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Abstract
In this paper, we consider a queueing-inventory system under continuous review with a
random order size policy and lost sales. If the inventory is depleted after the service of a
customer, a replenishment order is instantaneously triggered. The replenishment order size
may be randomized according to a discrete probability distribution. Customers arrive in the
system according to a Poisson process and require service from a server. The server takes
multiple vacations once the inventory is depleted. The service time, the lead time, and the
vacation time are all assumed to be distributed exponentially. We derive the stationary joint
distribution of the queue length, the on-hand inventory level, and the status of the server in
explicit product form. Furthermore, the conditional distributions of the on-hand inventory
level when the server is off due to a vacation or depleted inventory, and when the server is
on and working, are derived. Then, we calculate some of the system performance measures.
The effect of the server’s vacation on the performance measures is investigated analytically.
Finally, some numerical results are presented. The simulation study of the model in the
context of more general arrival processes and service time distributions is presented.

Keywords Queueing-inventory system · Multiple vacation · Lost sales · Randomized order
size · Performance analysis

1 Introduction

A queueing-inventory system (QIS) is a queueing system with attached inventory in which
customers arrive one by one and need not only an on-hand item but also some form of time-
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consuming service. For example, items in inventory require time for retrieval, preparation,
packing, and loading (see Saffari et al. 2011). Compared to the traditional inventory system,
a QIS is more general and realistic. Over the past decades, research on QIS has attracted
significant research attention due to its wide-ranging applications in such fields as integrated
supply chain management, vehicle maintenance and medical services (see Schwarz et al.
2006; Krishnamoorthy et al. 2016a; Arun 2010).

It seems that the first contribution to QIS research was the work done by Sigman and
Simchi-Levi (1992) and Melikov and Molchanov (1992) where the analyses were carried
out under the assumptions of an arbitrarily distributed service time in Sigman and Simchi-
Levi (1992) and an exponentially distributed service time inMelikov andMolchanov (1992).
Sigman and Simchi-Levi (1992) investigated an M/G/1 QIS model, where it was assumed
that customers arriving at the system during an out-of-stock period were backlogged. In the
literature on inventory systems, these customers are referred to as backorders. Sigman and
Simich-Levi proposed a light traffic heuristic approximation procedure to derive performance
for their model. Melikov andMolchanov (1992) considered a QIS in a transportation/storage
system (TSS), where a user request is lost if the request arrives when the system already
contains the maximum number N of user requests. The exact and approximate solution
methodswere proposed. Subsequently, many research papers onQISmodels with backorders
were presented.We refer to the survey paper by Krishnamoorthy et al. (2011) for more details
on this topic.

Another aspect of QIS research has been on the lost sales model. In this model, it is
assumed that customers arriving at the system during an out-of-stock period are lost. Many
research papers on QIS with lost sales have been published. A special mention should be
paid to the paper by Schwarz et al. (2006) who studied an M/M/1 QIS model under three
different inventory management policies including random order size (ROS) policy, (r , Q)

inventory policy and (s, S) inventory policy, respectively. The authors derived a product form
solution for the stationary joint probability of the queue length and the inventory level by
using the probability generating function method. This solution is special because a strong
correlation exists between the number of customers joining the system during the lead time
and the number of items in the inventory over that period. Krishnamoorthy and Viswanath
(2013) subsumed the work in Schwarz et al. (2006) to a (s, S) production inventory model
with an M/M/1 service queue where the inventory items were gradually replenished by an
internal production process. They obtained the production form solution for the system state
distribution in steady state by using a matrix theoretical approach. Baek and Moon (2014)
studied a production-inventory system with an M/M/1 service queue and lost sales where the
stocks were replenished by both an external order under (r , Q) policy and an international
production. They derived the stationary joint distribution of the queue length and the on-hand
inventory in product form.

Melikov et al. (2016) considered an M/M/1 QIS model with either a finite or an infinite
queue of impatient customers, where ROS policy was considered. The exact and approxi-
mate methods to calculate the characteristics of the systems under given lead policies were
developed. Melikov et al. (2017) further considered a Markovian QIS model with impatient
customers and a variable size of order policy in which the size of the order is dependent on
the on-hand inventory level. The exact and approximate methods were developed to calculate
the characteristics of the systems under a proposed restocking policy. For other QIS research
that includes either (r , Q) inventory policy or (s, S) inventory policy or both, we refer to a
spate of research papers including Saffari et al. (2011, 2013), Krenzler and Daduna (2015),
Krishnamoorthy et al. (2015, 2016b), Yue et al. (2018), Barron (2019) and several others.
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Queueing systemswith server vacations have been extensively applied inmany fields such
as communication systems, manufacturing systems, call centers, and production inventory
systems. We refer to Doshi (1986), Takagi (1991), Tian and Zhang (2006) and Ke et al.
(2010) for more details on this topic. However, there has been only limited research into QIS
that considers server vacations. Viswanath et al. (2008) introduced server vacations into a
QIS with a (s, S) inventory policy, where the customers who waited for service may renege
after a period of random time. They computed the steady-state probabilities by using the level
dependent quasi-birth-and-death (QBD) process theory. Sivakumar (2011) studied anM/M/1
QIS model with multiple server vacations and a (s, S) inventory policy, where the demands
that occurred during an out of stock period and/or during a server vacation period entered
the orbit of infinite size. They obtained the joint probability distribution of the inventory
level and the number of customers in the orbit in the steady-state case. Various performance
measures and the long run expected total cost rate were calculated.

Recently, Padmavathi et al. (2016) investigated a finite-source inventory system with
postponed demands and a modified vacation policy, where a (s, S) inventory policy was
considered. The vacation time and the lead time followed independent PH distributions. The
joint distribution of the mode of the server, the server status, the inventory level, and the
number of demands in the pool were obtained in the steady-state. Melikov et al. (2017)
proposed a model for a servicing system with perishable inventory and a finite queue of
impatient claims where a (s, S) inventory policy was considered, and the server could be in
one of three states: operational, early and delaying vacations. They developed a method to
approximately compute the system’s characteristics. Koroliuk et al. (2017, 2018) proposed
Markov QIS models with perishable inventory and a (s, S) inventory policy. Koroliuk et al.
(2017), it was assumed that the server took vacations if either the inventory level was zero,
the queue was empty, or both. Unlike in Koroliuk et al. (2017), it was assumed in Koroliuk
et al. (2018) that the server took a vacation only if there were no customers in the system
at the moment its operation completed, and the server returned to operating mode only
when the number of customers in the system exceeded some thresholds. In these studies,
they developed an exact and an approximate method to find the system’s characteristics.
Jeganathana and Abdul (2020) considered a two-server Markovian inventory system with
modified and delayed working vacations, where a (s, Q) inventory policy was considered.
The various measures of system performance in the steady state were obtained.

