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Abstract
The leader–follower facility location problem consists of a leader and a follower who are
competitors that locate new facilities sequentially. Traditional studies have generally assumed
that the leader has partial or full advance information of the follower’s response whenmaking
a decision. However, this assumption might be invalid or impracticable in practice. In this
paper, we consider that the leader needs to locate a predetermined number of new facilities
without knowing anything about the follower’s response. By separating the scenarios inwhich
the follower responds with different numbers of new facilities, a minimax regret model is
proposed for the leader to minimise its maximum possible loss. Based on the structural
characteristics of the proposed model, a set of solving procedures is provided that transforms
the follower’s nonlinear (fraction) programming model into a linear model. In the numerical
experiments, the proposedmodel is comparedwith two other locationmodels, a deterministic
model and a risk model, and the efficiency of the linearisation in decreasing the computation
time is verified. The results show that the proposed model is more applicable to the leader
when there is no information about the number or probability distribution of the follower’s
new facilities.

Keywords Leader–follower facility location · Competition · Minimax regret model ·
Linearisation

1 Introduction

The literature on the facility location problem began with Weber’s (1909) well-known paper.
Subsequently, operations researchers, traffic engineers, economists and others have discussed
the location of diverse facilities, such as service facilities (Xia et al. 2015; Farahani et al.
2019), medical facilities (Zhang and Atkins 2019), emergency facilities (Lado-Sestayo and
Fernandez-Castro 2019), and utility facilities (Ahmadi-Javid et al. 2016). Hotelling (1929)

B Hongguang Ma
hongru4355@163.com

1 School of Economics and Management, Beijing University of Chemical Technology, Beijing
100029, China

2 China Europe International Business School, 699 Hongfeng Road, Pudong, Shanghai 201206, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-020-03826-y&domain=pdf


862 Annals of Operations Research (2022) 309:861–882

analyzed the location choice and pricing decision of two competitors on a finite line with
uniformly spread consumers, which differs from the classic facility location problem. This
is generally regarded as the first paper on the competitive facility location problem. In the
competitive facility location literature, authors have typically incorporated the fact that other
facilities already are (or will be) in the market and that any new facility or facilities will have
to compete with them for market share (Plastria 2001).

In the competitive facility location problem, the customer choice rule for patronising
facilities is of great concern. The two most widely used rules are the deterministic utility
and random utility rules. The deterministic utility rule states that customers only visit the
facility that gives them the highest utility; for example, they only visit the closest facility or
the facility offering the cheapest product. In the random utility rule, customers are assumed
to distribute their demand according to a certain probability. The gravity-based rule proposed
by Reilly (1931) and later used by Huff (1964, 1966) is the most widely used random utility
rule, in which a customer’s probability of patronising a facility is proportional to the facility’s
attractiveness and inversely proportional to the distance between the customer and the facility.
Some new customer choice rules have been proposed in recent years. For example, Fernández
et al. (2017) proposed themulti-deterministic utility rule (also called the partially binary rule),
which assumes that customers neither visit only one facility nor distribute their demand to
all facilities. They only visit the most attractive facility of each company, and they distribute
their demand amongst all of these most attractive facilities according to the gravity-based
rule. Kung and Liao (2018) explained that consumer demand is affected by the number of
facilities such that total demand increases with the number of new facilities. Fernández et al.
(2019) proposed a probabilistic customer’s choice rule in which customers only patronise
facilities to which they feel an attraction greater than or equal to a threshold value. In this
paper, we use the classical gravity-based rule to deal with the competitive facility location
problem, which is the most widely used rule and the basis of the aforementioned new rules.

According to the competition pattern, the competitive facility location problem can be
classified into four categories (Kress and Pesch 2012): (1) static competition, in which the
competitors are fixed and the players know all of the information; (2) dynamic competition,
in which the players repeatedly re-optimise their locations; (3) simultaneous competition, in
which two rational competitorsmake decisions simultaneously to reach theNash equilibrium;
and (4) sequential competition, which includes two types of player: leaders who choose
locations at given instants and followers who make their location decisions based on the past
decisions of the leaders. The solution concept generally used in sequential location problems
is the Stackelberg equilibrium: assuming rational players, the location of each player is
determined through backward induction. In this paper, we focus on sequential competition
and call it a leader–follower facility location problem.

Hakimi (1983) first introduced the leader–follower issue in the competitive facility location
problem. He formally introduced the terms (r |p)-centroid problem and (r |X p)-medianoid
problem with one leader and one follower locating p and r facilities, respectively. In an
(r |p)-centroid problem, the leader locates p new facilities with the belief that the follower
will invest in r new facilities later. In the (r |X p)-medianoid problem, the follower locates
r new facilities to maximise its market share, knowing that the leader has located p new
facilities. Furthermore, Hakimi proved that the leader–follower problems in (r |p)-centroid
and (r |X p)-medianoid cases are N-P hard. Moore and Bard (1990) pointed out that the
leader and follower always conflict when both aim to optimise their objective functions,
which means if one competitor’s market share grows, the other’s will decrease.

Most researchers have assumed that the leader knows exactly how many new facilities
will be opened by the follower, such that the leader–follower problem can be formulated
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as a deterministic model. Hakimi (1986) solved the deterministic leader–follower model by
relaxing the condition of fixed demand in a network space. Serra and Revelle (1994) proposed
two heuristic algorithms for the leader–followermodel inwhich the leader and follower locate
the same number of facilities, and customers only patronise the closest facility. Fischer (2002)
formulated a model in a discrete space with the assumption that a certain number of new
facilities would be built. In this model, the leader and follower wanted to decide their new
locations and the price of their product, and a heuristic algorithm was developed to solve
the problem. Peréz et al. (2003) formulated a leader–follower model in a tree and assumed
that the leader and follower would locate only one facility each. Further, two algorithms
were proposed to generate all of the optimal locations for the leader, and then the entire set
of Stackelberg solutions was formed. Sáiz et al. (2009) also assumed that the leader and
follower only locate one facility, but they formulated their model in a continuous space and
proposed a branch-and-bound method to solve their problem. Drezner and Drezner (1998)
developed three heuristic methods to deal with a model similar to that of Sáiz et al. (2009).
Qi et al. (2017) introduced service distance limitations in the leader–follower issue with the
assumption that both the leader and follower plan to open a certain number of facilities.
Gentile et al. (2018) considered three pairs of objective functions for the leader and follower
with a predetermined number of facilities, and branch-and-cut algorithms were used to solve
the proposedmodels. Some recent studies have also considered how to decide service quality,
radius of influence, product variety, routing and so on, but the number of the follower’s new
facilities was still deterministic in these studies (Aboolian et al. 2007; Saidani et al. 2012;
Wang and Ouyang 2013; Lopes et al. 2016; Sedghi et al. 2017; Dilek et al. 2017).

