
Annals of Operations Research (2022) 316:1013–1038
https://doi.org/10.1007/s10479-020-03915-y

S . I . : CLA IO 2018

Step cost functions in a fleet size andmix vehicle routing
problemwith time windows

João L. V. Manguino1 · Débora P. Ronconi1

Accepted: 18 December 2020 / Published online: 18 January 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
The vehicle routing problem is a traditional combinatorial problem with practical relevance
for a wide range of industries. In the literature, several specificities have been tackled by
dedicated methods in order to better reflect real-world situations. Following this trend, this
article addresses the fleet size and mix vehicle routing problem with time windows in which
companies hire a third-party logistics company. The shipping charges considered in this work
are calculated using step cost functions, in which values are determined according to the type
of vehicle and the total distance traveled, with fixed values for predefined distance ranges. A
mixed integer linear programmingmodel is introduced and two sequential insertion heuristics
are proposed. The introduced methods are examined through a computational comparative
analysis in small-sized instances with known optimal solution, 168 benchmark instances
from the literature, and 3 instances based on a real-world problem from the civil construction
industry. The numerical experiments show that the proposed methods are efficient and show
good performance in different scenarios.

Keywords Vehicle routing problem · Heterogeneous fleet · Time windows · Step cost
functions · Mixed integer programming model · Heuristics

1 Introduction

The vehicle routing problem (VRP) has been extensively studied due to its relevance to indus-
try and world economy. In the last decades several variants of the problem were proposed
because of the diversity of operating rules and constraints encountered in real-world appli-
cations (Vidal et al. 2014). To address the actual needs of carriers and industry, the problem
has been enriched with additional restrictions, as well as clients’ and fleet’s characteristics
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(see, for example, Sniezek and Bodin 2006; Cordeau et al. 2007; Pureza and Laporte 2008;
Kritikos and Ioannou 2013; Escobar 2014; Ehmke et al. 2016; Mao et al. 2020, and the
references therein).

This article addresses an important aspect of the VRP: the situation in which companies
hire a third-party logistics company (3PL), whose freight charges are calculated using dis-
continuous step cost functions. This problem will be called the Fleet Size and Mix Vehicle
Routing Problem with Time Windows and Step Cost functions from now on, and it will be
referred to with the acronym FSMVRPTWSC, according to the usual nomenclature. In this
problem, the company prepares its own routing, evaluating all the restrictions and freight
costs, but it does not own the vehicles that deliver the goods; the fleet belongs to a 3PL
partner. In general, such providers have a vast fleet with multiple vehicles of each kind to
offer to the clients (see, for example, UPS Fact Sheets.1) The use of logistics services allows
the company to focus on its core business and to avoid costs related to the acquisition and
maintenance of a fleet, equipment depreciation, drivers and employees’ payroll, among other
costs. Lieb and Lieb (2015) point out that, by 2013, the 3PL industry had evolved into an
important outsourcing option for logistics managers around the globe. This industry gen-
erates nearly $700 billions in annual operating revenues and it provides a broad range of
services to managers seeking not only to reduce operating costs and improve service levels,
but also, in many cases, to reduce their capital commitments by using the asset base of 3PLs.
An extensive review on the relationship between companies and 3PL partners is presented
in Marasco (2008).

The shipping charges considered in this work are calculated using step cost functions in
which values are determined according to the type of vehicle and the distance traveled, with
fixed values for predefined distance ranges, which is a convenient way to calculate and verify
these charges. To illustrate the benefit of directly considering the step cost functions, consider
the following example. There are five clients, each one with a demand of 10 units, that can be
served by vehicles of capacity 35 units departing from a central depot. Figure 1a shows the
distances between the clients and the depot. Table 1 and Fig. 2 (solid lines) present the freight
costs with four distance’s ranges. Suppose that the trend line cost(d) = 30.9+ 1.7d , shown
in Fig. 2 (dashed line), is used to compute the cost of transportation. In this case, Fig. 1b
presents the optimal solution with two vehicles traveling a total distance of 15 + 16 = 31
units. The freight table shows that the distance traveled by each vehicle is in the second
distance range. So each one costs 60 monetary units, leading to a total cost of 120. Using a
direct approach to the problem as a step cost function problem, an alternative solution can
be obtained (see Fig. 1c) with a total distance of 32 units. The distance traveled by the first
vehicle, 10 distance units, is within the first distance range with a cost of 30 and the distance
of the second vehicle, 22, is in the second range, with a cost of 60. In this case, although
the total distance is greater than in the previous solution, the total cost is 90. This example
was intended to show that there are opportunities, even in small cases, that can go unnoticed
when solving a step cost function problem using linear approximations.

The Fleet Size andMixVehicle Routing Problemwith TimeWindows (FSMVRPTW) can
be considered the problemwith the closest characteristics to the FSMVRPTWSC.Moreover,
the FSMVRPTWhas been the starting point for several studies that contribute to approximate
VRP-like problems to practice. Liu and Shen (1999)were the first to consider the combination
of the FSMVRP and the VRPTW. Their work explores some characteristics of the combined
problem to adapt the savings heuristics proposed by Golden et al. (1984) for the FSMVRP.

1 https://pressroom.ups.com/pressroom/ContentDetailsViewer.page?ConceptType=FactSheets&
id=1426321563187-193.
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Table 1 Freight costs table Distance range Cost

0 < d ≤ 10 30

10 < d ≤ 25 60

25 < d ≤ 45 100

45 < d 100 + 2(d − 45)

Fig. 1 Example with five clients and two vehicles: a spatial distribution of clients and depot; b optimal solution
using linearized costs; and c optimal solution using the actual freight cost’s table given by a step cost function
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Fig. 2 Illustration of a step cost function with four ranges and a possible linearization (trend line in the range
[0, 60]

Another important contribution made by these authors was to adjust the data sets proposed
by Solomon (1987) for the VRPTW to the FSMVRPTW. Dullaert et al. (2002) also proposed
heuristics for this problem that combine the insertion method from Solomon (1987) with the
savings concepts for fixed costs of heterogeneous fleets from Golden et al. (1984). However,
Dullaert et al. (2002) adopted as the goal to be minimized the total en-route time (excluding
the service times at clients); while in Liu and Shen (1999) the goal is given by this measure
added to the total fixed costs of the used vehicles. Dell’Amico et al. (2007) developed a
parallel regret construction heuristic that is embedded into a ruin and recreate metaheuristic.
Liu and Shen (1999) and Dullaert et al. (2002) pointed out that the FSMVRPTW is NP-hard;
therefore, through polynomial reduction, FSMVRPTWSC can also be set as NP-hard.

Many articles have also addressed the FSMVRPTW, in general through metaheuristic
approaches. For example, Bräysy et al. (2009) introduced a hybrid method that combines
threshold accepting and guided local search metaheuristics, Paraskevopoulos et al. (2008)
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implemented a tabu search within a reactive variable neighborhood search metaheuristic,
and Vidal et al. (2014) and Koç et al. (2015) developed population search based metaheuris-
tics. A comparative analysis of the performance of metaheuristic algorithms applied to the
FSMVRPTW can be found in Koç et al. (2016).