To the best of our knowledge, the two papers by Schwarz et al. (2006) and Melikov et al.
(2016) are the only papers that considered the ROS policy in M/M/1 QIS models in which
when the inventory was depleted after the service of a customer was completed, a random
order size that followed a discrete probability distribution was instantaneously triggered.

In this paper, we consider an M/M/1 QIS with lost sales and ROS policy by taking into
account the server’s multiple vacations. When the server finishes the service of a customer
and finds the inventory is empty, the server leaves for a vacation. If the server finds that the
inventory is empty at the end of a vacation, he/she takes another vacation immediately and
continues in the same manner until the server finds the inventory is not empty.

The purpose of this paper is to investigate the following research questions: (a) Does the
stationary joint distribution of the queue length, the on-hand inventory level, and the status
of the server have a simple product form for the marginal distributions? (b) How does the
conditional on-hand inventory level when the server is off due to a vacation differ from the
conditional on-hand inventory level when the server is on and working? (c) How does the
server’s vacation influence the on-hand inventory level and the other performance measures
of the system? (d) How does the distribution of random order size influence the performance
measures of the system?
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The main research contributions of this paper are as follows: (a)We develop a newM/M/1
QIS model with ROS policy by taking into account the server vacation. (b) We derive the
stationary joint distribution of the queue length, the on-hand inventory level and the status of
the server in product form by using amatrix analytical approach. (c)We obtain the conditional
distributions and the conditional expectations of the on-hand inventory level when the server
is off due to a vacation or depleted inventory, and when it is on and working. (d) We compute
explicitly some performancemeasures and analytically investigate the effect of the parameter
of the server’s vacation on these performance measures.

The rest of the paper is organized as follows. We describe the system model in Sect. 2. In
Sect. 3, we first derive the stability condition of the system by using a QBD process theory.
Then, we derive the stationary joint distribution of the queue length, the on-hand inventory
level, and the status of the server. We further investigate the conditional distributions of
the on-hand inventory level when the server is off due to a vacation or depleted inventory
and when it is on and working. Some performance measures are computed and compared
with the model shown in Schwarz et al. (2006) for ROS policy in Sect. 4. The effect of the
vacation rate on the performance measures is also investigated analytically in this section.
Some numerical results are presented in Sect. 5. In Sect. 6, we perform a simulation study
for the case of more general distributions of the inter-arrival times and the service times. In
Sect. 7, we present some managerial suggestions. Conclusions are given in Sect. 8.

2 Description of themodel

In this section, we describe the proposed model in more detail. Figure 1 shows the schematic
diagram of the proposed model.

We consider anM/M/1 QIS under continuous review with ROS policy and multiple server
vacations. Customers arrive in the system according to a Poisson process with rate λ. Each
customer requires one unit of an item and is served by a single server under a First-Come,
First-Service (FCFS) discipline. The service time follows an exponential distribution with
rate μ.

The item for a customer is counted in the inventory until the endof service for that customer.
A served customer departs immediately from the system and the on-hand inventory decreases
by one at the moment of service completion. If the server is ready to serve a customer which
is at the head of the line and there is no item of inventory, this service starts only at the time
instant when the next replenishment arrives at the inventory.

When the server finishes serving of a customer and finds the inventory is empty, the server
leaves for a vacation that follows an exponential distribution with parameter θ . If the server
finds that the inventory is not empty at the end of a vacation, the server returns from the
vacation and serves any customers waiting for service. If the server finds that the inventory
is still empty at the end of a vacation, the server takes another vacation immediately and
continues in the same manner until the server finds the on-hand inventory is not empty.

Considering ROS policy, once the inventory is depleted after the service of a customer is
completed, a random order size D that follows a discrete probability distribution on integers
E = {1, 2, . . . , M} is instantaneously triggered. The size D of the replenishment order is
k with the probability pk , where

∑M
k=1 pk = 1. The corresponding distribution function is

denoted by Fp . The mean order size is denoted by p. Let qk be the probability that the size of
a replenishment order is at least k, i.e., qk = ∑M

j=k p j , k = 1, 2, . . . , M . The replenishment
lead time is exponentially distributed with parameter η.
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Fig. 1 Schematic diagram of the proposed queueing-inventory model

It is assumed that customers are prevented from entering the system either when the on-
hand inventory level is zero or when the server is off due to a vacation. Order size decisions
and lead times are independent of the arrival process, the customer service time, and the
server’s vacation.

3 Steady-state analysis

In this section, we perform the steady-state analysis for the system model described in the
previous section.

3.1 Stability condition

Let {S(t), t ≥ 0} = {(X(t), Y (t), Z(t)), t ≥ 0} be the state process of the system, where
X(t) denotes the number of customers at time t , Y (t) denotes the inventory level at time t ,
and Z(t) denotes the status of the server at time t where Z(t) is defined to be either 0 or
1 according to whether the server is off due to a vacation or depleted inventory, or on and
working. Then, the process {S(t), t ≥ 0} is a QBD process with state space:

Ω = ∪∞
n=0{n}

where

n = {(n, 0, 0), (n, 1, 0), (n, 1, 1), . . . , (n, M, 0), (n, M, 1)}
is the collection of states with X(t) = n, n ≥ 0, called the level n. The state-transition
diagram of the QIS with server vacations is presented in Fig. 2.
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Fig. 2 State-transition diagram of
the QIS with server vacations

The infinitesimal generator of the process {S(t), t ≥ 0} is as follows:

Q =

⎛

⎜
⎜
⎜
⎝

A0 C
B A C

B A C
. . .

. . .
. . .

⎞

⎟
⎟
⎟
⎠

where A0, B, A and C are all square matrices of the order 2M + 1, and they are given as
follows:

A0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−η ηp1 0 ηp2 0 · · · ηpM 0
0 −θ θ 0 0 · · · 0 0
0 0 −λ 0 0 · · · 0 0
0 0 0 −θ θ · · · 0 0
0 0 0 0 −λ · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 0 · · · −θ θ

0 0 0 0 0 · · · 0 −λ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 · · · 0 0 0
0 0 0 0 0 · · · 0 0 0
μ 0 0 0 0 · · · 0 0 0
0 0 0 0 0 · · · 0 0 0
0 0 μ 0 0 · · · 0 0 0
...

