2, j2) at the rate pTj1
for 1 ≤ j1 ≤ m1; 1 ≤ j2 ≤ m2 where 1 ≤ i ≤ S; 1 ≤ i1 ≤ S1 and 1 ≤ i2 ≤ S2

(h) (n, i, 1, i1, i2, j2) → (n − 1, i, 1, i1 − 1, i2, j2) at the rate μ1

for 1 ≤ j2 ≤ m2, where n ≥ 2; 1 ≤ i ≤ S; 1 ≤ i1 ≤ S1; 0 ≤ i2 ≤ S2
(i) (n, i, 2, i1, i2, j2) → (n − 1, i, 2, i1, i2 − 1, j2) at the rate μ2

for 1 ≤ j2 ≤ m2 where n ≥ 2; 1 ≤ i ≤ S; 0 ≤ i1 ≤ S1; 1 ≤ i2 ≤ S2
(j) (n, i, 12, i1, i2, j2) → (n − 1, i, 12, i1 − 1, i2 − 1, j2) at the rate μ12

for 1 ≤ j2 ≤ m2 where n ≥ 2; 1 ≤ i ≤ S; 1 ≤ i1 ≤ S1; 1 ≤ i2 ≤ S2
(k) (n, 1, 0, 0, 0, j1, j2) → (n − 1, 0, 0∗, 0, 0, j2) at the rate Tj1

for 1 ≤ j1 ≤ m1; 1 ≤ j2 ≤ m2 where n ≥ 2
(l) (n, 1, 0, 0, i2, j1, j2) → (n − 1, 0, 0∗, 0, i2, j2) at the rate η1Tj1

for 1 ≤ j1 ≤ m1; 1 ≤ j2 ≤ m2 where n ≥ 2; 1 ≤ i2 ≤ S2 and
η1 = p + (1 − p)(p1 + p12)

(m) (n, 1, 0, i1, 0, j1, j2) → (n − 1, 0, 0∗, i1, 0, j2) at the rate η2Tj1
for 1 ≤ j1 ≤ m1; 1 ≤ j2 ≤ m2 where n ≥ 2; 1 ≤ i1 ≤ S1 and
η2 = p + (1 − p)(p2 + p12)
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(n) (n, 1, 0, i1, i2, j1, j2) → (n − 1, 0, 0∗, i1, i2, j2) at the rate pTj1
for 1 ≤ j1 ≤ m1; 1 ≤ j2 ≤ m2 where n ≥ 2; 1 ≤ i1 ≤ S1; 1 ≤ i2 ≤ S2

(o) (n, i, 0, 0, 0, j1, j2) → (n − 1, i − 1, 0, 0, 0, j1, j2) at the rate Tj1
for 1 ≤ j1 ≤ m1; 1 ≤ j2 ≤ m2 where n ≥ 2; 2 ≤ i ≤ S

(p) (n, i, 0, 0, i2, j1, j2) → (n − 1, i − 1, 0, 0, i2, j1, j2) at the rate η1Tj1
for 1 ≤ j1 ≤ m1; 1 ≤ j2 ≤ m2 where n ≥ 2; 2 ≤ i ≤ S; 1 ≤ i2 ≤ S2 and
η1 = p + (1 − p)(p1 + p12)

(q) (n, i, 0, i1, 0, j1, j2) → (n − 1, i − 1, 0, i1, 0, j1, j2) at the rate η2Tj1
for 1 ≤ j1 ≤ m1; 1 ≤ j2 ≤ m2 where n ≥ 2; 2 ≤ i ≤ S; 1 ≤ i1 ≤ S1 and
η2 = p + (1 − p)(p2 + p12)

(r) (n, i, 0, i1, i2, j1, j2) → (n − 1, i − 1, 0, i1, i2, j1, j2) at the rate pTj1
for 1 ≤ j1 ≤ m1; 1 ≤ j2 ≤ m2 where n ≥ 2; 2 ≤ i ≤ S; 1 ≤ i1 ≤ S1; and
1 ≤ i2 ≤ S2

3. Transitions due to replenishments of the essential and optional items.

(a) (0, i, 0∗, i1, i2, j2) → (0, i, 0∗, i1, S2, j2) at the rate β2

for 1 ≤ j2 ≤ m2 where 0 ≤ i ≤ S; 0 ≤ i1 ≤ S1; 0 ≤ i2 ≤ s2
(b) (0, i, 0∗, i1, i2, j2) → (0, i, 0∗, S1, i2, j2) at the rate β1

for 1 ≤ j2 ≤ m2 where 0 ≤ i ≤ S; 0 ≤ i1 ≤ s1; 0 ≤ i2 ≤ S2
(c) (0, i, 0∗, i1, i2, j2) → (0, S, 0∗, i1, i2, j2) at the rate β

for 1 ≤ j2 ≤ m2 where 0 ≤ i ≤ s; 0 ≤ i1 ≤ S1; 0 ≤ i2 ≤ S2
(d) (n, 0, 0∗, i1, i2, j2) → (n, 0, 0∗, i1, S2, j2) at the rate β2

