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Abstract
In this paper, we consider amultiple objective optimization problemwhose decision variables
and parameters are intervals. Existence of solution of this problem is studied by parameteriz-
ing the intervals. Amethodology is developed to find the tω-efficient solution of the problem.
The original problem is transformed to an equivalent deterministic problem and the relation
between solutions of both is established. Finally, the methodology is verified in numerical
examples.

Keywords Non-linear optimization problem · Interval valued function · Interval
optimization problem · Efficient solution

Mathematics Subject Classification 90C25 · 90C29 · 90C30

1 Introduction

In a conventional multi-objective decision-making problem, the coefficients in the objective
functions and constraints are usually fixed real numbers. However, in most of the real-life
situations these parameters are not exactly known because relevant data are inconsistent, or
scarce, or difficult to obtain, or estimate. In an optimizationmodel, such types of uncertainties
are usually measured by probability theory or possibility theory. However, in some cases,
it is very difficult to specify the probability/possibility distributions of these parameters. To
overcome these difficulties, the uncertain parameters may be assumed to be closed intervals.

Existing literature shows that, multi-objective linear programming problems with inter-
val coefficients have been studied by Bitran (1980), Inuiguchi and Sakawa (1996), Urli and
Nadeau (1992), Oliveira and Antunes (2007), Hladik (2008), Oliveira and Antunes (2009),
Rivaz and Yaghoobi (2013) and Roy et al. (2017). Using deterministic multi-objective pro-
gramming, Chanas and Kuchta (1996) discussed the generalized perceptions of the solution
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methodology of the linear programming problem with interval parameters in the objective
function based on preference relations between intervals. In which they have been gener-
alized the preference relations of intervals by considering two parameters t0, t1 ∈ [0, 1].
Nonlinear multi-objective interval optimization problem (MIOP) has been studied by Wu
(2009), Soares et al. (2009), Gong et al. (2013) and Wu (2009) has examined the condi-
tions for the existence of solution of anMIOP whose objective functions are interval valued
functions, and whose all constraints are real valued functions. Gong et al. (2013) has been
established an interactive evolutionary algorithm to obtain a set of non-dominated solutions.
Rivaz et al. (2016) established a methodology for the mini-max regret solution to multi-
objective interval linear programming problems, wherein only coefficients in the objective
functions as interval. Bhurjee and Panda (2014, 2016, 2019) discussed the conditions for the
existence of the solution of MIOP model whose objective functions, as well as constraints,
are nonlinear interval valued functions. Li et al. (2019) considered multiple objective inter-
val linear programming problem and solved it with an admissible order. Sun et al. (2019)
proposed an evolutionary algorithms known as memetic algorithm to obtain efficient solu-
tion of MIOP with good convergence and even distribution. Recently, the necessary and
sufficient Karush–Kuhn–Tucker optimality conditions for some types of optimal solutions
of the convex semi-infinite programming with multiple interval-valued objective functions
are investigated by Tung (2020). They also have discussed the duality theory for the prob-
lem. One may observe in the above mentioned developments that the decision variables of
these models are real variables and the coefficients are intervals. However, Kuchta (2011)
has introduced a solution technique to determine a temporary interval solution of the deter-
ministic multi-objective linear programming problem (i.e. the parameters of the problem are
not in the form of intervals). In this technique, the author has prepared an initial solution in
the form of interval value of decision variables by himself to implement an entire range of
solutions, despite the fact that the final one will be a crisp value. It is also seen that in some
of the real-world problems, e.g. in portfolio selection (Kumar et al. 2016, 2018), waste water
management problem, project scheduling, etc., decision variables may vary in intervals. One
can also see that the solution of the interval equation, [a, b]x = [c, d] is not necessarily a
real number. For example if [2, 3]x = [1, 4] then x = [ 13 , 4

2 ]. In fact, solution of the interval
equation [a, b]x = [c, d] is the set

{
t ∈ R|αt = β, a ≤ α ≤ b, c ≤ β ≤ d

}
, which

is an interval [see Huang and Moore (1993)]. Similarly, the inequality [a, b]x � [c, d] is
the set

{
t ∈ R|αt ≤ β;α ∈ [a, b], β ∈ [c, d]

}
. That is, solution of an interval equation

or inequations is an interval instead of being a single point. So the decision variables of an
interval optimization problem are not necessarily fixed real numbers. Hence it might be nec-
essary to consider interval decision variables instead of real decision variables in an interval
optimization problem. This has motivated us to study an enhanced version of multi-objective
optimization problem, in which uncertainties in interval form are associated with the coeffi-
cients as well as decision variables. A general form of this type problem is stated in Sect. 3.
Henceforth this problem will be referred as MEIOP throughout the article. Two types of
uncertainties are associated with this problem: one due to the presence of intervals in the
model and another due to the conflicting nature of the objective functions. To address these
two important aspects, we have introduced the concept of tω-efficient solution and studied
the existence of such solution ofMEIOP.

This paper is organized as follows. First, Sect. 2 reviews some preliminary knowledge
about interval analysis. In Sect. 3, multi-objective enhanced interval optimization problem
is proposed. Then, tω-efficient solution is defined and the existence of the such solution of
MEIOP is discussed.At the last of the section,we present numerical examples to demonstrate
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the proposed methodology. Finally, the concluding remarks and future research directions
are provided in Sect. 4.

2 Notations and preliminaries

– For two real vectors x = (x1, x2, . . . , xn)T , y = (y1, y2, . . . , yn)T in Rn , we denote

x �v y ⇔ xi ≥ yi ; x �v y ⇔ xi ≤ yi ; x >v y ⇔ xi > yi ; x <v y ⇔ xi < yi , i

= 1, 2, . . . , n.

– A closed interval A is denoted by a bold capital letter and represented by [aL , aR] with
aL ≤ aR , where aL and aR are lower and upper bounds of A. In case aL = aR , A is
called degenerate interval. The set of all closed intervals on R is denoted by I(R). A
closed interval is said to be non-negative if aL ≥ 0 and set of all non-negative closed
intervals in R is represented by I(R+). Set of all negative closed intervals (aR < 0) in
R is denoted by I(R−).