...
...

...
...

...
...

...

0 0 0 0 0 · · · 0 0 0
0 0 0 0 0 · · · μ 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

A = A0 − μ

λ
C

123



Annals of Operations Research (2022) 310:595–620 601

where,

C = diag{0, 0, λ, . . . , 0, λ}
is a diagonal matrix.

Theorem 1 The process {S(t), t ≥ 0}with the infinitesimal generator Q is positive recurrent

if and only if ρ = λ

μ
< 1.

Proof To derive the stability condition of the process {S(t), t ≥ 0}, we consider the matrix
H = A + B + C, which is given by

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−η ηp1 0 ηp2 0 · · · 0 ηpM 0
0 −θ θ 0 0 · · · 0 0 0
μ 0 −μ 0 0 · · · 0 0 0
0 0 0 −θ θ · · · 0 0 0
0 0 μ 0 −μ · · · 0 0 0
...

...
...

...
...

...
...

...

0 0 0 0 0 · · · 0 −θ θ

0 0 0 0 0 · · · μ 0 −μ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Let π = (π(0, 0), π(1, 0), π(1, 1), . . . , π(M, 0), π(M, 1)) be the steady-state probabil-
ity vector of the generator H . Then, π satisfies equations πH = 0 and πe = 1, where e is a
column vector of 1’s of appropriate dimension. Solving these equations, we obtain

π(0, 0) = μ

η
K−1
h , (1)

π(i, 0) = μ

θ
pi K

−1
h , i = 1, 2, . . . , M, (2)

π(i, 1) = qi K
−1
h , i = 1, 2, . . . , M (3)

where

Kh = μ

θ
+ μ

η
+ p. (4)

From Neuts (1981), the process {S(t), t ≥ 0} is positive recurrent if and only if

πCe < πBe,

which is equivalent to

λ

M∑

i=1

π(i, 1) < μ

M∑

i=1

π(i, 1). (5)

Using Eqs. (3) and (4), it is easy to verify that

M∑

i=1

π(i, 1) = pK−1
h > 0.

Thus, Eq. (5) implies
λ

μ
< 1. ��
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Remark 1 Theorem 1 shows that the stability condition for the present model is the same as
that of the M/M/1 classical queueing system, and this stability condition is independent from
the parameters of the server’s vacation, the replenishment lead time, and the distribution of
the random order size.

3.2 Stationary distribution

For computing the stationary distribution of the process {S(t), t ≥ 0}, we first consider a
QIS with ROS policy and negligible service time. The other assumptions are the same as
those given earlier. The corresponding Markov process for this case is defined as {Ŝ(t), t ≥
0} = {(Y (t), Z(t)), t ≥ 0}, where Y (t) and Z(t) are defined as above. The state space of the
process {Ŝ(t), t ≥ 0} is given as follows:

Ω̂ = {(0, 0), (1, 0), (1, 1), . . . , (M, 0), (M, 1)}.

The state-transition diagram of the QIS with negligible service time and server vacations is
presented in Fig. 3.

This QIS’s infinitesimal generator Q̂ is given by

Q̂ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−η ηp1 0 ηp2 0 · · · 0 ηpM 0
0 −θ θ 0 0 · · · 0 0 0
λ 0 −λ 0 0 · · · 0 0 0
0 0 0 −θ θ · · · 0 0 0
0 0 λ 0 −λ · · · 0 0 0
...

...
...

...
...

...
...

...

0 0 0 0 0 · · · 0 −θ θ

0 0 0 0 0 · · · λ 0 −λ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Let π̂ = (π̂(0, 0), π̂(1, 0), π̂(1, 1), . . . , π̂(M, 0), π̂(M, 1)) be the steady-state probabil-
ity vector of the generator {Ŝ(t), t ≥ 0}. Then, π̂ satisfies the set of equations:

{
π̂ Q̂ = 0
π̂e = 1.

(6)

From matrix H and matrix Q̂, we observe that matrix Q̂ can be obtained if we change all
μ in matrix H by λ. Thus, we can directly get the stationary probability distribution of the

Fig. 3 State-transition diagram of the QIS with negligible service time and server vacations
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process {Ŝ(t), t ≥ 0} from Eqs. (1)-(4). Therefore, we have

π̂(0, 0) = λ

η
K−1

v , (7)

π̂(i, 0) = λ

θ
pi K

−1
v , i = 1, 2, . . . , M, (8)

π̂(i, 1) = qi K
−1
v , i = 1, 2, . . . , M (9)

where

Kv = λ

θ
+ λ

η
+ p. (10)

Using the steady-state probability vector π̂ given by Eqs. (7)-(10), we establish the
stationary distribution of our system model described in Sect. 2. For this, let x =
(x0, x1, . . . , xn, . . .) be the steady-state probability vector of the process S(t), where

xn = (x(n, 0, 0), x(n, 1, 0), x(n, 1, 1), . . . , x(n, M, 0), x(n, M, 1)), n = 0, 1, . . . .

Then, the steady-state probability vector x satisfies the set of equations:
{
x Q = 0

xe = 1.
(11)

We can obtain the steady-state probability vector x by solving Eq. (11). The solution is given
by the following theorem.

Theorem 2 If ρ < 1, the steady-state probability vector x of the process {S(t), t ≥ 0} is
given by

x = (x0, x1, . . .)

where

xn = (1 − ρ) ρnπ̂ , n ≥ 0 (12)

and the components of the vector π̂ are given by Eqs. (7)-(10).

Proof The first equation of the set of Eq. (11) can be rewritten as follows:

x0A0 + x1B = 0, (13)

xnC + xn+1A + xn+2B = 0, n ≥ 0. (14)

Let

xn = ξρnπ̂ , n ≥ 0 (15)

where ξ is a constant. We need to verify that Eqs. (13) and (14) are satisfied by Eq. (15).
Substituting Eq. (15) into the left side of Eq. (13), we have

x0A0 + x1B = ξ π̂ (A0 + ρB) .

Substituting Eq. (15) into the left side of Eq. (14), we have

xnC + xn+1A + xn+2B = ξρnπ̂
[
C + ρA + ρ2B

]

= ξρnπ̂

[

C + ρ

(

A0 − 1

ρ
C

)

+ ρ2B
]

= ξρn+1π̂ (A0 + ρB) , n ≥ 0.
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From the structure of the matrices A0, B and Q̂, it is easy to verify that A0 + ρB = Q̂.
Then, we have

π̂ (A0 + ρB) = π̂ Q̂ = 0.