Hoff et al. (2010) presented an extensive literature review on the different types of fleet
composition and vehicle routing problems including time windows restrictions. Despite their
positive review of the addition of restrictions and real-world characteristics to the problem,
the authors claim that literature still falls short in reflecting real-world situations. In line with
this perception, the present work aims at contributing to the literature with an approach that
better reflects problems actually faced by the industry. For example, Gudehus and Kotzab
(2012) present a freight cost calculation named zonal rates in which the freight cost is fixed
per distance zone and transportation unit. As it is possible to understand distance zones and
transportation units as distance ranges and types of vehicle, respectively, this cost function
can be seen as a variation of the cost function considered in the FSMVRPTWSC, in which the
cost does not depend linearly on the traveled distance; and it is represented by a discontinuous
function. Ghiani et al. (2004) also present various motion (transportation and handling) costs
related to freight transportation. They mention (see p. 201) that “when a shipper uses a
public carrier, the cost for transporting a shipment can be calculated on the basis of the
rates published by the carrier [. . . ] usually reported in tables” and that “costs often present
discontinuities”. A practical example of a freight table that applies fixed values per distance
range can be found in a FedEx Standard List Rates2 where the delivery costs are defined
according to the distance range and the delivery weight. Different freight charging systems
are presented in the literature. However, as far as we know, no dedicated solution method has
been presented in the literature to approach a problem with freight costs calculated using a
table of distance ranges and different types of vehicles.

In this study, first a mixed integer linear programming (MILP) model is introduced to
provide a precise definition of the FSMVRPTWSC, allowing future references, new develop-
ments, and fair comparisons. Then, two sequential insertion heuristics are proposed. This kind
of approach was selected due to the fact that it was successfully applied to the FSMVRPTW
by Dullaert et al. (2002) considering the total en-route time. Moreover, the small compu-
tational effort of such kind of strategy, which is valuable in some practical applications, is
one of the drivers for this study. More specifically for VRP problems, Laporte (2009) claims
that several of the most successful metaheuristics seem to be over-engineered; this author
suggests that one should attempt to produce simpler and more flexible algorithms capable of
handling a larger variety of constraints, even if it causes minor losses in accuracy.

The rest of this manuscript is organized as follows. In the next section the focused problem
is described and a mathematical formulation is presented. The proposed heuristic methods
are introduced in Sect. 3. Section 4 describes the benchmark and the study case instances
and presents numerical experiments. The last section summarizes the main results.

2 Problem description and amathematical model

In the problem, there are n + 1 points geographically scattered, N = {0, 1, 2, . . . , n}. Each
route begins and ends at the central depot (i = 0), respecting its working hours limited by
[e0, �0]. Each client i (i = 1, 2, . . . , n) has a predetermined demand qi , a service time si ,
and the start time of the service should be within a specific time window, i.e. between time

2 http://images.fedex.com/us/smartpostguide/pdf/FXSP_ByPound_2017.pdf.
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Fig. 3 Example of step cost functions with three types of vehicles and four distance ranges

instants ei and �i . The distance di j and travel time ti j between every pair of points are known
before the routing plan is defined. There are K different types of vehicles available. Each
type of vehicle k (k = 1, 2, . . . , K ) has a load capacity ak (a1 < a2 < · · · < aK ). The cost of
each vehicle has a fixed value for each predefined distance range, i.e. each vehicle k has a cost
Ck f whether its total traveled distance varies from W f to W f +1 for f = 0, 1, 2, . . . , F − 1,
where F −1 is the penultimate distance range. The last range, F , is an exception, since it has
no upper bound and the cost grows linearly, starting from Ck,F−1, plus CkF for each unit of
distance added. Thus, given a traveled distance d > 0, the step cost function Ck for vehicle k
can be defined as

Ck(d) =
{
Ck f , if W f < d ≤ W f +1 for some f ∈ {0, 1, . . . , F − 1},
Ck,F−1 + CkF (d − WF ), if WF < d.

Figure 3 illustrates the step cost function mechanism with three types of vehicles (K = 3)
and four distance ranges (F = 4).

An MILP model for the FSMVRPTWSC is presented next. The basic elements of the
model are based on the model presented by Golden et al. (1984) for the FSMVRP. New ele-
ments are introduced in this work to consider time windows constraints and, more important,
to consider step cost functions as the freight costing method.

Minimize
V∑

v=1

Pv (1)

subject to

n∑
j=0

xv
0 j ≤ 1 v = 1, . . . , V , (2)

n∑
i=0

xv
i p −

n∑
j=0

xv
pj = 0 v = 1, . . . , V , p = 0, . . . , n, (3)

V∑
v=1

n∑
i=0

xv
i j = 1 j = 1, . . . , n, (4)
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Indexes:
p, i , j , clients,
k, type of vehicle,
v, vehicles,
f , distance range.
Parameters:
n, total number of clients,
ti j , travel time from client i to client j ,
K , number of types of vehicle available,
di j , distance from client i (depot if i = 0) to client j (depot if j = 0),
F , number of distance ranges,
si , service time at client i ,
qi , demand of client i ,
ei , earliest time to begin service of client i ,
�i , latest time to begin service in client i ,
ak , load capacity of a vehicle of type k,
W f , upper bound of the distance range f − 1,
Ck f , cost of vehicle k for distances d ∈ (W f ,W f +1] for some f = 0, 1, 2, . . . , F − 1,
CkF , slope of the linear cost of vehicle k for distances d > WF ,
V , upper bound on the number of required vehicles (defined as V = n),
M , very large positive number.
Variables:
xv
i j , 1 if vehicle v travels from i to j , 0 otherwise,
zvk f , 1 if vehicle v is of type k and travels a distance in the range f , 0 otherwise,
bi , beginning of service of client i ,
Dv

f , total distance traveled by vehicle v in the distance range f ,
Pv , cost of vehicle v.

n∑
i=0

n∑
j=1

q j x
v
i j ≤

F∑
f =0

K∑
k=1

akz
v
k f v = 1, . . . , V , (5)

bi + si + ti j − M(1 −
V∑

v=1

xv
i j ) ≤ b j i = 1, . . . , n, j = 1, . . . , n, (6)

ei ≤ bi ≤ �i i = 1, . . . , n, (7)

bi − t0i + M(1 −
V∑

v=1

xv
0i ) ≥ e0 i, . . . , n, (8)

bi + si + ti0 − M(1 −
V∑

v=1

xv
i0) ≤ �0 i = 1, . . . , n, (9)

F∑
f =1

Dv
f =

n∑
i=0

n∑
j=0

xv
i j di j v = 1, . . . , V ,

(10)

K∑
k=1

F∑
f =0

zvk f = 1 v = 1, . . . , V ,

(11)

123



Annals of Operations Research (2022) 316:1013–1038 1019

K∑
k=1

zvk0 +
n∑
j=0

xv
0 j = 1 v = 1, . . . , V ,

(12)

Dv
f ≤ W f +1

K∑
k=1

zvk f v = 1, . . . , V , f = 1, . . . , F − 1,

(13)

Dv
F ≤ M

K∑
k=1

zvkF v = 1, . . . , V ,

(14)

Dv
F ≥ WF

K∑
k=1

zvkF v = 1, . . . , V ,

(15)

Pv ≥
K∑

k=1

F−1∑
f =1

zvk f Ck f v = 1, . . . , V ,

(16)

Pv ≥ zvkFCk,F−1 + CkF (Dv
F − WF ) v = 1, . . . , V , k = 1, . . . , K ,

(17)

Dv
f ≥ 0 v = 1, . . . , V , f = 0, . . . , F,

(18)

xv
i j ∈ {0, 1} v = 1, . . . , V , i = 0, . . . , n, j = 0, . . . , n,

(19)

zvk f ∈ {0, 1} v = 1, . . . , V , k = 1, . . . , K , f = 0, . . . , F .

