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Abstract
We consider multiple criteria sorting problems with preference-ordered classes delimited by
a set of boundary profiles. While significantly extending the ELECTRE Tri-B method, we
present an integrated framework formodeling indirect preference information and conducting
robustness analysis. We allow the Decision Maker (DM) to provide the following three types
of holistic judgments: assignment examples, assignment-based pairwise comparisons, and
desired class cardinalities. A diversity of recommendation that can be obtained given the plu-
rality of outranking-based sortingmodels compatible with the DM’s preferences is quantified
by means of six types of results. These include possible assignments, class acceptabil-
ity indices, necessary assignment-based preference relation, assignment-based outranking
indices, extreme class cardinalities, and class cardinality indices. We discuss the impact of
preference information on the derived outcomes, the interrelations between the exact results
computed with mathematical programming and stochastic indices estimated with the Monte
Carlo simulations, and new measures for quantifying the robustness of results. The practical
usefulness of the approach is illustrated on data from the Financial Times concerning MBA
programs.

Keywords Multiple criteria decision aiding · Multiple criteria sorting · Outranking
relation · Preference modeling · Robustness analysis · Monte Carlo simulation

1 Introduction

Multiple criteria sorting problems involve an assignment of alternatives to pre-defined and
ordered classes in the presence of numerous pertinent viewpoints. The definition of decision
classes is related to how the alternatives placed in a given class should be processed or treated.
For example, in portfolio decision analysis, the stocks can be assigned to three categories:
attractive, to be studied further, and non-attractive (Hurson and Zopounidis 1995). When
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evaluating software producing technology companies, the latter ones can be sorted into pre-
defined efficiency classes (Bilich and da Silva 2008). Furthermore, the assessment of natural
gas pipelines involves assigning different accident scenarios into risk categories (Brito et al.
2010). In nanotechnology, one can predict a precaution level while handling nanomaterials in
certain conditions (Kadziński et al. 2020). As far as medical diagnosis is concerned, patients
can be judged in terms of the risk levels of developing different illnesses (e.g., diabetic
retinopathy Saleh et al. 2018). In the context of a comprehensive assessment of insulating
materials, we can consider preference-ordered sustainability classes (Kadziński et al. 2018).

The field of Multiple Criteria Decision Aiding (MCDA) offers a plethora of methods that
support Decision Makers (DMs) in providing recommendations regarding sorting problems.
These approaches differ in terms of the underlying assumptions, contexts of application,
required preference information, incorporatedmodels, and applied sorting rules.Nonetheless,
all of them expect the DM to interact in the specification of a consistent family of criteria,
a set of alternatives and their performances, as well as a set of parameters that represent
his/her preferences.

One of the most prevailing sorting methods is ELECTRETri-B (Yu 1992), which incorpo-
rates an outranking-based preferencemodel (Figueira et al. 2005) and defines decision classes
by means of limiting profiles. Such profiles are composed of performances that can be seen
as natural boundaries between a pair of successive classes. The intuitiveness of ELECTRE
Tri-B was found appealing in numerous real-world case studies in such various application
areas as climate change (Diakoulaki and Hontou 2003), economy and finance (Dimitras et al.
1995), land-use suitability assessment (Joerin et al. 2001), skills accreditation system (Siskos
et al. 2007), water resources management (Raju et al. 2000), or zoning risk analysis (Merad
et al. 2004).

The basic variant of ELECTRE Tri-B has also been advanced in numerous ways with
the aim of extending its applicability. In particular, it was extended to account for both
a hierarchical structure of criteria and interaction effects (Corrente et al. 2016). Moreover,
it was generalized to admit both a set of limiting class profiles for better characterization of
the boundaries between categories (Fernandez et al. 2017) and interval data (Fernandez et al.
2019). Also, the requirement of defining class boundaries was alleviated by admitting the
use of characteristic (i.e., the most typical) profiles (Almeida-Dias et al. 2010) or defining
the class boundaries implicitly by means of example assignment examples (Köksalan et al.
2009). Nevertheless, the greatest number ofmethodological advancements of ELECTRETri-
B was related to the elicitation of parameters compatible with the DM’s preferences. Since
the DMs may have some difficulties in specifying directly a coherent set of such parameters
(involving criteria weights, credibility level, comparison thresholds, and limiting profiles), a
preference disaggregation approach was envisaged to deal with the DM’s holistic preference
information and indirect inference of parameters.

The pioneering preference disaggregation approach for ELECTRE Tri-B was provided
in Mousseau and Słowiński (1998). The authors proposed an interactive non-linear opti-
mization model to infer all parameters of the sorting method from the desired assignments
for a subset of reference alternatives relatively well-known to the DM. Then, the linear
counterpart of this model was introduced to derive only the criteria weights and credibility
level (Mousseau et al. 2001). On the contrary, Mixed Integer Linear Programming was used
in Ngo The and Mousseau (2002) to learn the category limits. Furthermore, the definition of
the credibility of an outranking relationwas revised inDias andMousseau (2006) for allowing
easier indirect inference of veto-related parameters. A group decision preference disaggre-
gation setting was considered in Damart et al. (2007) with the aim of preserving consistency
of sorting examples at both individual and collective levels. Moreover, when considering
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assignment examples of multiple DMs, (Cailloux et al. 2012) discussed how to infer col-
lective class boundaries. While all aforementioned works considered the pessimistic sorting
rule of ELECTRE Tri-B, (Zheng et al. 2014) studied the efficiency of inference procedures in
the context of an optimistic procedure. Finally, the algorithms for dealing with inconsistent
holistic preference judgments were proposed in Mousseau et al. (2003) and Mousseau et al.
(2006).

Apart from inferring a set of compatible parameters from the DM’s assignment examples,
an inherent part of the preference disaggregation paradigm consists in using such parameters
through a sorting model to derive well-justified decisions. Traditionally, the analysis of the
DM’s holistic decisions resulted in constructing a single set of compatible parameter values,
whose employment led to the univocal class assignments of decision alternatives. However,
when using indirect and/or imprecise preference information, there usually exist infinitely
many compatible sets of parameters. Although their application on the set of reference alter-
natives leads to reproducing the DM’s desired assignments, the sorting recommendation
derived for the non-reference alternatives which were not judged by the DMmay differ from
one set of parameters to another.

In this perspective, (Dias et al. 2002) combined a preference disaggregation approach with
robustness analysis providing for each alternative a set of classes confirmed by at least one
compatible set of parameters. In this case, the variables of proposed mathematical program-
ming models were the criteria weights and credibility level. Furthermore, while admitting
imprecision in the specification of admissible parameter values related to the formulation of
sorting model (including the boundary profiles), (Tervonen et al. 2007) and (Tervonen et al.
2009) adapted Stochastic Multicriteria Acceptability Analysis (SMAA) to ELECTRE Tri-B.
Specifically, the SMAA-TRI method incorporated the simulation techniques to estimate a
proportion of feasible sets of parameters that assign each alternative to a given class.

This paper advances ELECTRETri-B by proposing an enriched framework for preference
modeling and robustness analysis. When it comes to preference learning, we account for
three types of indirect and imprecise preference information. They refer to a small part of
a desired final recommendation or requirements to be imposed on the derived assignments.
Specifically, apart from the assignment examples which have been traditionally incorporated
into preference disaggregation approaches for ELECTRETri-B (seeMousseau and Słowiński
1998;Dias et al. 2002), we consider assignment-based pairwise comparisons (Kadziński et al.
2015) and desired class cardinalities (Kadziński and Słowiński 2013). The former refer to the
relative class assignments desired for pairs of alternatives without specifying any concrete
classes (e.g., alternative a should be assigned to a class better than alternative b), whereas
the latter specify the bounds on the number of alternatives that can be assigned to a particular
class (e.g., at least 5 alternatives should be assigned to the most preferred class, and at most
half of the alternatives can be sorted into the worst class). While pairwise comparisons are
strictly related to the DM’s preferences, the constraints on the number of alternatives that
can be assigned to each class are rather implied by a particular decision aiding context. For
all types of preference information, we discuss the mathematical programming models that
contribute to the definition of all compatible sets of parameters. Accounting for such diverse
forms of preference is beneficial in terms of offering greater flexibility to the DM, reducing
the space of feasible parameter sets, and making the proposed framework suitable for various
sorting contexts.

As far as robustness analysis is concerned, we incorporate a number of robust results,
which are derived from the exploitation of a set of parameter sets compatible with the DM’s
preferences. The diversity of these outcomes comes from using different tools for assessing
the robustness of the same part of the recommendation and from considering various per-
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spectives on the stability of recommendation for a given problem. Specifically, we jointly
use linear programming—for constructing the necessary (certain), possible, and extreme out-
comes in an exact manner—and the Monte Carlo simulation—for estimating the probability
of results, which are possible, though not certain. Indeed, some recent case studies indicate
that a joint consideration of the robust and stochastic results can be even more beneficial
for real-world decision making, as these results offer complementary perspectives on the
stability of recommendation (see Dias et al. 2018; Kadziński et al. 2018).

The constructed results differ in terms of an adopted perspective while representing multi-
dimensional and interrelated conclusions (Kadziński and Ciomek 2016). For the individual
alternatives, we consider possible assignments and class acceptability indices, for pairs
of alternatives—necessary assignment-based preference relation (Kadziński and Słowiński
2013) and assignment-based outranking indices, whereas for decision classes—extreme class
cardinalities and class cardinality indices (Kadziński et al. 2016). Note that the so-far exist-
ing robustness analysis methods for ELECTRE Tri-B focussed on the stability of class
assignments. Accounting for various types of results, including assignment-based prefer-
ence relation and class cardinalities, is beneficial for understanding one’s own preferences,
informing decision making, enhancing the DM’s learning on the problem, stimulating his/her
reaction to interactively enrich preference information, and arriving at a more credible rec-
ommendation.