for1 ≤ j2 ≤ m2 where n ≥ 1; 0 ≤ i1 ≤ S1; 0 ≤ i2 ≤ s2
(e) (n, 0, 0∗, i1, i2, j2) → (n, 0, 0∗, S1, i2, j2) at the rate β1

for 1 ≤ j2 ≤ m2 where n ≥ 1; 0 ≤ i1 ≤ s1; 0 ≤ i2 ≤ S2
(f) (n, 0, 0∗, i1, i2, j2) → (n, S, 0, i1, i2, j1, j2) at the rate γ ⊗ β Im2 for 1 ≤ j1 ≤

m1; 1 ≤ j2 ≤ m2 where n ≥ 1; 0 ≤ i1 ≤ S1; 0 ≤ i2 ≤ S2
(g) (n, i, 0, i1, i2, j1, j2) → (n, i, 0, i1, S2, j1, j2) at the rate β2 for 1 ≤ j1 ≤ m1; 1 ≤

j2 ≤ m2 where n ≥ 1; 1 ≤ i ≤ S; 0 ≤ i1 ≤ S1; 0 ≤ i2 ≤ s2
(h) (n, i, 0, i1, i2, j1, j2) → (n, i, 0, S1, i2, j1, j2) at the rate β1

for 1 ≤ j1 ≤ m1; 1 ≤ j2 ≤ m2 where n ≥ 1; 1 ≤ i ≤ S; 0 ≤ i1 ≤ s1; 0 ≤ i2 ≤ S2
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(i) (n, i,C(t), i1, i2, j2) → (n, i,C(t), i1, S2, j2) at the rate β2 for 1 ≤ j2 ≤ m2 where
n ≥ 1; 1 ≤ i ≤ S;
C(t) = 1 −→ 1 ≤ i1 ≤ S1; 0 ≤ i2 ≤ s2; C(t) = 2 −→ 0 ≤ i1 ≤ S1; 1 ≤ i2 ≤ s2;
C(t) = 12 −→ 1 ≤ i1 ≤ S1; 1 ≤ i2 ≤ s2

(j) (n, i,C(t), i1, i2, j2) → (n, i,C(t), S1, i2, j2) at the rate β1 for 1 ≤ j2 ≤ m2 where
n ≥ 1; 1 ≤ i ≤ S; C(t) = 1 −→ 1 ≤ i1 ≤ s1; 0 ≤ i2 ≤ S2; C(t) = 2 −→ 0 ≤ i1 ≤
s1; 1 ≤ i2 ≤ S2; C(t) = 12 −→ 1 ≤ i1 ≤ s1; 1 ≤ i2 ≤ S2

(k) (n, i, 0, i1, i2, j1, j2) → (n, S, 0, i1, i2, j1, j2) at the rate β

for 1 ≤ j1 ≤ m1; 1 ≤ j2 ≤ m2 where n ≥ 1; 1 ≤ i ≤ s; 0 ≤ i1 ≤ S1; 0 ≤ i2 ≤ S2
(l) (n, i,C(t), i1, i2, j2) → (n, S,C(t), i1, i2, j2) at the rate β

for 1 ≤ j2 ≤ m2 where n ≥ 1; 1 ≤ i ≤ s;
C(t) = 1 −→ 1 ≤ i1 ≤ S1; 0 ≤ i2 ≤ S2;
C(t) = 2 −→ 0 ≤ i1 ≤ S1; 1 ≤ i2 ≤ S2;
C(t) = 12 −→ 1 ≤ i1 ≤ S1; 1 ≤ i2 ≤ S2

The infinitesimal generator Q of the system 	 with entries as described above is obained
to be

Q =

⎡
⎢⎢⎢⎣

A00 A01

A10 A1 A0

A2 A1 A0
. . .

. . .
. . .

⎤
⎥⎥⎥⎦

A00 is a square matrix of order a and it contains transitions within level 0. A01 represents
transitions from level 0 to level 1 and it’s a matrix of order a × b. Matrix A10 represents
transitions from level 1 to level 0 and is of order c × a. A0 and A1 are square matrices of
order c representing transitions from level n to level n + 1 and within level n respectively
for n ≥ 1 and finally A2 is again a square matrix of order c representing transitions from
level n to level n − 1 for n ≥ 2 where a = (S + 1)(S1 + 1)(S2 + 1)m2, b = (S + 1)l1 and
c = (S1 + 1)(S2 + 1)m2 + S(l1 + l2 + l3 + l4) where l1 = (S1 + 1)(S2 + 1)m1m2, l2 =
S1(S2 + 1)m2, l3 = (S1 + 1)S2m2 and l4 = S1S2m2.
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The structure of A00, A01, A10, A0, A1 andA2 are obtained as

A00 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 · · · s s + 1 · · · S
0 Z0 Ẑ
1 Ẑ1 Ẑ
...