As the leader acts ahead of the follower and they are in competition, it is reasonable
to assume that the leader has no advance information regarding the follower’s number of
new facilities. Ashtiani et al. (2013) built a robust model for the leader–follower problem
with an inaccurate number of the follower’s new facilities in a discrete space. They defined
their model as a risk model with a known probability distribution, which made a trade-
off between expected value and deviation of the leader’s market share. A review of the
literature shows that previous studies havemodelled the leader’s problemwith the assumption
that either the number of the follower’s new facilities or their probability distribution is
known. However, in a competitive market, information regarding the number or probability
distribution of a follower’s new facilities cannot be easily captured by a leader. Even worse,
an incorrect estimation of the probability distribution might lead to greater loss for the leader.
A realistic example of the leader–follower problem is retail store location. Jingdong (JD),
a leading company in China, has invested a considerable amount of capital in the retail
industry. According to an interview with the CEO of JD, the company opened more than
1000 convenience stores each week in 2018, and it aimed to open 1000 stores in China
each day in 2019. At the same time, market competition is strong. Local convenience store
brands are JD’s main competitors in each province. For example, Everyday is a convenience
store company in Shaanxi province that has opened new stores each day since 2018, and
information regarding Everyday’s decisions is unknown to JD.

The contributions of this paper are as follows. (i) We propose a minimax regret model for
the competitive facility location problem that consists of a leader and a follower, in which
the leader has no advance information regarding the number or probability distribution of
the follower’s new facilities when making its decision. (ii) Based on the structural charac-
teristics of the proposed model, a set of solving procedures is provided that transforms the
follower’s nonlinear (fraction) programming model into a linear model. (iii) The numerical
experiments show that the minimax regret model is brilliant when the follower’s response
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is unknown, better controlling the maximum possible loss compared with the deterministic
and risk models.

The rest of this paper is organised as follows. In Sect. 2, a minimax regret model for the
leader–follower problem is formulated. In Sect. 3, the model is linearised, and the solving
procedures are introduced. In Sect. 4, the computational experiments and the results of the
analysis are presented in detail. In Sect. 5, our conclusions and future research directions are
provided.

2 Problem description and formulation

We consider a facility location problem that consists of two competitors, a leader and a
follower, that have established Nl and N f facilities, respectively. Now, they plan to open new
facilities. The decision sequence is that the leader launches its new facilities first, and the
follower then launches its new facilities. Both the leader and the follower are assumed to be
rational, such that the follower opens stores at the optimal locations after the leader makes
its decisions. The notations in Table 1 are used to formulate the problem.

The leaderwill launch p new facilities in candidate locations, and the followerwill respond
by opening some new facilities. The two competitors provide identical services, and the
demand for the services is considered inelastic and is assumed to be concentrated at K
demand points in the market. It is also assumed that the number of facilities in each candidate
location is no more than one, i.e., facilities cannot overlap. As there are already Nl + N f

facilities, there are M = K − (Nl + N f ) candidate locations for the leader and follower.
As the leader acts first and chooses p locations, it knows nothing about the follower’s later

decision. That is, the leader knows nothing about the number or the probability distribution of
the follower’s new facilities, which carries risk. Based on the follower’s subsequent decision,
the leader’s optimal decision could change. Therefore, an unreasonable location would lead
to the leader’s losing market share, and it must consider how to avoid this risk. The leader has
no idea of the exact number of the follower’s new facilities or their probability distribution,
but the maximum number of the follower’s new facilities W is assumed to be known to the
leader. We accordingly defineW scenarios, and in scenario ω, the follower will open pω new
facilities. The follower is assumed to open 1, 2, . . . , pW new facilities in each scenario. The
leader’s problem is determining where to locate its p new facilities facing W scenarios.

2.1 Attractiveness

The gravity-based model is widely used in the competitive facility location problem. Accord-
ing to the Huff rule (Huff 1964, 1966), a facility’s attractiveness to customers should be
proportional to its quality and inversely proportional to the squared distance between the
customer and the facility. It is supposed that the quality of all existing and new facilities and
the distance between candidate locations and the demand point are predetermined.

Denote qnk as the quality of existing facility n for demand point k, and use lnk to denote
the distance between existing facility n and demand point k. Therefore, the attractiveness of
existing facility n to customers at demand point k is

ank = qnk/
(
ε + lnk

2) , ∀n ∈ N, k ∈ K, (1)

where ε is a small real number added to prevent the denominator from becoming 0 in the
case of candidate location n overlapping with demand point k. Similarly, the attractiveness
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Table 1 List of notations Parameters

Nl The set of the leader’s existing facilities with index
n = 1, 2, . . . , Nl

N f The set of the follower’s existing facilities with index
n = 1, 2, . . . , N f

N Nl ∪ N f , i.e., the set of existing facilities with index
n = 1, 2, . . . , Nl + N f

W The set of scenarios with index ω = 1, 2, . . . ,W

M The set of candidate locations with index
m = 1, 2, . . . , M

K The set of demand points with index k = 1, 2, . . . , K

X The set of the leader’s strategy with index
X = 1, 2, . . . ,C p

M

bk The buying power at demand point k with k ∈ K

lnk The distance between existing facility n and demand
point k with n ∈ N and k ∈ K

lmk The distance between candidate location m and demand
point k with m ∈ M and k ∈ K

qnk The quality of existing facility n for demand point k
with n ∈ N and k ∈ K

qlmk The quality of the leader’s new facility at location m for
demand point k with m ∈ M and k ∈ K

q f
mk The quality of the follower’s new facility at location m

for demand point k with m ∈ M and k ∈ K

p The leader’s number of new facilities

pω The follower’s number of new facilities in scenario ω

with ω ∈ W

Decision variables

xm A binary variable that equals 1 if the leader decides to
launch a new facility in candidate location m and 0
otherwise, m ∈ M

yω
m A binary variable that equals 1 if the follower decides to

launch a new facility in candidate location m in
scenario ω and 0 otherwise, ω ∈ W and m ∈ M

of the leader’s and follower’s new facilities to customers at demand point k is

almk = qlmk/
(
ε + lmk

2) , ∀m ∈ M, k ∈ K, (2)

a f
mk = q f

mk/
(
ε + lmk

2) , ∀m ∈ M, k ∈ K. (3)

Define two binary variables xm and yω
m to represent the leader’s and follower’s decisions,

respectively. If xm takes the value of 1, then candidate locationm is occupied by the leader. If
yω
m = 1, then candidate locationm is occupied by the follower in scenarioω. If xm = yω

m = 0,
then candidate location m is not occupied by either. Next, the total attractiveness level of all
of the leader’s facilities for customers at demand point k is calculated by summing the
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attractiveness of both existing and new facilities, that is,

Lk(X) =
∑

n∈Nl

ank +
∑

m∈M
almkxm, ∀k ∈ K. (4)

In Eq. (4), we have X = {x1, x2, . . . , xm}, which represents one leader’s location strategy.
As the follower locates its facility after the leader does, once the leader makes its decision

X , the follower’s optimal location Yω = {yω
1 , yω

2 , . . . , yω
m} in scenario ω can be obtained.