– An interval can be expressed in terms of a parameter in several ways. Any point in A
may be expressed as at , where at = aL + t(aR − aL ), t ∈ [0, 1]. Throughout this paper,
we consider a specific parametric representation of an interval as A = [aL , aR] = {at |
t ∈ [0, 1]}.

– Following notations are used through out the paper :
(I(R))k= The product space I(R) × I(R) × . . . × I(R)︸ ︷︷ ︸

k times

;

the k−dimensional interval vector is represented as Ck
v ∈ (I(R))k , Ck

v = (C1,C2, . . . ,

Ck)
T , C j = [cLj , cRj ], j ∈ Λk; Λk = {1, 2, . . . , k}; where symbol v indicates vector.

– Ck
v ∈ (I(R))k is the set of real vectors,
{
ct | ct = (c1t1 , c

2
t2 , . . . , c

k
tk )

T , c j
t j

= cLj + t j (cRj − cLj ), t = (t1, t2, . . . , tk)T , 0

≤ t j ≤ 1, j ∈ Λk

}
. (1)

The binary operation � between two closed intervals A = [aL , aR] and B = [bL , bR] in
I(R) is defined to be A � B = {a ∗ b : a ∈ A, b ∈ B}, where ∗ ∈ {+,−, ·, /}. In the case
of division, A � B, it is assumed that 0 /∈ B. In the classical form, the algebraic operations
of intervals are defined in terms of either lower and upper bound or mean and spread of
the intervals. These interval operations can also be performed with respect to parameters as
follows.

A � B =
{
at1 ∗ bt2 | t1, t2 ∈ [0, 1]

}
≡

[
min
t1, t2

(at1 ∗ bt2), max
t1, t2

(at1 ∗ bt2)
]
.

Hence, we have

A ⊕ B ={at1 + bt2 | t1, t2 ∈ [0, 1]} ≡ [aL + bL , aR + bR],
A � B ={at1 − bt2 | t1, t2 ∈ [0, 1]} ≡ [aL − bR, aR − bL ],
A � B ={at1 · bt2 | t1, t2 ∈ [0, 1]} ≡

[
min
t1, t2

(at1 · bt2), max
t1, t2

(at1 · bt2)
]
,

A � B =
{
at1/bt2 | t1, t2 ∈ [0, 1], bt2 = 0

}
≡

[
min
t1, t2

(at1/bt2), max
t1, t2

(at1/bt2)
]
,
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kA ={kat | t ∈ [0, 1]} ≡ [min
t

(kat ), max
t

(kat )], k ∈ R.

The set of closed intervals, I(R) is not a totally order set. Several partial order relations exist
on I(R) in the literature [see Moore (1966), Ishibuchi and Tanaka (1990)]. Here we consider
a partial ordering due to Bhurjee and Panda (2012) defined as follows.

Definition 1 (Bhurjee and Panda 2012) For A,B ∈ I(R), at ∈ A and bt ∈ B

A � B if and only if at ≤ bt ∀ t ∈ [0, 1],
A ≺ B if and only if at < bt for at least one t ∈ [0, 1],
A = B if and only if at = bt for at least one t ∈ [0, 1]. (2)

Note thatA � B is not same as B�A � 0. For example [3, 5] � [4, 9], but [4, 9]� [3, 5] =
[−1, 6] � 0.

An interval-valued function can be defined as the extension of real-valued function with
one or more interval arguments onto an interval, see Moore (1966) and Hansen (2004).
Ishibuchi and Tanaka (1990) are considered the interval valued function F : Rn → I(R)

as F(x) = [FL(x), FR(x)], where FL , FR : Rn → R, FL(x) ≤ FR(x) ∀x ∈ Rn .

This can be further extended crisp real variables to interval variables in a function that
means F : (I(R))n → I(R) in the place of Rn → I(R). Denote n-component as Xn

v =
([x L1 , x R1 ], [x L2 , x R2 ], ..., [x Ln , x Rn ])T ∈ (I(R))n , the interval valued function with unknown
variables in the form of closed intervals is defined as follows.

Definition 2 For given Ck
v ∈ (I(R))k , an interval valued function FCk

v
: (I(R))n → I(R) is

represented by

FCk
v
(Xn

v) =
{
fct (xω)

∣∣∣ fct : Rn → R, ct ∈ Ck
v, xω ∈ Xn

v

}
,

where xω = (
xω1 , xω2 , . . . , xωn

)
, xω j = x Lj +ω j (x Rj − x Lj ), for all j = 1, 2, . . . , n. Denote

x L = (x L1 , x L2 , . . . , x Ln )T , x R = (x R1 , x R2 , . . . , x Rn )T ; xω = x L + ωT (x R − x L), ω =
(ω1, ω2, . . . , ωn)

T ∈ [0, 1]n . For every fixed Xn
v ∈ (I(R))n , fct is continuous in t ∈ [0, 1]n ,

so for every fixed (x L , x R) ∈ Rn × Rn , fct (xω) is continuous in (t, ω) ∈ [0, 1]k × [0, 1]n .
In this case min

t,ω
fct (xω) and max

t,ω
fct (xω) exist and

FCk
v
(Xn

v) =
[
min
t,ω

fct (xω), max
t,ω

fct (xω)
]
.

Example 1 For C3
v = ([1, 2], [−1, 1], [0, 3])T ∈ (I(R))3, the interval valued function FC3

v
:

(I(R+))2 → I(R) is

FC3
v
(X1,X2) =[1, 2] ⊗ X2

1 ⊕ [−1, 1] ⊗ e[0,3]⊗X2

= {
fct (xω1 , xω2)

∣∣ ct ∈ C3
v, xω1 ∈ X1, xω2 ∈ X2

}
,

where fct (xω1 , xω2) = (1 + t1)(xω1)
2 + (−1 + 2t2)e(3t3)(xω2 ), t = (t1, t2, t3)T ∈ [0, 1]3,

and X1 = [x L1 , x R1 ], X2 = [x L2 , x R2 ], xω1 = x L1 + ω1(x R1 − x L1 ), xω2 = x L2 + ω2(x R2 − x L2 ),

ω = (ω1, ω2)
T ∈ [0, 1]2. Accordingly,

min
t,ω

fct (xω1 , xω2) =min
t

{(1 + t1)(x
L
1 )2 + (−1 + 2t2)} = (x L1 )2 − 1,

max
t,ω

fct (xω1 , xω2) =max
t

{(1 + t1)(x
R
1 )2 + (−1 + 2t2)e

(3t3)(x R2 )} = 2(x R1 )2 + e3x
R
2 .
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Hence

FC3
v
(X1,X2) = [min

t,ω
fct (xω1 , xω2), max

t,ω
fct (xω1 , xω2)] = [(x L1 )2 − 1, 2(x R1 )2 + e3x

R
2 ].