When considering different types of preference information, the space of compatible
sets of parameters is non-convex. Thus, to derive the exact robust results, we propose some
Mixed-Integer Linear Programmingmodels, whereas to estimate the acceptability indices, we
combine Hit-And-Run (HAR) (Tervonen et al. 2013) with the rejection sampling technique.
The additional contribution of the paper comes from discussing an impact of the provided
preference information on the truth or falsity of robust results as well as the interrelations
between the exact and stochastic outcomes obtained with mathematical programming and
the Monte Carlo simulations. The practical usefulness of the approach is illustrated on data
from the Financial Times concerning MBA programs.
Overall, the novelty of the paper derives from the following developments:

– introducing original models based on mathematical programming for defining a set of
outranking models compatible with three types of indirect and imprecise preference
information concerning alternatives, pairwise comparisons, and decision classes; in par-
ticular, we propose two alternative models for representing assignment-based pairwise
comparisons, which have not been used before in the context of ELECTRE Tri-B;

– introducing novel procedures based on mathematical programming and the Monte Carlo
simulation for exploiting a set of compatible outranking models and deriving six types of
complementary results; the exact and stochastic outcomes concerning assignment-based
preference relations and class cardinalities are considered for the first time in view of
ELECTRE Tri-B;

– implementing an original idea for combining Hit-And-Run and the rejection sampling
techniques for efficient exploitation of a non-convex space of compatible outranking
models;

– comprehensive discussion of the theoretical properties of the results and interrelations
between inputs and outputs which enhance interactive elicitation of preferences;

– providing the richest framework for preference modeling and robustness analysis, which
can be generalized to other sorting methods;

– introducing novel measures for quantifying the robustness of sorting results.
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The remainder of the paper is organized as follows. In Sect. 2, we remind the basic variant
of ELECTRE Tri-B. Section 3 introduces an integrated framework for preference modeling
and robustness analysis with ELECTRE Tri-B. In Sect. 4, we discuss the properties of the
model outcomes, which are relevant for real-world applications. Section 5 demonstrates the
method’s applicability on a realistic data set. The last section concludes and provides avenues
for future research.

2 Reminder on the ELECTRE Tri-B method

We use the following notation throughout the paper:

– A = {a1, a2, . . . , ai , . . . , an}—a finite set of n alternatives;
– AR = {a∗

1 , a
∗
2 . . .}—a set of reference alternatives on which the DM accepts to express

preferences; AR ⊆ A;
– C1,C2, . . . ,Cp—p pre-defined preference ordered classes, where Ch+1 is preferred

to Ch , h = 1, . . . , p − 1 (H = {1, .., p});
– B = {b0, . . . , bh, . . . , bp}—a set of limiting class profiles such that bh−1 and bh are,

respectively, the lower and upper boundaries of class Ch , h = 1, . . . , p;
– G = {g1, . . . , g j , . . . , gm}—a set of m evaluation criteria, g j : a → R for all j ∈ J =

{1, 2, . . . ,m}; performances of ai ∈ A or bh ∈ B on g j are denoted by, respectively,
g j (ai ) and g j (bh); if different is not stated explicitly, we assume that all criteria are of
gain type (i.e., greater performances are more preferred);

– q j (ai ), p j (ai ), v j (ai ) for j = 1, 2, . . . ,m and ai ∈ A—indifference, preference, and
veto thresholds for criterion g j and alternative ai such that v j (ai ) > p j (a) ≥ q j (a) ≥ 0;

– w j for j = 1, 2, . . . ,m—weight of criterion g j , expressing its relative power in set G;
the weights are non-negative w j ≥ 0, for j = 1, . . . ,m, and normalized to sum up to
one, i.e.,

∑m
j=1 w j = 1;

– λ ∈ [0.5, 1]—a credibility level indicating a minimal value of outranking credibility
σ(a, bh) implying the truth of a crisp outranking relation S of alternative ai over profile
bh (ai Sbh) (since λ ≥ 0.5, the support of a weighted majority of all criteria is always
required to instantiate ai Sbh).

Construction of outranking relation ELECTRE Tri-B supports the assignment of each alter-
native ai ∈ A to one of decision classes in C . For this purpose, the method constructs an
outranking relation S, which verifies whether ai is at least as good as boundary profile bh ,
h = 0, . . . , p. The truth of ai Sbh is captured by means of the concordance and discordance
tests. The former involves computation of a comprehensive concordance index C(ai , bh),
which quantifies the strength of a coalition of criteria confirming that ai is at least as good
as bh , i.e.:

C(ai , bh) =
m∑

j=1

w jϕ j (ai , bh), (1)

where ϕ j (ai , bh) is the marginal concordance index indicating a degree to which criterion
g j supports the hypothesis ai Sbh :

ϕ j (ai , bh) =

⎧
⎪⎨

⎪⎩

0, if g j (bh) − g j (ai ) ≥ p j (ai ),
1, if g j (bh) − g j (ai ) ≤ q j (ai ),
p j (ai )−(g j (bh )−g j (ai ))

p j (ai )−q j (ai )
, if q j (ai ) < g j (bh) − g j (ai ) < p j (ai ).

(2)
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In particular, if ai is not worse than bh by more than indifference threshold q j (ai ) on all
criteria, then C(ai , bh) = 1, which means that the hypothesis ai Sbh is fully supported. On
the contrary, if ai is worse than bh by at least preference threshold p j (ai ) for j = 1, . . . ,m,
then C(ai , bh) = 0, indicating an absolute lack of support for validating ai Sbh .

The discordance index measures the strength of opposition against the truth of outranking
on each criterion g j , j = 1, . . . ,m, in the following way:

d j (ai , bh) =

⎧
⎪⎨

⎪⎩

0, if g j (bh) − g j (ai ) ≤ p j (ai ),
1, if g j (bh) − g j (ai ) ≥ v j (ai ),
(g j (bh )−g j (ai ))−p j (ai )]

[v j (ai )−p j (ai )
, if p j (ai ) < g j (bh) − g j (ai ) < v j (ai ).

(3)

Specifically, when ai is worse than bh on g j by at least veto threshold v j (ai ), criterion g j

strongly opposes to ai Sbh , hence invalidating this relation.
The credibility of outranking aggregates the concordance and discordance indices to mea-

sure an overall support given to ai Sbh by all criteria:

σ(ai , bh) = C(ai , bh)[1 − max jd j (ai , bh)]. (4)

We apply a revised credibility index proposed in Dias andMousseau (2006) so that to account
for the veto-related effects within the preference disaggregation procedure. Note that when
usingσ(ai , bh)originally coupledwithELECTRETri-B, the inferencemodelswould become
non-linear.

The truth of ai Sbh is confirmed iff σ(ai , bh) is not lesser than credibility level λ, i.e.:

ai Sbh ⇔ σ(ai , bh) ≥ λ. (5)

Otherwise, i.e., if σ(ai , bh) < λ, ai cannot be judged comprehensively at least as good as bh
(ai Scbh).

Exploitation of outranking relation The assignment procedures of ELECTRE Tri-B exploit
the outranking relation for all pairs of (ai , bh) ∈ A × B. Specifically, a pair of disjoint
sorting rules can be applied. The optimistic one assigns ai to class Ch in case bh+1 is the
least preferred profile such that ai Scbh+1 and bh+1Sai . In this case, bh+1 is strictly preferred
to ai , thus preventing its assignment to a class better than Ch . The pessimistic rule assigns
ai to class Ch in case bh is the most preferred profile such that ai Sbh . Then, ai is at least as
good as bh , which hampers its assignment to a class worse than Ch . Throughout the paper,
we will use the pessimistic rule.

3 Integrated framework for preferencemodeling and robustness
analysis with ELECTRE Tri-B

In this section, we extend the ELECTRE Tri-B method by providing the mathematical
programming models that allow the DM to provide three types of indirect and imprecise
preference information. We also discuss the algorithms for deriving six types of results,
which contribute to the multi-dimensional robustness analysis.

3.1 Preferencemodeling

ELECTRE Tri-B employs an outranking-based sorting model. We expect the DM to provide
the indifference q j , preference p j , and veto v j thresholds for each criterion. These thresholds
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can be defined as constants or affine functions. The latter ones make the threshold values
dependent on the performance of particular alternatives.Moreover, theDM is asked to specify
directly the boundary profiles B = {b1 . . . , bh, . . . , bp−1}, which serve as frontiers between
classes. The extreme profiles b0 and bp are composed of, respectively, the worst and the
best performances on all criteria. Overall, we assume the variables in our model are criteria
weights w j , j = 1, . . . ,m, and credibility level λ. Hence, the basic set of constraints can be
formulated as follows:

[B1] w j ≥ 0, j = 1, . . . ,m,

[B2] ∑m
j=1 w j = 1,

[B3] 0.5 ≤ λ ≤ 1.

⎫
⎬

⎭
EBASE (6)

The admissible values of weights and credibility level are delimited by the indirect and impre-
cise preference information. The use of such statements reduces the cognitive effort on the part
of DM. In what follows, we present the mathematical programming models that allow to
incorporate the following three types of preferences: assignment examples, assignment-based
pairwise comparisons, and desired class cardinalities. These models involve binary variables,
which are subsequently used to minimize the number of preference information pieces that
need to be removed to ensure consistency between the DM’s preference information and an
assumed outranking-based sorting model of ELECTRE Tri-B.