Similarly, in each scenario ω, the total attractiveness level of all of the follower’s facilities
for customers at demand point k is

Fω
k (Yω|X) =

∑

n∈N f

ank +
∑

m∈M
a f
mk y

ω
m, ∀k ∈ K, ω ∈ W, (5)

where the first term is the attractiveness of existing facilities and the second term is the
attractiveness of the new facilities. In the equation, Yω|X is used to denote the follower’s
location decision in scenario ω with the leader’s decision X .

As a result, the total attractiveness level of all of the facilities in the market for customers
at demand point k in scenario ω is formulated as

T ω
k (X , Yω) =

∑

n∈N
ank +

∑

m∈M
almkxm +

∑

m∈M
a f
mk y

ω
m, ∀k ∈ K, ω ∈ W. (6)

The three terms on the right represent the attractiveness of all of the existing facilities, the
leader’s p new facilities and the follower’s pω new facilities, respectively.

Remark 1 The quality values qlmk and q f
mk are related to both location and demand point,

consistent with Ashtiani et al. (2013) and Qi et al. (2017), because the quality of a facility is
affected by its location and because customers’ preferences vary at different demand points.

2.2 Constraints

The leader’s behaviour in our model is similar to the (r |p)-centroid problem, in which the
leader launches p new facilities after anticipating the follower’s response. The difference
is in the follower’s response. In the (r |p)-centroid problem, the follower will surely invest
in r new facilities, but in our model, the follower’s number of new facilities is unknown.
Constraint (7) ensures that p new facilities are launched by the leader, that is,

∑

m∈M
xm = p. (7)

As stated previously, the follower is likely to open 1, 2, . . . , pW new facilities associated
with W scenarios. Then, for each scenario ω ∈ W, constraint (8) ensures that pω of the
candidate locations are selected by the follower to launch new facilities, that is,

∑

m∈M
yω
m = pω, ∀ω ∈ W. (8)

Note that the value and probability distribution of pω are unknown to the leader in advance.
Constraint (9) limits the number of new facilities to be opened at each candidate location

to one or fewer; thus, the leader and the follower cannot locate facilities in the same candidate
location.

xm + yω
m ≤ 1, ∀m ∈ M, ω ∈ W. (9)
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Constraint (10) gives the range of the decision variables xm and yω
m , that is,

xm ∈ {0, 1}, yω
m ∈ {0, 1}, ∀m ∈ M, ω ∈ W. (10)

2.3 Minmax regret model

The Huff rule is used to describe customers’ choice behaviour. We set bk as the buying
power at demand point k, which is distributed to each facility with a certain probability. That
probability is equal to the proportion of the facility’s attractiveness to the total attractiveness
of all of the facilities. The demand captured by this facility from demand point k can be
calculated by multiplying bk by the probability. Thus, we can obtain the leader’s market
share by summing the demand captured by each of its facilities. Similarly, we can obtain the
follower’s market share. As mentioned, the two competitors are rational, so they both try to
look for optimal locations for their new facilities. In each scenarioω, once the leader launches
p new facilities, the follower’s problem is choosing a strategy Yω for its new locations.With a
given leader’s strategy X = {x1, x2, . . . , xm}, the follower’s problem in each scenarioω ∈ W

can be formulated as

max
∑

k∈K
bk

Fω
k (Yω|X)

T ω
k (X , Yω)

(11)

s. t.
∑

m∈M
yω
m = pω, (12)

xm + yω
m ≤ 1, ∀m ∈ M, (13)

yω
m ∈ {0, 1}, ∀m ∈ M. (14)

The objective function (11) maximises the follower’s market share of all of its facilities, in
which Fω

k (Yω|X)/T ω
k (X , Yω) represents the aforementioned probability. Note that there is a

total ofW scenarios, and each scenario represents a different number of new facilities located
by the follower. Constraints (12)–(14) are explained in the previous subsection.

By solving the follower’s model, the optimal locations for the follower’s new facilities and
the corresponding market share in each scenario can be obtained. Next, we make decisions
for the leader. In reality, it is reasonable for the leader to decide on the most likely scenario
(in its judgement) and act accordingly. However, the consequences could be serious if that
scenario does not materialise. The minimax regret criterion, which can control this risk by
minimising the maximum possible loss under any of the likely scenarios, is used to solve the
leader’s problem. For each scenario, the regret value for the leader that is associated with
a strategy is the difference between the maximum possible market share captured with the
optimal strategy and the market share captured with the relevant strategy. By using X to
denote the set of the leader’s strategies and X to denote each strategy, we set πω(X) as the
leader’s market share associated with strategy X and scenario ω, and set π∗

ω as the maximum
value of πω(X), that is,

π∗
ω = max

X∈X πω(X) = max
X∈X

∑

k∈K
bk

Lk(X)

T ω
k (X , Y ∗

ω(X))
. (15)

In Eq. (15), we use Y ∗
ω(X) to denote the follower’s optimal location in scenario ω when

facing the leader’s strategy X .
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According to the minimax regret criterion, the leader’s problem is formulated as

min
X∈Xmax

ω∈W
[
π∗

ω − πω(X)
]

(16)

s. t.
∑

m∈M
xm = p, (17)

xm ∈ {0, 1}, ∀m ∈ M. (18)

Objective function (16) minimises the maximum regret value for the leader in all of the
potential scenarios. As the leader will launch p new facilities in M candidate locations, there
are C p

M potential strategies available to it; thus X takes values from 1 to C p
M . Under this

criterion, we can choose the strategy for the leader in which the maximum regret value for
all of the leader’s possible locations is minimised.

3 Model linearization and solution

The leader has C p
M possible strategies, and the follower has W scenarios. Given the leader’s

strategy and scenario, the follower’s model (11)–(14) becomes deterministic. Therefore, the
leader–follower facility location problem can be resolved by solving the follower’s model
(11)–(14) C p

M × W times. By solving the follower’s model for each scenario, the follower’s
optimal locations and market share are obtained, and then the leader’s corresponding market
share can be determined. When the leader’s market share for each of these C p

M strategies
and W scenarios is obtained, the minimax criterion is applied to find the leader’s optimal
locations amongst all of the potential strategies. The solving procedures are depicted in Fig.
1.

The most important but most difficult step in the solving procedures is solving the fol-
lower’s model (11)–(14), which is essentially a nonlinear programming problem, because
the objective function (11) contains the fractional terms of the decision variables. In the fol-
lowing, we transform the follower’s model (11)–(14) into a linear model, and then it can be
efficiently solved by optimisation solvers such as LINGO and CPLEX. Following Kochetov
et al. (2013), two new variables, zωk and uω

mk , are introduced, which are defined as

zωk = 1

T ω
k

, ∀k ∈ K, (19)

uω
mk = zωk y

ω
m, ∀m ∈ M, k ∈ K. (20)

In Eq. (19), zωk is basically the reciprocal of the total attractiveness of all of the facilities
for a fixed k. In Eq. (20), uω

mk is formed by the multiplication of two variables, zωk and yω
m .