Thus, Eqs. (13) and (14) are satisfied by Eq. (15). Applying the normalizing condition xe = 1
and noting that π̂e = 1, we get ξ = 1 − ρ. ��
Remark 2 Theorem 2 shows that the stationary distribution of the system has a product form
of two marginal distributions: One is the stationary distribution of the queue length in the
M/M/1 traditional queueing system with the same parameters λ and μ, and the other one
is the stationary distribution of the on-hand inventory level of the QIS system with server’s
multiple vacations and ROS policy when the service time is negligible.

3.3 Conditional distributions of the on-hand inventory level

In this subsection, we first compute the marginal stationary distributions of the queue length,
the on-hand inventory level and the status of the server, respectively. Then, we investigate
the conditional distributions of the mean on-hand inventory level when the server is off due
to a vacation or depleted inventory, and when it is on and working.

Theorem 3 (a) The marginal stationary distribution of the queue length {X(t), t ≥ 0} is
equal to the stationary distribution of the queue length in the classical M/M/1-FCFS system
with the same parameter λ and μ.
(b) The marginal stationary distribution of the on-hand inventory level {Y (t), t ≥ 0} is given
by

P(Y = k) =

⎧
⎪⎪⎨

⎪⎪⎩

λ

η
K−1

v , k = 0
(

λ

θ
pk + qk

)

K−1
v , k = 1, 2, . . . , M .

(16)

The mean on-hand inventory level is given by

I =
(

λ

θ
p +

M∑

i=1

iqi

)

K−1
v . (17)

(c) The marginal stationary distribution of the status of the server {Z(t), t ≥ 0} is given by

P(Z = k) =

⎧
⎪⎨

⎪⎩

(
λ

θ
+ λ

η

)

K−1
v , k = 0

pK−1
v , k = 1.

(18)

Proof The results are directly obtained using Theorem 2. The detail for the proof is omitted.��
Theorem 4 (a) The conditional distributions of the on-hand inventory level when the server
is off due to a vacation or depleted inventory, and when it is on and working are given by

P(Y = k|Z = 0) =

⎧
⎪⎨

⎪⎩

θ

η + θ
, k = 0

η

η + θ
pk, k = 1, 2, . . . , M

(19)
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and

P(Y = k|Z = 1) = qk
p

, k = 1, 2, . . . , M . (20)

(b) The conditional mean on-hand inventory levels when the server is off due to a vacation
or depleted inventory, and when it is on and working are given by

E(Y |Z = 0) = ηp

η + θ
(21)

and

E(Y |Z = 1) = 1

p

M∑

k=1

kqk . (22)

Proof The detail for the proof is omitted since it is as simple as that of Theorem 3. ��

For Eq. (17), let θ → ∞, we obtain the mean oh-hand inventory level denoted by I
s
as

follows:

I
s =

M∑

i=1

iqi K
−1
Y (23)

where

KY = λ

η
+ p.

This agrees with the corresponding result for the QIS model with ROS policy that was given
by Schwarz et al. (2006) (see p. 60, Eq. (5)).

Remark 3 (a) From Eqs. (19) and (21), it is observed that the conditional distribution of the
on-hand inventory level when the server is off due to a vacation or depleted inventory and its
expectation E(Y |Z = 0) is independent from the arrival rateλ, and that they are not dependent
on parameters η and θ individually but only on their proportions η/θ . (b) From Eqs. (20) and
(22), it is observed that the conditional distribution of the on-hand inventory level when the
server is on and working and its expectation E(Y |Z = 1) is completely independent from
parameters λ, η and θ , and that they are only dependent on the distribution of Fp . (c) There
is also independence of μ as well throughout for all the performance measures mentioned
above.

Remark 4 (a) Equation (21) shows that the conditional mean on-hand inventory level when
the server is off due to a vacation or depleted inventory E(Y |Z = 0) is less than the mean
order size p. (b) Using Eq. (23), for Eq. (22), we have

E(Y |Z = 1) =
(

1 + λ

ηp

)

I
s

> I
s
,

i.e., the conditional mean on-hand inventory level when the server is on and working is larger
than themean on-hand inventory I

s
for the QISmodel with ROS policy presented in Schwarz

et al. (2006).
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4 Performancemeasures andmonotonicity

In this section, we derive other performance measures in addition to the mean on-hand
inventory level and the conditional mean on-hand inventory levels that have been obtained
earlier. Then, we compare the performance measures for this model to those for the QIS
model with ROS policy presented in Schwarz et al. (2006). Finally, in order to understand
the effect of the vacation rate on the performance measures, we consider the monotonicity
of these performance measures in θ .

4.1 Performancemeasures

In this subsection, we compute some performance measures using the stationary distribution
given in Sect. 3.2.
(a) The expected number of inventory replenished per unit of time (reorder rate) is given by

λR =
M∑

k=1

ηpk P(Y = 0) = λK−1
v . (24)

(b) The average number of lost sales incurred per unit of time is given by

LS = λP(Z = 0) =
(

λ2

η
+ λ2

θ

)

K−1
v . (25)

(c) A cycle is defined as the time between the placing of two successive orders, see Schwarz
et al. (2006) (p. 60). So, the mean cycle time is λ−1

R . Thus, the mean number of lost sales per
cycle is given by

LSc = LS

λR
= λ

η
+ λ

θ
. (26)

(d) According to Schwarz et al. (2006) (p. 61), β-service level is defined by

β = E(satisfied demand per unit of time)

E(total demand per unit of time)
.

Thus, the β-service level is given by

β = λ − LS

λ
= 1 −

(
λ

η
+ λ

θ

)

K−1
v . (27)

(e) The mean arrival rate of customers who are admitted to the system per unit of time is
given by

λA = λ − LS = λβ. (28)

(f) Let L0 and L1 denote the mean number of customers in the system and the mean number
of customers in the queue, respectively. Then, we have

L0 = λ

μ − λ
(29)
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and

L1 =
∞∑

n=0

M∑

i=0

nx(n, i, 0) +
∞∑

n=1

M∑

i=1

(n − 1)x(n, i, 1)

= λ

μ − λ
− λ

μ
pK−1

v . (30)

(g) From Little’s formula, the customer’s mean sojourn time W 0 and the mean waiting time
W 1 are given by

W 0 = L0

λA
= Kv

(μ − λ)p
(31)

and

W 1 = L1

λA
= Kv

(μ − λ)p
− 1

μ
. (32)

Remark 5 (a) From the above expressions of the performance measures, we observe that
some performance measures like I , LSc and β are not dependent on parameters λ, η and θ

individually but only on their proportions λ/η and λ/θ . (b) Concerning the influence of Fp ,
we observe that all the performance measures derived above, other than I and E(Y |Z = 1),
are only dependent on the first moment p of Fp , or completely independent of Fp like LSc
and L0. (c) μ is also independent throughout for some performance measures related to
inventory including I , λR , LS, β and λA. This is because that the stationary distribution of
the system has a product form of two marginal distributions (see Theorem 2).