The concept of convexity plays an important role in the existence of solution of an optimiza-
tion problem. Therefore, we define the convexity for interval valued function as follows.

Definition 3 Interval convex set: A non-empty set D ⊆ (I(R))n is said to be convex if for
every Xn

v,Y
n
v ∈ D and 0 ≤ λ ≤ 1, then

(λXn
v ⊕ (1 − λ)Yn

v) ∈ D.

Example 2 Let E ⊆ (I(R))2 be a non-empty set of real closed interval vectors with unit width
of each components. Suppose for anyX2

v,Y
2
v ∈ E and 0 ≤ λ ≤ 1, then λX2

v ⊕(1−λ)Y2
v ∈ E .

Hence, E is a convex set.

Definition 4 Interval valued convex function: Suppose D ⊆ (I(R))n is a convex set. For
given Ck

v ∈ (I(R))k , the interval valued function FCk
v

: D → I(R) is said to be convex with
respect to � if for every Xn

v,Y
n
v ∈ D, and 0 ≤ λ ≤ 1,

FCk
v
(λXn

v ⊕ (1 − λ)Yn
v) � λFCk

v
(Xn

v) ⊕ (1 − λ)FCk
v
(Yn

v).

Remark 1 From (2) and definition of interval valued convex function, one may observe that
FCk

v
is convex with respect to � means fct (λxω + (1− λ)yω) ≤ λ fct (xω) + (1− λ) fct (yω),

for all t ∈ [0, 1]k , xω ∈ Xn
v, yω ∈ Yn

v and ω ∈ [0, 1]n . So we can conclude that FCk
v
is convex

with respect to � if and only if fct (xω) is a convex function on D for every t ∈ [0, 1]k and
ω ∈ [0, 1]n .

Example 3 Consider an interval valued function FC3
v

: E → I(R), E ⊆ (I(R+))2 as

FC3
v
(X1,X2) = [1, 2] ⊗ X2

1 ⊕ [2, 3] ⊗ X2
2 ⊕ [1, 2].

The parametric form of FC3
v
is

fct1 (xω1 , xω2) = (1 + t11 )(xω1)
2 + (2 + t12 )(xω2)

2 + (1 + t13 ),

where xω j = x Lj + ω j (x Rj − x Lj ), j = 1, 2, t1 = (t11 , t12 , t13 )T ∈ [0, 1]3, ω1, ω2 ∈ [0, 1].
It can be observed that fct1 (xω1 , xω2) is convex function in E for every t1 = (t11 , t12 , t13 )T ∈
[0, 1]3, ω1, ω2 ∈ [0, 1]. Hence, FC3

v
is an interval valued convex function due to Remark 1.

The following separation theorem is required to prove the existence of the solution ofMEIOP.

Proposition 1 (Mangasarian 1969) Let f be a m−dimensional convex vector function on the
convex set Γ ⊂ Rn . Then either
(I) f (x) <v 0 has a solution x ∈ Γ or
(II) pT f (x) ≥ 0 for all x ∈ Γ for some p �v 0, p ∈ Rm

but never both.

123



1040 Annals of Operations Research (2022) 311:1035–1050

3 Multi-objective enhanced interval optimization problem

Consider the following multiple objective enhanced interval optimization problem (hence-
forth it will be referred to asMEIOP) as:

(MEIOP) min F(Xn
v)

subject to Gp

D
mp
v

(Xn
v) � Bp, p ∈ Λq , (3)

where F(Xn
v) =

(
F1
C
k1
v

(Xn
v),F

2
C
k2
v

(Xn
v), . . . ,F

m
Ckm

v

(Xn
v)

)T
, Fi

C
ki
v

,Gp

D
mp
v

: (I(R))n → I(R),

i ∈ Λm , partial orderings (�) in the constraints (3) are as defined in (2). As based on
parametric Definition2 of interval function

Fi

C
ki
v

(Xn
v) =

{
f i
ci
ti
(xω) | f i

ci
ti

: Rn → R, citi ∈ Cki
v , xω ∈ Xn

v

}
,

and also constraints (3) can be expressed by using Definition 2 and inequality (2) as, for
O ⊆ Rn

{
Xn

v ∈ (I(R))n
∣∣ Gp

D
mp
v

(Xn
v) � Bp

}

≡
{
(x L , x R) ∈ O × O ∣∣ gp

d p
t p

(xω) ≤ bp
t p , ω ∈ [0, 1]n

}
, ∀p,

where gp
d p
t p

: O → R, d p
t p ∈ D

mp
v , bp

t p ∈ Bp. We represent throughout the section,

t = (t1, t2, ..., tm)T , t i = (t i1, t
i
2 . . . , t iki )

T , t ij ∈ [0, 1], j ∈ Λki , i ∈ Λm , t p ∈ [0, 1] and
ω = (ω1, ω2, . . . , ωn)

T .
The feasible region ofMEIOP can be expressed as the set,

F =
{
Xn

v ∈ (I(R))n
∣∣ Gp

D
mp
v

(Xn
v) � Bp, p ∈ Λq

}

≡
{
(x L , x R) ∈ O × O ∣∣ min

t,ω
{gp

d p
tp

(xω)} ≤ bLp , max
t,ω

{gp
d p
tp

(xω)} ≤ bRp , p ∈ Λq

}
.

The objective function of MEIOP is a multi-valued mapping, and in addition to this, each
objective is a set-valued function. Such type of problems has a set of compromise/efficient/
Pareto optimal solutions as in case of general multi-objective programming problem. There-
fore, to compare any two different intervals vectors Xn

v and Yn
v into the feasible region,

corresponding interval objective values F(Xn
v) and F(Yn

v) can be compared componentwise
like real vectors. We denote this by

F(Xn
v) �v F(Yn

v) ⇔ Fi

C
ki
v

(Xn
v) � Fi

C
ki
v

(Yn
v), ∀i ∈ Λm .