Assignment examples Assignment example consists of a reference alternative a∗
i ∈ AR ⊆

A and its desired assignment a∗
i → [CLDM (a∗

i ),CUDM (a∗
i )], with CLDM (a∗

i ) and CUDM (a∗
i )

being, respectively, the least and the most preferred classes admissible for a∗
i . The example

statements of this type are as follows: “a∗
1 needs to be assigned to at least classC3 and at most

class C5” or “a∗
2 should be assigned to C1”. The following constraint set allows to model

a∗
i → [CLDM (a∗

i ),CUDM (a∗
i )] in terms of the parameters incorporated by the pessimistic rule

of ELECTRE Tri-B:

for all a∗
i ∈ AR :

[AE1] σ(a∗
i , bLDM−1) + Mu(a∗

i ) ≥ λ,

[AE2] σ(a∗
i , bUDM ) + ε ≤ λ + Mu(a∗

i ),[AE3] u(a∗
i ) ∈ {0, 1},

⎫
⎪⎪⎬

⎪⎪⎭

E ASS−EX (7)

where M and ε are, respectively, arbitrarily large and small positive constants (this interpre-
tation is valid also for the constraints sets that follow). In case u(a∗

i ) = 0, constraint [AE1]
stands for assigning a∗

i to class at least CLDM (a∗
i ), whereas constraint [AE2] implies that a∗

will be assigned to class at mostCUDM (a∗
i ). In case u(a∗

i ) = 1, the set of constraints is always
satisfied, whichever the values of all remaining parameters.

Assignment-based pairwise comparisons Assignment-based pairwise comparison involves
specification of a desired difference between classes to which a pair of reference alternatives
(a∗

i , a
∗
j ) ∈ PR ⊆ AR × AR should be assigned. We distinguish the following two sub-types

of such comparisons:

– Alternative a∗
i is better than alternative a∗

j by at least k ≥ 0 classes (a∗
i 	→≥k,DM a∗

j ),
e.g., “a∗

1 is better than a∗
3 by at least 2 classes”. The following constraint set translates

a∗
i 	→≥k,DM a∗

j to the parameters of an assumed sorting model:
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for all a∗
i , a

∗
j ∈ AR : a∗

i 	→≥k,DM a∗
j :

for all h = 1, . . . , p − k :
[PL1] σ(a∗

i , bh−1+k) ≥ λ − M(1 − u(a∗
i , a

∗
j ,≥ k, h)),

[PL2] σ(a∗
j , bh) + ε ≤ λ + M(1 − u(a∗

i , a
∗
j ,≥ k, h)),

[PL3] ∑p−k
h=1 u(a∗

i , a
∗
j ,≥ k, h) ≥ 1 − Mu(a∗

i , a
∗
j ),

[PL4] u(a∗
i , a

∗
j ,≥ k, h) ∈ {0, 1}, h = 1, . . . , p − k,

[PL5] u(a∗
i , a

∗
j ) ∈ {0, 1}.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

EPCL (8)

In case u(a∗
i , a

∗
j ) = 1, all constraints are satisfied, being eliminated. Otherwise, if

u(a∗
i , a

∗
j ,≥ k, h) = 1, constraint [PL1] guarantees that a∗

i is assigned to class at least
Ch+k , whereas constraint [PL2] ensures that a∗

j is placed in class at most Ch . Constraint
[PL3] imposes that at least one variable u(a∗

i , a
∗
j ,≥ k, h), h = 1, . . . , p− k, is equal to

one, implying the occurrence of the above mentioned scenario for some h.
– Alternative a∗

i is better than alternative a∗
j by at most l ≥ 0 classes, (a∗

i 	→≤l,DM a∗
j ),

e.g., “a∗
1 is by at most 1 class better than a∗

3”. The following constraint set translates
a∗
i 	→≤l,DM a∗

j in terms of the parameters of an assumed sorting model:

for all a∗
i , a

∗
j ∈ AR : a∗

i 	→≤l,DM a∗
j :

for all h = 1, . . . , p − l :
[PU1] σ(a∗

i , bh+l) + ε ≤ λ + M(1 − u(a∗
i , a

∗
j ,≤ l, h)),

[PU2] σ(a∗
j , bh) ≥ λ − M(1 − u(a∗

i , a
∗
j ,≤ l, h)),

[PU3] ∑p−l
h=1 u(a∗

i , a
∗
j ,≤ l, h) ≥ 1 − Mu(a∗

i , a
∗
j ),

[PU4] u(a∗
i , a

∗
j ,≤ l, h) ∈ {0, 1}, h = 1, . . . , p − l,

[PU5] u(a∗
i , a

∗
j ) ∈ {0, 1}.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

EPCU (9)

In case u(a∗
i , a

∗
j ) = 1, all constraints are satisfied, irrespective of the remaining parameter

values. Otherwise, if u(a∗
i , a

∗
j ,≤ l, h) = 1, constraint [PU1] guarantees that a∗

i is
assigned to class at most Ch+l , whereas constraint [PU2] ensures that a∗

j is placed
in class at leastCh . Constraint [PU3] imposes that at least one variable u(a∗

i , a
∗
j ,≤ l, h),

h = 1, . . . , p − k, is equal to one.

In case a∗
i 	→≥0,DM a∗

j and a∗
i 	→≤0,DM a∗

j , alternatives a
∗
i and a∗

j should be assigned to the
same class.

Desired class cardinalities In classical sorting problems, each alternative is comprehensively
judged in terms of its intrinsic value through its comparison with some norms or references
(in the case of ELECTRE Tri-B, these are defined by a set of boundary profiles separating
the classes) (see Almeida-Dias 2010 and Dias et al. 2003). Under such a scenario, sorting
incorporates an absolute judgment of each alternative to be assigned. As a result, depending
on the performances of alternatives on particular criteria, some classes may remain empty,
whereas other classes may accommodate the vast majority of alternatives. However, the
context of some decision problems may suggest that the number of alternatives assigned
to some or all classes should be bounded. The example problems involving this type of
constraints have been discussed in, e.g., (Almeida-Dias 2010; Dias et al. 2003; Kadziński
and Słowiński 2013; b). They concern credit risk assessment, assignment of bonus packages,
the evaluation of the performance of retails orR&Dprojects, accreditation of qualification and
skills, establishing national priorities in the energy sector, or student admission programs.
Such requirements may be linked to both problem’s nature and the DM’s preferences. A
variety of these examples confirms the need for methods that tolerate the lower and/or upper
bounds on the category sizes.
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In this regard, desired class cardinalities indicate extreme numbers of alternatives Cmin
h,DM

and Cmax
h,DM which can be assigned to a given class Ch . The example preference information

pieces of this kind are as follows: “at least 3 and at most 7 alternatives can be assigned to
C1” or “class C2 needs to accommodate at least 5 alternatives”. The respective mathematical
programming model can be formulated as follows:

for all ai ∈ A :
[CC0] ∑p

h=1 u(ai , h) = 1,
for all h ∈ H with specified desired class cardinalities :
[CC1] ∑

ai∈A u(ai , h) ≥ Cmin
h,DM − Mu(Ch),

[CC2] ∑
ai∈A u(ai , h) ≤ Cmax

h,DM + Mu(Ch),

[CC3] u(ai , h) ∈ {0, 1}, for all ai ∈ A,

[CC4] u(Ch) ∈ {0, 1},

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

ECARD (10)

where u(ai , h) is equal to one in case ai ∈ A is assigned to class Ch (similarly as imposed in
constraint set E ASS−EX ). In case u(Ch) = 1, all constraints are satisfied, being eliminated.
Otherwise, constraints [CC1] and [CC2] ensure that there are, respectively, at least Cmin

h
and at most Cmax

h alternatives assigned to Ch . Obviously, for a given outranking model each
alternative can be assigned to a single class only (see constraint [CC0]).

Note that the use of desired class cardinalities makes sense when the applied sortingmodel
parameters are not defined precisely. Otherwise, i.e., if ELECTRE Tri-B is parameterized
with precise parameter values, the method would assign each alternative to some class in
a deterministic way. Then, the class cardinalities would simply correspond to the number
of alternatives accommodated in each class. Whether they would meet the pre-defined con-
straints cannot be controlled by the method. On the contrary, when the model parameters
are defined through indirect or imprecise preference information (such as assignment exam-
ples or assignment-based pairwise comparisons), the inclusion of the requirements on the
category size has an impact on which parameter sets can be used for deriving a sorting recom-
mendation and which should be neglected, because of not being compatible with the DM’s
requirements of all types.

As a result, in constrained sorting problems, an assignment does not depend solely on
the intrinsic value of a given alternative, but also on the assignment of remaining alterna-
tives (Almeida-Dias 2010). Thus, a partial dependence in the considered set of alternatives
occurs, incorporating relative comparisons, typical for choice and ranking, into sorting.
Indeed, even if the assignment of some alternative to a given class would be possible without
cardinality constraints, their incorporation may exclude such possibility in favor of the other
possible assignments. This is, however, consistent with the specificity of thus defined sorting
problems.

Once the desired class cardinalities are specified and the binary variables u(ai , h) are
incorporated into the model, the assignment-based preference relations can be modeled in
a different, more transparent way. Specifically, a∗

i 	→≥k,DM a∗
j can be translated into the

parameters of an assumed sorting model in the following way:

for all a∗
i , a

∗
j ∈ AR : a∗

i 	→≥k,DM a∗
j :

[PL1]∑p
h=1 h · u(a∗

i , h) ≥ ∑p
h=1 h · u(a∗

j , h) + k − Mu(a∗
i , a

∗
j );

[PL2] u(a∗
i , a

∗
j ) ∈ {0, 1}.

⎫
⎪⎬

⎪⎭
EPCL (11)
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In turn, a∗
i 	→≤l,DM a∗

j can be modeled as follows:

for all a∗
i , a

∗
j ∈ AR : a∗

i 	→≤l,DM a∗
j :

[PU1]∑p
h=1 h · u(a∗

i , h) ≤ ∑p
h=1 h · u(a∗

j , h) + l + Mu(a∗
i , a

∗
j );

[PU2] u(a∗
i , a

∗
j ) ∈ {0, 1}.

⎫
⎪⎬

⎪⎭
EPCU (12)

3.2 Consistency verification

A set of parameter sets compatible with the DM’s preference information is denoted by
E(AR) = EBASE ∪ E ASS−EX ∪ EPCL ∪ EPCU ∪ ECARD . To ensure that it is non-empty,
the following optimization problem needs to be solved:

Minimize
∑

a∗
i ∈AR

u(a∗
i ) +

∑

(a∗
i ,a∗

j )∈PR

u(a∗
i , a

∗
j ) +

∑

h∈H
u(Ch), subject to E(AR).