4.2 Comparison with Schwarz et al. (2006)

If we let θ → ∞ in all the performance measures expressed above, we can obtain the
corresponding performance measures of the QIS with ROS policy which have been obtained
by Schwarz et al. (2006). We use superscript ‘s’ to denote the corresponding performance
measures, e.g., I s , λsR , LS

s
, LS

s
c, β

s , λsA, W
s
0 and W

s
1, for the QIS model with ROS policy

that was studied by Schwarz et al. (2006).
For the mean on-hand inventory level I , from Eqs. (17) and (23), we have the following

decomposition:

I = α I
s + (1 − α)p (33)

where α is a positive constant and is given by

α =
λ

η
+ p

λ

θ
+ λ

η
+ p

(34)

and I
s
is given by Eq. (23).

Remark 6 This decomposition shows that the mean on-hand inventory level I is the weighted
average sum of the mean on-hand inventory level I

s
of the QIS model with ROS policy

presented in Schwarz et al. (2006) and the mean order size p. It is also easy to see that the
weight number α increases with θ , and that α approaches to one when θ → ∞.
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Table 1 Relationships of the
performance measures to our
model and the corresponding
model in Schwarz et al. (2006)

Performance measures Relations

I I = α I
s + (1 − α)p

λR λR = αλsR

LS LS = αLS
s

LSc LSc = LS
s
c + λ

θ

β β = αβs + (1 − α)

λA λA = αλsA + (1 − α)λ

W0 W 0 = W
s
0 + Δ1

W 1 W 1 = W
s
1 + Δ2

Similarly, we can derive other relationships that exists between the performance measures
for our model and the corresponding performance measures for the model presented in
Schwarz et al. (2006). All these relationships are summarized in Table 1, where Δ1 and Δ2

are given by

Δ1 = λ

θ p(μ − λ)
(35)

and

Δ2 = λ

θ p(μ − λ)
+ λ

μηp
. (36)

4.3 Monotonicity

In the following, we consider the monotonicity of the performance measures on the vacation
rate θ by referring to the relationships given in Table 1.

Using the relationships for I given in Table 1, we have

dI

dθ
= dα

dθ
(I

s − p).

We note that dα

dθ
< 0. Hence, we find the following conditions for the monotonicity of I on

θ : (a) If I
s

< p then I increases with θ . (b) If I
s

> p then I decreases with θ . (c) If I
s = p

then the vacation rate θ does not influence I .
Noting that dα

dθ
< 0, it is easy to see from Table 1 that some performance measures like

λR , LS, LSc, W 0 and W 1 decrease with θ .
Using the relationships for β and λA given in Table 1, we have

dβ

dθ
= dα

dθ
(βs − 1) > 0

and

dλA

dθ
= dα

dθ
(λsA − λ) > 0.

Hence, β and λA increase with θ .
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5 Numerical examples

In this section, we investigate three examples for the distribution of the random order size
which have the same mean order size.

(i) Deterministic distribution (DET). Let us assume that the order size is fixed and equal
to deterministic number d ∈ E = {1, 2, . . . , M}. Hence, we have pd = 1, and pk = 0
for other k ∈ E and k 	= d . The mean order size p = d . This is the (0, d) inventory
policy.

(ii) Uniform distribution (UNI). Let the order size be equally distributed in set E . Hence,
we have pk = 1/M for all k ∈ E . We fix M = 2d − 1, so that the mean order size
p = d .

(iii) Modified binomial distribution (MBI). Let us assume that the order size follows the
modified binomial distribution in set E with the following probability distribution:

pk =
{
qM + MpqM−1, k = 1

Ck
M pkqM−k, k = 2, 3, . . . , M

where p > 0, p + q = 1. It is easy to see the mean order size p = Mp + qM . We
select an integer M such that it approximately satisfies the equality Mp + qM = d , so
that the mean order size will be approximately equal to d .

Following this, we examine the effect of the above three distributions of the random order
size on the mean on-hand inventory level I . We plot the curves for I by varying the order size
distributions and the parameters λ, η and θ , respectively. We set d = 6. For the deterministic
distribution, we fix M = 6. For the uniform distribution, we fix M = 11. For the modified
binomial distribution, we fix M = 15 and p = 0.4. Thus, the mean order sizes for each of
the three distributions are equal to 6, or are approximately equal to 6. Figure 4 corresponds
to the case of the varying parameter λ and the fixed parameters η = 3 and θ = 5. Figure
5 corresponds to the case of the varying parameter η and the fixed parameters λ = 10 and
θ = 5. Figure 6 corresponds to the case of the varying parameter θ and the fixed parameters
λ = 10 and η = 3.

Figure 4 shows that the mean on-hand inventory level I decreases with parameter λ for
each of the three order size distributions. It is observed that the difference of I under the three
distributions deceases with an increase in parameter λ. It is observed from Fig. 5 that the
mean on-hand inventory level I increases with parameter η for each of the three distributions,
and the difference of I under the three distributions increases with an increase in parameter
η. From Fig. 6, we observe that the mean on-hand inventory level I decreases with parameter
θ for each of the three distributions, and the difference of I under the three distributions
increases with an increase in parameter θ .

It is observed from Figs. 4, 5 and 6 that the mean on-hand inventory level I is minimal
for a deterministic distribution, and is maximal for a uniform distribution.

6 Simulation study

From the performancemeasures obtained in Sects. 3 and 4, we found some invariance proper-
ties which can be summarized as follows: (i) some performancemeasures related to inventory
management (including I , E(Y |Z = 0), E(Y |Z = 1); λR , LS, LSC , β and λA) are not
dependent on the service rate μ (see Remarks 3 and 5); (ii) the mean number of customers
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Fig. 4 Effect of parameter λ on the mean on-hand inventory level I
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Fig. 5 Effect of parameter η on the mean on-hand inventory level I
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Fig. 6 Effect of parameter θ on the mean on-hand inventory level I

in the system L0 and the conditional mean on-hand inventory level E(Y |Z = 1) are not
dependent on the parameters η and θ ; (iii) the conditional mean on-hand inventory levels
E(Y |Z = 0) and E(Y |Z = 1) are not dependent on the arrival rate λ. These properties
have been analytically proven for the case of M/M/1 QIS model described in Sect. 2. How-
ever, if the inter-arrival times and the service times are not exponentially distributed and the
other assumptions are the same as that in our model described in Sect. 2, can we have these
invariance properties?