It is difficult to obtain the efficient of MEIOP directly, same as a general multi-objective
optimization problem. Because of a partial ordering cannot compare all intervals and the
complexities associated with this, it involves at different stages of MEIOP. To avoid these
patchwork, MEIOP is transformed to a general optimization problem in the subsequent
Sect. 3.1, and that accept the partial ordering as defined in (2) to establish the existence of
an efficient solution of MEIOP through the solution of the transformed problem. Such an
efficient solution is called tω-efficient solution. Since the parametric representation of each
of the objective function involves two types of the parameters t and ω correspond to the
objective functions’ interval coefficients and interval decision variables, respectively. The
different forms of the objective functions acquire for the different values of t and ω, which
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means these parameters play an important role in obtaining the efficient solution ofMEIOP
based on partial ordering. Therefore, we represent an efficient solution of MEIOP as tω-
efficient solution to differentiate with the efficient solution of the classical multi-objective
programming. The results of this paper are based on the partial ordering in I(R) exist in the
parametric form. Similar to a general multi-objective optimization problem, a tω-efficient
solution ofMEIOP is defined as follows.

Definition 5 An interval vector Xn
v
∗ ∈ F is called a tω-efficient solution ofMEIOP if there

does not exist Xn
v ∈ F such that

Fi

C
ki
v

(Xn
v) � Fi

C
ki
v

(Xn
v
∗
), i ∈ Λm and at least one j = i, F j

C
k j
v

(Xn
v) ≺ F j

C
k j
v

(Xn
v
∗
). (4)

Definition 6 An interval vectorXn
v
∗ ∈ F is called a properly tω-efficient solution ofMEIOP,

ifXn
v
∗ ∈ F is a tω-efficient solution and there is a positive degenerate interval (a positive real

number) μ > 0, so that for some t i ∈ [0, 1]ki and every Xn
v ∈ F with f i

ci
ti
(xω) < f i

ci
ti
(x∗

ω),

at least one t j ∈ [0, 1]k j , t i = t j exists with f j

c j
t j

(x∗
ω) < f j

c j
t j

(xω) and

f i
ci
ti
(x∗

ω) − f i
ci
ti
(xω)

f j

c j
t j

(xω) − f j

c j
t j

(x∗
ω)

≤ μ, (5)

where x∗
ω ∈ Xn

v
∗ and xω ∈ Xn

v .

3.1 Exitance of t!-efficient solution of MEIOP

In order to obtain a tω-efficient solution ofMEIOP, we first make an equivalent parametric
deterministic optimization problem using some transformation as given in next paragraph,
and prove that an optimal solution of the transform problem is a tω-efficient solution of
MEIOP in the subsequent theorem.
Suppose a vector values weight function p (or p(t)) = (p1(t1), p2(t2) . . . , pm(tm))T ,
pi (t i ) > 0, p0(ω) > 0 and λi > 0, i ∈ Λm, and builds an optimization problem

(MEIOPλ
p): min

xω∈F Φ(xω), (6)

where Φ(xω) = ∑
i∈Λm

λiφi (xω) represents the weighted sum of deterministic transformed
of each objective function φi (xω). This construction is primarily based on the idea of the
weighted sum scalarization approach of the classical multi-objective programming problem.
We designate the problem by MEIOPλ

p as a weighted sum scalarization of MEIOP. Each
φi (xω) is the deterministic transformation by means of the parametric definition of each
interval objective function based on the technique developed for single objective function by
Bhurjee and Panda (2012), which is as follows

φi (xω) =
∫

ki+n
pi (t

i )p0(ω) f i
ci
ti
(xω) dti dω, dti = dti1dt

i
2 . . . dtiki , dω = dω1dω2 . . . dωn,

and
∫
ki+n =

∫ 1

0

∫ 1

0
. . .

∫ 1

0︸ ︷︷ ︸
(ki+n) times

.Here t i1, t
i
2, . . . , t

i
ki
, andω1, ω2, . . . , ωn are mutually indepen-
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dent and each component of t i , ω j vary from 0 to 1. So the integral is a function of (x L , x R)

only, henceforth φi (xω) is represented as φi (x L , x R), i.e.,

φi (x
L , x R) =

∫

ki+n
pi (t

i )p0(ω) f i
ci
ti
(xω) dti dω.

Eventually,

Φ(x L , x R) =
∑
i∈Λm

λiφi (x
L , x R)

Hence MEIOPλ
p becomes

(MEIOPλ
p) : min

x L ,x R∈F
Φ(x L , x R). (7)

This is a general deterministic nonlinear programming problem that is free from interval
uncertainty, and can be solved by using nonlinear programming technique.

Note 1 InMEIOPλ
p , p(t) and p0(ω) are preference weight functions chosen by the decision

maker. Different efficient solutions for the problem can be obtained by considering different
preference weight functions. For p(t) = 1 and p0(ω) = 1, the decision maker’s factual
attitude is to estimate the mean of the objective functions of the problem. If

∫ 1
0 pi (t i )dti = 1

for each i and
∫ 1
0 p0(ω)dω = 1, then decision maker’s desire to estimate remains (stands)

in between optimistic and pessimistic optimal value. Forthcoming results will show that any
selections of pi with positive value can provide a tω-efficient solution.

Theorem 1 If (x L∗, x R∗) ∈ F is an optimal solution of MEIOPλ
p, some p >v 0, p0 > 0

and λ >v 0 then Xn
v
∗ ∈ F is a tω-efficient solution ofMEIOP.