(20)

In the objective function (1), the total cost of the vehicles used in the routing is minimized.
Constraints (2) state that each vehicle can performatmost a single route.Constraints (3) define
that if a vehicle v visits a client p, then it has to move on to the next client or back to the
depot. Constraints (4) ensure each client to be visited by exactly one vehicle. Constraints (2),
(3), and (4) together guarantee that all routes begin and end at the depot and that they are
performed by different vehicles. Constraints (5) determine the type of vehicle v according
to the total demand associated with each route. Constraints (6) set the minimum time for
the beginning of the service in a client j by a vehicle v and avoid subtours. Constraints (7)
ensure that all clients are visited within their time windows and, specifically for the depot,
constraints (8) guarantee that no vehicle leaves the depot earlier than e0. Constraints (9)
establish that the vehicles should return to the depot before the end of its time window (�0).

The subsequent sets of constraints are particularly connected to the FSMVRPTWSC’s
attributes. Constraints (10–15) link the total distance of a route to the corresponding distance
range; while constraints (16,17) determine the cost. Constraints (10) calculate the total dis-
tance covered by each vehicle v. Constraints (11) state that each vehicle v must be of a single
type k and that its traveled distance must be within one distance range f , i.e. only one vari-
able zvk f can be equal to one. Constraints (12) determine that either the vehicle is in distance
range 0, when no distance is traveled and therefore the vehicle does not perform any route,
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or if it performs any route, it must start from the depot. Constraints (13) say that if a route is
within range f then its distance cannot exceed the range upper bound W f +1. As previously
defined, there is no maximum distance to the last range (F) so, specifically for this range,
constraints (14) limit the distance of the last range to a big M value, which is the maximum
possible distance of a route in the problem being solved. As this is a minimization problem,
it is enough to impose an upper bound on the route’s distance for assigning a route to a range.
This is because assigning an unnecessary higher range to a route increases its costs—as costs
are fixed per range, the higher the range, the more it costs. The only exception is the last
range ( f = F), whose costs are not fixed and, if lower distances are assigned to this distance
range, it might provide lower costs than it would if assigned to lower distance ranges. For this
reason, constraints (15) limit the route distance assigned to the last range (F) to be bigger
than its minimum distance.

It is relevant to notice that vehicles that do not perform any route have
∑F

f =1 D
v
f = 0

and must be allocated to range f = 0, to ensure that no cost is generated. As a matter of
fact, f = 0 is not in constraints (13)–(15), but it is in (11) and (12). When

∑F
f =1 D

v
f = 0,

restrictions (13) and (14) are inactive and restrictions (15) force zvkF = 0; this setting allows
any zvk f to be equal to one for f ranging from 0 to F − 1. As this is a minimization problem,
the best solutions will always have zvk0 = 1, since this assignment generates Pv = 0, which
is the minimum possible cost for a vehicle.

Constraints (16) and (17) define the minimum value of the cost Pv of vehicle v. Con-
straints (16) are activated only for distance ranges f where costs are fixed (1 ≤ f ≤ F − 1).
Constraints (17) are activated just for f = F , in which the cost grows linearly starting from
Ck,F−1. Sets of constraints (18–20) denote the domain of the variables.

3 Proposed heuristics

This section introduces two constructive heuristics based on the sequential insertion strategy.
The main components of the proposed heuristics are novel and specifically devised to take
advantage of the step cost functions feature. This kind of methodology was first presented by
Solomon (1987) for the VRPTW and it has been successfully adapted to many variants of the
VRP by many authors ever since. For example, Dullaert et al. (2002) proposed heuristics for
FSMVRPTW that combine the insertion method with the savings concepts considering the
total en-route time. Kritikos and Ioannou (2013) proposed a sequential insertion heuristic for
the heterogeneous fleet vehicle routing problem with time windows in which some vehicles,
under a penalty, are able to transport route demands above their capacity limit. Belfiore and
Yoshizaki (2009) investigated a real-world case where split deliveries are allowed; these
authors adapted sequential insertion heuristics and presented a scatter search approach.

The proposed heuristic procedure creates one route at a time. The route being constructed
will be referred as open route; while the already settled routes, to which no more clients can
be added, will be referred as closed routes. As a first step or whenever the open route is closed,
if there still is at least an unrouted client, an open route is created serving the farthest from
the depot unrouted client with the smallest possible vehicle. Then, the sequential insertion
heuristic evaluates which of the unrouted clients are eligible to be served in the open route,
which means evaluating which unrouted clients have a demand that can be met by the biggest
available vehicle when added to the open route’s total demand. For each eligible client, an
insertion criterion C1 is used to select the best position in the route where the client could
be added without generating an infeasible route due to time window restrictions. Next, the
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procedure calculates a criterion C2 that evaluates the advantage of having the client in this
tour instead of in an exclusive trip. The client with the largest C2 value is added to the route in
the position determined by C1. If there is no beneficial feasible insertion, the route is closed.
The procedure terminates when all clients have been assigned to routes.

Criterion C1 can be understood as the negative impact caused by adding the client to the
open route. This criterion can take into account a series of factors that can increase costs, for
example the increase in route total length and the need of a bigger andmore expensive vehicle
due to the higher demand, as well as non-financial aspects, such as additional travel time in
the route that can limit the amount of served clients. For each possible insertion position in
a route, the smaller the value of C1, the better the option is. Criterion C2 is a balance of the
benefit derived from inserting the client in the open route rather than in a direct exclusive
route from the depot to the client. If C2 is positive, it means that the addition is beneficial.
The bigger C2, the better it is to insert the client in the position of the route pointed out by C1.

Assume that the open route hasm clients. So the route consists in leaving the depot, visiting
clients i1, i2, . . . , im and returning back to the depot. For simplicity, we denote this route by
i0, i1, . . . , im, im+1, where i0 = im+1 = 0 and, thus, the total distance of the route can be
computed as D = ∑m

j=0 di j ,i j+1 . Let f be the range to which D belongs. Let Q = ∑m
j=1 qi j

be the demand of the route; and let k be the type of the smallest vehicle that can be assigned
to the route. This means that the cost C of the open route is given by Ck, f if f < F or by
Ck,F−1 +CkF (D −WF ) if f = F . The earliest beginning of the service at client i1 is given
by bi1 = max{e0+ t0,i1 , e1}, i.e. it is the maximum between the beginning of the depot’s time
window plus the time travel from the depot to the client and the beginning of the time window
of the client. For any other client ih , h = 2, . . . ,m, the earliest beginning time is given by
bih = max{bih−1 +sih−1 + tih−1,ih , eih }. If, for any client, bih � �ih then the route is infeasible.
For the open route, these constraints are satisfied, since the open route is constructed in such
a way it is always feasible. (Note that it is assumed that, for every client u (u = 1, . . . , n),
e0 + t0u ≤ �u and that there exists a vehicle type k(u) whose capacity satisfies ak(u) ≥ qu .
This means that all exclusive routes are feasible.)