Since it is not easy to obtain the above performance measures in closed form for the cases
of non-exponential distributions of the inter-arrival times and the service times, the simulation
method will be used to obtain the above performance measures. Therefore, in this section, we
perform simulation experiments with various distribution settings of the inter-arrival times
and the service times and examine the effect of the variance of the distributions on some of
the system performance measures.

Firstly, we perform a set of experiments to test the accuracy of the simulation. For this
purpose, we perform the simulations for the M/M/1 QIS model in Sect. 2 and compare the
simulation results with the analytical results for the mean on-hand inventory level I obtained
in Sect. 3. The relative difference for the performance measures I is computed by

ε = 100

∣
∣I sim − I exa

∣
∣

I sim

where I exa and I sim represent the exact result and the simulation result, respectively.
In this set of experiments, we fix the arrival rate λ = 10 and the service rate μ = 15. Each

of the simulation experiments is characterized by the following factors: (i) the distribution of
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Table 2 Relative differences
between the exact results and the
outcomes of the simulations

DET UNI MBI

Average error 3.10 4.15 3.42

Minimum error 0.53 0.35 0.37

Maximum error 9.74 11.95 10.63

the random order size D; (ii) the lead time parameter η, and (iii) the vacation time parameter
θ . We consider the three different distributions of the random order size which are described
in Sect. 5. The parameters η and θ are varied over 5 levels: 1, 2, 3, 4, 5. The simulation
experiments include a total of 3 × 5 × 5 = 75 scenarios. In our simulation study, we make
use of the simulation language Python. We stimulate these scenarios 50,000 unit times. The
relative differences between the exact results and the outcomes of the simulation are given
in Table 2.

From the summary statistics presented in Table 2, we see that the average errors in estimat-
ing I for the deterministic distribution, the uniform distribution and the modified binomial
distribution are 3.10%, 4.15% and 3.42%, respectively. The maximum error in our set of 75
instances is 11.95%, and the minimal error is 0.35%. For the average error of simulating I ,
the deterministic distribution is minimal among the three distributions of the random order
size D. Thus, in our following sets of experiments, we fix the order size distribution to be a
deterministic distribution with fixed order size D = 6.

Now, we perform the following sets of experiments to see if we still have the invariance
properties mentioned above when the inter-arrival times and the service times are not expo-
nentially distributed. For this purpose, in the design of simulation study, we consider the
following three different probability distributions for the inter-arrival times:

(i) Exponential distribution (EXA). The probability density function is

f1(x) = λe−λx , x > 0.

(ii) Erlang distribution (ERA). The probability density function is

f2(x) = λ(λx)k−1

(k − 1)! e
−λx , x > 0.

(iii) Hyper-exponential distribution (HEA). The probability density function is

f3(x) =
n∑

i=1

piλi e
−λi x , x > 0.

The parameters of the inter-arrival times are normalized so as to obtain the same arrival rate
which is denoted by λar . We also use the following four different probability distributions
for the service times:

(i) Exponential distribution (EXS). The probability density function is

g1(x) = μe−μx , x > 0.

(ii) Erlang distribution (ERS). The probability density function is

g2(x) = μ(μx)k−1

(k − 1)! e−μx , x > 0.

123



Annals of Operations Research (2022) 310:595–620 613

Table 3 The effect of the service
rate μsr on I under various
scenarios

EXA ERA HEA

μsr=15

EXS 3.8062 3.7932 3.7876

ERS 3.8006 3.8120 3.7920

HES 3.8018 3.7912 3.7916

LNS 3.7914 3.7898 3.7884

μsr=17

EXS 3.7924 3.8162 3.8084

ERS 3.8002 3.8222 3.7996

HES 3.8242 3.8010 3.7972

LNS 3.7908 3.7974 3.8062

μsr=19

EXS 3.8096 3.8188 3.8166

ERS 3.8034 3.8308 3.8192

HES 3.8268 3.8108 3.8176

LNS 3.7936 3.8236 3.8110

μsr=21

EXS 3.8170 3.8138 3.8090

ERS 3.8316 3.8072 3.8098

HES 3.8054 3.8196 3.8342

LNS 3.8228 3.8356 3.8026

(iii) Hyper-exponential distribution (HES). The probability density function is

g3(x) =
n∑

i=1

piμi e
−μi x , x > 0.

(iv) Log-normal distribution (LNS). The probability density function is

g4(x) = 1√
2πσ x

e− (lnx−μ)2

2σ2 , x > 0.

The parameters of the service time are normalized so as to obtain the same service rate which
is denoted by μsr .

In the second set of experiments, we study the effect of the service rate μsr on some
of the performance measures. We mainly look at the following performance measures: I ,
E(Y |Z = 0), E(Y |Z = 1), LS and λA. We consider the three inter-arrival time distributions
and the four service time distributions defined above. The service rate is varied over four
levels: μsr = 15, 17, 19, 21. The parameters η and θ are fixed as: η = 4, θ = 2. Thus, the
simulation experiments include a total of 5 × 3 × 4 × 4 = 240 (5 performance measures ×
3 inter-arrival time distributions × 4 service time distributions × 4 levels of service rates)
scenarios. The simulation results for I , E(Y |Z = 0), E(Y |Z = 1), λR and LS are displayed
in Tables 3, 4, 5, 6 and 7, respectively.