Proof Suppose (x L∗, x R∗) ∈ F be an optimal solution of MEIOPλ
p . If it is assumed that

Xn
v
∗ is not a tω-efficient solution of MEIOP, then according to Definition 5 some Xn

v ∈ F
satisfies relation (4). Using partial ordering (2), relation (4) can be rewritten as follows For
some (x L , x R) ∈ F and each t i ∈ [0, 1]ki , ω ∈ [0, 1]n

f i
ci
ti
(xω) ≤ f i

ci
ti
(x∗

ω), i ∈ Λm (8)

and for at least one j = i ,

f j

c j
t j

(xω) < f j

c j
t j

(x∗
ω). (9)

For real-valued functions pi : [0, 1]ki → R+, p0 : [0, 1]n → R+ and λ >v 0 imply that for
some (x L , x R) ∈ F each t i ∈ [0, 1]ki , ω ∈ [0, 1]n

φi (x
L , x R) ≤ φi (x

L∗, x R∗), i ∈ Λm and for at least one j = i, φ j (x
L , x R) < φ j (x

L∗, x R∗),

⇒
∑
i∈Λm

λiφi (x
L , x R) <

∑
i∈Λm

λiφi (x
L∗, x R∗)

This is equivalent to Φ(x L , x R) < Φ(x L∗, x R∗), which is impossible since (x L∗, x R∗) is the
optimal solution ofMEIOPλ

p . Hence X
n
v
∗ is a tω-efficient solution ofMEIOP. ��
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Theorem 2 If X∗n
v is a tω-efficient solution of MEIOP with Gp

D
mp
v

(Xn
v
∗) � Bp and Fi

C
ki
v

,

Gp

D
mp
v

, p ∈ Λq , i ∈ Λm are interval valued convex functions with respect to � then there

exists a weight function p(t) ≥ 0 and p0(ω) ≥ 0 such that (x L∗, x R∗) is an optimal solution
ofMEIOPλ

p for any λ >v 0.

Proof Here F =
{
(x L , x R) ∈ O × O ∣∣ mint,ω{gp

d p
t p

(xω)} ≤ bLp , maxt ′,ω{gp
d p
t p

(xω)} ≤
bRp , p ∈ Λq

}
. Since Gp

D
mp
v

is an interval valued convex function, so gp
d p
t p

(xω) is a convex

function as Remark 1. Hence F is a convex set.
Let Xn∗

v ∈ F be a tω-efficient solution of MEIOP. So there does not exist Xn
v ∈ F that

satisfies (4). According to Remark 1, we can conclude that for every t i and ω, f i
ci
ti
is convex

on a convex set F . Since (4) has no solution, so using the concept of partial ordering and
interval valued function as discussed, we can conclude that, for every t i in [0, 1]ki , and ω in
[0, 1]n the following system has no solution on F .

f i
ci
ti
(xω) − f i

ci
ti
(x∗

ω) ≤ 0, ∀ i ∈ Λm and f j

c j
t j

(xω) − f j

c j
t j

(x∗
ω) < 0, for at least one j = i .

If we denote F(x L , x R, t, ω) = ( f 1
c1
t1

(xω) − f 1
c1
t1

(x∗
ω), . . . , f mcmtm

(xω) − f mcmtm
(x∗

ω))T , then

above system implies that

F(x L , x R, t, ω) �v 0

has no solution for every t and ω. This implies that F(x L , x R, t, ω) <v 0 has no solution for
every t and ω. Hence from Proposition 1, there exists a real vector u = (u1, u2, . . . , um)T ,
u �v 0 such that uT F(x L , x R, t, ω) ≥ 0 is true for all (x L , x R) ∈ F . Define pi :
[0, 1]ki → R+ by pi (t i ) = ui , i ∈ Λm and p0 : [0, 1]n → R+ by p0(ω) = u0. Then
(u0u)T F(x L , x R, t, ω) ≥ 0 is same as

{p0(ω)p(t)}T F(x L , x R, t, ω) ≥ 0,∀(x L , x R) ∈ F .

This implies that
∑

i∈Λm
pi (t i )p0(ω) f i

ci
ti
(x L , x R) ≥ ∑

i∈Λm
pi (t i )p0(ω) f i

ci
ti
(x∗L , x∗R),

∀ (x L , x R) ∈ F . Hence for λi > 0,
∑

i∈Λm
λiφi (x L , x R) ≥ ∑

i∈Λm
λiφi (x L∗, x R∗), ∀(x L ,

x R) ∈ F . This is equivalent to Φ(x L , x R) ≥ Φ(x L∗, x R∗), ∀(x L , x R) ∈ F , which implies
that (x L∗, x R∗) is an optimal solution of MEIOPλ

p for p �v 0, ω ≥v 0, λ >v 0. ��

Theorem 3 If (x L∗, x R∗) ∈ F is an optimal solution of MEIOPλ
p, p0, p >v 0, pi are

continuous functions satisfying
∫
n p0(ω) dω = 1,

∫
ki
pi (t i ) dti = 1 and λ >v 0, then Xn∗

v is
a properly tω-efficient solution ofMEIOP.

Proof Suppose Xn∗
v is not a properly tω-efficient solution of MEIOP. That means Xn∗

v is
not a tω-efficient solution ofMEIOP or there doesn’t satisfy (5) for a positive μ, if Xn∗

v is a
tω-efficient solution.

Suppose Xn∗
v is not tω-efficient solution of MEIOP. It is easy to show that according to

the Theorem1, (x L∗, x R∗) is not an optimal solution of MEIOPλ
p , for any p0 > 0, p >v 0,

and λ >v 0. This contradicts that (x L∗, x R∗) an optimal solution ofMEIOPλ
p .
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Assume that Xn
v
∗ is tω-efficient solution of MEIOP, but it does not satisfy conditions

of properly tω-efficient (5). So for some t i , t̃ i ∈ [0, 1]ki , i ∈ Λm and (x L , x R) ∈ F with
f i
ci
ti
(xω) < fci

ti
(x∗

ω), one can choose

μ = (m − 1)max
i, j

[
max

t i ,t̃ i ,t j ,t̃ j

{λ j p j (t j )p j (t̃ j )p0(ω)

λi pi (t i )pi (t̃ i )p0(ω)

}]
, m ≥ 2, i = j,

where pi : [0, 1]ki → R+ and p0 : [0, 1]n → R+ are two arbitrary chosen continuous
function, satisfying for all j ∈ Λm�{i}
f i
ci
ti
(x∗

ω) − f i
ci
t̃ i
(xω)

f j

c j
t j

(xω) − f j

c j
t̃ j

(x∗
ω)

> μ for all t j , t̃ j ∈ [0, 1]k j , ω ∈ [0, 1]n with f j

c j
t j

(xω) > f j

c j
t̃ j

(x∗
ω).

f i
ci
ti
(x∗

ω) − f i
ci
t̃ i
(xω) > μ( f j

c j
t j

(xω) − f j

c j
t̃ j

(x∗
ω))

>

{
(m − 1)

λ j p j (t j )p j (t̃ j )p0(ω)

λi pi (t i )pi (t̃ i )p0(ω)

} (
f j

c j
t j

(xω) − f j

c j
t̃ j

(x∗
ω)

)
.