We use the 0-1 property of variable yω
m to transform the nonlinear follower’s model to a

linear model. Note that for convenience of description, X , Y and Y ∗
ω(X) do not appear in the

following formula. On this basis, we can derive the theorem.

Theorem 1 For each ω ∈ W, the follower’s model (11)–(14) is equivalent to the following
linear form

max
∑

k∈K

∑

n∈N f

bkank z
ω
k +

∑

k∈K

∑

m∈M
bka

f
mku

ω
mk (21)

s. t. (12)–(14) and
∑

n∈N f

bkank z
ω
k +

∑

m∈M
bka

f
mku

ω
mk + bkz

ω
k Lk ≤ bk, ∀k ∈ K, (22)
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Fig. 1 The solving procedures of
minimax regret model

0 ≤ uω
mk ≤ yω

m,∀m ∈ M, k ∈ K, (23)

uω
mk ≤ zωk ≤ uω

mk + S(1 − yω
m),∀m ∈ M, k ∈ K. (24)

In the above linear equivalent form, the decision variables are yω
m, z

ω
k and uω

mk. Note that S
is a large enough constant in constraint (24).

Proof For each k ∈ K and ω ∈ W, a constraint should be added to fulfil Eq. (19), that is,

zωk ≤ 1/T ω
k .

If both sides of the inequality are multiplied by bkT ω
k , we have

bkz
ω
k T

ω
k ≤ bk .

Because T ω
k = Fω

k + Lk , we get

bkz
ω
k F

ω
k + bkz

ω
k Lk ≤ bk .

Thefirst term is equal to
∑

n∈N f
bkank zωk +∑

m∈M bka
f
mku

ω
mk , thuswe get the linear constraint

(22).
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Constraints (23) and (24) fulfil Eq. (20), in which we use the 0–1 property of variable yω
m .

When yω
m = 0, for each m ∈ M, k ∈ K and ω ∈ W, Eq. (20) becomes

uω
mk = 0,

which is restricted by constraint (23). For constraint (24), as yω
m = 0, it becomes

uω
mk ≤ zωk ≤ uω

mk + S,

which is always satisfies.
Similarly, when yω

m = 1, for each m ∈ M, k ∈ K and ω ∈ W, Eq. (20) becomes

uω
mk = zωk ,

which is restricted by constraint (24), while constraint (23) always satisfies. Note that when
yω
m = 1, zωk ≤ yω

m is a permanent inequality because

zωk = 1
∑

n∈N ank + ∑
m∈M almkxm + ∑

m∈M a f
mk y

ω
m

≤ 1 = yω
m,

then we have
0 ≤ uω

mk = zωk ≤ yω
m,

which means that constraints (23) and (24) do not conflict with each other. Thus, no matter
the value of yω

m , Eq. (20) is always fulfilled. On this basis, constraints (22)–(24) ensure that
Eqs. (19) and (20) are valid.

As for the objective function (21), it is equivalent to (11) because
∑

k∈K

∑

n∈N f

bkank z
ω
k +

∑

k∈K

∑

m∈M
bka

f
mku

ω
mk

=
∑

k∈K
bk

⎛

⎝
∑

n∈N f

ank +
∑

m∈M
a f
mk y

ω
m

⎞

⎠ zωk

=
∑

k∈K
bk F

ω
k zωk

=
∑

k∈K
bk

Fω
k

T ω
k

.

In the above equation, both
∑

k∈K
∑

n∈N f
bkank zωk +∑

k∈K
∑

m∈M bka
f
mku

ω
mk and

∑
k∈K bk

Fω
k

Tω
k

represent the follower’s market share, which we maximise.
As a result, the follower’s problem (21)–(24) is the linear equivalent of (11)–(14). Based

on the transformation, part of the optimal solution of the linear model (yω
m) is the optimal

solution to (11)–(14). The proof is completed. ��

4 Numerical experiments

In this section, numerical experiments are conducted to verify the validity of the proposed
model and test the efficiency of the linearisation. To further explain the necessity of our
hypothesis that the number of the follower’s new facilities is unknown or has an unknown
probability distribution, comparisonswith two different locationmodels are provided to show
the advantages of the proposed model.
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4.1 An illustration of theminimax regert model

We consider an instance with 16 demand points and 5 existing facilities in the market, as
shown in Fig. 2. Three of the existing facilities belong to the leader, whose locations are
(3, 2), (4, 3) and (1, 4), and the other two belong to the follower, whose locations are (3, 1)
and (3, 3). The leader aims to open two new facilities knowing that the follower will open
some facilities afterwards. However, it does not know the exact number of the follower’s new
facilities, but it knows that themaximumnumber is four, i.e., the followerwill open 1, 2, 3 or 4
new facilities. New facilities cannot be opened in demand points that are occupied by existing
facilities. Therefore, the number of candidate locations for both the leader’s and follower’s
new facilities is 11. The buying power at each demand point is randomly generated from 1 to
10, and we set the unit of buying power as 1 million yuan. The buying power and coordinates
of the demand points are shown in Table 2. Quality values are also given randomly from 1
to 5 for the new and existing leader and follower facilities, which are shown in Table 3.

Table 2 Coordinate and buying power of each demand point

Demand point 1 2 3 4 5 6 7 8

Coordinate (1, 1) (1, 2) (1, 3) (1, 4) (2, 1) (2, 2) (2, 3) (2, 4)

Buying power 9 2 2 5 10 4 6 3

Demand point 9 10 11 12 13 14 15 16

Coordinate (3, 1) (3, 2) (3, 3) (3, 4) (4, 1) (4, 2) (4, 3) (4, 4)

Buying power 8 3 6 7 9 8 6 2

Fig. 2 The locations of the
leader’s and follower’s existing
facilities
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Table 3 The quality levels of the demand points

Quality Leader Follower

Existing New Existing New

Demand point (3, 2) (4, 3) (1, 4) (3, 1) (3, 3)

1 4 1 5 1 5 4 3

2 4 4 2 4 4 1 5

3 4 1 2 2 1 1 1

4 5 4 2 3 5 1 3

5 3 2 4 1 4 1 1

6 3 3 4 4 4 4 5

7 2 4 4 2 1 1 1

8 3 5 2 4 3 2 4

9 4 2 3 4 4 5 5

10 5 3 1 4 1 2 5

11 5 2 5 3 2 5 1

12 2 1 2 1 4 3 2

13 2 5 3 2 3 5 2

14 2 4 4 5 2 3 5

15 1 1 3 1 4 5 3

16 1 3 3 5 1 2 5

Table 4 Potential strategies of the leader

Strategy Coordinates Strategy Coordinates Strategy Coordinates

1 (1, 1), (2, 1) 20 (4, 1), (1, 2) 39 (2, 2), (3, 4)

2 (1, 1), (4, 1) 21 (4, 1), (2, 2) 40 (2, 2), (4, 4)

3 (1, 1), (1, 2) 22 (4, 1), (4, 2) 41 (4, 2), (1, 3)

4 (1, 1), (2, 2) 23 (4, 1), (1, 3) 42 (4, 2), (2, 3)