From these tables, we immediately conclude the following observations:

(i) If the service rateμsr is fixed to any one of the four levels and the service time distribution
is fixed to any one of the four distributions: EXS, ERS, HES and LNS, then the variance
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Table 4 The effect of the service
rate μsr on E(Y |Z = 0) under
various scenarios

EXA ERA HEA

μsr=15

EXS 3.9620 3.9664 3.9628

ERS 3.9728 3.9672 3.9704

HES 3.9600 3.9722 3.9404

LNS 3.9692 3.9482 3.9828

μsr=17

EXS 3.9528 3.9576 3.9528

ERS 3.9718 3.9764 3.9884

HES 3.9442 3.9752 3.9980

LNS 3.9464 3.9574 3.9454

μsr=19

EXS 3.9692 3.9390 3.9404

ERS 3.9404 3.9454 3.9500

HES 3.9524 3.9650 3.9598

LNS 3.9554 3.9602 3.9426

μsr=21

EXS 3.9450 3.9556 3.9828

ERS 3.9716 3.9596 3.9676

HES 3.9624 3.9748 3.9558

LNS 3.9524 3.9476 3.9552

Table 5 The effect of the service
rate μsr on E(Y |Z = 1) under
various scenarios

EXA ERA HEA

μsr=15

EXS 3.5036 3.5012 3.5090

ERS 3.4980 3.4998 3.5066

HES 3.4964 3.4912 3.4926

LNS 3.4974 3.4970 3.4990

μsr=17

EXS 3.5004 3.5014 3.4920

ERS 3.5030 3.5006 3.5010

HES 3.5022 3.4796 3.4992

LNS 3.4948 3.5036 3.5090

μsr=19

EXS 3.5020 3.4932 3.4906

ERS 3.5006 3.4982 3.4922

HES 3.5014 3.4856 3.5058

LNS 3.5042 3.5050 3.5024

μsr=21

EXS 3.5032 3.4958 3.5038

ERS 3.5026 3.4974 3.4986

HES 3.4994 3.4924 3.4998

LNS 3.4912 3.4942 3.5012
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Table 6 The effect of the service
rate μsr on λR under various
scenarios

EXA ERA HEA

μsr=15

EXS 0.0100 0.0100 0.0100

ERS 0.0100 0.0100 0.0100

HES 0.0100 0.0100 0.0100

LNS 0.0100 0.0100 0.0100

μsr=17

EXS 0.0100 0.0100 0.0100

ERS 0.0100 0.0100 0.0100

HES 0.0100 0.0100 0.0100

LNS 0.0100 0.0100 0.0100

μsr=19

EXS 0.0100 0.0100 0.0100

ERS 0.0100 0.0100 0.0100

HES 0.0100 0.0100 0.0100

LNS 0.0100 0.0100 0.0100

μsr=21

EXS 0.0100 0.0100 0.0100

ERS 0.0100 0.0100 0.0100

HES 0.0100 0.0100 0.0100

LNS 0.0100 0.0100 0.0100

Table 7 The effect of the service
rate μsr on LS under various
scenarios

EXA ERA HEA

μsr=15

EXS 0.0554 0.0562 0.0542

ERS 0.0566 0.0564 0.0534

HES 0.0550 0.0552 0.0556

LNS 0.0556 0.0570 0.0564

μsr=17

EXS 0.0586 0.0596 0.0586

ERS 0.0596 0.0594 0.0590

HES 0.0586 0.0600 0.0592

LNS 0.0594 0.0588 0.0582

μsr=19

EXS 0.0600 0.0600 0.0600

ERS 0.0600 0.0600 0.0600

HES 0.0598 0.0600 0.0598

LNS 0.0598 0.0600 0.0600

μsr=21

EXS 0.0600 0.0602 0.0600

ERS 0.0602 0.0600 0.0602

HES 0.0602 0.0602 0.0600

LNS 0.0602 0.0600 0.0600

123



616 Annals of Operations Research (2022) 310:595–620

Table 8 The effect of the
parameters η and θ on L0 under
various scenarios

EXA ERA HEA

θ = 2 θ = 12 θ = 2 θ = 12 θ = 2 θ = 12

η = 4

EXS 0.0890 0.0896 0.0890 0.0890 0.0894 0.0882

ERS 0.0894 0.0890 0.0896 0.0890 0.0880 0.0884

HES 0.0888 0.0890 0.0900 0.0894 0.0884 0.0892

LNS 0.0886 0.0890 0.0888 0.0894 0.0886 0.0892

η = 14

EXS 0.0882 0.0888 0.0894 0.0896 0.0896 0.0878

ERS 0.0888 0.0886 0.0894 0.0898 0.0888 0.0888

HES 0.0890 0.0894 0.0894 0.0898 0.0892 0.0892

LNS 0.0890 0.0882 0.0900 0.0896 0.0880 0.0886

of the different inter-arrival time distributions barely affects the performance measures
I and LS, and it especially does not affect λR .

(ii) If the service rateμsr is fixed to any one of the four levels and the inter-arrival distribution
is fixed to any one of the three distributions: EXA, ERA and HEA, then the variance of
the different service time distributions barely affects the performance measures I and
LS, and it especially does not affect λR .

(iii) If the inter-arrival time distribution is fixed to any one of the three distributions: EXA,
ERA and HEA, and the service time distribution is fixed to any one of the four distribu-
tions: EXS, ERS, HES and LNS, then the variance of the different service rates barely
affects the performance measures I and LS, and it especially does not affect λR .

Since the other performances LSC , β and λA can be derived bymeans of LS and λA (see Eqs.
(27)-(29)), we conclude from these observations that if the inter-arrival times and the service
times are not exponentially distributed and the other assumptions are the same as that in
our model described in Sect. 2, the performance measures related to inventory management
mentioned above are not dependent on the service rate μsr .

In the third set of experiments, we study the effect of the parameters η and θ on the mean
number of customers in the system L0 and the conditional mean on-hand inventory level
E(Y |Z = 1). We consider the three inter-arrival time distributions with the common arrival
rate λar = 10 and the four service time distributions with the common service rate μsr = 15
defined above. The parameters η and θ are varied over two levels: η = 4, 14, θ = 2, 12.
Thus, the simulation experiments include a total of 2 × 3 × 4 × 2 × 2 = 96 (2 performance
measures × 3 inter-arrival time distributions × 4 service time distributions × 2 levels of η

× 2 levels of θ ) scenarios. The simulation results for L0 and E(Y |Z = 1) are displayed in
Tables 8 and 9, respectively.

From Tables 8 and 9, we observe that there is no significant dependence of the parameter
η and θ on the performance measures L0 and E(Y |Z = 0) under various scenarios.