. . .
...

s Ẑ1 Ẑ
s + 1 Ẑ2
...

. . .
S Ẑ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A01 =
⎛
⎜⎜⎜⎝

0 1 · · · S
0 0̄
1 L∗
...

. . .
S L∗

⎞
⎟⎟⎟⎠

, A10 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 2 · · · S
0 0̄
1 M0 M̂
2 M0 M̂
...

. . .
. . .

S M0 M̂

⎞
⎟⎟⎟⎟⎟⎟⎠

A0 =
⎛
⎜⎜⎜⎝

0 1 · · · S
0 0̄
1 L
...

. . .
S L

⎞
⎟⎟⎟⎠

, A2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 2 · · · S
0 0̄
1 M0 M̄
2 M M̄
...

. . .
. . .

S M M̄

⎞
⎟⎟⎟⎟⎟⎟⎠

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 · · · s s + 1 · · · S
0 Z0 Z0

1 Z1 Z
...

. . .
...

s Z1 Z
s + 1 Z2
...

. . .
S Z2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with Z0 =
(
Is1+1 ⊗ C1 es1+1 ⊗ β1 I(s2+1)m1m2

0̄ IS1−s1 ⊗ C2

)
, where

C1 =
(
Is2+1 ⊗ B1 es2+1 ⊗ β2 Im2

0̄ IS2−s2 ⊗ B2

)
,

C2 =
(
Is2+1 ⊗ B3 es2+1 ⊗ β2 Im2

0̄ IS2−s2 ⊗ B4

)
,

B1 = D − (β + β1 + β2)Im2 , B2 = D − (β + β1)Im2 ,

B3 = D − (β + β2)Im2 , B4 = D − β Im2 .

Ẑ1 =
(
Is1+1 ⊗ Ĉ1 es1+1 ⊗ β1 I(s2+1)m1m2

0̄ IS1−s1 ⊗ Ĉ2

)
, where
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Ĉ1 =
(
Is2+1 ⊗ B̂1 es2+1 ⊗ β2 Im2

0̄ IS2−s2 ⊗ B̂2

)
, Ĉ2 =

(
Is2+1 ⊗ B̂3 es2+1 ⊗ β2 Im2

0̄ IS2−s2 ⊗ B̂4

)
,

B̂1 = D0 − (β + β1 + β2)Im2 , B̂2 = D0 − (β + β1)Im2 ,

B̂3 = D0 − (β + β2)Im2 , B̂4 = D0 − β Im2 .

Ẑ2 =
(
Is1+1 ⊗ C̄1 es1+1 ⊗ β1 I(s2+1)m1m2

0̄ IS1−s1 ⊗ C̄2

)
, where

C̄1 =
(
Is2+1 ⊗ B̄1 es2+1 ⊗ β2 Im2

0̄ IS2−s2 ⊗ B̄2

)
, C̄2 =

(
Is2+1 ⊗ B̄3 es2+1 ⊗ β2 Im2

0̄ IS2−s2 ⊗ B̄4

)
,

B̄1 = D0 − (β1 + β2)Im2 , B̄2 = D0 − (β1)Im2 ,

B̄3 = D0 − (β2)Im2 , B̄4 = D0 .

Ẑ = β I(S1+1)(S2+1)m2 ,

L∗ = I(S1+1)(S2+1) ⊗ γ ⊗ D1

M0 =

⎛
⎜⎜⎜⎜⎜⎝

0 1 2 · · · S1
0 m0
1 m1
2 m1
...

. . .
S1 m1

⎞
⎟⎟⎟⎟⎟⎠

, where

m0 =
(
T 0 ⊗ Im2 0̄

0̄ IS2 ⊗ η1T 0 ⊗ Im2

)
, where η1 = p + (1 − p)(p1 + p12).

m1 =
(

η2T 0 ⊗ Im2 0̄
0̄ IS2 ⊗ pT 0 ⊗ Im2

)
, where η2 = p + (1 − p)(p2 + p12).

M̂ =

⎛
⎜⎜⎜⎜⎝

0 1 2 12
0 0̄
1 μ1 IS1(S2+1)m2 0̄
2 μ2 I(S1+1)S2m2 0̄
12 μ12 IS1S2m2 0̄

⎞
⎟⎟⎟⎟⎠

.

L =
⎛
⎜⎜⎝

0 1 2 12
0 H0
1 H1
2 H2
12 H12

⎞
⎟⎟⎠

, where H0 = I(S1+1)(S2+1)m1 ⊗ D1,

H1 = IS1(S2+1) ⊗ D1, H2 = I(S1+1)S2 ⊗ D1, and H12 = IS1S2 ⊗ D1.
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M =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 2 · · · S1
0 m̂0
1 m̂1
2 m̂1
...