It minimizes the number of preference information pieces (i.e., assignment examples for
a∗
i ∈ AR , assignment-based pairwise comparisons for (a∗

i , a
∗
j ) ∈ PR , and desired class

cardinalities for Ch , h ∈ H ) that need to be removed to restore consistency. The instantiation
of each statement is controlled by the respective binary variable, i.e., u(a∗

i ) for assignment
examples, u(a∗

i , a
∗
j ) for assignment-based pairwise comparisons, and u(Ch) for desired class

cardinalities. In case all preference information pieces can be reproduced together, the optimal
value of the objective function would be equal to zero. Otherwise, the binary variables equal
to one would indicate the DM’s statements that need to be removed to reinstate compatibility
with an assumed outranking-based sorting model.

3.3 Robustness analysis

In case a set of indirect and imprecise preference information pieces is not contradictory,
infinitely many sorting models can reproduce it. Their exploitation can be conducted in two
ways. On the one hand, a representative set of parameters can be selected using some arbi-
trary procedure. The application of thus constructed sorting model on the set of alternatives
implies univocal recommendation. On the other hand, all compatible sets of parameters can
be exploited to conduct robustness analysis. In the proposed approach, we implement the
latter idea, while extending it to provide multiple complementary results quantifying the sta-
bility of sorting recommendation given the plurality of outranking-based models compatible
with the DM’s incomplete preferences. Since we treat criteria weights and credibility levels
as variables, all compatible sets of parameters defined by E(AR) are denoted by S(w, λ).

3.3.1 Robustness analysis with mathematical programming

In this section, we focus on deriving exact robust results by means of mathematical program-
ming. These outcomes include:

– Possible assignment CP (ai ) indicating a set of classes to which alternative ai ∈ A is
assigned by at least one compatible set of parameters (ai →P Ch), i.e. CP (ai ) = {Ch :
∃(w, λ) ∈ S(w, λ) for which ai → Ch};

– Necessary assignment-based preference relation �→,N which holds for pairs of alter-
natives (ai , a j ) ∈ A × A, such that ai is assigned to a class at least as good as a j
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for all compatible sets of parameters, i.e., ai �→,N a j ⇔ ∀(w, λ) ∈ S(w, λ) ai →
Ch and a j → Ck where h ≥ k;

– Extreme class cardinalities indicating the minimal Cmin
h and maximal Cmax

h numbers of
alternatives assigned to class Ch for some compatible set of parameters, i.e., Cmin

h =
min(w,λ)∈S(w,λ)|Ch | and Cmax

h = max(w,λ)∈S(w,λ)|Ch |, where |Ch | denotes the size of
class Ch .

Possible assignments For ai ∈ A,CP (ai ) is composed of classesCh , h = 1, . . . , p, such that
E(ai →P Ch) given below is feasible and ε∗ = max ε, subject to E(ai →P Ch) is greater
than 0.

[PA1] σ(ai , bh−1) ≥ λ, if h > 1,
[PA2] σ(ai , bh) + ε ≤ λ, if h < p,
E(AR).

⎫
⎬

⎭
E(ai →P Ch) (13)

Constraints [PA1] and [PA2] are responsible for assigning alternative ai to class Ch by
ensuring that ai outranks the lower profile and does not outrank the upper profile of Ch . Let
us denote the indices of the least and the most preferred classes to which ai can be possibly
assigned by, respectively, L(ai ) and R(ai ).

Necessary assignment-based preference relation The purpose of the assignment-based pref-
erence relation is to enable the pairwise comparisons of alternatives in a manner compatible
with the sorting method. This is not possible when referring to the assignment- or cardinality-
oriented results. The analysis for pairs may be particularly useful when the DM is interested
in the recommendation obtained for some particular alternatives or when there are numerous
alternatives possibly assigned to the same class range.

By comparing the alternatives in terms of the robust assignment-based relations, one can
arrive at conclusions such as:

– “all compatible outranking models assign a to a class at least as good as b” (in case of
analyzing necessary assignment-based preference relation), or

– “for 50% of compatible outranking models a is assigned to a class better than b, for 20%
of feasible models the order of classes is inverse, and for the remaining 30%—a and b are
placed in the same class” (in case of analyzing Assignment-based Outranking Indices).

These conclusions are compatible with the sorting problem, and cannot be obtained through
analyzing the stability of an outranking or preference relation considered in the context of
ranking problems.

When it comes to the necessary assignment-based preference relation �→,N , for ai , a j ∈
A, ai �→,N a j holds if ∀h ∈ H , Eh,C (ai �→,N a j ) given below is not feasible or, in case
of feasibility, ε∗ = max ε subject to Eh,C (ai �→,N a j ) is not greater than 0.

[PN1] σ(a j , bh) ≥ λ,

[PN2] σ(ai , bh) + ε ≤ λ,

E(AR)

⎫
⎬

⎭
Eh,C (ai �→,N a j ) (14)

Constraints [PN1] and [PN2] ensure that a j is assigned to class at least Ch+1, whereas ai is
assigned to class at most Ch . Hence, to verify if ai is assigned to a class at least as good as
a j for all compatible sets of parameters, we check if a j can be assigned to class better than
ai for at least one feasible parameter set.

Extreme class cardinalities The minimal Cmin
h and maximal Cmax

h cardinalities of class Ch

correspond to the optimal solutions of the following Mixed-Integer Linear Programming
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(MILP) problems:

Minimize/Maximize :
∑

ai∈A

u(ai , h), subject to E(AR), (15)

where u(ai , h) is equal to one in case the conditions justifying an assignment of ai to Ch are
satisfied. Hence, by minimizing (maximizing) the sum of u(ai , h) for all ai ∈ A, we identify
an outranking model in the set of all compatible models defined by E(AR) that minimizes
(maximizes) the number of alternatives for which the conditions supporting an assignment
to Ch are met at the same time.

The possible assignments, necessary assignment-based preference relation, and extreme
class cardinalities offer complementary perspectives on the robustness of results. None of
them can be fully captured based on the analysis of the remaining ones. This justifies their
joint employment. For example, when alternative ai is possibly assigned to classes between
C3 and C5 and alternative a j is possibly assigned to classes between C2 and C4, ai is not
guaranteed to be always assigned to a class at least as good as a j , so it may only be verified by
means of the necessary assignment-based preference relation. Furthermore, there may exist
numerous alternatives that are possibly assigned to classCh , but this may happen for different
compatible sets of parameters. Thus, only the analysis of extreme class cardinalities captures
how many alternatives can be placed in the same class for some feasible set of parameters.

3.3.2 Robustness analysis with the Monte Carlo simulations

The exploitation of a set of compatible sorting models using mathematical programming
techniques leads to the exact robust results. They reveal what happens for some, all, and
extreme compatible sets of parameters. Nonetheless, the possible assignment often includes
multiple classes, the necessary relation leavesmany pairs of alternatives, whereas the range of
observable class cardinalities can be wide. In this perspective, it would be useful to compute
the results which quantify the probability of attaining different outcomes given the multiplic-
ity of compatible sorting models. Specifically, we consider the following results, which are
defined as multi-dimensional integrals over the space of uniformly distributed weights and
credibility levels compatible with the DM’s preference information:

– Class Acceptability Index CAI (ai , h) indicating the proportion of compatible sets of
parameters assigning alternative ai ∈ A to class Ch , i.e.

CAI (ai , h) =
∫

(w,λ)∈S(w,λ)

m(w, λ, i, h)d(w, λ), (16)

where m(w, λ, i, h) is the class membership function:

m(w, λ, i, h) =
{
1, if ai → Ch for (w, λ),

0, otherwise.

– Assignment-Based Outranking Index AO I (ai , a j ) indicating the share of compatible
sets of parameters for which alternative ai ∈ A is assigned to a class at least as good as
alternative a j ∈ A, i.e.:

AO I (ai , a j ) =
∫

(w,λ)∈S(w,λ)

r(w, λ, i, j)d(w, λ), (17)
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where r(w, λ, i, j) is the assignment-based outranking relation confirmation function:

r(w, λ, i, j) =
{
1, if ai → Ch and a j → Ck and h ≥ k for (w, λ),

0, otherwise.

– ClassCardinality IndexCC I (h, r) indicating the share of compatible sets of parameters
for which the size of class Ch (i.e., the number of alternatives assigned to it) is equal to
r , i.e.

CC I (h, r) =
∫

(w,λ)∈S(w,λ)

c(w, λ, h, r)d(w, λ), (18)

where c(w, λ, h, r) is the class cardinality function:

c(w, λ, h, r) =
{
1, if |Ch | = r for (w, λ),

0, otherwise.

SinceS(w, λ) is multi-dimensional and non-convex, it is not possible to compute the stochas-
tic acceptability indices accurately. Computing the exact value of these indices would require
us to (1) calculate the volume of the full space exactly, (2) for each alternative, pair, or class
to partition the space in regions that grant a particular result, and (3) to compute the volumes
of these regions. Exact computation of the volume of a polytope is extremely hard from
the computational viewpoint (Kadziński and Tervonen 2013). In turn, to estimate CAI s,
AO I s, and CC I s, we use the Monte Carlo simulation to sample from the space of uni-
formly distributed criteria weights and credibility levels. Since there do not exist efficient
algorithms for sampling the compatible outranking models from the non-convex space, we
combine the HAR algorithm (Tervonen et al. 2013) with a naive rejection technique. Specif-
ically, we first sample from a convex space of compatible parameter sets defined by basic
normalization and non-negativity constraints as well as the DM’s assignment examples, i.e.,
EBASE ∪ E ASS−EX . Note that these constraints introduce the linear cuts in the space of fea-
sible weights and credibility levels, which makes HAR suitable for efficiently sampling from
such a space (Lovász 1999). However, the constraints introduced by the assignment-based
pairwise comparisons and desired class cardinalities involve the binary variables, thus mak-
ing the space of compatible parameters sets non-convex. In this regard, to find the samples
which are compatible with all types of DM’s preference information, we reject these samples
returned by HAR that do not align with EPCL ∪ EPCU ∪ ECARD . The latter is justifiable
because a rejection sampling is feasible in low dimensionality problems, and acceptable error
limits for the stochastic indices can always be achieved, given sufficient computation time,
with a certain number of Monte Carlo iterations (Kadziński and Tervonen 2013).