Consider now an unrouted client u. There arem+1 potential places h (h = 1, . . . ,m+1)
where client u can be inserted into the route; place h corresponding to inserting u before
client ih . Suppose that client u is inserted at position h and, thus, the sequence becomes
i0, . . . , ih−1, u, ih, . . . , im+1. Then, the total demand is given by Qnew(u) = Q + qu . More-
over, we have that the earliest beginning times of the services of the clients at the route are
given by

bnewiν
(u, h) = biν , for ν = 1, . . . , h − 1,

bu = max{bih−1 + sih−1 + tih−1,u, eu},
bnewih

(u, h) = max{bu + su + tu,ih , eih },
bnewiν

(u, h) = max{biν−1 + siν−1 + tiν−1,iν , eiν }, for ν = h + 1, . . . ,m.

(21)

Insertions that do not satisfy the depot’s and the clients’ time windows or that make the
route’s demand to exceed the capacity of the vehicle with largest capacity are infeasible and
do not need to be considered. The length of the route is given by

Dnew(u, h) = D − dih−1,ih + dih−1,u + du,ih . (22)

Let f new(u, h) be the range to which Dnew(u, h) belongs; and let knew(u, h) be the type of
the smallest vehicle that can be assigned to the route. This means that the cost of the route is
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given by

Cnew(u, h) =
{
Cknew(u,h), f new(u,h), if f new(u, h) < F,

Cknew(u,h),F−1 + Cknew(u,h),F (Dnew(u, h) − WF ), if f new(u, h) = F .

(23)
The insertion of a client u into the open route depends on characteristics an exclusive route

from the depot to the client has. The distance of an exclusive route for client u is given by
2d0,u . Let f (0, u) be the range to which d0,u (half of the exclusive route’s distance) belongs;
and let k(0, u) be the type of the vehicle with smallest capacity capable of serving the route,
whose demand is given by qu . We also define P(0, u) as the cost of the one-way trip from
the depot to client u, i.e.

P(0, u) =
{
Ck(0,u), f (0,u), if f (0, u) < F,

Ck(0,u),F−1 + Ck(0,u),F (d0,u − WF ), if f (0, u) = F .
(24)

Note that, in order to evaluate an exclusive route, only half of its distance is being considered,
since it is expected the route to be extended later.

Both proposed heuristics follow the same insertion procedure, differing in the criteria used
to decide whether an unrouted client u should be inserted (at position h) of the open route.
It should be stressed that the definition of criteria C1 and C2, that determine if an insertion
of a client is advantageous or not, is the crucial component of the proposed methods. The
evaluation of these criteria considers, besides the possible increase of the total cost and time
consumed, opportunities of a better usage of the resources.

3.1 Step Cost Insertion Heuristic 1

The Step Cost Insertion Heuristic 1, henceforth called SCIH1, aims to directly exploit the
features of the studied problem. In the FSMVRPTWSC, the increase in the total distance
traveled by a vehicle may not have a direct impact on the objective function value of the
problem. This growth only affects the total cost if the updated traveled distance is within a
different distance range than previously used. If it still is within the same range, then there
is no change in the total cost. So, a heuristic procedure designed to solve this problem may
be more effective not by calculating the route distance variation, but rather by evaluating the
possible variation of the freight costs. In this heuristic, criteria C1 and C2 will be henceforth
called CS1

1 and CS1
2 , respectively.

The computation of criterion CS1
1 (u) relies on four different components. The first compo-

nent, CS1
1,1(u, h), is defined as the remaining distance in the range within which the open route

fits after the hypothetical insertion of client u at position h. Note that the larger this amount
is, the larger the open route’s potential for adding further clients without a cost increase.
This term is calculated as the difference between the total distance Dnew(u, h) of the route
after the addition of client u at position h and the upper bound W f new(u,h)+1 of the distance
range f new(u, h) to which Dnew(u, h) belongs. If f new(u, h) = F , CS1

1,1(u, h) is defined
as zero because it would be impossibility to insert further new clients to the route without
additional costs.

Similarly, a component is evaluated in CS1
1 (u) to consider the available vehicle capacity.

Note that, when a client is added, its extra demand may require a larger vehicle and, conse-
quently, lead to higher costs.However, this negative impact can be balancedby the opportunity
of having further clients added to the route keeping the same vehicle. This term, CS1

1,4(u, h),
is calculated by the difference between the total route demand Qnew(u), that considers the
addition of client u, and the capacity of the smallest vehicle type knew(u, h) able to meet
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this demand, given by aknew(u,h). The other components of CS1
1 (u), CS1

1,2(u, h) and CS1
1,3(u, h),

evaluate the delay in the beginning of the service at client ih , caused by the insertion of
client u before it, and the additional freight cost generated by the insertion, respectively. The
four elements are weighed in CS1

1 (u) by αt ∈ [0, 1] (t = 1, . . . , 4) as follows

CS1
1 (u) = min

h∈H(u)

{
−α1CS1

1,1(u, h) + α2CS1
1,2(u, h) + α3CS1

1,3(u, h) − α4CS1
1,4(u, h)

}
, (25)

where H(u) corresponds to the values of h ∈ {1, . . . ,m + 1} such that inserting client u at
position h results in a feasible open route,

CS1
1,1(u, h) =

{
W f new(u,h)+1 − Dnew(u, h), if f new(u, h) < F,

0, if f new(u, h) = F,

CS1
1,2(u, h) = bnewih

(u, h) − bih ,
CS1
1,3(u, h) = Cnew(u, h) − C,

CS1
1,4(u, h) = aknew(u,h) − Qnew(u).

(26)

Observe that, since the purpose of CS1
1 (u) is to estimate the negative impact of an insertion,

negative signs are assigned to components CS1
1,1(u, h) and CS1

1,4(u, h), that measure opportu-
nities generated by the insertion.

Aiming to evaluate the benefit of inserting client u in the open route, criterion CS1
2 (u) com-

pares the impact generated by this inclusion, given by CS1
1 (u), to the impact of an exclusive

route between client u and the depot. The first part of criterion CS1
2 (u) also has four compo-

nents, all related to an exclusive route to serve client u. The first term, CS1
2,1(u), evaluates the

remaining distance in the distance range f (0, u) after serving client u. Terms CS1
2,2(u) and

CS1
2,3(u) consider time and cost aspects, respectively; while CS1

2,4(u) evaluates the remaining
capacity of the vehicle allocated to perform the exclusive route. All these components are
balanced by weights βt ∈ [0, 1] (t = 1, . . . , 4); and criterion CS1

2 (u) is defined as

CS1
2 (u) =

[
− β1CS1

2,1(u) + β2CS1
2,2(u) + β3CS1

2,3(u) − β4CS1
2,4(u)

]
− CS1

1 (u), (27)

where

CS1
2,1(u) =

{
W f (0,u)+1 − d0u, if f (0, u) < F,

0, if f (0, u) = F,

CS1
2,2(u) = t0,u + su,

CS1
2,3(u) = P(0, u),

CS1
2,4(u) = ak(0,u) − qu .

