
Annals of Operations Research (2022) 311:921–944
https://doi.org/10.1007/s10479-020-03797-0

S . I . : MOPGP19

A dynamic programming approach to a multi-objective
disassembly line balancing problem

Yusha Zhou1 · Xiuping Guo1 · Dong Li2

Accepted: 9 September 2020 / Published online: 19 September 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
This paper concerns a disassembly line balancing problem (DLBP) in remanufacturing that
aims to allocate a set of tasks to workstations to disassemble a product. We consider two
objectives in the same time, i.e., minimising the number of workstations required and min-
imising the operating costs. A common approach to such problems is to covert the multiple
objectives into a single one and solve the resulting problem with either exact or heuristic
methods. However, the appropriate weights must be determined a priori, yet the results pro-
vide little insight on the trade-off between competing objectives. Moreover, DLBP problems
are proven NP-complete and thus the solvable instances by exact methods are limited. To
this end, we formulate the problem into a multi-objective dynamic program and prove the
monotonicity property of both objective functions. A backward recursive algorithm is devel-
oped to efficiently generate all the non-dominated solutions. The numerical results show that
our proposal is more efficient than alternative exact algorithms proposed in the literature and
can handle much larger problem instances.

Keywords Disassembly line balancing problem · Multi-objective · Dynamic programming ·
Transformed AND/OR graph

1 Introduction

For environmentally conscious and sustainable manufacturing, a growing number of man-
ufacturers have started to recycle and remanufacture their end-of-life (EOL) products after
these products are discarded by consumers. Product recovery can minimise the amount of
waste sent to landfills and exploit economic gains through recycling and remanufacturing. The

B Xiuping Guo
gxp@swjtu.edu.cn

Yusha Zhou
yszhou@my.swjtu.edu.cn

Dong Li
d.li@lboro.ac.uk

1 School of Economics and Management, Southwest Jiaotong University, Chengdu, Sichuan, China

2 School of Business and Economics, Loughborough University, Loughborough, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-020-03797-0&domain=pdf

922 Annals of Operations Research (2022) 311:921–944

first essential step in product recovery is disassembly, which is defined as the methodological
extraction of valuable parts/subassemblies and materials from discarded products via a series
of operations (McGovern and Gupta 2010). Efficient retrieval of these parts/subassemblies
cuts down the production cost, reduces the associated disposal cost and, consequently, the
environmental hazards.

Disassembly operations can be processed at a single workstation, in a disassembly cell or
through a disassembly line. Compared with the other two settings, disassembly lines achieve
the highest productivity rate; they are also the most appropriate design for either large prod-
ucts or small products in large quantities. A disassembly line includes a number of ordered
workstations that sequentially disassemble products into individual components. The lines
may take different shapes such as straight, U-shaped, parallel and two-sided. The most stud-
ied layout is the straight disassembly line in the literature. Amajor challenge for disassembly
lines is the so called Disassembly Line Balancing Problem (DLBP), which concerns the
allocation of disassembly tasks to successive workstations so as to build a feasible sequence
that satisfies system constraints (such as precedence relations, assignment restrictions and
cycle time constraints), and in the mean time optimises a pre-defined performance measure.
Various measures have been considered in the literature, including the number of worksta-
tions (Koc et al. 2009; Mete et al. 2016; Altekin 2016, 2017; Li et al. 2019, a), the level of
balance between workstations’ idle times (Duta et al. 2005; Riggs et al. 2015; Kannan et al.
2017), and the profit or revenue (Kalaycilar et al. 2016; Ren et al. 2017). All these works
focus on single objective optimization problems. Since DLBP problems are NP-Complete
(McGovern and Gupta 2007), both the exact and heuristic solution approaches have been
proposed in the literature. Although heuristic methods have their advantage in finding good
solutions within reasonable time frame, the results obtained heavily rely on the heuristic
rules and are not guaranteed to be optimal. In contrast, the exact methods can obtain optimal
solutions for small-scale problems, whereas they are not suitable for larger scale problems
due to the prohibitive computational effort required.