4 Properties of themodel outcomes

In this section, we present the properties of robust sorting results. We first discuss the impact
of preference information on the outcomes. Then, we present how these results evolvewith an
incremental specification of preference information. We exhibit the interrelations between
the exact results derived with mathematical programming and the stochastic acceptability
indices estimated with theMonte Carlo simulations. All these properties are of high practical
relevance. However, since their proofs are obvious, we omit them. Finally, we discuss some
measures for quantifying comprehensive robustness of results.

Relations between provided preference information and model outcomes The approach pro-
posed in this paper has been designed so that to ensure a correspondence between the
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preference information and the robust results. The relations between the provided input
and the derived outputs exist on three levels concerning individual alternatives, pairs of
alternatives, and decision classes. They can be summarized as follows:

– for each reference alternative a∗
i ∈ AR its possible assignment is a subset of the desired

assignment, i.e. CP (a∗
i ) ⊆ [CLDM (a∗

i ),CUDM (a∗
i )]; that is, the set of classes confirmed

by at least one compatible parameter set can be narrower than the range specified by the
DM, but never wider;

– for each pair of reference alternatives a∗
i , a

∗
j ∈ AR such that a∗

i 	→≥k,DM a∗
j with k ≥ 0,

the necessary assignment-based preference relation holds, i.e. a∗
i 	→≥k,DM a∗

j , k ≥ 0

⇒ a∗
i �→,N a∗

j ;
– for each classCh with specified desired class cardinalities, the extreme class cardinalities

are within the bounds provided by the DM, i.e., Cmin
h,DM ≤ Cmin

h and Cmax
h ≤ Cmax

h,DM .

Evolution of robust results with incremental specification of preference information The
analysis of the robust result stimulates the DM to enrich his/her preference information. For
example, the analysis of CP (ai ) and CAI s may lead to new or more precise assignment
examples, �→,N and AO I s may enhance the DM to provide additional assignment-based
pairwise comparisons, whereas Cmin

h , Cmax
h , and CC I s may stimulate more constrained

desired class cardinalities. With each new additional piece of preference information, the
set of compatible parameter sets becomes smaller. Thus, when considering the outcomes
obtained in two subsequent iterations t and t + 1 with preference information in (t + 1)th
iteration enriching theDM’s requirements in t th iteration, the following properties concerning
the evolution of results hold:

– for each alternative ai ∈ A its possible assignment can become narrower, but not wider,
i.e., Ct+1

P (ai ) ⊆ Ct
P (ai );

– the assignment-based necessary preference relation is enriched, i.e., �→,N
t ⊆�→,N

t+1 ;
– the difference between extreme class cardinalities can become lesser, but not greater, i.e.,

Cmin
h,t ≤ Cmin

h,t+1 and C
max
h,t+1 ≤ Cmax

h,t .

Interrelations between the exact outcomes and estimates of stochastic acceptability indices
The results computed with mathematical programming are exact. Specifically, the neces-
sary outcomes are confirmed by all compatible parameter sets, the possible results—by at
least one feasible set of parameters, whereas the extreme ones indicate the recommendation
obtained in the most and the least advantageous cases. On the contrary, the results derived
from the Monte Carlo simulation are only estimates of the exact acceptability indices. Thus,
although they can be estimated up to an arbitrarily selected accuracy threshold by analyz-
ing a required number of samples, they would never be exact. In what follows, we list the
interrelations between the necessary, possible, and extreme outcomes and the estimates of
stochastic acceptability indices. Let us start with the results concerning the class assignments
of individual alternatives:

– h /∈ CP (ai ) ⇒ CAI (ai , h) = 0 and CP (ai ) is a singleton ⇒ CAI (ai , h) = 1;
– h ∈ [CP (ai )] ⇒ CAI (ai , h) ∈ [0, 1] and ∑

h∈CP (ai ) CAI (ai , h) = 1;
– CAI (ai , h) > 0 ⇒ h ∈ CP (ai ).

When it comes to the results observed for pairs of alternatives, the following properties hold:

– ai �→,N a j ⇒ AO I (ai , a j ) = 1;
– AO I (ai , a j ) < 1 ⇒ ¬(ai �→,N a j ).
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As far as the class cardinalities are concerned, the following interrelations can be considered:

– r < Cmin
h or r > Cmax

h ⇒ CC I (h, r) = 0 and Cmin
h = Cmax

h = r ⇒ CC I (h, r) = 1;
– Cmin

h ≤ r ≤ Cmax
h ⇒ CC I (h, r) ∈ [0, 1] and ∑

r=Cmin
h ,...,Cmax

h
CC I (h, r) = 1;

– CC I (h, r) > 0 ⇒ Cmin
h ≤ r ≤ Cmax

h .

The above properties imply that the DM’s preference information has an impact also on
the stochastic acceptability indices. As a result, the latter ones evolve with an incremental
specification of preferences.However, it is not possible to formulate somegeneral conclusions
on how a particular acceptability index would be modified in case the respective exact result
would be either possible, though not necessary, or it would be contained within the extreme,
non-precise bounds.

One needs to bear in mind that CAI s, AO I s, and CC I s are not sufficient to derive the
exact results. Since we consider the estimates of acceptability indices, CAI (ai , h) = 0 and
CC I (h, r) = 0 do not exclude h ∈ CP (ai ) orCmin

h ≤ r ≤ Cmax
h .Moreover,CAI (ai , h) = 1

and AO I (ai , a j ) = 1 do not imply CP (ai ) is a singleton or ai �→,N a j , respectively.

Robustnessmeasures formultiple criteria sortingLet us introduce a fewmeasures quantifying
comprehensive robustness of results in view of six types of outcomes obtained from the
analysis of S(w, λ):

– an average difference between indices of themost and the least preferred possible classes,
built on the possible assignments CP (ai ) of all alternatives ai ∈ A:

fC PW (S(w, λ)) = 1

n

n∑

i=1

[R(ai ) − L(ai ) + 1]; (19)

– amean class assignment entropy, built on the class acceptability indices for all alternatives
ai ∈ A and all classes Ch , h = 1, . . . , p:

fC AI (S(w, λ)) = 1

n

n∑

i=1

−
p∑

h=1

CAI (ai , h)log2CAI (ai , h); (20)

– the share of ordered pairs of alternatives for which the order of classes is not fixed,
which means that the necessary assignment-based preference relation is not true, but the
possible relation holds (which is approximated with APO I (ai , a j ) > 0):

fN APO I (S(w, λ)) =
∑

(ai ,a j )∈A×A, i �= j POS(ai , a j )

n · (n − 1)
, (21)

where:

POS(ai , a j ) =
{
1, if not(ai �→,N a j ) and APO I (ai , a j ) > 0,

0, otherwise;
(22)

– a mean assignment-based outranking entropy, built on the assignment-based outranking
indices for all pairs of alternatives (ai , a j ) ∈ A × A, i �= j :

f AO I (S(w, λ)) =
∑

(ai ,a j )∈A×A, i �= j

−APO I (ai , a j ) · log2APO I (ai , a j )

n · (n − 1)
; (23)
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Table 1 A set of decision alternatives: indices and names of MBA programs

ai Program name ai Program name

a1 London Business School a16 Insead

a2 MIT: Sloan a17 New York Un.: Stern

a3 Yale School of Management a18 Northwestern Un.: Kellogg

a4 Un. of North Carolina: Kenan-Flagler a19 Rotterdam School of Management

a5 Un. of Toronto: Rotman a20 Stanford Un. GSB

a6 UCLA: Anderson a21 UC Berkeley: Haas

a7 Un. of Oxford: Said a22 Un. of Chicago GSB

a8 Un. of Maryland: Smith a23 Un. of Iowa: Tippie

a9 Carnegie Mellon: Tepper a24 Un. of Michigan: Ross

a10 Columbia Business School a25 Un. of Pennsylvania: Wharton

a11 Cornell University: Johnson a26 Un. of Rochester: Simon

a12 Duke University: Fuqua a27 Un. of Virginia: Darden

a13 Esade Business School a28 Un. of Western Ontario: Ivey

a14 Harvard Business School a29 Vanderbilt University: Owen

a15 Iese Business School a30 York University: Schulich

– an average difference between the greatest and the least class cardinalities for all classes
Ch , h = 1, . . . , p:

fCCW (S(w, λ)) = 1

p

p∑

h=1

[Cmax
h − Cmin

h + 1]; (24)

– a mean class cardinality entropy, built on the class cardinality indices for all classes Ch ,
h = 1, . . . , p, and all possible cardinalities r = 1, . . . , n:

fCC I (S(w, λ)) = 1

p

p∑

h=1

−
n∑

r=1

CC I (h, r)log2CC I (h, r). (25)

The above measures can be analyzed by the DM, who incrementally provides preference
information. All measures have been designed in such a way that lesser values indicate
greater robustness of results. In this perspective, the DM can judge, after each iteration,
whether the interactive process should be continued, in case the robustness is satisfying, or
stopped, otherwise.