5 (1, 1), (4, 2) 24 (4, 1), (2, 3) 43 (4, 2), (2, 4)

6 (1, 1), (1, 3) 25 (4, 1), (2, 4) 44 (4, 2), (3, 4)

7 (1, 1), (2, 3) 26 (4, 1), (3, 4) 45 (4, 2), (4, 4)

8 (1, 1), (2, 4) 27 (4, 1), (4, 4) 46 (1, 3), (2, 3)

9 (1, 1), (3, 4) 28 (1, 2), (2, 2) 47 (1, 3), (2, 4)

10 (1, 1), (4, 4) 29 (1, 2), (4, 2) 48 (1, 3), (3, 4)

11 (2, 1), (4, 1) 30 (1, 2), (1, 3) 49 (1, 3), (4, 4)

12 (2, 1), (1, 2) 31 (1, 2), (2, 3) 50 (2, 3), (2, 4)

13 (2, 1), (2, 2) 32 (1, 2), (2, 4) 51 (2, 3), (3, 4)

14 (2, 1), (4, 2) 33 (1, 2), (3, 4) 52 (2, 3), (4, 4)

15 (2, 1), (1, 3) 34 (1, 2), (4, 4) 53 (2, 4), (3, 4)

16 (2, 1), (2, 3) 35 (2, 2), (4, 2) 54 (2, 4), (4, 4)

17 (2, 1), (2, 4) 36 (2, 2), (1, 3) 55 (3, 4), (4, 4)

18 (2, 1), (3, 4) 37 (2, 2), (2, 3)

19 (2, 1), (4, 4) 38 (2, 2), (2, 4)
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According to the solving procedures in Sect. 3, for each given strategy of the leader, we
first solve the follower’s model. Then, the leader’s market share can be obtained for each
scenario. There are C2

11 = 55 potential choices for the leader to choose 2 locations from
amongst the 11 demand points as its strategy, and scenarios 1, 2, 3 and 4 in the following
tables represent the follower opening 1, 2, 3 and 4 facilities, respectively. The coordinates
of strategies 1–55 for the leader are listed in Table 4. For example, if the leader chooses
strategy 1, i.e., locations (1, 1) and (2, 1) to open two new facilities, the follower’s problem
is solved in the candidate locations for the different scenarios. In scenario 1 (the follower
opens one new facility), the leader’s maximum market share is 53.23 million yuan, whereas
in scenario 2 (the follower opens two new facilities), the leader’s maximum market share is
45.55 million yuan. Similarly, the market shares are 41.67 million yuan for scenario 3 (the
follower opens three new facilities) and 38.60 million yuan for scenario 4 (the follower opens
four new facilities). This is done for all 55 strategies and 4 scenarios in Table 5.

As shown in Table 5, the optimal strategy for the leader in scenarios 1 and 2 is 33, i.e.,
locations (1, 2) and (3, 4) are chosen, in which the market shares are 58.80 million yuan and
51.71 million yuan, respectively. The optimal strategy in scenarios 3 and 4 is 32, i.e., (1, 2)
and (2, 4), in which the market shares are 48.13 million yuan and 45.39 million yuan. This
reveals that with respect to the follower’s different decisions, the leader’s optimal strategy
may differ. If the leader’s optimal strategy under different scenarios is unchanged, we can
easilymake decisions for the leader. However, the optimal strategy changes with the scenario,
so we must deal with the issue of the unknown number of the follower’s new facilities. As
the probability distribution of the four scenarios is unknown to the leader, the minimax regret
value rule is applied to make the decision. The leader’s optimal strategies for these four
scenarios are displayed in Fig. 3.

The regret values for the leader’s 55 potential strategies in the 4 scenarios are calculated
and displayed in Table 6. Each regret value means the loss of market share for one strategy
when compared with the maximum market share of that scenario. For example, strategy 33
is the location with the highest market share for the leader in scenario 1, so the regret value
of strategy 1 in scenario 1 is calculated as 58.80 − 53.23 = 5.57, in which the two terms on
the left represent the market shares of strategy 33 and strategy 1 in scenario 1, respectively.
The same method is used to calculate the regret value of all of the leader’s strategies in the
four scenarios. As a result, for each strategy, we get four regret values that correspond to the
four scenarios. The maximum regret value of each strategy is listed in Table 6. Our purpose
is to launch the leader’s new facilities in locations that ensure the maximum regret value is
minimised among all of the leader’s strategies. According to the maximum regret value list
in Table 6, the optimal strategy for the leader is strategy 3, i.e., (1, 1) and (1, 2), because the
maximum regret value in this location is only 0.99 million yuan, which is the lowest of all
of the leader’s potential strategies.

By choosing strategy 3, we control the leader’s maximum loss to the lowest pitch. With
the other 54 strategies, the leader’s maximum loss would be more than that with strategy 3
because the number of the follower’s new facilities is uncertain. The locations of strategy 3
are depicted in Fig. 4.

4.2 Comparison

This paper studies the leader–follower location problem in which the leader knows neither
the number nor the probability distribution of the follower’s new locations, and proposes the
minimax regret model to control the leader’s possible loss. In the literature, the deterministic
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Table 5 The leader’s market share by scenario

Strategy Scenario 1 Scenario 2 Scenario 3 Scenario 4

1 53.23 45.55 41.67 38.60

2 54.40 46.81 43.10 40.28

3 57.81 51.50 48.05 45.18

4 55.21 47.44 43.31 40.26

5 53.10 45.47 41.73 38.78

6 56.92 49.37 46.10 43.54

7 55.51 47.52 43.00 39.92

8 55.36 50.01 46.65 44.17

9 57.24 49.11 45.20 42.14

10 52.73 45.03 41.30 38.33

11 50.07 42.41 38.60 35.55

12 55.34 48.83 43.32 40.22

13 50.89 43.04 38.80 35.56

14 48.52 41.12 37.29 37.29

15 52.87 45.25 41.63 38.55

16 51.30 43.24 43.24 35.44

17 51.17 45.70 45.70 39.21

18 53.02 44.83 40.82 37.70

19 48.52 40.75 36.92 33.87

20 56.11 49.66 44.58 41.74

21 51.69 43.92 39.85 37.01

22 48.15 40.55 36.96 34.53

23 53.25 45.70 42.64 39.88

24 51.65 43.65 39.17 36.30

25 51.31 46.04 42.92 40.43

26 53.04 44.93 41.16 38.33

27 48.44 40.78 37.20 34.47

28 56.10 49.51 44.29 41.25

29 54.75 48.26 43.18 40.24

30 57.05 50.86 47.47 44.62

31 56.42 49.36 44.18 41.10

32 57.09 51.52 48.13 45.39

33 58.80 51.71 46.60 43.53

34 54.37 47.79 42.73 39.74

35 50.33 42.54 38.45 35.44

36 53.72 46.10 42.80 39.79

37 52.00 43.96 39.24 36.13

38 52.26 46.71 43.32 40.58

39 54.28 46.11 41.89 38.80

40 50.00 42.15 38.07 35.06

41 51.83 44.27 41.14 38.39

42 50.21 42.21 37.72 34.72
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Table 5 continued