In the last few years many researchers have been arguing that multiple objectives should
be considered in practical DLBP problems. Indeed, it is often desirable to achieve trade-offs
among several competing objectives such as the minimum number of disassembly work-
stations used, the optimal assignment of tasks to each workstation, the maximum profit or
minimum cost, and etc. To address multiple objective DLBP (MODLBP), a common treat-
ment is to convert multiple objectives into a single one by the assignment of weights to each
goal (Tuncel et al. 2012). However, as we all understand, it is difficult for decision-makers
to represent their preferences on each goal using physically meaningful preference ranges.
Setting the weight values reasonably and accurately is therefore a major hurdle for such
approaches. Alternatively, the pre-emptive lexicographic perspective (Kalayci et al. 2016)
method focuses on the optimization of the objectives once a time, which fails to achieve
the balance among multiple objectives and losses the diversity of solutions. Both types of
methods cannot ensure that the obtained solutions are really what expected, as they yield
limited insight on the trade-off between different objectives and provide few options to the
decision maker. Moreover, most of the previous works in the literature focus on heuristics or
meta-heuristic methods to obtain near-optimal solutions. Recent examples include genetic
algorithms (Aydemir-Karadag and Turkbey 2013), ant colony optimisation (Ding et al. 2010),
and firefly optimization (Zhu et al. 2018).

As far as we know there are no exact methods proposed in the literature to solveMODLBP
problems directly. Thus, this research makes the first attempt to solve the MODLBP with
an efficient dynamic programming (DP) approach, which is capable of generating all the
non-dominated solutions within reasonable time, even for some large size instances. To the

123

Annals of Operations Research (2022) 311:921–944 923

best of our knowledge, the application of DP approaches to DLBP problems is rare. The
only precursor to our paper is due to Koc et al. (2009), who considered a single objective
DLBP problem and developed a DP approach to solve it. Their numerical results show that
the DP approach performs stronger than an integer programming (IP) approach in terms of
the solvable sizes of the problem. Unlike Koc et al. (2009) we consider a more realistic DLBP
problemwith two objectives.Moreover, theDP approach proposed inKoc et al. (2009) suffers
the dimensionality issue of dynamic programming. They struggled to solve problems with
moderate sizes. This is due to the partial AND/OR Graphs (AOG) that are used to represent
the states in their DP formulation. Such a treatment leads to rapid increase of the state space
with the product complexity/size and the number of alternative tasks. In fact, to just find
all the partial AOGs for all subassemblies is not a trivial task. Moreover, all these partial
AOGs need to be found and stored before the forward recursion is undertaken to calculate
the value functions, which consumes a large amount of memory. To this end, we exploit the
structure of the problem concerned and propose a different DP formulation with backward
recursion. The states are simply defined as subassemblies rather than their associated partial
AOG graphs. The numerical experiments show that our proposed approach is much more
efficient than alternative exact algorithms proposed in the literature, and capable of solving
much larger problem instances.

The remainder of the paper is organized as follows. Section 2 reviews the relevant literature
on DLBP problems and Sect. 3 describes in detail the problem concerned. The proposed DP
method is explained in Sect. 4. Its performance is tested extensively on realistic cases and
benchmark problems in Sect. 5. Section 6 concludes the paper.

2 Literature review

The single objective DLBP problems have been well studied in the literature. Both heuristics
and exact approaches have been developed to solve such problems. Gungor and Gupta (2001)
proposed a solution approach to the DLBP in the presence of task failures. The approach
involves the following steps: (1) generate an incomplete state network representing all feasible
states and their partial relationships; (2) generate the weights of edges based on the idle
times of task assignments; (3) apply the Dijkstra’s shortest path algorithm to generate all
shortest directed paths between the source node and the final node of the weighted state
network. Recently, Altekin (2017) presented two second-order cone programming models
and five piecewise linear mixed integer programming models for the DLBP with stochastic
task times. The task times are assumed to be normally distributed with known means and
variances. Their objective is to minimise the number of workstations needed. All these seven
models are shown to be able to solve practical-sized problems. Li et al. (2019) developed a
branch-bound-remember (BBR) algorithm for a simple DLBP with an objective to minimise
the number of stations for parallel tasks. They also proposed two lower bounding schemes,
a strengthened Koc’s IP model (Koc et al. 2009) and a new benchmark instance generation
scheme. Computational results show that this branch-bound-remember algorithm solvesmost
of the instances considered in short time. The lower bounds and the strengthened IPmodel are
also demonstrated to be effective. Riggs et al. (2015) showed that generating a (stochastic)
joint precedence graph based on the different EOL states of a product is beneficial to achieve
the optimal line balance that considers both deterministic and stochastic task times. To deal
withmultiple types of products,Kannan et al. (2017) proposed a cost effective reverse logistics
network from the perspective of the third party to work with a balanced disassembly line.