5 Illustrative study: multiple criteria evaluation of MBA programs

In this section, we present an illustrative study to demonstrate the applicability and practical
usefulness of the proposed framework for preference modeling and robustness analysis with
ELECTRE Tri-B. The actual data concerns evaluation of 30 MBA programs (Köksalan
et al. 2009) (see Table 1). The considered gain-type criteria are defined on a 0–100 scale, and
involve alumni career progress (g1), diversity (g2) and idea generation (g3) (the performances
are provided in Table 2).
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Table 2 Performances of the
MBA programs on three criteria

ai g1 g2 g3 ai g1 g2 g3

a1 68.78 62.03 59.87 a16 56.59 70.74 65.45

a2 60.01 24.1 85.81 a17 68.24 26.74 80.4

a3 79.01 25.98 51.84 a18 68.68 24.52 72.43

a4 67.8 22.45 62.4 a19 51.2 52.91 42.98

a5 59.34 36.68 60.79 a20 76.77 28.52 81.8

a6 55.46 21.52 74.54 a21 61.26 31.04 73.69

a7 57.04 43.49 47.12 a22 75.64 23.57 77.73

a8 55.33 25.28 64.13 a23 58.25 26.25 46.81

a9 54.02 18.69 71.93 a24 63.23 28.36 69.61

a10 83.44 32.94 71.63 a25 77.11 31.51 91.59

a11 60.54 30.31 55.99 a26 60.25 29.6 49.25

a12 64.05 27.25 64.68 a27 76.49 19.05 37.68

a13 54.61 60.15 14.45 a28 50.04 40.55 53.55

a14 77.84 29.05 93.91 a29 64.67 26.33 35.14

a15 61.99 54.61 40.04 a30 57.03 50.73 47.55

Table 3 Performances
of the boundary class profiles and
indifference q j , preference p j ,
and veto v j thresholds for all
criteria

g j Boundary profiles Thresholds
b0 b1 b2 b3 b4 b5 q j p j v j

g1 0 56 58 60 65 100 3 5 10

g2 0 24 30 33 37 100 3 5 9

g3 0 50 55 60 63 100 3 5 9

We aim at assigning theMBAprograms to five quality classesC1,C2,C3,C4,C5, withC1

andC5 indicating the least and the most preferred categories, respectively. The performances
of boundary profiles b0, b1 …, b5 as well as the indifference, preference, and veto thresholds
are provided in Table 3.

We will illustrate the use of the proposed methodological framework in its most general
form, i.e., by referring to all types of indirect and imprecise preference information and robust
outcomes. However, there is no obligation to use all kinds of inputs and outputs in case some
of them are not found appealing by the DM (e.g., in case of assignment-based pairwise
comparisons) or they are not imposed by the problem’s nature or DM’s preferences (e.g., in
case of desired class cardinalities). The versatile robustness analysis can be conducted for a
set of outranking models compatible with any preference information.

Also, the proposed framework for robustness analysis may support the elicitation of indi-
rect preference information already in the first iteration. In particular, it would be possible
to determine the results when only the boundary profiles and comparison thresholds are
provided. Subsequently specified holistic judgments (e.g., assignment examples) or require-
ments (e.g., desired class cardinalities) should be consistent with the outcomes derived from
such an analysis (e.g., the possible assignments or extreme class cardinalities, respectively).
In this way, they can be linked to a prior specification of an outrankingmodel through profiles
and thresholds.
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Table 4 Desired class
cardinalities in the first iteration

Ch C1 C2 C3 C4 C5

Cmin
h,DM 3 5 4 2 3

Cmax
h,DM 7 10 8 10 7

Fig. 1 Compatible sets of parameters derived with the Monte Carlo simulation in the first iteration (small dots
are compatible with the assignment examples, whereas large dots are additionally consistent with assignment-
based pairwise comparisons and desired class cardinalities)

5.1 Robustness analysis in the first iteration

We start with different statements representative for the three allowed types of preference
information. In particular, we consider five assignment examples, one for each class: a9 →
C1, a23 → C2, a3 → C3, a21 → C4, and a1 → C5. Moreover, we account for three
assignment-based pairwise comparisons: a3 is better than a2 by at most one class, a5 is better
than a17 by at least two classes, and a27 is worse than alternative a23 by at most two classes.
Finally, we tolerate the extreme class cardinalities provided in Table 4. They impose that each
class accommodates at least a few alternatives and prevent too many MBA programs to be
classified in the sameway. The provided preference information is consistentwith an assumed
sorting model. Thus, the set of compatible weights and credibility levels is non-empty and
can be exploited in the spirit of robustness analysis.
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Fig. 2 Sets of parameters derived with the Monte Carlo simulation compatible with the assignment examples
in the first iteration

The possible, necessary, and extreme results are computed with mathematical program-
ming techniques, whereas the values of acceptability indices are estimated with the Monte
Carlo simulation. In Fig. 1, we present the samples considered in the first iteration. Each dot
corresponds to a compatible set of parameters composed of three weights (w1, w2, w3) cor-
responding to the coordinates according to the three axes and credibility level λ, whose value
is represented with a color on a pre-defined scale. For clarity of presentation, some randomly
selected dots are described with precise parameter values. All dots, including small and large
ones, are counterparts of 10,000 sets of parameters compatible with the assumptions of the
outranking-based model as well as assignment examples. They were obtained with HAR.
The analysis of their distribution in the space of all feasible parameters indicates that the
space of compatible weights and credibility levels is not constrained much by the assign-
ment examples (see dots in Fig. 2). The large dots in Fig. 1 represent the sets of parameters
compatible with all pieces of preference information, including assignment-based pairwise
comparisons and desired class cardinalities (see Fig. 3). Hence, the small dots correspond
to the samples that were neglected due to the application of a rejection sampling technique,
whereas the large ones are used to estimate the stochastic results. As indicated by Fig. 1,
assignment-based pairwise comparisons and desired class cardinalities significantly reduced
the space of compatible weights and credibility levels.
In Table 5, we provide the possible assignments for all alternatives. They are precise for
24 alternatives. For example, 3 alternatives (a1, a5, a10) are univocally assigned to the best
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Fig. 3 Sets of parameters derived with the Monte Carlo simulation compatible with all types of preference
information provided in the first iteration

Table 5 Possible assignments for
all alternatives in the first
iteration

ai CP (ai ) ai CP (ai ) ai CP (ai )

a1 C5 a11 C3, C4 a21 C4

a2 C2 a12 C3 a22 C2

a3 C3 a13 C1 a23 C2

a4 C2 a14 C4 a24 C3, C4

a5 C5 a15 C1 a25 C4

a6 C2 a16 C4 a26 C2, C3

a7 C2 a17 C3 a27 C1

a8 C2, C3 a18 C2 a28 C1, C2

a9 C1 a19 C1 a29 C1

a10 C5 a20 C3, C4 a30 C2

class (C5), whereas 6 alternatives (a9, a13, a15, a19, a27, a29) are assigned to the worst class
(C1) with all compatible sets of parameters. All DM’s assignment examples are reproduced
in the possible assignments (e.g., since a23 was assigned by the DM to class C2, we have
CP (a23) = {C2}). For the remaining 6 alternatives (a8, a12, a20, a24, a26, and a28), the
possible assignments are imprecise. Specifically, these alternatives are sorted into one of two
consecutive classes depending on the selected compatible set of parameters.
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When it comes to CAI s, for the alternatives with precise possible assignments, they are
equal to one for the sole admissible class and zero for all remaining classes. The analysis
of CAI s is the most informative for the alternatives with imprecise possible assignments.
Indeed, for some of them, the probability of being assigned to either of two admissible classes
is similar. For example, the shares of compatible sets of parameters assigning a24 toC3 andC4

are equal to, respectively, 51.09% and 48.91%. On the contrary, for some other alternatives,
the vast majority of feasible weights and credibility levels assign them to a single class. In
particular, for a11, the probability of being assigned to C4 is eight times greater than the
respective probability for C3.

The other perspective on the robustness of sorting recommendation concerns the relative
comparison of assignments for pairs of alternatives. A Hasse diagram indicating a partial
pre-order imposed on the set of alternatives by the necessary assignment-based preference
relation is presented in Fig. 4. It respects the DM’s assignment-based pairwise comparisons.
For example, since a23 and a5 were required to be assigned to a class better than, respectively,
a27 and a17, �→,N is true for these pairs.

To support understanding of the interrelations between �→,N and CP (ai ), the nodes
representing alternatives with the same possible assignments are marked with the same color.
In this regard, some relations follow the possible assignments directly. For example:

– alternatives assigned to C5 with all compatible sets of parameters (a1, a5, a10) are pre-
ferred over all remaining alternatives, whereas alternatives possibly assigned only to C1

(a9, a13, a15, a19, a27, a29) are worse than all other alternatives;
– alternatives assigned to C3 (a3, a12, a17) are preferred over those possibly assigned to

either C3 or C2 (a8 and a26);
– alternatives precisely assigned to the same class are indifferent in terms of the necessary

assignment-based preference relation, and hence they are grouped in the same node in
Fig. 4.

However, some relations cannot be derived solely from the analysis of possible assignments.
For example, when considering alternatives possibly assigned to class C3 or C4, a11 is
incomparable with a20. This means that for some feasible sets of parameters, a11 is assigned
to a class better than a20, whereas for some other compatible weights and credibility levels—
the order of classes for this pair is inverse. Furthermore, although the possible assignments
for a20 and a24 are the same, a20 is always is assigned to a class at least as good as a24,
whereas the opposite is not true. This suggests that for some feasible sorting models, a20 is
assigned to a class strictly better than a24.

The analysis of the necessary assignment-based preference relation can be enriched with
consideration of Assignment-based Outranking Indices. We report them in the form of
a heatmap, which translates the index values between 0 and 1 on a pre-defined color scale
(see Fig. 5). As indicated by the associated color scale, the darker is a specific cell in a matrix,
the greater is the proportion of compatible sets of parameters for which an alternative from
the row is assigned to a class at least as good as an alternative from the column.