(28)

In the definition of CS1
2,4(u), ak(0,u) is the capacity of a vehicle of type k(0, u); and, in the

definition of CS1
2,2(u), t0,u is the travel time from the depot to client u and su is the serving

time. Observe that the time consumed returning to the depot is not considered.
Algorithm 1 describes the Step Cost Insertion Heuristic 1 (SCIH1) in detail. In line 3, the

first route is open and the set U of unrouted clients is defined. The main loop, that starts in
line 4, is executed while U �= ∅. Within the loop, in line 5, the set Z ⊆ U with selected
unrouted clients is defined. It corresponds to the unrouted clients whose demand, if added
to the route’s demand, could be attended by an existent vehicle. If Z = ∅, in line 6, the
route is closed, a new route is open, and the iteration ends. If Z �= ∅, the loop from lines 10
to 17, determines, using criteria CS1

1 and CS1
2 , the client u to be inserted in the route and the

insertion’s position h. If an advantageous insertion exists, insertion is performed in line 19.
Otherwise, in line 21, the route is closed and a new route is open. In any case, at each iteration,
a client is removed from U .
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Algorithm 1 Step Cost Insertion Heuristic 1 (SCIH1).
1: Input: n, si , qi (i = 1, . . . , n), ei , �i (i = 0, . . . , n), di j , ti j (i, j = 0, . . . , n), K , ak (k = 1, . . . , K ), F ,

W f ( f = 0, . . . , F), Ck f (k = 1, . . . , K , f = 0, . . . , F), αt , βt ∈ [0, 1] (t = 1, . . . , 4).
2: Output: a set of routes R.
3: Let o = 〈i1〉 = 〈u〉 be a route containing only the farthest-from-the-depot unrouted client u ∈ {1, . . . , n},

m = 1, and Q = qu . LetU = {1, . . . , n} \ {u} be the set of unrouted clients and R = ∅ be the set of closed
routes.

4: while U �= ∅ do
5: Let Z = {u ∈ U | Q + qu ≤ aK } be the set of unrouted clients that, if added to the open route o, then

there is a vehicle large enough to serve the route.
6: if Z = ∅ then
7: Close routeo and save it in the set of closed routed, i.e. R ← R∪{o}, create a new routeo = 〈i1〉 = 〈u〉,

whereu ∈ U is the farthest-from-the-depot unrouted client, and setm = 1, Q = qu , andU ← U\{u}.
8: else
9: Cbest2 ← 0
10: for each u ∈ Z do
11: H(u) ← ∅
12: for h ← 1 to m + 1 do
13: Compute bu and bnewi1

(u, h), . . . , bnewim
(u, h) as defined in (21).

14: if bu ≤ �u and bi j ≤ �i j for j = 1, . . . ,m then H(u) ← H(u) ∪ {h}.
15: if H(u) �= ∅ then
16: ComputeCS1

1 (u) andCS1
2 (u) as defined in (25,26) and (27,28), respectively, where Dnew(u, h),

Cnew(u, h), and P(0, u) are given by (22), (23), and (24), respectively, Qnew(u) = Q + qu ,
f new(u, h) is the range to which Dnew(u, h) belongs, and knew(u, h) is the type of the smallest
vehicle that can be assigned to route o if client u is inserted at position h, and let

h∗(u) = argminh∈H(u)

{
−α1CS1

1,1(u, h) + α2CS1
1,2(u, h) + α3CS1

1,3(u, h) − α4CS1
1,4(u, h)

}
.

17: if CS1
2 (u) > Cbest2 then set ubest ← u and hbest ← h∗(u).

18: if Cbest2 �= 0 then
19: Insert ubest at position hbest of route o, i.e. let o = 〈i1, . . . , im+1〉 =

〈i1, . . . , ihbest−1, u, ihbest , . . . , im 〉 and set m ← m + 1, Q ← Q +qubest , andU ← U \ {ubest}.
20: else
21: Close route o and save it in the set of closed routed, i.e. R ← R ∪ {o}, create a new route

o = 〈i1〉 = 〈u〉, where u ∈ U is the farthest-from-the-depot unrouted client, and set m = 1,
Q = qu , and U ← U \ {u}.

22: Close route o and save it in the set of closed routed, i.e. R ← R ∪ {o}.

3.2 Step Cost Insertion Heuristic 2

Procedure SCIH2 is more judicious in assessing the opportunities generated by the insertion
of client u in the route. Note that SCHI1 calculates the remaining capacity available in the
assigned vehicle and the remaining distance within the distance range, but it does not check
whether there is an unrouted client that could benefit from these available resources. To
take such opportunities into account in the evaluation of criterion C1, SCIH2 first checks
whether there is an unrouted client that could use the opportunities left in the distance range
or vehicle capacity. Criteria C1 and C2 for this heuristic will be henceforth called CS2

1 and
CS2
2 , respectively.
Criterion CS2

1 (u) is calculated for each eligible client u. Its first term, CS2
1,1(u, h), estimates

the opportunity associated with the remaining distance in the distance range f new(u, h). To
conduct this evaluation, CS2

1,1(u, h) takes the value of the largest detour that can be made
to serve an unrouted client preserving the distance range f new(u, h). If f new(u, h) = F
then there is no opportunity and CS2

1,1(u, h) is zero. Components CS2
1,2(u, h) and CS2

1,3(u, h) are

calculated in the same way as in SCIH1. CS2
1,4(u, h) assumes the value of the largest demand
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among the unrouted clients that can be served, considering the remaining capacity of the
vehicle assigned to perform the updated route. The elements of criterion CS2

1 (u) are weighed
by parameters αt ∈ [0, 1] (t = 1, . . . , 4) as follows:

CS2
1 (u) = min

h∈H(u)

{
−α1CS2

1,1(u, h) + α2CS2
1,2(u, h) + α3CS2

1,3(u, h) − α4CS2
1,4(u, h)

}
, (29)

where

CS2
1,1(u, h) =

{
max{( j,y)∈Y1}

{
diy , j + d j,iy+1 − diy ,iy+1

}
, if f new(u, h) < F,

0, if f new(u, h) = F,

CS2
1,2(u, h) = bnewih (u, h) − bih ,

CS2
1,3(u, h) = Cnew(u, h) − C,

CS2
1,4(u, h) = max{ j∈Y2}

{q j }, (30)

Y1 =
⎧⎨
⎩( j, y)

∣∣∣∣∣∣
j unrouted,
y ∈ {0, . . . ,m}, and
diy , j + d j,iy+1 − diy ,iy+1 ≤ W f new(u,h)+1 − Dnew(u, h),

⎫⎬
⎭ (31)

and
Y2 = {

j unrouted | q j ≤ aknew(u,h) − Qnew(u)
}
. (32)

Criterion CS2
2 (u) improves CS1

2 (u) in the same way CS2
1 (u, h) improves CS1

1 (u, h). Com-
ponents of CS2

2 (u) are balanced by weights βt ∈ [0, 1] (t = 1, . . . , 4); and CS2
2 (u) is defined

as:
CS2
2 (u) =

[
− β1CS2

2,1(u) + β2CS2
2,2(u) + β3CS2

2,3(u) − β4CS2
2,4(u)

]
− CS2

1 (u), (33)

where

CS2
2,1(u) =

{
max{( j,y)∈Y3}

{
diy , j + d j,iy+1 − diy ,iy+1

}
, if f (0, u) < F,

0, if f (0, u) = F,

CS2
2,2(u) = t0u + su,

CS2
2,3(u) = P(0, u),

CS2
2,4(u) = max{ j∈Y2}{q j },

(34)

and

Y3 = {
( j, y) | j unrouted, y ∈ {0, 1}, and diy , j + d j,iy+1 − diy ,iy+1 ≤ W f(0,u)+1 − d0,u

}
.