123

924 Annals of Operations Research (2022) 311:921–944

A mixed integer non-linear program is developed and validated using various products from
the liquid crystal displays industry.

There have been some attempts to optimally solve profit-oriented DLBP. Altekin et al.
(2008) defined and solved a profit-oriented partial DLBP problem. They developed the first
mixed integer programming formulation, and proposed a lower and upper-bounding scheme
based on linear programming relaxation. Their computational results show that the approach
provides near optimal solutions for small problems and is capable of solving larger problems
with up to 320 disassembly tasks in reasonable time. Ren et al. (2017) considered a similar
problem and established a mathematical model to achieve the maximisation of profit, which
is solved by an improved gravitational search algorithm (GSA). Kalaycilar et al. (2016)
considered a DLBP with a fixed number of workstations and presented several upper and
lower bounding procedures to maximise the total net revenue. Refer to Deniz and Ozcelik
(2019) for a recent and comprehensive review on DLBP problems.

MODLBP have received increasing attention over the last decade. McGovern and Gupta
(2007) considered an MODLBP problem that aims to minimise the number of workstations,
balance the workstation idle time, remove hazardous parts early in the disassembly sequence,
remove high-demand parts before low demand parts andminimise the number of part removal
direction changes required for disassembly. They proposed a recursive exhaustive search
algorithm to find optimal solutions for small sized problem instances and a genetic algorithm
to find high quality solutions for large sized instances. Zhang et al. (2017) investigated an
MODLBP with fuzzy disassembly times, in which tasks’ disassembly times were assumed
as triangular fuzzy numbers. A Pareto improved artificial fish swarm algorithm (IAFSA) was
proposed to solve the problem. They tested their algorithm with four objectives: number of
workstations, workload balance between workstations, disassembly cost and disassembly
direction change frequencies. An MODLBP mathematical model was presented by Zhu
et al. (2018) for minimising the number of workstations, maximising the smoothing rate and
minimising the average maximum hazard of the disassembly line. A Pareto firefly algorithm
(FA) was proposed to solve the problem. Compared with other algorithms, the proposed
Pareto firefly algorithm finds more Pareto optimal solutions. Fang et al. (2019) focused
on evolutionary many-objective optimisation for mixed-model DLBP with multi-robotic
workstations. A mathematical program was proposed to minimise the cycle time, the total
energy consumption, the peak workstation energy consumption, and the number of robots
being used simultaneously.

It is worthmentioning that some important variants of the DLBP problems have been stud-
ied. Sequence-dependent disassembly line balancing problem (SDDLBP) is an extension to
the DLBP. SDDLBP augments sequence-dependent time considerations to DLBP. SDDLBP
with multiple objectives was first introduced in Kalayci and Gupta (2013a) and solved by
meta-heuristic techniques such as ant colony optimization (ACO) (Kalayci andGupta 2013a),
particle swarm optimisation (PSO) (Kalayci and Gupta 2013b), (improved) artificial bee
colony (ABC) (Kalayci and Gupta 2013c), (improved) discrete artificial bee colony (DABC)
(Liu andWang 2017), simulated annealing (SA) (Kalayci and Gupta 2013d), river formation
dynamic approach (RDF) (Kalayci and Gupta 2013e), tabu search (TS) (Kalayci and Gupta
2014), variable neighbourhood search (VNS) (Kalayci et al. 2015) and hybrid GA (VNSGA)
algorithm (Kalayci et al. 2016). Parallel DLBP (PDLBP) was first introduced by Hezer and
Kara (2015), who considered two or more straight disassembly lines which are balanced
simultaneously. Hezer and Kara (2015) proposed a network model based on the shortest
route model (SRM) for PDLBP to minimise the number of workstations. The procedure of
SRM consists node generation, arc construction, and shortest route identification to construct
the network model.

123

Annals of Operations Research (2022) 311:921–944 925

To summarise, we list the relevant works in the recent literature in Table 1, with respect
to the number of objectives, the line type, the precedence relation representation, and the
solution approaches. It clearly shows the lack of exact methods to solveMODLBP problems.