For pairs of alternatives related by the necessary assignment-based preference relations,
AO I s are equal to one. In particular, AO I (a1, a5) = 1 and AO I (a5, a1) = 1. Furthermore,
for pairs with disjoint sets of possible assignments, APO I is equal to zero in case one of
them is always assigned to a class strictly worse than the other (e.g., AO I (a12, a14) = 0). Let
us emphasize that even if an alternative is not necessarily preferred to some other alternative,
it can be assigned to a class at least as good for some feasible sets of parameters. In particular,
a3 is assigned to a class not worse than a11, a20, and a24 by, respectively, 11%, 41%, and
51% of compatible weights and credibility levels. Finally, the analysis of AO I s is the most
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Fig. 4 A Hasse diagram representing the necessary assignment-based preference relation in the first iteration

informative for pairs, which are incomparable in terms of�→,N . For example, the proportion
of compatible sets of parameters for which a11 is assigned to a class not worse than a20 is
greater than the share of feasible models for which the inverse relation holds. The exact
values of Assignment-based Outranking Indices are provided for all pairs in the e-Appendix
(supplementary material available online).

The last perspective concerns class cardinalities. In Table 6, we present the extreme num-
bers of alternatives that can be assigned to each class by some compatible sets of parameters.
For all classes, they are more precise than the cardinalities desired by the DM. For example,
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Fig. 5 A heatmap of the Assignment-based Outranking Indices in the first iteration (for the numerical values,
see e-Appendix)

Table 6 Extreme class
cardinalities in the first iteration

C1 C2 C3 C4 C5

Cmin
h 6 8 4 4 3

Cmax
h 7 10 6 7 3
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Fig. 6 A heatmap of Class Cardinalities Indices in the first iteration

the minimal number of alternatives that were allowed to be assigned to C5 was 5, whereas
the least observable cardinality for this class is 8. In the same spirit, the maximal number of
alternatives that could be placed in C3 was 8, whereas the greatest size of C3 that is observed
for some feasible set of parameters is 6.

Furthermore, for all feasible sets of weights and credibility levels, only 3 alternatives are
assigned to C5. This is understandable as they were the only alternatives that could possibly
be assigned to the most preferred class. For the remaining classes, the minimal and maximal
sizes differ. For class C1 these extreme numbers (Cmin

h = 6 and Cmax
h = 7) agree with the

analysis of possible assignments as they were 7 alternatives which could be possibly assigned
to C1, but only six of them were assigned to this class for all compatible sets of parameters.
However, for some other classes, these extreme cardinalities cannot be derived from the
analysis of other results. For example, the minimal and maximal numbers of alternatives
assigned to C3 are equal to, respectively, 4 and 6. However, the numbers of alternatives that
are always or sometimes assigned to C3 are equal to 3 and 8, respectively. These sizes are
not observed for any feasible sets of parameters.

The analysis of extreme class cardinalities can be supported with consideration of class
cardinality indices. Table 7 represents a heatmap of CC I s. The cells without a number
correspond to the cardinalities, which are not attained for any compatible set of parameters
(i.e., CC I (h, r) = 0). Clearly, for C5—the size of 3 is confirmed by all considered samples
(CC I (5, 3) = 1). For the remaining classes, the analysis of CC I s offers rich insights on
how many alternatives they accommodate for different compatible sets of parameters. In
particular, the vast majority of feasible sets of weight and credibility levels indicate that there
are 6 and 10 alternatives assigned to, respectively, C1 and C2 (i.e., CC I (1, 6) = 0.74 and
CC I (2, 10) = 0.76). Furthermore, for probabilities of 4, 5, and 6 alternatives being assigned
to C3 are very similar. Finally, for C4—the size of 4 is the least probable, being confirmed
only by 1% of compatible sets of parameters.

5.2 Robustness analysis in the second iteration

Let us assume that the analysis of robust results in the first iteration stimulated the DM to
provide additional preference information of different types:

– alternative a11 should be assigned to class C3 implied by the analysis of its imprecise
possible assignment and Class Acceptability Indices;

– alternative a24 should be assigned to a class better than a26 based on the analysis of
Assignment-based Outranking Indices;
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Table 7 Class Acceptability
Indices in the first iteration

C1 C2 C3 C4 C5

a1 0 0 0 0 1

a2 0 1 0 0 0

a3 0 0 1 0 0

a4 0 1 0 0 0

a5 0 0 0 0 1

a6 0 1 0 0 0

a7 0 1 0 0 0

a8 0 0.5444 0.4556 0 0

a9 1 0 0 0 0

a10 0 0 0 0 1

a11 0 0 0.1088 0.8912 0

a12 0 0 1 0 0

a13 1 0 0 0 0

a14 0 0 0 1 0

a15 1 0 0 0 0

a16 0 0 0 1 0

a17 0 0 1 0 0

a18 0 1 0 0 0

a19 1 0 0 0 0

a20 0 0 0.4081 0.5919 0

a21 0 0 0 1 0

a22 0 1 0 0 0

a23 0 1 0 0 0

a24 0 0 0.5109 0.4891 0

a25 0 0 0 1 0

a26 0 0.4479 0.5521 0 0

a27 1 0 0 0 0

a28 0.2602 0.7398 0 0 0

a29 1 0 0 0 0

a30 0 1 0 0 0

– at least 5 alternatives can be assigned toC3 and atmost 5 should be placed inC4 motivated
by the analysis of extreme class acceptabilities and Class Cardinality Indices.

The compatible sets of parameters derived with theMonte Carlo simulation for thus enriched
preference information are presented in Fig. 7. The sets of parameters compatible solely
with assignment examples (see Fig. 8) as well as with the remaining types of preference
information (see Fig. 9) have been vastly constrained when compared with the first iteration.
This is understandable in view of how the preferenceswere formulated in the second iteration,
i.e., they excluded some results previously deemed as possible.

The outcomes that were confirmed by all compatible sets of parameters in the previous
iteration are also validated in the next iteration (e.g., a univocal possible assignment of a14 to
C3; a necessary assignment-based preference of a2 over a28, or a precise cardinality of class
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Fig. 7 Compatible sets of parameters derived with the Monte Carlo simulation in the second iteration
(small dots are compatible with the assignment examples, whereas large dots are additionally consistent
with assignment-based pairwise comparisons and desired class cardinalities)

C5). Thus, in what follows, we focus only on the evolution of results that were not validated
for all feasible sets of weights and credibility levels in the first iteration.

When it comes to the possible assignments (see Table 8), they have become precise for
another five alternatives. For example, a8 and a26 are assigned to C2 for all compatible sets
of parameters, whereas previously, they could also be placed in C3. In fact, there is only one
alternative (a20) for which the possible assignment is still imprecise. The analysis of CAI s
indicated that 53.17% compatible models assign it to C3, whereas 46.83% sort a20 to C4.
Thus, class C3 is slightly more probable for a20 given indeterminacy of the DM’s preference
model due to the incompleteness of his/her preference information, whereas in the previous
iteration—class C4 was indicated by almost 60% of feasible sorting models.

The necessary assignment-based preference relation is presented in the form of a Hasse
diagram in Fig. 10. The subsets of alternatives which are assigned to the same class by all
feasible sets of parameters have now become more numerous. For example, 10 alternatives
are indifferent in terms of �→,N due to being precisely assigned to C2. Moreover, there is
no single pair of alternatives that would be incomparable in terms of the necessary relation.
For example, a20 is now assigned to a class at least as good as a11 for all compatible weights
and credibility levels.
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Fig. 8 Sets of parameters derived with the Monte Carlo simulation compatible with the assignment examples
in the second iteration

When it comes to the Assignment-based Outranking Indices, the only values which are
neither 0 nor 1 can be observed for the comparison of a20 with other alternatives. Specifically,
it is assigned to the same class (i.e., C4) as a14, a16, a21, and a25 for less than half of feasible
sorting models, whereas a3, a11, a12, a17, and a24 are assigned to the same class (i.e., C3)
for more than 50% of compatible parameter sets (Fig. 11).

The extreme class cardinalities indicate that the numbers of alternatives assigned to each
class are now more precise for all classes. On the one hand, there are always 7, 10, and
3 alternatives which are assigned to, respectively, C1, C2, and C5. On the other hand, C3

accommodates from 5 to 6 alternatives, whereas the cardinality of C4 is between 4 and 5.
The respective CC I s are given in Fig. 12. They confirm that it is slightly more probable that
4 and 6 alternatives are assigned to, respectively, C4 and C3, which is consistent with the
previously discussed results related to the assignment of a20.

The DM should analyze the obtained class assignments and cardinalities as well as
assignment-based preference relation after each iteration. (S)he should judgewhether the sug-
gested recommendation is convincing and decisive enough, and the correspondence between
the output of the model and the preferences (s)he has at the moment is satisfying. This deci-
sion can be supported by the analysis of robustness measures (see Table 9). For example, the
average difference between indices of the most and the least preferred possible classes has
decreased from 1.2 to 1.033 (see fC PW ). In fact, the possible assignment is now imprecise
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Fig. 9 Sets of parameters derived with the Monte Carlo simulation compatible with all types of preference
information provided in the second iteration

Table 8 Possible assignments for
all alternatives in the second
iteration

ai CP (ai ) ai CP (ai ) ai CP (ai )

a1 C5 a11 C3 a21 C4

a2 C2 a12 C3 a22 C2

a3 C3 a13 C1 a23 C2

a4 C2 a14 C4 a24 C3

a5 C5 a15 C1 a25 C4

a6 C2 a16 C4 a26 C2

a7 C2 a17 C3 a27 C1

a8 C2 a18 C2 a28 C1

a9 C1 a19 C1 a29 C1

a10 C5 a20 C3, C4 a30 C2

only for 1 out of 30 alternatives as compared to 6 alternatives in the first iteration. In the
same spirit, the share of ordered pairs of alternatives fN APO I for which the order of classes
is not fixed has decreased from 0.0793 to 0.0103 (i.e., from 69 to 9 out of 870 ordered pairs),
whereas an average difference fCCW between the greatest and the least class cardinalities has
dropped from 2.6 to 1.4. We can also observe significant improvement of the entropy-based
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Fig. 10 A Hasse diagram representing the necessary assignment-based preference relation in the second
iteration

measures exploiting the stochastic indices. For example, the entropy of class assignment
indices fC AI = 0.0332 indicates an extremely low variability of results, i.e., over five times
lesser than in the first iteration.