. . .
S1 m̂1

⎞
⎟⎟⎟⎟⎟⎟⎠

, where

m̂0 =
(
diag(T 0) ⊗ Im2 0̄

0̄ IS2 ⊗ η1diag(T 0) ⊗ Im2

)
,

where, η1 = p + (1 − p)(p1 + p12).

m̂1 =
(

η2diag(T 0) ⊗ Im2 0̄
0̄ IS2 ⊗ pdiag(T 0) ⊗ Im2

)
,

where η2 = p + (1 − p)(p2 + p12).

M̄ =
⎛
⎜⎜⎜⎝

0 1 2 12
0 0̄
1 μ1 IS1(S2+1)m2
2 μ2 I(S1+1)S2m2
12 μ12 IS1S2m2

⎞
⎟⎟⎟⎠

.

Z0 = I(S1+1)(S2+1) ⊗ (γ ⊗ Im2), Z = β Il1+l2+l3+l4

Z1 =
⎛
⎜⎜⎜⎝

0 1 2 12
0 G1 G12 G13 G14

1 G2
2 G3
12 G4

⎞
⎟⎟⎟⎠

,

where,

G1 =
(
Is1+1 ⊗ C3 es1+1 ⊗ β1 I(S2+1)m1m2

0̄ IS1−s1 ⊗ C4

)
.

C3 =
(
Is2+1 ⊗ B5 es2+1 ⊗ β2 Im1m2

0̄ IS2−s2 ⊗ B6

)
, C4 =

(
Is2+1 ⊗ B7 es2+1 ⊗ β2 Im1m2

0̄ IS2−s2 ⊗ B8

)
,

B5 = T ⊕ D0 − (β + β1 + β2)Im1m2 , B6 = T ⊕ D0 − (β + β1)Im1m2 ,

B7 = T ⊕ D0 − (β + β2)Im1m2 , B8 = T ⊕ D0 − β Im1m2 .

G12 =
(

0̄
H1

)
, H1 = IS1(S2+1) ⊗ (1 − p)p1(T 0 ⊗ Im2)

G13 = IS1+1 ⊗ Z∗, Z∗ =
(

0̄
H2

)
, H2 = IS2 ⊗ (1 − p)p2(T 0 ⊗ Im2) .

G14 =
(

0̄
IS1 ⊗ Z̄

)
, Z̄ =

(
0̄
H3

)
, H3 = IS2 ⊗ (1 − p)p12(T 0 ⊗ Im2) ,
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G2 =
(
Is1 ⊗ C5 es1 ⊗ β1 I(S2+1)m2

0̄ IS1−s1 ⊗ C6

)
, where

C5 =
(
Is2+1 ⊗ B9 es2+1 ⊗ β2 Im2

0̄ IS2−s2 ⊗ B10

)
, C6 =

(
Is2+1 ⊗ B11 es2+1 ⊗ β2 Im2

0̄ IS2−s2 ⊗ B12

)

B9 = D0 − (β + β1 + β2 + μ1)Im2 , B10 = D0 − (β + β1 + μ1)Im2 ,

B11 = D0 − (β + β2 + μ1)Im2 , B12 = D0 − (β + μ1)Im2 .

G3 =
(
Is1+1 ⊗ C7 es1+1 ⊗ β1 I(S2+1)m2

0̄ IS1−s1 ⊗ C8

)
, where

C7 =
(
Is2 ⊗ B13 es2 ⊗ β2 Im2

0̄ IS2−s2 ⊗ B14

)
, C8 =

(
Is2 ⊗ B15 es2 ⊗ β2 Im2

0̄ IS2−s2 ⊗ B16

)

B13 = D0 − (β + β1 + β2 + μ2)Im2 , B14 = D0 − (β + β1 + μ2)Im2 ,

B15 = D0 − (β + β2 + μ2)Im2 , B16 = D0 − (β + μ2)Im2 .

G4 =
(
Is1 ⊗ C9 es1 ⊗ β1 I(S2+1)m2

0̄ IS1−s1 ⊗ C10

)
, where

C9 =
(
Is2 ⊗ B17 es2 ⊗ β2 Im2

0̄ IS2−s2 ⊗ B18

)
, C10 =

(
Is2 ⊗ B19 es2 ⊗ β2 Im2

0̄ IS2−s2 ⊗ B20

)

B17 = D0 − (β + β1 + β2 + μ12)Im2 , B18 = D0 − (β + β1 + μ12)Im2 ,

B19 = D0 − (β + β2 + μ12)Im2 , B20 = D0 − (β + μ12)Im2 .

Z2 =

⎛
⎜⎜⎜⎜⎝

0 1 2 12
0 Ĝ1 G12 G13 G14

1 Ĝ2
2 Ĝ3
12 Ĝ4

⎞
⎟⎟⎟⎟⎠

,

where,

Ĝ1 =
(
Is1+1 ⊗ Ĉ3 es1+1 ⊗ β1 I(S2+1)m1m2

0̄ IS1−s1 ⊗ Ĉ4

)
., where

Ĉ3 =
(
Is2+1 ⊗ B̂5 es2+1 ⊗ β2 Im1m2

0̄ IS2−s2 ⊗ B̂6

)
, Ĉ4 =

(
Is2+1 ⊗ B̂7 es2+1 ⊗ β2 Im1m2

0̄ IS2−s2 ⊗ B̂8

)
,

B̂5 = T ⊕ D0 − (β1 + β2)Im1m2 , B̂6 = T ⊕ D0 − (β1)Im1m2 ,

B̂7 = T ⊕ D0 − (β2)Im1m2 , B̂8 = T ⊕ D0 .