3 Problem description

This paper considers a single type of product that undergoes a number of ordered tasks for
complete disassembly. Each task leads to the removal of one part except the final task that
results in the separation of two parts. Theremay exist several different disassembly sequences
or routes. We follow Koc et al. (2009) and use Transformed AND/OR Graphs (TAOG) to
depict all the possible alternative sequences for disassembly. A TAOG is a modified version
of an AOG with explicit information on the precedence relationship between tasks. Both the
TAOG and task precedence diagram (TPD) include information about the task precedence
relations that should be considered in the assembly/disassembly process. A task in the TAOG
is defined based on the current subassembly and the part to be removed immediately, whereas
that in the TPD is defined only in terms of the removed part. This leads to different labelling
of tasks between TAOG and TPD.

We use a sample product to illustrate the relationship between the disassembly sequences
and TAOG/TPD. As shown in Fig. 1a, the sample product consists of five parts, which can
be fully disassembled via different sequences as shown in the AOG (Fig. 1b). The nodes
in the AOG represent subassemblies while the arcs the corresponding disassembly tasks. A
subassembly contains at least two parts. The root node represents the original product yet
to be disassembled. The derived TAOG is shown in Fig. 1c, where the artificial nodes (A)
represent subassemblies and the normal nodes (B) represent disassembly tasks in the AOG.
Two types of arcs exist in TAOG. The regular one-to-one precedence relation is represented
by the AND-type, while the multiple and alternative precedence relations are represented by
the OR-type (indicated with a small curve in Fig. 1c). In the latter situation a subassembly
could be disassembled via alternative tasks. The correspondence between subassemblies and
artificial nodes in the TAOG is listed in Table 2.

The original product (1-5) is represented by A0. Note that we have inserted a final artificial
node A12 to represent that the disassembly is completed. The disassembly procedure starts
with a task of either B1, B2 or B3 and ends with a task of either B19, B20, B21 or B22. For
example, all alternative feasible routes which start with B3 are listed as follows:

(1) A0-B3-A3-B9-A6-B15-A9-B20-A12,

(2) A0-B3-A3-B9-A6-B16-A10-B21-A12,

(3) A0-B3-A3-B10-A7-B17-A10-B21-A12,

(4) A0-B3-A3-B10-A7-B18-A11-B22-A12.

For each feasible route, the product is disassembled completely.
The derived TPDs are shown in Fig. 1d, even though they are not used in this work. Firstly

we define equitasks as the tasks that remove the same part. For example, tasks 1, 7, 9 and 17
are equitasks as they all lead to the removal of part 1; they are denoted by the same letter a
in TPDs. The equitasks for other parts are denoted in the same manner, except the final tasks
which are denoted by their original numbers. The mapping between TAOG and TPD tasks
are shown in Table 3.

From each TPD multiple and alternative feasible sequences can be derived. For example
one can obtain from TPD1 three alternative feasible sequences (b-a-d-19, a-b-d-19, a-d-b-
19). For more details on TPDs refer to Koc et al. (2009).

123

926 Annals of Operations Research (2022) 311:921–944

Ta
bl
e
1

R
el
ev
an
tD

L
B
P
lit
er
at
ur
e

A
rc
tic
le
s

N
o.

ob
je
ct
iv
es

L
in
e
ty
pe

TA
O
G
-b
as
ed

pr
ec
ed
en
ce

re
la
tio

n
re
pr
es
en
ta
tio

n

Pa
re
to
-b
as
ed

m
ul
ti-
ob
je
ct
iv
e

op
tim

iz
at
io
n

So
lu
tio

n
ap
pr
oa
ch
es

Si
ng
le

M
ul
tip

le
St
ra
ig
ht

Pa
ra
lle
l

Tw
o-
si
de
d

E
xa
ct

H
eu
ri
st
ic
s

A
lte
ki
n
(2
01

7)
�

�
PL

Pa

H
ez
er

an
d
K
ar
a
(2
01

5)
�

�
�

SR
M

K
oc

et
al
.(
20

09
)

�
�

�
D
P
an
d
IP

L
ie
ta
l.
(2
01

9)
�

�
�

B
B
R

L
ie
ta
l.
(2
01

9a
)

�
�

Fa
st
B
B
R

M
et
e
et
al
.(
20

19
)

�
�

�
N
M
M
A
b

A
lte
ki
n
et
al
.(
20

08
)

�
�

L
U
B
c

D
ut
a
et
al
.(
20

05
)