If the DM judges the robustness of results as satisfying, the interactive process stops. We
terminate the illustration after the second iteration because the recommendation is already
very robust. The only uncertainty is related to the assignment of a20. Once the DM would
assign it to eitherC3 orC4, all compatiblemodels would already recommend the same sorting
decision.

In case the robustness of sorting outcomes would not be found sufficient by the DM,
(s)he should pursue the exchange of preference information. If (s)he changed her/his mind
or discovered that the expressed judgments were inconsistent with some previous judgments
that (s)he considers more important, (s)he may backtrack to one of the earlier iterations
and continue from this point. In this way, the process of preference construction is either
continued or restarted (Corrente et al. 2013).

6 Summary and directions of future research

In this paper, we presented a novel integrated framework for preference modeling and robust-
ness analysis with the ELECTRETri-Bmethod. On the one hand, we discussedmathematical
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Fig. 11 A heatmap of the Assignment-based Outranking Indices in the second iteration (for the numerical
values, see e-Appendix)

programming models for incorporating three types of indirect and imprecise preferences.
These include assignment examples (e.g., “alternative a1 should be assigned toC2” or “alter-
native a2 should be placed in eitherC3 orC4”), assignment-based pairwise comparisons (e.g.,
“alternative a3 should be assigned to a class better than alternative a4” or “alternatives a5 and
a6 need to be assigned to the same class”), and desired class cardinalities (e.g., “the number
of alternatives assigned to class C1 should be between 3 and 6”). On the other hand, we
provided the algorithms for computing multiple robust results. The exact outcomes, includ-
ing the possible assignments, necessary assignment-based preference relation, and extreme
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Fig. 12 A heatmap of Class Cardinalities Indices in the second iteration

Table 9 Robustness measures in
the first and second iterations

Iteration fC PW fC AI fN APOI fAO I fCCW fCC I

First 1.200 0.1762 0.0793 0.0340 2.6 0.9784

Second 1.033 0.0332 0.0103 0.0051 1.4 0.3989

class cardinalities, can be derived with mathematical programming techniques. Furthermore,
the stochastic acceptability indices quantifying the probability of a particular assignment, the
truth of assignment-based relation, or some specific number of alternatives assigned to a given
class are estimated with the Monte Carlo simulation. For this purpose, we used an original
combination of the Hit-And-Run algorithm and the rejection sampling technique. Overall,
we provide the richest MCDA framework for robustness analysis. Indeed, (Kadziński and
Ciomek 2016) and (Kadziński et al. 2015) considered only exact robust outcomes in the con-
text of outranking- and value-based sorting procedures. Let us emphasize that when applying
the method to real-world decision problems, the DMs can use only preference information
that they find relevant for a particular context and refer to the results that they consider useful
for supporting decision making.

The usefulness of multiple accounted inputs and outputs was discussed theoretically
based on several properties and demonstrated on a realistic example concerning the eval-
uation of MBA programs. Firstly, we revealed the impact of provided preference relation
on the results. It is enhanced by the correspondence between different perspectives concern-
ing individual alternatives, pairs of alternatives, and decision class. Secondly, we showed
how the results evolve with an incremental specification of preference information. In this
perspective, diverse robust outcomes play a crucial role in stimulating the DM to supply
additional preference information pieces, whereas the contraction of the set of compatible
parameter sets implies that the results become more and more robust. Thirdly, we focussed
on why it is useful to analyze the outcomes concerning assignments, assignment-based rela-
tion, and class sizes. Although they are interrelated, none of them can be fully derived from
the analysis of the remaining ones. Fourthly, we discussed the benefits of using exact robust
outcomes and stochastic acceptability indices. Specifically, we demonstrated how these two
types of outcomes complement each other with exact results indicating which recommenda-
tion is certain, possible, or extreme and stochastic indices filling a gap, in a probabilistic way,
between what is possible and certain. Finally, we proposed some measures for quantifying
the comprehensive robustness of sorting results. Their analysis may stimulate the decision
on terminating an interaction with the method or pursuing an incremental specification of
preference information.
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The idea of processing diverse human-readable preference information and providing
sophisticated, robust results at the method’s output could be transferred to other MCDA
approaches. The most appealing extension refers to the ELECTRE Tri-C method (Almeida-
Dias et al. 2010), which – unlike ELECTRETri-B—requires theDM to provide characteristic
rather than boundary class profiles and employs two conjoint rules to work out an assignment
for each alternative.

In what follows, we discuss the limitations of our approach and the related directions for
future research. First, in our sortingmodel, we considered only criteriaweights and credibility
levels as variables whose values need to be inferred from indirect and imprecise preference
information. However, an outranking-based sorting model requires specification of other
parameters such as boundary profiles or indifference, preference, and veto thresholds. As
demonstrated by a rich literature on preference disaggregation in the context of ELECTRE
Tri-B, it is feasible to learn these parameters from the DM’s holistic judgments. However, it
is not possible to infer them all at once with linear programming techniques. Thus, it would
require the development of dedicated non-linear optimization algorithms.

Second, our method has been designed for an interactive specification of relatively small
subsets of indirect and imprecise statements. However, when larger sets of preferences are
involved, inconsistencies occur more frequently. Moreover, the number of binary variables
involved in specifying compatible sorting models is proportional to the number of alterna-
tives and classes. When considering the insufficient efficiency of existing solvers, it would be
neither possible to identify inconsistencies nor to model the preferences usingMixed-Integer
Linear Programming in case the number of binary variables would go into thousands. Hence
we envisage an extension of the method for dealing with large sets of preference informa-
tion pieces and large decision problems by developing some heuristic preference learning
approaches.

Third, we left the DM freedom to select the alternatives, pairs of alternatives, or classes
for which (s)he specified some desired outcomes or constraints that should be respected by
the recommended decision. As demonstrated by the recent research on active learning (see,
e.g., Ciomek et al. 2017), it is possible to design some algorithms to indicate the objects
that should be judged by the DM so that to increase both information gain from the DM’s
answer and robustness of the results. These approaches should incorporate the measures for
quantifying the robustness of sorting outcomes proposed in this paper.

Fourth, when discussing the results of a case study, we visualized the compatible sets
of parameters. This is very useful for understanding how the DM’s indirect and imprecise
statements constrain the space of an outranking-based sorting model’s parameters. In the
considered study, the number of model variables was four. Thus, we used three-dimensional
coordinate systems to illustrate the weight values and color for reflecting the values of a
credibility level. When the fifth variable would be involved, it would be possible to show its
values using points’ sizes. However, with an even greater number of model parameters, it
would be already challenging to ensure the figure’s readability.

Finally, we demonstrated the method’s applicability on a study concerning the evaluation
of MBA programs. We simulated all types of preference information pieces and analyzed
all types of robust results. In this way, we could illustrate the capabilities of the proposed
approach. The ultimate verification of its practical usefulness will involve applying it in case
studies with real-world DMs.
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Saleh, E., Błaszczyński, J., Moreno, A., Valls, A., Romero-Aroca, P., de la Riva-Fernandez, S., et al. (2018).
Learning ensemble classifiers for diabetic retinopathy assessment. Artificial Intelligence in Medicine, 85,
50–63.

Siskos, Y., Grigoroudis, E., Krassadaki, E., & Matsatsinis, N. (2007). A multicriteria accreditation system
for information technology skills and qualifications. European Journal of Operational Research, 182(2),
867–885.

Tervonen, T., Lahdelma, R., Almeida-Dias, J., Figueira, J., & Salminen, P. (2007). SMAA-TRI: A parameter
stability analysis method for Electre Tri. In I. Linkov, G. Kiker, & R. Wenning (Eds.), Environmental
security in harbors and coastal areas:Management using comparative risk assessment andmulti-criteria
decision analysis, nato security through science series c: environmental security (pp. 217–231). New
York: Springer.

Tervonen, T., Figueira, J., Lahdelma, R., Almeida-Dias, J., & Salminen, P. (2009). A stochastic method for
robustness analysis in sorting problems. European Journal of Operational Research, 192(1), 236–242.

Tervonen, T., van Valkenhoef, G., Basturk, N., & Postmus, D. (2013). Hit-And-Run enables efficient weight
generation for simulation-based multiple criteria decision analysis. European Journal of Operational
Research, 224(3), 552–559.

Yu, W. (1992). ELECTRE TRI: Aspects méthodologiques et manuel d’utilisation. Document du LAMSADE
74, Université-Paris-Dauphine

Zheng J., Cailloux O., & Mousseau V. (2011) Constrained multicriteria sorting method applied to portfolio
selection. In R.I. Brafman, F.S. Roberts, A. Tsoukias (Eds.), Algorithmic decision theory. ADT 2011.
Lecture notes in computer science (Vol. 6992). Berlin: Springer.

123



Annals of Operations Research (2021) 306:173–207 207

Zheng, J., Metchebon Takougang, S., Mousseau, V., & Pirlot, M. (2014). Learning criteria weights of an
optimistic Electre Tri sorting rule. Computers & Operations Research, 49, 28–40.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Enriched preference modeling and robustness analysis for the ELECTRE Tri-B method
	Abstract
	1 Introduction
	2 Reminder on the ELECTRE Tri-B method
	3 Integrated framework for preference modeling and robustness analysis with ELECTRE Tri-B
	3.1 Preference modeling
	3.2 Consistency verification
	3.3 Robustness analysis
	3.3.1 Robustness analysis with mathematical programming
	3.3.2 Robustness analysis with the Monte Carlo simulations


	4 Properties of the model outcomes
	5 Illustrative study: multiple criteria evaluation of MBA programs
	5.1 Robustness analysis in the first iteration
	5.2 Robustness analysis in the second iteration

	6 Summary and directions of future research
	Acknowledgements
	References