In the last set of experiments, we study the effect of the arrival rate λar on the conditional
mean on-hand inventory levels E(Y |Z = 0) and E(Y |Z = 1). We consider the three inter-
arrival time distributions and the four service time distributions with the common service
rate μsr = 15 defined above. The arrival rate λar is varied over 3 levels: λar = 6, 8, 10. The
parameters η and θ are fixed as: η = 4, θ = 2. Thus, the simulation experiments include a
total of 2× 3× 4× 3 = 96 (2 performance measures × 3 inter-arrival time distributions × 4
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Table 9 The effect of the
parameter η and θ on
E(Y |Z = 1) under various
scenarios

EXA ERA HEA

θ = 2 θ = 12 θ = 2 θ = 12 θ = 2 θ = 12

η = 4

EXS 3.5014 3.4934 3.4988 3.4930 3.5126 3.5100

ERS 3.4936 3.4994 3.4958 3.4966 3.5046 3.5010

HES 3.4946 3.5094 3.5008 3.4984 3.5088 3.4974

LNS 3.5028 3.4952 3.4980 3.4922 3.5034 3.5000

η = 14

EXS 3.4994 3.3862 3.5020 3.3332 3.5010 3.4068

ERS 3.4922 3.3818 3.5018 3.3048 3.5010 3.4074

HES 3.5184 3.3890 3.4952 3.3392 3.4980 3.3890

LNS 3.5006 3.3784 3.4960 3.2794 3.4946 3.4053

Table 10 The effect of the arrival
rate λar on E(Y |Z = 0) under
various scenarios

EXA ERA HEA

λar=6

EXS 3.9398 3.9608 3.9524

ERS 3.9530 3.9328 3.9330

HES 3.9886 3.9778 3.9684

LNS 3.9548 3.9434 3.9630

λar=8

EXS 3.9506 3.9504 3.9468

ERS 3.9668 3.9614 3.9596

HES 3.9842 3.9550 3.9710

LNS 3.9414 3.9672 3.9588

λar=10

EXS 3.9684 3.9798 3.9618

ERS 3.9678 3.9472 3.9710

HES 3.9484 3.9518 3.9576

LNS 3.9508 3.9742 3.9446

service time distributions × 3 levels of the arrival rate λar ) scenarios. The simulation results
for E(Y |Z = 0) and E(Y |Z = 1) are displayed in Tables 10 and 11, respectively.

From Tables 10 and 11, it is observed that there is no significant dependence of the arrival
rate λar on the performancemeasures E(Y |Z = 0) and E(Y |Z = 1) under various scenarios.

From all the observations above, we get an answer for the question proposed at the begin-
ning of this section, i.e., if the inter-arrival times and the service times are not exponentially
distributed and the other assumptions are the same as that in our model described in Sect. 2,
we still have the invariance properties mentioned above.
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Table 11 The effect of the arrival
rate λar on E(Y |Z = 1) under
various scenarios

EXA ERA HEA

λar=6

EXS 3.4866 3.4654 3.4744

ERS 3.4662 3.4550 3.4646

HES 3.4670 3.4586 3.4696

LNS 3.4634 3.4512 3.4870

λar=8

EXS 3.4964 3.5016 3.4874

ERS 3.4926 3.4962 3.4932

HES 3.5032 3.5056 3.4954

LNS 3.4992 3.4980 3.4980

λar=10

EXS 3.4938 3.4882 3.5134

ERS 3.5008 3.4994 3.5020

HES 3.4992 3.5024 3.4984

LNS 3.5028 3.4934 3.5038

7 Managerial suggestions

From the performance measures obtained in Sects. 3 and 4, we have found that all the
performance measures except the mean on-hand inventory level I and the conditional mean
on-hand inventory level E(Y |Z = 1) are only dependent on the mean order size p of the
random order size D, or completely independent of the distribution Fp of D like the mean
number of lost sales per cycle LSc and the mean number of customers in the system L0

(see Remark 5). The analysis of numerical examples in Sect. 6 show that the mean on-
hand inventory level I is minimal for the deterministic order size distribution. Therefore, we
recommend to managers in queueing-inventory systems that they pay more attention on the
mean order size than the distribution of the random order size, and that the deterministic order
size might be an optimal replenishment policy from the point of view of the mean on-hand
inventory level.

In practice, it is common in service systems to allow the server to have a vacation when the
server is idle. From economic point of view, allowing a server to take a vacation can reduce the
expenses incurredwhen the server is idle. Also, where the server is a human being, continuous
work creates physical stress and mental pressure that reduce the server’s working efficiency.
As pointed out by Jeganathana and Abdul (2020), “A vacation period helps persons avoid
stress factors and restore their energy and confidence to work efficiently”. However, from the
comparison of our model with the QIS model with no server’s vacation and monotonicity of
the performance measures on the vacation rate (see Sects. 4.2 and 4.3), we found that server’s
vacation in QIS has a significant effect on inventory management and the satisfaction of the
customers. Therefore, we recommend that managers in QIS must consider the effect of a
server’s vacation on the inventory management and the quality of service. Neglecting a
server’s vacation in QIS will lead to poorer outcomes in inventory decision making.

From the analytical and simulation study, we have found that all the performancemeasures
except the mean number of customers in the system L0, the mean number of customers in
the queue L1, the customer’s mean sojourn time W 0 and the mean waiting time W 1 are not
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dependent on the service rate. Therefore, we recommend that a company should not blindly
improve the service capacity since the improvement of the service capacity does not guarantee
a decrease in the rate of customer losses. However, the improvement of the service capacity
will decrease the waiting time of customers and thus increase customers’ satisfaction. This
will be helpful for improving the company’s reputation. However, it will increase the service
operating costs. Therefore, managers should consider the inventory management and the
service process integrally.

8 Conclusion

In this paper, we studied the queueing-inventory system with random order size policy and
lost sales, where a multiple vacation policy for the server was considered when the on-hand
inventory was depleted. It was found that the stability condition was independent of the
vacation rate, the parameter of lead time, and the distribution of the random order size. We
obtained the stationary distribution of the system as a product of the marginal distributions.
We observed that the conditional distribution of the on-hand inventory level when the server is
off due to a vacation or depleted inventory and its expectation E(Y |Z = 0) are independent of
the arrival rate λ. We also observed that the conditional distribution of the on-hand inventory
level when the server is on and working and its expectation E(Y |Z = 1) are completely
independent with parameters λ, η and θ . Some monotonicity for the performance measures
on the vacation rate was obtained. Numerical examples show that themean on-hand inventory
level for the deterministic distribution of the order size was the minimal among the three
distributions of the order size. The simulation study shows that some invariance properties
still hold if the inter-arrival times and the service times are not exponentially distributed and
the other assumptions are the same as that in our model. Our model can be further extended
to a more general case with Phase-type distributions of service times, lead times and vacation
times. However, the computational complexity increases significantly with the state space
size.
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