(35)
The Step Cost InsertionHeuristic 2 (SCIH2) is similar to the one described inAlgorithm 1.

The computation of CS1
1 and CS1

2 in line 16 of Algorithm 1 must be substituted by the com-
putation of CS2

1 and CS2
2 given by (29,30) and (33,34), respectively, where sets Y1, Y2, and Y3

are given by (31), (32), and (35).

4 Numerical experiments

Computational experiments were conducted to evaluate the proposed methods. Since the
FSMVRPTWSC has not yet been studied in the literature, new instance sets were gener-
ated for this problem, based on benchmark instances for the FSMVRPTW. Moreover, three
instances based on a real-world problem were solved. All considered instances are available
in the online repository: https://github.com/jmanguino/FSMVRPTWSC/.
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4.1 Problem instance generation

The set of instances proposed by Solomon (1987) for the VRPTW consists of 56 instances
with 100 clients divided into six data types. Data sets with the prefixes “R”, “C”, and “RC”
refer to clients with random, clustered, and a mixture of random and clustered locations,
respectively. Sets named R1, C1, and RC1 have a short scheduling horizon; while sets R2,
C2, and RC2 have a long scheduling horizon. For each of these instances, Liu and Shen
(1999) introduced three different subclasses of instances, characterized by different vehicle
costs: type a with high vehicle costs, type b with medium vehicle costs, and type c with low
vehicle costs. Combining each VRPTW instance with the three categories of vehicle costs,
168 instances for the FSMVRPTW were obtained. The main characteristics of the original
benchmark sets were maintained in the benchmark sets for the FSMVRPTWSC.

The adjustment to the data was to turn the cost structure from fixed costs per vehicle plus
linear costs per distance traveled to a step cost structure. In line with the literature, in which
cost is proportional to distance, the cost attributed to each distance range is a function of
its length. More precisely, the cost associated with each distance range f is the cost of the
previous one ( f − 1) plus the size of the considered range multiplied by a cost factor, for all
ranges from f = 2 to F − 1. For the first distance range, the cost is set to the value of the
fixed cost defined in Liu and Shen (1999) for each vehicle, while for the last range, where
costs are calculated through a linear function of the distance, only the line slope is set. The
number of distance ranges (F) is defined according to the scheduling horizon. For the group
with a short scheduling horizon, five distance ranges are set; while for the group with long
scheduling horizon, six distance ranges are created.

4.2 Computational results

Codes were written in C programming language and tests were conducted on a Intel Core
i7-7600U 2.8GHz with 16GB of RAM memory.

Preliminary tests were conducted on a reduced set of instances in order to select αt and βt

(t = 1, . . . , 4) for each proposed method. In the data set there are 3 types of vehicles (a, b,
and c), 3 types of clients’ spatial distribution (R,C, andRC), and 2 types of scheduling horizon
(1 and 2); meaning that there are 18 different types of instances combining these 3 attributes
(see the first column in Table 3). While the whole test set has 168 instances distributed
among those 18 types; in the preliminary numerical experiments a subset was considered
containing 3 instances of each type, i.e. 54 instances. Since it is natural to assume that
the spatial distribution of the clients strongly affects the selection of the parameters, it was
decided to select a combination of α and β for each different clients’ spatial distribution R,
C, and RC. The 18 instances of a considered type of clients’ spatial distribution were solved
by each heuristic with all combinations of α and β assuming values from 0 to 1 with step
size 0.1. The average of the obtained objective function values for each combination of α

and β was computed; and combinations were ranked from the best to the worst (see Fig. 4).
Figure 4 shows that the top 500 combinations of parameters α and β deliver solutions that
differ (in average) up to 4% with respect to the solutions obtained by the best combination.
As an additional information, Fig. 5 displays the box plot of the distribution of α and β for
the top 50 combinations. The figure shows that the parameters have a small variability; they
are concentrated around the median and present very few outliers (represented by dots in the
chart). Analogous conclusions apply to the other heuristics and scenarios.
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Fig. 4 Ranking of SCIH2 with 500 different combinations of parameters α and β when applied to instances
with a clients’ spatial distribution of type R

Fig. 5 Box plot of parameters α and β considering the top 50 combinations in SCIH2 applied to instances
with a clients’ spatial distribution of type R

Table 2 presents the best combinations of parameters for each instance set and heuristic,
which are used in all following evaluations. It is relevant to note that parameter α2 takes value
zero in all considered heuristics. This is probably due to the fact that, in the FSMVRPTWSC,
the additional time consumed due the insertion of a new client can impair compliance with
time window constraints, but there is no guarantee that this insertion will increase the cost
of the route. An additional numerical experiment, not being reported here in details, showed
that considering a single combination of α and β for all the instances (independently of the
spatial distribution of the clients) produces a deterioration of approximately 3% in the quality
of the solutions found.

For a solution quality comparison of the proposed heuristics, other well-known methods
for the FSMVRPTW were also evaluated. The Adapted Combined Savings (ACS) method,
introduced by Dullaert et al. (2002), and the version MROS−λ−η of the Savings Heuristic
(SH) adapted by Liu and Shen (1999) were implemented. Parameters of ACS and SH were
tunned considering all the 168 instances included in the comparison. Among the parameters
suggested by the authors, the combination that produced the lowest average of the final value
of the objective function was used in the comparison. Table 3 shows the results. The first two
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Table 2 Values of weights α1,
α2, α3, α4, β1, β2, β3, and β4 for
each heuristic and scenario

Heuristic Sets α1 α2 α3 α4 β1 β2 β3 β4

SCIH1 R1, R2 0.1 0.0 0.9 0.2 0.1 0.0 0.5 0.1

C1, C2 0.4 0.0 0.9 0.1 0.0 0.1 0.3 0.1

RC1, RC2 0.2 0.0 1.0 0.1 0.0 0.3 0.1 0.1

SCIH2 R1, R2 0.1 0.0 0.9 0.1 0.0 0.2 0.5 0.4

C1, C2 0.4 0.0 1.0 0.1 0.0 0.1 0.2 0.3

RC1, RC2 0.2 0.0 1.0 0.1 0.1 0.3 0.3 0.2

columns indicate the group of instances and the number of instances it includes, respectively.
The next four columns present the average value of the total cost (Avg.) and the percentage
of best solutions (%best) obtained by ACS, SH, SCIH1, and SCIH2. The best solution is
the one that presents the smallest total cost compared to the solutions found by the other
methods; and %best is the percentage of best solutions each method found (over the whole
set of instances). The bold values in the table correspond to the best results for each set,
i.e. the largest %best value or the smallest average result. All analyzed heuristics presented
similar runtimes with an average CPU time per instance smaller than 0.1 s.

The figures in Table 3 show that, considering themeasure%best and the average total cost,
SCIH1 and SCIH2 are superior to the other methods analyzed, outperforming the benchmark
SH and ACS methods. These results were expected, since SCIH1 and SCIH2 take into
consideration specific features of the FSMVRPTWSC, and assess future opportunities related
to the insertion of clients in the routes. ACS and SHheuristics showed an inferior performance
in the tests, since these methods did not find any best result and obtained an average total
cost 27% and 25% worse than the best average result, respectively.