Strategy Scenario 1 Scenario 2 Scenario 3 Scenario 4

43 49.85 44.58 41.44 38.78

44 51.56 43.45 39.66 36.69

45 46.76 39.33 35.72 32.79

46 52.77 45.09 41.78 38.94

47 52.98 49.24 46.03 43.46

48 55.42 47.61 44.32 41.57

49 51.31 43.73 40.53 37.82

50 51.14 45.44 42.07 39.50

51 53.49 45.44 40.85 37.75

52 49.64 41.66 37.18 34.16

53 52.55 47.23 43.94 41.52

54 49.10 43.85 40.62 38.15

55 50.42 42.34 38.56 35.56

The bold numbers in columns 2-5mean themaximummarket share for the leader in each scenario, respectively

Table 6 The leader’s regret value by scenario

Strategy Scenario 1 Scenario 2 Scenario 3 Scenario 4 Maximum

1 5.57 6.15 6.46 6.78 6.78

2 4.40 4.89 5.03 5.10 5.10

3 0.99 0.21 0.08 0.20 0.99

4 3.59 4.27 4.82 5.13 5.13

5 5.70 6.24 6.39 6.61 6.61

6 1.88 2.34 2.03 1.84 2.34

7 3.29 4.19 5.13 5.47 5.47

8 3.44 1.69 1.48 1.22 3.44

9 1.56 2.60 2.92 3.24 3.24

10 6.07 6.68 6.83 7.06 7.06

11 8.73 9.30 9.53 9.83 9.83

12 3.46 2.88 4.81 5.16 5.16

13 7.91 8.67 9.32 9.83 9.83

14 10.28 10.59 10.84 8.10 10.84

15 5.93 6.46 6.50 6.84 6.84

16 7.50 8.47 4.89 9.94 9.94

17 7.63 6.00 2.42 6.18 7.63

18 5.78 6.88 7.31 7.68 7.68

19 10.28 10.96 11.21 11.51 11.51

20 2.69 2.05 3.55 3.65 3.65

21 7.12 7.79 8.28 8.38 8.38

22 10.65 11.16 11.17 10.86 11.17

23 5.55 6.01 5.48 5.51 6.01
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Table 6 continued

Strategy Scenario 1 Scenario 2 Scenario 3 Scenario 4 Maximum

24 7.15 8.06 8.96 9.08 9.08

25 7.49 5.66 5.20 4.96 7.49

26 5.76 6.78 6.97 7.06 7.06

27 10.36 10.93 10.93 10.92 10.93

28 2.70 2.19 3.83 4.14 4.14

29 4.05 3.45 4.95 5.14 5.14

30 1.75 0.85 0.66 0.77 1.75

31 2.38 2.35 3.94 4.29 4.29

32 1.71 0.19 0.00 0.00 1.71

33 0.00 0.00 1.52 1.86 1.86

34 4.43 3.92 5.40 5.64 5.64

35 8.47 9.17 9.68 9.94 9.94

36 5.08 5.61 5.33 5.60 5.61

37 6.80 7.75 8.89 9.26 9.26

38 6.54 5.00 4.81 4.81 6.54

39 4.52 5.59 6.24 6.59 6.59

40 8.80 9.56 10.06 10.32 10.32

41 6.97 7.43 6.99 7.00 7.43

42 8.59 9.50 10.41 10.67 10.67

43 8.95 7.13 6.68 6.60 8.95

44 7.24 8.25 8.47 8.70 8.70

45 12.04 12.38 12.41 12.60 12.60

46 6.03 6.62 6.35 6.45 6.62

47 5.82 2.47 2.09 1.93 5.82

48 3.38 4.09 3.81 3.82 4.09

49 7.49 7.98 7.60 7.57 7.98

50 7.66 6.27 6.06 5.89 7.66

51 5.31 6.27 7.28 7.64 7.64

52 9.16 10.04 10.95 11.23 11.23

53 6.25 4.47 4.19 3.87 6.25

54 9.71 7.86 7.51 7.24 9.71

55 8.38 9.37 9.57 9.82 9.82

The bold numbers in columns 2-5 mean the minimum regret value for the leader in each scenario, respectively.
The bold number in column 6 means the minimum one among all of the possible maximum regret values for
the leader

and risk models have been widely studied in location problems. In this section, the minimax
regret model is compared with the deterministic and risk models to highlight the advantages
of the minimax regret model and the serious consequences of blindly using the determin-
istic and risk models in the uncertain environment that this paper considers. If the leader
enterprise blindly uses these two models to make its location decision, severe consequences
could occur, i.e., a loss of market share arising from using an incorrect estimation of the
number/distribution of the follower’s new facilities.
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Fig. 3 Optimal locations for the leader in different scenarios

Fig. 4 The optimal locations for
the leader in the minimax regret
model

4.2.1 Comparison with the deterministic model

Starting with Hakimi’s (1983) well-known paper on the leader–follower problem, most
researchers have considered a specific number of the follower’s new facilities, (see Sáiz
et al. 2009; Kochetov et al. 2013; Gentile et al. 2018). For simplicity, we label this kind of
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Table 7 Comparison with the deterministic model

Strategy Coordinates Optimal in which scenario Maximum regret value

3 (1, 1) and (1, 2) – 0.99

32 (1, 2) and (2, 4) 3 and 4 1.71

33 (1, 2) and (3, 4) 1 and 2 1.86

model as deterministic, in which the leader will open p new facilities, and it knows that r
new facilities will be opened by the follower.

In this subsection, we compare the deterministic model and the minimax regret model.
Again, we assume that the leader has no idea of the follower’s number of new facilities. If
the leader acts as if it knows a definite number of the follower’s new facilities, the leader is
more likely to incur greater loss. This comparison is made to show this loss. As shown in the
numerical experiments, if the follower only opens one new facility, strategy 33 is optimal for
the leader. However, in a competitive market, this kind of information cannot be captured
by the leader in advance, i.e., the number of the follower’s new facilities is unknown. For
example, if the leader believes that the follower will only open one new facility and acts
accordingly, the leader will choose strategy 33. However, the follower actually launches
three new facilities after the leader’s action, so the optimal strategy would have been 32. As a
result, the leader would lose 1.52 million yuan. However, if the minimax regret model were
applied to this situation, the loss would be only 0.08 million yuan with strategy 3.

It seems obvious that no matter which scenario is considered, strategy 3 is not the optimal
solution for the leader. Therefore, even if the leader opens new facilities based on the most
likely scenario, it would not choose strategy 3. It is more likely that it will choose strategy
32 or 33 because for scenarios 1 and 2, strategy 33 is optimal and for scenarios 3 and 4,
strategy 32 is optimal. However, in the minimax regret model, strategy 3 is optimal, with a
maximum loss of only 0.99 million yuan. In contrast, if the leader chooses strategy 32 or 33,
which are the optimal strategies with the deterministic model, the maximum loss could reach
1.71 and 1.86 million yuan, respectively. The results show that if the leader cannot know
the follower’s response, the minimax regret model can control the possible loss as compared
with the deterministic model. The maximum loss and coordinates of strategies 3, 32 and 33
are shown in Table 7.