Ĝ2 =
(
Is1 ⊗ Ĉ5 es1 ⊗ β1 I(S2+1)m2

0̄ IS1−s1 ⊗ Ĉ6

)
, where

Ĉ5 =
(
Is2+1 ⊗ B̂9 es2+1 ⊗ β2 Im2

0̄ IS2−s2 ⊗ B̂10

)
, Ĉ6 =

(
Is2+1 ⊗ B̂11 es2+1 ⊗ β2 Im2

0̄ IS2−s2 ⊗ B̂12

)

B̂9 = D0 − (β1 + β2 + μ1)Im2 , B̂10 = D0 − (β1 + μ1)Im2 ,

B̂11 = D0 − (β2 + μ1)Im2 , B̂12 = D0 − (μ1)Im2 .
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Ĝ3 =
(
Is1+1 ⊗ Ĉ7 es1+1 ⊗ β1 I(S2+1)m2

0̄ IS1−s1 ⊗ Ĉ8

)
., where

Ĉ7 =
(
Is2 ⊗ B̂13 es2 ⊗ β2 Im2

0̄ IS2−s2 ⊗ B̂14

)
, Ĉ8 =

(
Is2 ⊗ B̂15 es2 ⊗ β2 Im2

0̄ IS2−s2 ⊗ B̂16

)

B̂13 = D0 − (β1 + β2 + μ2)Im2 , B̂14 = D0 − (β1 + μ2)Im2 ,

B̂15 = D0 − (β2 + μ2)Im2 , B̂16 = D0 − (μ2)Im2 .

Ĝ4 =
(
Is1 ⊗ Ĉ9 es1 ⊗ β1 I(S2+1)m2

0̄ IS1−s1 ⊗ ˆC10

)
, where

Ĉ9 =
(
Is2 ⊗ B̂17 es2 ⊗ β2 Im2

0̄ IS2−s2 ⊗ B̂18

)
, ˆC10 =

(
Is2 ⊗ B̂19 es2 ⊗ β2 Im2

0̄ IS2−s2 ⊗ B̂20

)

B̂17 = D0 − (β1 + β2 + μ12)Im2 , B̂18 = D0 − (β1 + μ12)Im2 ,

B̂19 = D0 − (β2 + μ12)Im2 , B̂20 = D0 − (μ12)Im2 .

2.1 Stability condition

Let π = (π0, π1, π2, . . . , πS) be the steady state probability vector of A = A0 + A1 + A2.

Then

π A = 0, πe = 1 (1)

From (1),

π0N0 + π1M0 = 0

πi N1 + πi+1M = 0, 1 ≤ i ≤ s

πi N2 + πi+1M = 0, s + 1 ≤ i ≤ S − 1

π0Z
0 +

s∑
i=1

πi Z + πSN2 = 0

Where,

N0 = Z0

Ni = L + Zi + M̄, 1 ≤ i ≤ 2

Solving the above system of equations, we get

πi =
⎧⎨
⎩

πSU0 i = 0
πSUi 1 ≤ i ≤ s
πSÛi s + 1 ≤ i ≤ S

Where,

U0 = (−1)S(MN−1
2 )S−s−1(MN−1

1 )s(M0N
−1
0 )

Ui = (−1)S−i (MN−1
2 )S−s−1(MN−1

1 )s+1−i

Ûi = (−1)S−i (MN−1
2 )S−i
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The unknown probability πS can be calculated from the normalising condition

πS

(
U0 +

s∑
i=1

Ui +
S∑

i=s+1

Ûi

)
e = 1,

Theorem 2.1 The queuing inventory system under study is stable if and only if

πSH0V0 < πS (H1V1 + H2V2)

Proof The queueing system with the generator Q under study is stable if and only if

π A0e < π A2e (2)

From A0 and A2 mentioned before, we obtain

π A0e = πS

(
s∑

i=1

Ui +
S∑

i=s+1

Ûi

)
L.e

and

π A2e = πS

[
U1(M0 + M̄) +

(
s∑

i=2

Ui +
S∑

i=s+1

Ûi

)
(M̄ + M)

]
.e

Let

H0 =
s∑

i=1

Ui +
S∑

i=s+1

Ûi , V0 = L.e, H1 = U1, V1 = (M0 + M̄).e,

H2 =
s∑

i=2

Ui +
S∑

i=s+1

Ûi & V2 = (M̄ + M).e

Then by (2) we get the stated result. ��

2.2 Steady state probability vector

Assuming that the stability condition is satisfied, the steady state probability vector of the
system � is calculated as follows: Let x denote the steady state probability vector of the
generator Q. Then we have

xQ = 0, xe = 1. (3)