So λi pi (t i )pi (t̃ i )p0(ω)
(
f i
ci
ti
(x∗

ω) − f i
ci
t̃ i
(xω)

)
> (m − 1)λ j p j (t j )p j (t̃ j )p0(ω)

(
f j

c j
t j

(xω) −

f j

c j
t̃ j

(x∗
ω)

)
. By integrating on both sides, we get

λi

∫

ki

∫

k̃i

∫

n
pi (t

i )pi (t̃
i )p0(ω)

(
f i
ci
ti
(x∗

ω) − f i
ci
t̃ i
(xω)

)
dti dt̃ i dω

>

(m − 1)λ j

∫

k j

∫

k̃ j

∫

n
p j (t

j )p j (t̃
j )p0(ω)

(
f j

c j
t j

(xω) − f j

c j
t̃ j

(x∗
ω)

)
dt j dt̃ j dω

This implies

λi

(∫

ki

∫

n
pi (t

i )p0(ω) f i
ci
ti
(x∗

ω)dti dω −
∫

k̃i

∫

n
pi (t̃

i )p0(ω) f i
ci
t̃ i
(xω) dt̃ i dω

)

>

(m − 1)λ j

(∫

k̃ j

∫

n
p j (t̃

j )p0(ω) f j

c j
t̃ j

(xω) dt̃ j dω −
∫

k j

∫

n
p j (t

j )p0(ω) f j

c j
t j

(x∗
ω) dt j dω

)
.

Thus

λi (φi (x
L∗, x R∗) − φi (x

L , x R)) > (m − 1)λ j (φ j (x
L , x R) − φ j (x

L∗, x R∗))

Hence
∑

i∈Λm , j =i

λi (φi (x
L∗, x R∗) − φi (x

L , x R)) > (m − 1)
∑

j∈Λm , j =i

λ j (φ j (x
L , x R) − φ j (x

L∗, x R∗))

�⇒ λi (φi (x
L∗, x R∗) − φi (x

L , x R)) >
∑

j∈Λm , j =i

λ j (φ j (x
L , x R) − φ j (x

L∗, x R∗)).
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Hence
∑
j∈Λm

λ jφ j (x
L∗, x R∗) >

∑
j∈Λm

λ jφ j (x
L , x R) i.e., Φ(x L∗, x R∗) > Φ(x L , x R).

This contradicts to the assumption that (x L∗, x R∗) ∈ F is an optimal solution of MEIOPλ
p.

Hence Xn
v
∗ is a properly efficient solution of MEIOP.

3.2 Numerical examples

In order to show the applicability of results discussed in previous sections, we illustrate the
method by means of the following examples.

Example 1 Consider the following bi-objective interval optimization problem in which one
objective is minimize type and another is maximization type:

(MEIOP) max [2, 4] ⊗ X2
1 ⊕ [1, 3] ⊗ X2

2,

min [−2,−1] ⊗ X1 ⊕ [4, 6] ⊗ X2
2 ⊕ [2, 4],

subject to X1 � [1.00, 1.50],X2 � [0.50, 0.75],
x Lj ≤ x Rj , x Lj ≥ 0, j = 1, 2. (10)

Denote F1
C1

v
(X1,X2) = [2, 4]⊗X2

1 ⊕[1, 3]⊗X2
2, F

2
C2

v
(X1,X2) = [2, 4]⊕ [−2,−1]⊗X1 ⊕

[4, 6] ⊗ X2
2, G

1
D1

v
(X1,X2) = X1, and G2

D1
v
(X1,X2) = X2. The parametric form of F1

C1
v
and

F2
C2

v
is f 1

c1
t1

(x1ω1
, x2ω2

) = (2+2t11 )(x L1 +ω1(x R1 − x L1 ))2 + (1+2t12 )(x L2 +ω2(x R2 − x L2 ))2 and

f 2
c2
t2

(x1ω1
, x2ω1

) = (2+2t21 )+(−2+ t22 )(x L1 +ω1(x R1 −x L1 ))+(4+2t23 )(x L2 +ω2(x R2 −x L2 ))2,

respectively.
Consider the weight functions p1(t1) = 1, p2(t2) = 1, p0(ω) = 1 and λ1 = 1

2 , λ2 = 1
2 .

Then k1 = 2, k2 = 3, n = 2,

φ1(x
L
1 , x R1 , x L2 , x R2 ) =

∫

k1+n
p1(t

1)p0(ω) f 1
c1
t1

(xω)dt1dω

=
(
x L1

)2 +
(
x R1

)2 + x L1 x
R
1 + 2

3

((
x L2

)2 +
(
x R2

)2 + x L2 x
R
2

)
,

(11)

φ2

(
x L1 , x R1 , x L2 , x R2

)
=

∫

k2+n
p2

(
t2

)
p0 (ω) f 2

c2
t2

(xω) dt2dω

= 3 − 3

4

(
x L1 + x R1

)
+ 5

3

((
x L2

)2 +
(
x R2

)2 + x L2 x
R
2

)
. (12)

Corresponding deterministic equivalent form of (10) is given below.

(
MEIOPλ

p

)
: max

2∑
i=1

λiφi

(
x L1 , x R1 , x L2 , x R2

)

= −3

2
+ 1

2

((
x L1

)2 +
(
x R1

)2 + x L1 x
R
1

)

+ 3

8

(
x L1 + x R1

)
− 1

2

((
x L2

)2 +
(
x R2

)2 + x L2 x
R
2

)
,
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subject to x L1 ≤ 1, x R1 ≤ 1.5, x L2 ≥ 0.5, x R2 ≥ 0.75, x L1

≤ x R1 , x L2 ≤ x R2 , x L1 ≥ 0, x L2 ≥ 0.