�
�

E
PA

d

K
al
ay
ci
la
r
et
al
.(
20

16
)

�
�

L
U
B
c

M
et
e
et
al
.(
20

16
)

�
�

�
B
ea
m

se
ar
ch

R
en

et
al
.(
20

17
)

�
�

G
SA

A
yd

em
ir
-K

ar
ad
ag

an
d
T
ur
kb

ey
(2
01

3)
�

�
�

�
G
A

D
in
g
et
al
.(
20

10
)

�
�

A
C
O

Fa
ng

et
al
.(
20

19
)

�
�

�
�

K
L
E
A
e

K
al
ay
ci
an
d
G
up
ta
(2
01

3a
)

�
�

A
C
O

K
al
ay
ci
an
d
G
up
ta
(2
01

3b
)

�
�

PS
O

K
al
ay
ci
an
d
G
up
ta
(2
01

3c
)

�
�

A
B
C

K
al
ay
ci
an
d
G
up
ta
(2
01

3d
)

�
�

SA

K
al
ay
ci
an
d
G
up
ta
(2
01

3e
)

�
�

R
FD

K
al
ay
ci
an
d
G
up
ta
(2
01

4)
�

�
T
S

K
al
ay
ci
et
al
.(
20

15
)

�
�

V
N
S

123

Annals of Operations Research (2022) 311:921–944 927

Ta
bl
e
1

co
nt
in
ue
d

A
rc
tic
le
s

N
o.

ob
je
ct
iv
es

L
in
e
ty
pe

TA
O
G
-b
as
ed

pr
ec
ed
en
ce

re
la
tio

n
re
pr
es
en
ta
tio

n

Pa
re
to
-b
as
ed

m
ul
ti-
ob
je
ct
iv
e

op
tim

iz
at
io
n

So
lu
tio

n
ap
pr
oa
ch
es

Si
ng
le

M
ul
tip

le
St
ra
ig
ht

Pa
ra
lle
l

Tw
o-
si
de
d

E
xa
ct

H
eu
ri
st
ic
s

K
al
ay
ci
et
al
.(
20

16
)

�
�

V
N
SG

A

L
iu

an
d
W
an
g
(2
01

7)
�

�
D
A
B
C

M
cG

ov
er
n
an
d
G
up

ta
(2
00

7)
�

�
G
A

Pi
st
ol
es
ie
ta
l.
(2
01

8)
�

�
�

H
yb
ri
d
G
A

R
en

et
al
.(
20

18
)

�
�

T
hr
ee
-p
ha
se
df

T
un
ce
le
ta
l.
(2
01

2)
�

�
R
L
g

W
an
g
et
al
.(
20

19
)

�
�

�
D
FP

h

Z
hu

et
al
.(
20

18
)

�
�

�
FA

O
ur

pa
pe
r

�
�

�
�

D
P

a P
L
P
pi
ec
ew

is
e
lin

ea
r
pr
og
ra
m
m
in
g

b
N
M
M
A
no
ve
lm

at
he
m
at
ic
al
m
od

el
ap
pr
oa
ch

c L
U
P
lo
w
er

an
d
up

pe
r
bo

un
di
ng

d
E
PA

eq
ua
lp

ile
s
ap
pr
oa
ch

e K
L
E
A
kn

ow
le
dg

e-
le
ve
ra
gi
ng

ev
ol
ut
io
na
ry

al
go

ri
th
m

f T
hr
ee
-p
ha
se
d
co
m
bi
na
tio

n
of

a
m
ul
ti-
cr
ite

ri
on

de
ci
si
on

m
ak
in
g
an
d
2-
O
pt

al
go

ri
th
m

g
R
L
re
in
fo
rc
em

en
tl
ea
rn
in
g

h
D
F
P
di
sc
re
te
flo

w
er

po
lli
na
tio

n

123

928 Annals of Operations Research (2022) 311:921–944

(a)

(b)

(c)

(d)

Fig. 1 A sample product and its TAOG and TPDs

123

Annals of Operations Research (2022) 311:921–944 929

Table 2 The correspondence between artificial nodes and subassemblies

Artificial node Subassembly Artificial node Subassembly Artificial node Subassembly

A0 (1–5) A4 (3-5) A8 (3, 5)

A1 (2–5) A5 (2, 3, 5) A9 (3, 4)

A2 (1–3, 5) A6 (2–4) A10 (2, 3)

A3 (1–4) A7 (1–3) A11 (1, 2)

A number of workstations are located along the disassembly line to complete the tasks.
Even though they are capable of processing all these tasks, each workstation is only allowed
to work for a limit amount of time due to the cycle time constraint. In other words, the sum
of disassembly time of all the tasks assigned to a workstation must be within the pre-defined
cycle time (CT). Moreover, each task can be assigned to one and only one workstation, and
the precedence relationship among the tasks must not be violated.