Partitioning x as x = (x0, x1, x2, ...), by the above conditions we get

x0A00 + x1A10 = 0

x0A01 + x1A1 + x2A2 = 0

xn−1A0 + xn A1 + xn+1A2 = 0; n ≥ 2 (4)

By assuming the stability condition, we see that x is obtained as (see Neuts)

xn = x1Rn−1; n ≥ 2, (5)
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where R is the minimal non-negative solution of the matrix quadratic equation

R2A2 + RA1 + A0 = 0 (6)

The boundary conditions are given by

x0A00 + x1A10 = 0

x0A01 + x1[A1 + RA2] = 0 (7)

From Eq. (7) we get,

x1 = x0K (8)

and hence by the normalising condition in equation number (3), we get

[x0 + x0K(I − R)−1]e = 1 (9)

where

K = (−A01)(A1 + RA2)
−1 (10)

3 Some system performancemeasures

1. Expected re-ordering rate of essential item

ERE = μ′
∞∑
n=1

m∑
k=1

Sk∑
ik=1

m1∑
j1=1

m2∑
j2=1

xn(s + 1, 0, i1, . . . , im, j1, j2)

2. Expected re-ordering rate of lth optional item, 1 ≤ l ≤ m

EROI (l) = μl

∞∑
n=1

S∑
i=1

⎛
⎜⎜⎜⎜⎝

∑
u∈�
l∈u

Sk∑
ik=0,
k /∈u,

1≤k≤m

Sk∑
ik=1,
k∈u,

1≤k≤m

⎞
⎟⎟⎟⎟⎠

m2∑
j2=1

xn(i, u, i1, . . . , ih−1, sl + 1, ih+1, . . . , j2)

3. Expected number of customers in the system EC = ∑∞
i=1 i .xi .e

4. Expected number of essential inventories in the system

EE I =
S∑

i=1

m∑
k=1

Sk∑
ik=1

m2∑
j2=1

i .x0(i, 0∗, i1, . . . , im, j2)

+
∞∑
n=1

S∑
i=1

m∑
k=1

Sk∑
ik=1

m1∑
j1=1

m2∑
j2=1

i .xn(i, 0, i1, . . . , im, j1, j2)

+
∞∑
n=1

S∑
i=1

⎛
⎜⎜⎜⎜⎝

∑
u∈�

Sk∑
ik=0,
k /∈u,

1≤k≤m

Sk∑
ik=1,
k∈u,

1≤k≤m

⎞
⎟⎟⎟⎟⎠

m2∑
j2=1

i .xn(i, u, i1, . . . , im, j2)

123



Annals of Operations Research (2022) 315:2089–2114 2109

5. Expected number of lth optional inventories in the system for 1 ≤ l ≤ m.

EOIl =
S∑

i=1

m∑
k=1

Sk∑
ik=1

m2∑
j2=1

il .x0(i, 0∗, i1, . . . , im, j2)

+
∞∑
n=1

S∑
i=1

m∑
k=1

Sk∑
ik=1

m1∑
j1=1

m2∑
j2=1

il .xn(i, 0, i1, . . . , im, j1, j2)

+
∞∑
n=1

S∑
i=1

⎛
⎜⎜⎜⎜⎝

∑
u∈�

Sk∑
ik=0,

k �=l,k /∈u,
1≤k≤m

Sk∑
ik=1,

k=l,k∈u,
1≤k≤m

⎞
⎟⎟⎟⎟⎠

m2∑
j2=1

il .xn(i, u, i1, . . . , im, j2)

6. Expected loss rate of customers in the absence of essential item

EL = λ

∞∑
n=1

m∑
k=1

Sk∑
ik=1

m2∑
j2=1

xn(0, 0∗, i1, . . . , im, j2)

4 Cost function

In this section, we provide the optimal values of inventory levels s, S, si and Si for 1 ≤ i ≤ m.
We introduce the cost function,

K (s, s1, . . . , sm, S, S1, . . . , Sm)

= C0ERE +
m∑
i=1

Ci EROI (i) + CEI EE I +
m∑
i=1

COI (i)EOI (i)

+ C1EC + C2EL

where

1. C0 = Fixed ordering cost due to essential item /unit item
2. Ci= Fixed ordering cost due to the i th optional item
3. CEI= Holding cost due to the essential item/ unit
4. COI (i)= Holding cost due to the i th optional item/ unit
5. C1= Holding cost of customers/ unit time
6. C2= Cost due to loss of customers / unit time, in the absence of the essential item