In order to solveMEIOPλ
p problem, one can be used any software which supports nonlinear

programming problem. Here LINGO 11 software and Python code for Genetic algorithm1

(GA) have been used to obtain the optimal solution.
i) Using LINGO 11 software, the optimal solution of the above problem has obtained as

(x L1 , x R1 , x L2 , x R2 ) = (1.00000, 1.50000, 0.500000.75000)

with the optimal value 1.21875. Hence ([1.00000, 1.50000], [0.50000, 0.75000]) is a
tω−efficient solutions forMEIOP.

ii) Using Python software, the optimal solution of the above problem has obtained based
on Genetic algorithm as

(x L1 , x R1 , x L2 , x R2 ) = (0.99999576, 1.49934, 0.50772, 0.75572)

with the optimal value 1.20463, where the total number of population, generations and num-
ber of parents are fixed 100000, 5 and 100, respectively. Hence ([0.99999576, 1.49934],
[0.50772, 0.75572]) is a tω−efficient solutions for MEIOP.

Example 2 Consider the following optimization problem whose objective functions and con-
straints are nonlinear interval valued functions:

(MEIOP) min
{
[−2, 0] ⊗ X1, [−1, 2] ⊗ X1 ⊕ [−2,−1] ⊗ X2

2

}

subject to [ 0.5, 1.5] ⊗ X1 ⊕ [1.5, 2.5] ⊗ X2 � [2.5, 3.5],
[0.5, 1.5] ⊗ X2

1 ⊕ [1, 1] ⊗ X2 � [0.05, 0.20],
x L1 ≤ x R1 , x L2 ≥ x R2 , x L1 ≥ 0, x L2 ≥ 0.

Denote F1
C1

v
(X1,X2) = [−2, 0] ⊗ X1, F2

C2
v
(X1,X2) = [−1, 2] ⊗ X1 ⊕ [−2,−1] ⊗ X2

2,

G1
D2

v
(X1,X2) = [0.5, 1.5] ⊗ X1 ⊕ [1.5, 2.5] ⊗ X2, G2

D2
v
(X1,X2) = [0.5, 1.5] ⊗ X2

1 ⊕
[1, 1] ⊗ X2. Then f 1

c1
t1

(x1ω1
, x2ω2

) = (−2 + 2t11 )(x L1 + ω1(x R1 − x L1 )), f 2
c2
t2

(x1ω1
, x2ω1

) =
(−1+ 3t21 )(x L1 +ω1(x R1 − x L1 ))+ (−2+ t22 )(x L2 +ω2(x R2 − x L2 ))2, where t11 , t21 , t22 ∈ [0, 1].
Consider the weight functions p1(t1) = 1+ t11 , p2(t

2) = 1, p0(ω) = 1 and λ1 = 3
4 , λ2 = 1

4 .
Then k1 = 1, k2 = 2, n = 2,

φ1(x
L
1 , x R1 , x L2 , x R2 ) =

∫ 1

0

∫ 1

0
p1(t

1)p0(ω) f 1
c1
t1

(xω)dt1dω = −2

3
(x L1 + x R1 ),

φ2(x
L
1 , x R1 , x L2 , x R2 ) =

∫

k2+n
p2(t

2)p0(ω) f 2
c2
t2

(xω)dt2dω = x L1 + x R1
4

− ((x L2 )2 + (x R2 )2 + x L2 x
R
2 )

2
.

Using (4), the parametric formofG1
D2

v
(X1,X2) � [2.5, 3.5] andG2

D2
v
(X1,X2) � [0.05, 0.20]

can be written as

1 The python code for Genetic algorithm of MEIOPλ
p is developed similar to the code given in web site

https://towardsdatascience.com/genetic-algorithm-implementation-in-python-5ab67bb124a6.
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g1
d1
t1

(x1ω1
, x2ω2

) ≤ (2.5 + t13 ), ∀t13 ∈ [0, 1] and g2
d2
t2

(x1ω1
, x2ω2

) ≥ (0.05 + 0.15t23 ), ∀t23 ∈ [0, 1],
respectively, where

g1
d1
t1

(x1ω1
, x2ω2

) = (0.5 + t11 )(x L1 + ω1(x
R
1 − x L1 )) + (1.5 + t12 )(x L2 + ω2(x

R
2 − x L2 )),

g2d2t2(x
1
ω1

, x2ω2
) = (0.5 + t21 )(x L1 + ω1(x

R
1 − x L1 ))2 + (x L2 + ω2(x

R
2 − x L2 )).

Hence

F =
{
(x L1 , x R1 , x L2 , x R2 )|g1

d1
t1

(x1ω1
, x2ω2

) ≤ (2.5 + t13 ), g2
d2
t2

(x1ω1
, x2ω2

) ≥ (0.05 + 0.15t23 );

t13 , t23 ∈ [0, 1], x L1 ≤ x R1 , x L2 ≤ x R2 , x L1 ≥ 0, x L2 ≥ 0
}

=
{
(x L1 , x R1 , x L2 , x R2 )|0.5x L1 + 1.5x L2 ≤ 2.5, 1.5x R1 + 2.5x R2 ≤ 3.5, 0.5(x L1 )2 + x L2 ≥ 0.05,

1.5(x R1 )2 + x R2 ≥ 0.2, x L1 ≤ x R1 , x L2 ≤ x R2 , x L1 ≥ 0, x L2 ≥ 0
}
.

The deterministic problem corresponding toMEIOP becomes

(MEIOPλ
p) : min

(x L1 ,x R1 ,x L2 ,x R2 )∈F
− 7

16
(x L1 + x R1 ) − 1

8
((x L2 )2 + (x R2 )2 + x L2 x

R
2 ).