Analyzing the best two methods, namely SCIH1 and SCIH2, it can be observed that both
heuristics showed comparable performances. SCIH2 achieved the highest percentage of best
solutions, approximately 60%; although, considering the 168 instances, the average total
cost was 0.07% greater than the one obtained by SCIH1. The largest average cost difference
was found in set R2a, where SCIH1 provided an average value 4.8% better than SCIH2.
Aiming to identify statistically significant differences among the heuristics, statistical tests
were conducted using the results (total cost) provided by each method for the 168 benchmark
problems. First, using the Kolmogorov-Smirnov test, it was verified that the data do not
follow a normal distribution. Next, by applying theWilcoxon signed rank test, methods were
compared one-on-one and the assumptions that say that SCIH1 and SCIH2 behave similarly
and that they differ from SH and ACS were confirmed with a 1% significance level.
Analysis of optimal results

To improve the evaluation of the proposed heuristics, a comparative study was conducted
with optimal solutions provided by the resolution of the MILP model introduced in Sect. 2.
Due to the difficulty in obtaining optimal solutions for the instances in the original data set,
a new set with small-sized instances was constructed. This set is composed of instances with
the same characteristics of the 168 benchmark problems, i.e. three spatial distributions (R,
C, and RC), a long and a short scheduling horizon (1 and 2), and different vehicle costs
(a, b, and c), but with fewer clients. Preliminary tests were performed and the software
CPLEX 12.6, using its standard parameters’ configuration and a suboptimality tolerance
level of 0.5%, was not able to solve problems with 30 clients within the time limit of 2h.
Therefore, for each combination of characteristics, four different numbers of clients were
used: 10, 15, 20, and 25, in a total of 72 test instances.
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Table 3 Average total cost and percentage of best solutions obtained byACS,SH,SCIH1, andSCIH2heuristics
in each data set

Set name Number of
instances

ACS SH SCIH1 SCIH2

Avg. %best Avg. %best Avg. %best Avg. %best

C1a 9 6593.9 0.0 7113.3 0.0 6171.2 44.4 6173.9 55.6

C1b 9 2035.3 0.0 1824.4 0.0 1611.2 11.1 1601.4 88.9

C1c 9 1352.3 0.0 1178.5 0.0 1041.2 22.2 1022.4 88.9

C1 27 3327.1 0.0 3372.0 0.0 2941.2 25.9 2932.6 77.8

C2a 8 7762.6 0.0 7758.5 0.0 5315.6 50.0 5309.1 62.5

C2b 8 1893.2 0.0 1858.5 0.0 1315.6 50.0 1309.1 62.5

C2c 8 1118.5 0.0 1127.8 0.0 792.8 100.0 851.9 0.0

C2 24 3591.4 0.0 3581.6 0.0 2474.7 66.7 2490.0 41.7

R1a 12 3180.7 0.0 3144.5 0.0 3001.5 0.0 2889.5 100.0

R1b 12 1013.6 0.0 911.9 0.0 836.4 0.0 808.6 100.0

R1c 12 695.1 0.0 616.6 0.0 547.3 83.3 557.4 25.0

R1 36 1629.8 0.0 1557.7 0.0 1461.7 27.8 1418.5 75.0

R2a 11 3640.6 0.0 4116.9 0.0 2826.6 54.5 2968.0 45.5

R2b 11 1454.9 0.0 1127.8 0.0 911.4 72.7 940.6 27.3

R2c 11 1094.7 0.0 756.4 0.0 641.8 63.6 647.3 36.4

R2 33 2063.4 0.0 2000.4 0.0 1459.9 63.6 1518.6 36.4

RC1a 8 3863.0 0.0 4484.5 0.0 3365.8 50.0 3350.7 50.0

RC1b 8 1242.7 0.0 1279.7 0.0 1071.8 25.0 1064.3 75.0

RC1c 8 839.1 0.0 829.3 0.0 711.6 12.5 694.6 87.5

RC1 24 1981.6 0.0 2197.8 0.0 1716.4 29.2 1703.2 70.8

RC2a 8 3748.7 0.0 3752.8 0.0 3169.3 50.0 3167.8 50.0

RC2b 8 1541.0 0.0 1193.1 0.0 872.3 37.5 868.5 62.5

RC2c 8 1167.1 0.0 854.4 0.0 538.4 62.5 546.3 50.0

RC2 24 2152.3 0.0 1933.4 0.0 1526.6 50.0 1527.5 54.2

Avg. total cost 2392.9 2370.5 1889.5 1890.8

%best 0.0 0.0 43.5 59.5

With the mentioned software configuration and time limit, all instances with 10 clients (18
instances), 72.2% of the instances with 15 clients (13 instances), 50% of the instances with 20
clients (9 instances), and 11% of the instances with 25 clients (2 instances) were optimally
solved.Methods SCIH1, SCIH2,ACS, and SHwere applied to these 42 small-sized instances.
Figure 6 displays the results. In this chart, the x-axis shows the percentage difference between
the solution values obtained by the methods and the known optimal value. The y-axis shows
the proportion of instances for which the analyzed method has found solutions with values
up to the corresponding deviation of the x-axis.

As shown in Fig. 6, SCIH1 has found the optimal results in 21% of the instances; in 45%
of the instances the deviation from the optimal value was less than or equal to 5%; and in 67%
of the instances, the maximum deviation from the optimal value was 10%. SCIH1 and SCIH2
showed similar performance, but SCIH2 was frequently outperformed by SCIH1. Optimal
values were found by SCIH2 in almost 24% of the instances and the average deviation of
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Fig. 6 Chart with the cumulative percentage of instances for which the solution found by a constructive
heuristic is under a percentage deviation from the optimal value

this method from the optimal values was 10.3%; while the average deviation presented by
SCIH1 was 8.4%. The combined analysis of Fig. 6, Table 3, and the statistical test suggests
that the proposed heuristics show similar performance levels.

Figure 6 also shows that the ACS and SH heuristics were outperformed by the proposed
methods. SH performed better than ACS. It obtained an average deviation from the optimal
values of 12.3%; while the average deviation presented by ACS was 23.8%.
Local improvement strategy

Constructive heuristics are commonly used to provide initial solutions to local search
strategies. In this context, it may be argued that, the smaller the improvement provided by the
local search, the stronger the constructive heuristic that provided the initial solution.With this
purpose in mind, a local search (LS) was implemented. Two commonly used moves, namely,
relocate and cross (see, for example, Bräysy and Gendreau 2005; Vidal et al. 2013, and the
references therein) were considered. The initial solution is given by the solution obtained by
one of the proposed constructive heuristics; the best movement strategy is used to select the
next neighbor solution, and the local search stops when no improving solution is found.

The relocate movement relocates a selected client by removing it from its current position
and re-inserting it back in a different position of the same route or even in a different route.
Figure 7 illustrates this movement. In the process of inserting the client back, every position
in every route is considered; and the feasible insertion that causes the smallest increase in the
objective function is selected. In case of a tie, the position/route that causes the least increase
in the route’s length is chosen. The clients’ time windows and the capacity of the vehicle
with largest capacity determine the feasibility of the insertion of a client in a route. Clients
are selected for relocation one at a time; and the neighborhood is defined by the attempt of
relocating a predefined number of clients. Clients selected for relocation are the ones that,
when individually removed, cause the biggest reduction in the objective function; and, in
case of ties, the clients that promote the biggest reduction in their route’s length are chosen.