5 Numerical illustration

For numerical illustration, we have considered themodel with one eessential and two optional
inventories (the case when m=2). The number of phases of the arrival process is taken as 4
where as the number of phases in the service process is taken as 3. Here we take Do, D1, T
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Table 1 Effect of β: Fix S = 5, S1 = 4, S2 = 3, s = 3, s1 = 2, s2 = 1, m1 = 3,m2 = 4, μ1 = 6, μ2 =
7, μ12 = 8, β1 = 5, β2 = 5

β 6 8 10 12

ERE 1.44 × 10−6 7.23 × 10−7 4.17 × 10−7 2.641 × 10−7

EROI (1) 3.23 × 10−6 1.34 × 10−6 6.58 × 10−7 3.638 × 10−7

EROI (2) 3.51 × 10−6 1.37 × 10−6 6.40 × 10−7 3.40 × 10−7

EC 2.01 × 10−3 9.86 × 10−4 8.19 × 10−4 7.202 × 10−4

EE I 3.48 3.50 3.513 3.521

EOI (1) 0.082 0.058 0.044 0.035

EOI (2) 0.056 0.04 0.03 0.024

EL 1.78 × 10−9 4.32 × 10−10 1.39 × 10−10 5.47 × 10−11

and T 0 as follows.

D0 =

⎛
⎜⎜⎝

−6.18 1.2 2 2
1 −8.213 3 3
2 3 −10.08 4
3 4 3 −11.02

⎞
⎟⎟⎠ ,

D1 =

⎛
⎜⎜⎝
0.20 0.23 0.30 0.25
0.31 0.32 0.34 0.243
0.25 0.26 0.27 0.30
0.27 0.22 0.32 0.21

⎞
⎟⎟⎠

T =
⎛
⎝

−18 4 6
1 −11 5
3 6 −16

⎞
⎠ , T 0 =

⎛
⎝
8
5
7

⎞
⎠ ,

γ = (
0.3 0.2 0.5

)

The variations in the system performance measures with various parameters are numerically
shown as follows.

Table 1 shows the effect of the replenishment rate β of the essential item on various per-
formance measures. As seen in the table, the values of ERE , EROI (1), EROI (2), EC , EOI (1),
EOI (2) and EL seems to be decreasing with increase in the value of β, where as an increasing
tendency is observed with an increased values of β in the case of EE I .

Tables 2, 3 and 4 shows the effect of μ1, μ2 and μ12, the exponential service rates of the
first, second and the combined optional services on the performance measures. As seen in
the Tables 2, 3 and 4, the values of ERE , EROI (1), EROI (2), EE I , EOI (1), EOI (2) and EL

shows an increasing tendency respectively with increased values of μ1, μ2 and μ12 where as
EC shows a decreasing tendency respectively with the incresased values of μ1, μ2 and μ12.

5.1 Numerical analysis of cost function

Table 5 shows the effect of the pair (s, S) of the essential inventory on the cost incurred by the
system. With the increased values of S the cost showed an increasing tendency as expected
as the cost of a single unit of the essential item is high also it’s holding cost adds to this hike.
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Table 2 Effect of μ1 : Fix S = 5, S1 = 4, S2 = 3, s = 3, s1 = 2, s2 = 1, m1 = 3,m2 = 4, μ2 = 4, μ12 =
5, β = 8, β1 = 6, β2 = 5

μ1 5 6 7 8

ERE 6.69 × 10−7 6.78 × 10−7 6.84 × 10−7 6.89 × 10−7

EROI (1) 9.36 × 10−7 1.15 × 10−6 1.37 × 10−6 1.58 × 10−6

EROI (2) 7.18 × 10−7 7.32 × 10−7 7.43 × 10−7 7.52 × 10−7

EC 9.33 × 10−4 9.03 × 10−4 8.79 × 10−4 8.58 × 10−4

EE I 3.256 3.305 3.338 3.360

EOI (1) 0.046 0.049 0.052 0.055

EOI (2) 0.031 0.033 0.035 0.037

EL 2.88 × 10−10 2.98 × 10−10 3.06 × 10−10 3.12 × 10−10

Table 3 Effect of μ2 : Fix S = 5, S1 = 4, S2 = 3, s = 3, s1 = 2, s2 = 1,m1 = 3,m2 = 4, μ1 = 4, μ12 =
5, β = 8, β1 = 6, β2 = 5

μ2 5 6 7 8

ERE 6.61 × 10−7 6.65 × 10−7 6.67 × 10−7 6.69 × 10−7

EROI (1) 7.42 × 10−7 7.54 × 10−7 7.63 × 10−7 7.71 × 10−6

EROI (2) 8.81 × 10−7 1.07 × 10−6 1.25 × 10−6 1.43 × 10−6

EC 9.67 × 10−4 9.66 × 10−4 9.65 × 10−4 9.62 × 10−4

EE I 3.231 3.263 3.285 3.301

EOI (1) 0.043 0.044 0.044 0.044

EOI (2) 0.030 0.030 0.030 0.031

EL 2.89 × 10−10 3.02 × 10−10 3.11 × 10−10 3.20 × 10−10

Table 4 Effect of μ12 : Fix S = 5, S1 = 4, S2 = 3, s = 3, s1 = 2, s2 = 1, m1 = 3,m2 = 4, μ1 = 4, μ2 =
5, β = 8, β1 = 6, β2 = 5