Using LINGO 11 software, the optimal solution of the above problem has obtained as

(x L1 , x R1 , x L2 , x R2 ) = (2.33333, 2.33333, 0.00000, 0.00000)

with the optimal value − 2.04167. Hence ([2.33333, 2.33333], [0.0000, 0.0000]) is a
tω−efficient solutions forMEIOP.

ii) Using Python software, the optimal solution of the above problem has obtained based
on Genetic algorithm as

(x L1 , x R1 , x L2 , x R2 ) = (2.32888, 2.33097, 0.00124, 0.00135)

with the optimal value -2.03869, where the total number of population, generations
and number of parents are fixed 10, 50 and 4, respectively. Hence

([2.32888, 2.33097],
[0.00124, 0.00135]) is a tω−efficient solutions forMEIOP.

Example 3 Consider the following optimization problem whose objective functions and con-
straints are nonlinear interval valued convex functions with respect to �.

max
{
[−1, 2] ⊗ X1 ⊕ [−2,−1] ⊗ X3

2 ⊕ [1, 2], [2, 4] ⊗ X2
1 ⊕ [1, 3] ⊗ X2

2 ⊕ [3, 5]
}
,

subject to[−1, 1] ⊗ X1 ⊕ [−1, 3] ⊗ X3
2 � [2, 3],

[0.5, 1.5] ⊗ X2
1 ⊕ [1.5, 2.5] ⊗ X3

2 � [2.5, 3.5],
X1 � [1, 3],X2 � [2.5, 4], x L1 ≤ x R1 , x L2 ≥ x R2 , x L1 ≥ 0, x L2 ≥ 0.

Denote F1
C3

v
(X1,X2) = [−1, 2] ⊗ X1 ⊕ [−2,−1] ⊗ X3

2 ⊕ [1, 2], F2
C3

v
(X1,X2) = [2, 4] ⊗

X2
1 ⊕ [1, 3] ⊗ X2

2 ⊕ [3, 5], G1
D2

v
(X1,X2) = [−1, 1] ⊗ X1 ⊕ [−1, 3] ⊗ X3

2, G
2
D2

v
(X1,X2) =

[0.5, 1.5] ⊗ X2
1 ⊕ [1.5, 2.5] ⊗ X3

2, G
3
D1

v
(X1,X2) = X1 and G4

D1
v
(X1,X2) = X2.

The parametric form of F1
C3

v
and F2

C3
v
is

f 1
c1
t1

(x1ω1
, x2ω2

) = (−1+3t11 )(x L1 +ω1(x R1 −x L1 ))+(−2+t12 )(x L2 +ω2(x R2 −x L2 ))3+(1+t13 )

and
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f 2
c2
t2

(x1ω1
, x2ω1

) = (2+2t21 )(x L1 +ω1(x R1 −x L1 ))2+(1+2t22 )(x L2 +ω2(x R2 −x L2 ))2+(3+2t23 ),

respectively.
Consider the weight functions p1(t1) = 1, p2(t2) = 1, p0(ω) = 1 and λ1 = 1

2 , λ2 = 1
2 .

Then k1 = 3, k2 = 3, n = 2,

φ1(x
L
1 , x R1 , x L2 , x R2 ) =

∫

k1+n
p1(t

1)p0(ω) f 1
c1
t1

(xω)dt1dω

= 1

4
(x L1 + x R1 ) − 3

8

{
(x L2 )3 + (x R2 )3 + (x L2 )2x R2 + x L2 (x R2 )2

}
+ 3

2
,

φ2(x
L
1 , x R1 , x L2 , x R2 ) =

∫

k2+n
p2(t

2)p0(ω) f 2
c2
t2

(xω)dt2dω

= (x L1 )2 + (x R1 )2 + x L1 x
R
1 + 2

3

{
(x L2 )2 + (x R2 )2 + x L2 x

R
2

}
+ 4. (13)

Corresponding deterministic equivalent form of (10) is given below

(MEIOPλ
p) : max

2∑
i=1

λiφi (x
L
1 , x R1 , x L2 , x R2 )

= 1

2

(1
4
(x L1 + x R1 ) − 3

8

{
(x L2 )3 + (x R2 )3 + (x L2 )2x R2 + x L2 (x R2 )2

}
+ 3

2

)

+ 1

2

(
(x L1 )2 + (x R1 )2 + x L1 x

R
1 + 2

3

{
(x L2 )2 + (x R2 )2 + x L2 x

R
2

}
+ 4

)
,

subject to − x L1 − (x L2 )3 ≤ 2, x R1 + 3(x R2 )3 ≤ 3,

0.5(x L1 )2 + 1.5(x L2 )3 ≤ 2.5, 1.5(x R1 )2 + 2.5(x R2 )3 ≤ 3.5,

x L1 ≤ 1, x R1 ≤ 3, x L2 ≤ 2.5, x R2 ≤ 4, x L1 ≤ x R1 , x L2 ≤ x R2 , x L1 ≥ 0, x L1 ≥ 0.

(i) Using LINGO 11 software, the optimal solution of the above problem has obtained as

(x L1 , x R1 , x L2 , x R2 ) = (1.00000, 1.50485, 0.34552, 0.34552)

with the optimal value 5.53627. Hence ([1.00000, 1.50485], [0.34552, 0.34552]) is a
tω−efficient solutions forMEIOP.

(ii) Using Python software, the optimal solution of the above problem has obtained based
on Genetic algorithm as

(x L1 , x R1 , x L2 , x R2 ) = (0.99856, 1.50511, 0.34373, 0.34421)

with the optimal value 5.53346, where the total number of population, generations and
number of parents are fixed 100000, 50 and 10, respectively. Hence

([1.00000, 1.50485],
[0.34552, 0.34552]) is a tω−efficient solutions forMEIOP.

In the above models, one can observe that the solution obtained by using the Python code of
GA is approximately nearby to the solution obtained by LINGO 11 software.

4 Conclusion

This paper has developed a methodology to solve an enhanced interval multi-objective pro-
gramming problem through a transformed deterministic form. This methodology takes care
the decision variables as intervals and parameterize all the intervals. The proposed method-
ology is different from the existing methodologies in this context. In the deterministic form
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of the original problem, we consider only positive weight functions (p0 > 0, p >v 0), which
must be piecewise continuous in [0,1]. Solving this problemwith any general weight function
is computationally difficult. In addition to this, selection of weight functions is also a difficult
task. These are the limitation of this methodology. Developing a methodology, which is free
from predetermined weight functions is the future scope of the present work.
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