The crossmovement exchanges random sequences of clients of two different routes (Fig. 8
illustrates this movement). Two sequences (route, initial position in the route, and length of
the sequence) are randomly selected. If exchanging the two sequences produces a feasible
solution (i.e. a solution that satisfies the clients’ time windows and the capacity of the vehicle
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Fig. 7 Illustration of the relocate movement

Fig. 8 Illustration of the cross movement

with largest capacity) then the objective function is evaluated. The neighborhood is defined
by the attempt of exchanging a predefined number of random sequences.

Preliminary experiments were done to determine the size of the neighborhoods (number
of clients whose relocation is checked in the relocate movement and number of sequences
exchanges in the cross movement). Then, a comparison between the LS associated with the
relocate movement and the LS associated with cross movement was conducted by applying
both combinations to the 168 benchmark instances. The best results, in terms of solutions’
quality, were obtained by the use of the relocate movement considering the possible reallo-
cation of 40% of the clients in each neighborhood. Table 4 presents a comparison between
the LS algorithm associated with the relocate movement and SCHI1, SCHI2, ACS, and SH
methods. More specifically, the table shows the improvement obtained by the local search
when the solution found by each one of the constructive heuristics is used as initial solution.
For each set of instances, the table shows the average objective function’s value obtained by
the constructive heuristic, the average objective function’s value obtained by the LS, and the
average improvement (%imp). All combinations of constructive heuristic plus local search
presented an average CPU time per instance smaller than 0.1 s. Figures in bold correspond
to the best average results. Figures in the table show that an average improvement of approx-
imately 1.5% is achieved by the local search strategy when using solutions provided by the
proposed methods as initial solution. On the other hand, the LS algorithm, when applied to
the solutions provided by ACS and SH, obtained improvements up to 26% (see ACS in the
set of RC2c instances), with an average improvement of almost 9%. It is worth noting that,
despite this improvement, the best average values of the objective function were obtained by
combining the local search with the proposed heuristics SCHI1 and SCHI2.

4.3 Study case

In this section, the application of the proposed heuristics in three instances based on a real-
world problem of a Brazilian industry that produces cement and other civil construction
materials is presented. In the company, the routing is executed daily. Every day, by the end
of the working day, demands for the next day are already known. Stock levels for fulfilling
the demands are verified, orders are determined, and the routing problem is solved. Clients’
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Table 5 Dimension overview of the study case instances

Instance Number of clients Total demand (ton) Average distance (km)

1 104 789.2 39.1

2 132 693.8 50.2

3 110 714.7 52.3

Table 6 Freight table for the study case instances

Vehicle Distances’ range (km)

Type Capacity [0, 20] (20, 40] (40, 60] (60, 100] (100, 150]
1 8 200.0 250.0 300.0 400.0 550.0

2 14 400.0 450.0 500.0 600.0 750.0

3 20 550.0 600.0 650.0 750.0 900.0

time windows are from 7 am to 5 pm, since they are mostly construction sites. The time
for servicing each client is 1.5 h. Table 5 presents an overview of the study case instance’s
dimensions. The table shows the number of clients, the total demand, and the average distance
of each client to the depot. Figure 9 illustrates the clients’ locations of instance 1. Table 6
presents the freight costs table. There are three different vehicles with capacities of 8, 14,
and 20 ton each and five distance ranges. The fixed costs for each combination of distance
range and vehicle are presented in monetary units. For routes with more than 150km, the
cost is given by the cost of the (100, 150] range plus one monetary unit per kilometer.

The three instances were first solved by all analyzed constructive heuristics; and the
solutions found were used as initial solution for the local search strategy with the relocate
movement. The values of α and β in SCIH1 and SCIH2 were the same as in the benchmark
instances setR2, since the study case instances have abroad timewindowand the geographical
distribution of the clients includes areas with spread out clients. Methods were run in the
same computer environment described in Sect. 4.2, and the elapsed CPU time for solving
each instance was always smaller than 0.1 s. Table 7 shows the results. The top half of the
table shows the total cost and the number of routes in the solutions reported by the company
(column “Reported”) and the total cost and the number of routes in the solutions obtained by
the constructive heuristics, i.e.ACS,SH,SCIH1, andSCIH2. In the bottomhalf of the table the
total cost and the number of routes in the solutions obtained after the application of the local
search method are presented. Figures in the table show that the proposed heuristics, SCIH1
and SCIH2, provide the best total cost values. These methods obtained a total cost reduction
of 12.7% and 13.8%, respectively, with respect to the solutions reported by the company.
After the application of the local search strategy, as expected, the total cost provided by all
constructive heuristics was improved. In particular, the total cost obtained by the local search
associated with SCIH2 produced a 14.5% reduction with respect to the reported solutions.

It is worth mentioning that SH and ACS, despite generating total costs higher than the
ones obtained by SCIH1 and SCIH2 proposed methods, obtained solutions with a smaller
number of routes. This is probably due to the fact that these methods tend to over accumulate
clients in long routes with large-capacity vehicles, as they are designed to make better use of
the vehicle’s available capacity without recognizing that moving to higher distance ranges
may significantly increase the cost. In average, only 4.7% of the routes in the ACS solutions
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Fig. 9 Clients’ location for instance 1 of the study case

are associated with the smallest vehicle’s type (8 ton); while, in the solutions generated by
the SCIH2 heuristic, 29.6% of the routes are associated with the smallest vehicle’s type.

5 Conclusion

TheFleet Size andMixVehicleRouting ProblemwithTimeWindows andStepCost functions
was addressed in this work. In the considered problem, freight charges are predefined in a
table that only requires information on the type of vehicle and the distance the vehicle must
travel—a convenient way to calculate and verify costs. In the literature, a wide range of
variations of routing problem is studied. However, to the best of the authors’ knowledge, no
research study has addressed this problem.

A mixed integer linear programming model and two sequential insertion heuristics were
proposed to approach the problem. The heuristic methods were evaluated in a set of 168
instances based on benchmark instances from the literature. Moreover, small-sized instances
were generated so they can be solved to optimality through the resolution of the MILP
model. The numerical results showed that the proposed methods outperformed other well-
known constructive heuristic methods that apply to the FSMVRPTW. The comparison with
optimal solutions was also encouraging. The proposed heuristics delivered solutions that
were, in average, 9.4% far from the optimal solution; and SCIH2 found an optimal solution
in almost 24% of the small-sized instances. With the purpose of checking the strength of
the constructive heuristics, solutions obtained by them were used as initial solutions for a
local search, which was able to improve solutions in, in average, 1.5%. Additionally, a study
case with three instances based on a real-world problem from the construction industry was
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performed. Results corroborated the effectiveness of the introduced methods in generating a
cost reduction in the delivery of goods in real-world situations in which step cost functions
are applied.

The short execution time of the proposed methodologies motivates its application in prac-
tical routing problems, e.g. in real-time routing software, or to construct initial solutions for
more elaborate methods such as metaheuristics. Moreover, efficient constructive approaches
that take into account properties of the problem at handmay be seen as the foundation ofmore
sophisticated semi-enumerative approaches like beam search algorithms (see, for example,
Birgin et al. 2015). It should also be pointed out that this work sets the ground for the study
of vehicle routing problems from a new perspective, not the fleet owner’s but rather the
transportation-provider clients’.
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