4.2.2 Comparison with the risk model

In Ashtiani et al. (2013), the follower was assumed to open 1, 2, . . . , pW new facilities with
probabilities of P1, P2, . . . , PW . The leader’s objective function is formulated as “Expected
Value −λ · Variance”, that is

max
∑

ω∈W

∑

k∈K
Pωbk

Lk

T ω
k

− λ
∑

ω∈W
Pω

(
∑

k∈K
bk

Lk

T ω
k

− Pω

∑

k∈K
bk

Lk

T ω
k

)2

.

This objective function simultaneously maximises the expected value of the leader’s market
share and minimises the degree of deviation between the expected value and the scenar-
ios’ optimal solution. In the objective function, λ is a weight coefficient that measures the
importance of variance. The rest of the notations have the same meaning as in our proposed
minimax regret model.
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Table 8 Comparison with the risk model

Risk model λ = 1 λ = 0.8 λ = 0.6 λ = 0.4 λ = 0.2 λ = 0 Minimax regret model

Loss 5.10 5.29 4.88 3.08 1.71 1.07 0.99

It is a robust optimisation for the leader, but its results might be affected by both the
value of λ and the probability distribution of P1, P2, . . . , PW . To verify the possibility of the
supposed events, we test the risk model using different values of λ: 1, 0.8, 0.6, 0.4, 0.2 and
0 in sequence. Then, for each λ, we randomly generate 10,000 probability distributions. As
shown in Fig. 5, the leader is likely to choose strategy 3, 17, 32, 33 and 47 in the risk model
with the change of λ and probability distribution, demonstrating the risk model’s high level
of sensitivity. In practice, both λ and the probability distribution are decided by the leader’s
experience, so their values might also be subjective, thus leading to unreasonable location
choices. For example, when λ = 1, for 8296 probability distributions, the leader chooses
strategy 47 to launch new facilities. For 927 probability distributions, the leader chooses
strategy 32, and for 148, the leader chooses strategy 17. As the leader’s market share in the
scenarios under strategy 47 varies little compared with the other strategies, even though the
market share of this strategy is not high in each scenario, it is still the optimal strategy in
most cases. The market share of strategy 17 is even worse. The situations are analogous when
λ = 0.8 and λ = 0.6.

Again, we assume that the leader has no idea of the probability distribution of the number
of the follower’s new facilities. If the leader acts as if it knows the probability distribution,
it is more likely to incur greater loss. This model comparison demonstrates this loss. To
compare the risk model and the minimax regret model, we calculate the weighted average
of the maximum loss associated with each λ, where the probability of choosing one strategy
is denoted by frequency. For example, when λ = 1, the leader chooses strategy 47 with a
probability of 82.96%, and the maximum regret value is 5.82 million yuan. Similarly, the
probability and maximum regret value for strategy 32 are 9.27% and 1.71 million yuan,
respectively, and for strategy 17, they are 1.48% and 7.63 million yuan. Thus, the weighted
average of the possible maximum loss for λ = 1 is Loss = 82.96% ∗ 5.82+ 9.27% ∗ 1.71+
1.48% ∗ 7.63 = 5.10 million yuan. The values of Loss for each λ are displayed in Table
8. The Loss for all λ in the risk model are greater than the possible maximum loss in the
minimax regret model. The maximum loss is only 0.99 million yuan when the minimax
regret model is applied, but the values of Loss with the risk model are 5.10 million yuan,
5.29 million yuan, 4.88 million yuan, 3.08 million yuan, 1.71 million yuan and 1.07 million
yuan, respectively. Even if we do not consider the variance, the minimax regret model still
reduces the regret value from 1.07 million yuan to 0.99 million yuan, and this reduction is
because of the incorrect estimation of the probability distributions.

All in all, when the minimax regret value criterion is applied to the leader’s decision, more
stable and less risky locations are obtained. At the same time, there is no need to assume
that the information regarding the number or probability distribution of the follower’s new
facilities is known by the leader in advance, which is more practical in reality.

4.3 The efficiency of linearisation

In the solving procedures, we transform the follower’s nonlinear model (11)–(14) into a
linear model. In this subsection, we use 10 instances of different scales to test the efficiency
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Fig. 5 The results of the risk model with different λ

Table 9 Computation time for different sizes of the follower’s model

pω K Nl N f Market share (million yuan) CPU time (min)

Nonlinear Linear Nonlinear Linear

2 81 6 4 218.69 218.69 10.23 0.75

100 6 4 304.88 304.88 25.02 1.74

3 81 6 4 246.19 246.19 120.67 11.58

100 6 4 338.52 338.52 390.78 43.88

4 25 3 2 95.97 95.97 0.33 0.02

36 3 2 124.72 124.72 4.26 0.22

49 3 2 177 177 43.35 3.05

64 3 2 241.90 241.90 340.35 28.51

81 6 4 – 269.69 – 75.16

100 6 4 – 363.51 – 685.42

of this linearisation. For each instance, the number of the follower’s new facilities, candidate
locations and existing facilities vary. The other required parameters are extracted as stated
previously. The nonlinear models are solved using LINGO, whereas the linear models are
solved using CPLEX. The results are recorded in Table 9. Note that “–” in Table 9 means
that the model cannot be solved in 1000 min.

Table 9 shows that for the first eight instances, the follower’s market share is the same for
the linear and nonlinear models, but the computation time of the linear model is significantly
less than that of the nonlinear model. For example, for the first instance with pW = 2,
K = 81, Nl = 6 and N f = 4, the nonlinear model takes 10.23 min to be solved, whereas the
linear model takes only 0.75min. For the last two instances, the linear model can be optimally
solved within an acceptable time, but the nonlinear models do not obtain the optimal solution
within 1000 min.
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5 Conclusion and future research

This paper studies the leader–follower facility location problem. Its main contribution is the
formulation of a minimax regret model to control the leader’s possible loss based on location
decisions made without knowing the follower’s response. In the solving procedures, we
transform the follower’s model from a nonlinear (fraction) programming problem to a linear
programming problem by introducing new variables and constraints. Numerical experiments
and comparisons are provided to verify the validity and advantages of the proposed model,
and the efficiency of linearisation is tested using 10 instances of different scales. The results
reveal that, compared with the deterministic and risk models, the proposed model is more
applicable when there is no information about the number or probability distribution of the
follower’s new facilities. The nonlinear model is time-consuming or even unsolvable within
1000 min, whereas the linear model significantly decreases the computation time.

Future research could consider take-out shops. Goods can be delivered, so the delivery
cost rather than distance would be an influencing factor of the facility’s attractiveness. Also,
with the development of a delivery industry, goods can be delivered to distant customers.
Therefore, it is necessary to develop efficient meta-heuristic algorithms to solve large-scale
problems. In addition, we could consider the elastic demand for each demand point. For
example, the buying power of demand points rises with an increase in the number of new
facilities, thus the market situation for both the leader and follower will be more complex.

Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant
Nos. 71722007, 71931001); the Funds for First-class Discipline Construction (XK18025); the China Post-
doctoral Science Foundation (No. 2019M660426); and the Fundamental Research Funds for the Central
Universities (buctrc201926).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

References

Aboolian, R., Berman, O., & Krass, D. (2007). Competitive facility location and design problem. European
Journal of Operational Research, 182(1), 40–62.

Ahmadi-Javid, A., Seyedi, P., & Syam, S. S. (2016). A survey of healthcare facility location. Computers &
Operations Research, 79, 223–263.

Ashtiani, M. G., Makui, A., & Ramezanian, R. (2013). A robust model for a leader–follower competitive
facility location problem in a discrete space. Applied Mathematical Modelling, 37(1–2), 62–71.

Dilek, H., Karaer, O., & Nadar, E. (2017). Retail location competition under carbon penalty. European Journal
of Operational Research, 269(1), 146–158.

Drezner, T., & Drezner, Z. (1998). Facility location in anticipation of future competition. Location Science,
6(1–4), 155–173.

Drezner, T., Drezner, Z., & Kalczynski, P. (2015). A leader–follower model for discrete competitive facility
location. Computers & Operations Research, 64, 51–59.

Farahani, R. Z., Fallah, S., Ruiz, R., Hosseini, S., & Asgari, N. (2019). OR models in urban service facility
location: A critical review of applications and future developments. European Journal of Operational
Research, 276(1), 1–27.

Fernández, J., G.-Tóth, B., Redondo, J. L., & Ortigosa, P. M. (2019). The probabilistic customer’s choice rule
with a threshold attraction value: Effect on the location of competitive facilities in the plane. Computers
& Operations Research, 101, 234–249.

Fernández, J., G.-Tóth, B., Redondo, J. L., Ortigosa, P. M., & Arrondo, A. G. (2017). A planar single-
facility competitive location and design problem under the multi-deterministic choice rule. Computers
& Operations Research, 78, 305–315.

123



882 Annals of Operations Research (2022) 309:861–882

Fischer, K. (2002). Sequential discrete p-facility models for competitive location planning. Annals of Opera-
tions Research, 111(1–4), 253–270.

Gentile, J., Pessoa, A. A., Poss, M., & Roboredo, M. C. (2018). Integer programming formulations for
three sequential discrete competitive location problems with foresight. European Journal of Operational
Research, 265, 872–881.

Hakimi, S. L. (1983).On locating new facilities in a competitive environment.European Journal ofOperational
Research, 12(1), 29–35.

Hakimi, S. L. (1986). P-Median theorems for competitive locations. Annals of Operations Research, 6(4),
75–98.

Hotelling, H. (1929). Stability in competition. The Economic Journal, 39(153), 41.
Huff, D. L. (1964). Defining and estimating a trading area. Journal of Marketing, 28(3), 34–38.
Huff, D. L. (1966). A programmed solution for approximating an optimum retail location. Land Economics,

42(3), 293–303.
Kochetov, Y., Kochetova, N., & Plyasunov, A. (2013). A matheuristic for the leader–follower facility location

and design problem. In Lau, H., Van Hentenryck, P., Raidl, G. (Eds.) Proceedings of the 10th metaheuris-
tics international conference (MIC2013) (pp. 32/1–32/3). Singapore.

Kress, D., & Pesch, E. (2012). Sequential competitive location on networks. European Journal of Operational
Research, 217(3), 483–499.

Kung, L., & Liao, W. (2018). An approximation algorithm for a competitive facility location problem with
network effects. European Journal of Operational Research, 267(1), 176–186.

Lado-Sestayo, R., & Fernandez-Castro, A. S. (2019). The impact of tourist destination on hotel efficiency: A
data envelopment analysis approach. European Journal of Operational Research, 272(2), 674–686.

Lopes, R. B., Ferreira, C., & Santos, B. S. (2016). A simple and effective evolutionary algorithm for the
capacitated location-routing problem. Computers & Operations Research, 70, 155–162.

Moore, J. T.,&Bard, J. F. (1990). Themixed integer linear bilevel programmingproblem.OperationsResearch,
38(5), 911–921.

Peréz, M. D. G., & Pelegrín, B. P. (2003). All stackelberg location equilibria in the hotelling’s duopoly model
on a tree with parametric prices. Annals of Operations Research, 122(1), 177–192.

Plastria, F. (2001). Static competitive facility location: An overview of optimisation approaches. European
Journal of Operational Research, 129(3), 461–470.

Plastria, F., & Vanhaverbeke, L. (2008). Discrete models for competitive location with foresight. Computers
& Operations Research, 35, 683–700.

Qi,M., Xia,M., Zhang,Y.,&Miao, L. (2017). Competitive facility location problemwith foresight considering
service distance limitations. Computers and Industrial Engineering, 112, 483–491.

Reilly, W. J. (1931). The law of retail gravitation. New York, NY: Knickerbocker Press.
Saidani, N., Chu, F., & Chen, H. (2012). Competitive facility location and design with reactions of competitors

already in the market. European Journal of Operational Research, 219(1), 9–17.
Sáiz, M. E., Hendrix, E. M. T., Fernández, J., & Pelegrín, B. (2009). On a branch-and-bound approach for a

huff-like stackelberg location problem. OR Spectrum, 31(3), 679–705.
Sedghi,N., Shavandi,H.,&Abouee-Mehrizi, H. (2017). Joint pricing and location decisions in a heterogeneous

market. European Journal of Operational Research, 261(1), 234–246.
Serra, D.,&Revelle, C. (1994).Market capture by two competitors: The pre-emptive location problem. Journal

of Regional Science, 34(4), 549–561.
Wang, X., & Ouyang, Y. (2013). A continuum approximation approach to competitive facility location design

under facility disruption risks. Transportation Research Part B: Methodological, 50, 90–103.
Weber, A. (1909). Über den Standort der Industrien. 1. Teil: Reine Theorie des Standortes. TÜbingen. Trans-

lated as: On the location of industries. (p. 1929). Chicago, IL: University of Chicago Press.
Xia, Y., Chen, B., Jayaraman, V., & Munson, C. L. (2015). Competition and market segmentation of the call

center service supply chain. European Journal of Operational Research, 247(2), 504–514.
Zhang, Y., & Atkins, D. (2019). Medical facility network design: User-choice and system-optimal models.

European Journal of Operational Research, 273(1), 305–319.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	A minimax regret model for the leader–follower facility location problem
	Abstract
	1 Introduction
	2 Problem description and formulation
	2.1 Attractiveness
	2.2 Constraints
	2.3 Minmax regret model

	3 Model linearization and solution
	4 Numerical experiments
	4.1 An illustration of the minimax regert model
	4.2 Comparison
	4.2.1 Comparison with the deterministic model
	4.2.2 Comparison with the risk model

	4.3 The efficiency of linearisation

	5 Conclusion and future research
	Acknowledgements
	References