Our aim is to find feasible allocation of tasks toworkstationswhichmeets these constraints
and in themean time achieves pre-defined objectives.We consider twoobjectives in this paper,
as explained below.

• Objective 1: Minimum number of workstations required. The first objective concerns the
total number of workstations required to disassemble the product. Reducing the number
of workstations means shorter production lines and less employees required, both of
which enhance the resource utilisation. Fewer workstations are always preferred.

• Objective 2: Minimum total disassembly task cost. The second concerns the operating
cost to perform the assigned disassembly tasks, which are typically manual and labour
intensive. The disassembly task costs are dependent upon the disassembly tools and oper-
ating orders. Therefore, the costs incurred could be quite different between disassembly
sequences.

These two objectives are often conflicting, as demonstrated in the example in Fig. 2,
where B1-B3-B5-B7-B9 and B2-B4-B6-B8-B10 are two feasible and complete disassembly
sequences for a product. The first disassembly sequence requires 4 workstations with a total
disassembly cost 57, whereas the second requires only 3 workstations but a total disassembly
task cost of 65. To address thismultiple objective decisionmaking problem,we propose in this
paper an efficient dynamic programming approach to find all the non-dominated disassembly
sequences. A disassembly sequence is said to be dominated by another if its performance is
weaker than the latter on both objectives.

Before we introduce the dynamic programming solution approach in the next section, it is
worth mentioning that we restrict our attention to sequential tasks in this work, as shown in
Fig. 1c. In other words, there is at most one outbound arc from any task node. The problems
with parallel tasks are much more complicated, even with just a single objective (Koc et al.
2009); we will address them (with multiple objectives) in another work.

4 A DP approach for the DLBP

The problem alluded to in the previous section can be modelled as a dynamic program, as
illustrated below.

• Stage k = 1, 2, . . . , N .

123

930 Annals of Operations Research (2022) 311:921–944

Ta
bl
e
3

T
he

co
rr
es
po
nd
en
ce

be
tw
ee
n
TA

O
G
an
d
T
PD

ta
sk
s

TA
O
G
ta
sk

B
1

B
7

B
9

B
17

B
2

B
5

B
10

B
11

B
16

B
3

B
6

B
8

B
12

B
14

B
4

B
13

B
15

B
18

B
19

B
20

B
21

B
22

T
PD

ta
sk

a
a

a
a

b
b

b
b

b
c

c
c

c
c

d
d

d
e

19
20

21
22

123

Annals of Operations Research (2022) 311:921–944 931

Fig. 2 Two feasible disassembly sequence with tasks featured by (t, c), where t is the task time and c is the
cost. Cycle time is 15

• State is defined as the subassemblies at each stage k. It is obvious that when k = 1 the
single state is the original product containing all parts. When k = 2, one part should have
been disassembled and the state is a subassembly containing the remaining parts, and so
on.At stageN-1 the state is a combinationof just twopartswhich are readily disassembled.
Mathematically, we define state at stage k as a vector xk = (i1, i2, . . . , im, . . . , iN−k+1),
where im is the part index. Note that the dimension of xk is always N − k + 1, since only
one part is disassembled each stage. A state is essentially one artificial node in TAOG as
shown in Fig. 1b. No two states are the same between stages. We denote the state for the
final stage by an empty state xN = ∅.

• We define actions as the admissible disassembly tasks for a state. Denote the set of all
admissible tasks as U(xk) for state xk . For example, for state A1 at stage 2 in Fig. 1c, the
admissible set of tasks is U(A1) = {B4, B5, B6}. Each action uk ∈ U(xk) takes tuk time
to finish and incur a cost of cuk . After taking the action uk ∈ U(xk) in state xk the system
transits into state xk+1 at the next stage.