μ12 5 6 7 8

ERE 6.77 × 10−7 6.68 × 10−7 6.73 × 10−7 6.69 × 10−7

EROI (1) 7.42 × 10−7 7.52 × 10−7 7.61 × 10−7 7.68 × 10−7

EROI (2) 8.81 × 10−7 8.92 × 10−7 8.99 × 10−7 9.05 × 10−6

EC 9.68 × 10−4 9.68 × 10−4 9.67 × 10−4 9.66 × 10−4

EE I 3.231 3.262 3.283 3.298

EOI (1) 0.043 0.043 0.044 0.044

EOI (2) 0.030 0.030 0.030 0.031

EL 2.89 × 10−10 2.93 × 10−10 2.95 × 10−10 2.96 × 10−10
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Table 5 Effect of (s, S) on the
Cost function: Fix
S1 = 4, S2 = 3, s1 = 2, s2 = 1,
m1 = 3,m2 = 4, μ1 = 4, μ2 =
5, μ12 = 6, β = 7, β1 = 6, β2 =
5,C0 = 120$, C1 = 35$,
C2 = 40$, CE I = 110$,
COI (1) = 500$,
COI (2) = 450$, C1 = 70$,
C2 = 50$

S s

2 3 4 5

7 1366.70 1039.83 544.09 577.43

8 1369.30 1053.90 658.42 676.30

9 1452.80 1231.90 906.11 703.34

10 1506.90 1302.30 999.95 813.26

Bold values are the optimal values of the Cost function

Table 6 Effect of (s1, S1) on the
Cost function: Fix
S = 4, S2 = 3, s = 2, s2 = 1,
m1 = 3,m2 = 4, μ1 = 4, μ2 =
5, μ12 = 6, β = 7, β1 = 6,
β2 = 5,C0 = 120$, C1 = 35$,
C2 = 40$, CE I = 110$,
COI (1) = 500$,
COI (2) = 450$, C1 = 70$,
C2 = 50$

S1 s1
1 2 3 4

6 387.28 383.04 382.91 370.80

7 698.92 402.00 376.32 378.51

8 836.19 752.77 458.44 426.54

9 795.87 671.38 466.07 435.77

Bold values are the optimal values of the Cost function

Table 7 Effect of (s2, S2) on the
Cost function: Fix
S = 4, S1 = 3, s = 2, s1 = 1,
m1 = 3,m2 = 4, μ1 = 4, μ2 =
5, μ12 = 6, β = 7, β1 = 6,
β2 = 5,C0 = 120$, C1 = 35$,
C2 = 40$, CE I = 110$,
COI (1) = 500$,
COI (2) = 450$, C1 = 70$,
C2 = 50$

S2 s2
1 2 3 4

6 412.53 413.93 415.16 398.52

7 442.12 445.57 439.40 435.70

8 531.99 469.48 458.39 451.50

9 651.56 598.36 507.53 446.03

Bold values are the optimal values of the Cost function

Even though the cost decreased initially with the increased values of s, it later showed an
increasing behaviour( at s=4).

Table 6 gives the effect of of the pair (s1, S1) with respect to the first optional item in the
cost incurred on the system. The cost showed an increasing tendency with increased values
of S1 as expected except in the case where s1 = 3 where the cost decreased initially and
then showed an increasing behaviour. As the value of s1 is increased, the cost seems to be
decreasing.

Table 7 gives the effect of the pair (s2, S2) with respect to the second optional item in the
cost incurred on the system. The cost showed an increasing tendency with increased values of
S2 as expected. As the value of s2 is increased, the cost seems to be decreasing. The optimum
values of the control variables are when the values of S and Si for 1 ≤ i ≤ m are kept
minimum together with the values of s and si fixed close to those of S and Si respectively
for 1 ≤ i ≤ m.

6 Conclusion

Weanalyzed amulti-commodity queueing inventory systemwith one essential andmoptional
items. Immediately after the service of an essential item, the customer either leaves the sys-
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tem with probability p or with probability 1-p he/she goes for optional item(s). However,
in the absence of an essential item, service will not be provided. With the arrival of cus-
tomers forming Markovian arrival process (MAP), service time of essential item Phase type
distributed and that for optional items exponentially distributed( depending on the type(s)
of item(s)), all given by a single server, the system was analysed. Then we obtained the
system state probability distribution. Under stability condition, we computed the long run
system state distribution. A cost function involving these control variables was established.
An optimization of the control variables w.r.t the cost function is also done numerically and
it is the same as what we see around us. For example, in car showroom, huge machinery
showroom etc., only a few items (main item) will be displayed and orders will be taken as
per the requirement of the customers.

Extending the model discussed by introducing random/ Markovian environments is pro-
posed as a future work. This will be quite challenging.
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