• A policy π = (u1, u2, · · · , uN) is a sequence of actions that completely disassemble the
product. Similarly, we define a partial policy (uk, uk+1, · · · , uN) for the tail subproblem
that starts from state xk at stage k. For each state xk , denote the set of all feasible partial
policies by Π(xk). Therefore Π(x1) represents the set of feasible disassembly polices
for the product. For simplicity we use π to denote both partial and full policies. Each
policy π describes a one to one mapping from states to actions, denoted as uk = π(xk).

• Cost functions. Let Cπ
k (xk) = (Cπ,1

k (xk),C
π,2
k (xk)) be a vector of the total value for

each objective when starting from state xk and following policy π ∈ Π(xk). For each
objective p ∈ {1, 2}, the cost is calculated via the recursive equation below.

Cπ,p
k (xk) =

{
Cπ,p
k+1(f (xk, uk))) + gπ,p(xk), if k ≤ N − 1,

0, otherwise.

A list of notation used to describe the DLBP problem is described below.
where f (xk, uk) is the state transition function under policy π , and gπ,p(xk) the imme-
diate cost calculated as follows.

gπ,1(xk) = Γ (Cπ,1
k+1(f (xk, uk)), tuk),

gπ,2(xk) = cuk ,

where

Γ (x, y) =
{

�x + y/CT � − x + y/CT , if �x� < �x + y/CT � < x + y/CT ,

y/CT , if �x + y/CT � = �x�or�x + y/CT � = x + y/CT .

123

932 Annals of Operations Research (2022) 311:921–944

Table 4 List of notation
N Total number of parts in the product

J Total number of possible disassembly tasks

i The index of parts, 1 ≤ i ≤ N

j The index of disassembly tasks, 1 ≤ j ≤ J

t j Disassembly time required for task j

c j Disassembly cost of task j

CT Cycle time

A Artificial nodes representing subassemblies

B Normal nodes corresponding to disassembly tasks

The above equation can be interpreted as follows; if the idle time in the last workstation
under the partial policy π ∈ Π(xk) is greater than or equal to tuk , then Γ = tuk /CT ;
otherwise, a new workstation is opened. Hence, the unused idle time is added to tuk /CT
in the computation of Γ . �x� rounds down x to the nearest integer.
Further, for each objective p, define by Z p(xk) = {Cπ,p

k (xk)|π ∈ Π(xk)} the set con-
taining the cost under all partial policies for the tail subproblem.

• A cost vector Ck(xk) is said to dominate C ′
k(xk) if C

p
k (xk) ≤ C ′p

k (xk) for all p, with
strict inequality held for at least one p. Let Fk(xk) be the set of all non-dominated cost
vectors for state xk .

Our objective is to find all the non-dominated cost vector setsF k(xk), k = 1, 2, . . . , N−1,
along with the corresponding optimal, non-dominated policies. To this end, we first show
that the cost functions for both objectives satisfy the monotonicity property (Montoya et al.
2014; Carraway et al. 1990).

Proposition 1 (Monotonicity property) For each objective p, the cost function holds the
monotonicity property. Specifically,

i) for any z1, z2 ∈ Z1(xk), π ∈ Π(xk), 0 < t ≤ CT , if z1 ≤ z2, we have z1 + gπ,1(xk) ≤
z2 + gπ,1(xk) (i.e., z1 + Γ (z1, t) ≤ z2 + Γ (z2, t));

ii) for any z1, z2 ∈ Z2(xk), π ∈ Π(xk), if z1 ≤ z2, we have z1+gπ,2(xk) ≤ z2+gπ,2(xk).

Proof (i) for any z1, z2 ∈ Z1(xk), Γ (z1, t) and Γ (z1, t) could take the following values.

Γ (z1, t) ={ �z1 + t/CT � − z1 + t/CT , if �z1� < �z1 + t/CT � < z1 + t/CT , (a)

t/CT , if �z1 + t/CT � = �z1�or�z1 + t/CT � = z1 + t/CT , (b)

Γ (z2, t) ={ �z2 + t/CT � − z2 + t/CT , if �z2� < �z2 + t/CT � < z2 + t/CT , (c)
t/CT , if �z2 + t/CT � = �z2�or�z2 + t/CT � = z2 + t/CT . (d)

Situations (a) and (c) mean that a new workstation is to be opened if a task of time t is
assigned; while (b) and (d) mean that there is no need to open a new workstation. There are
four combination cases of these situations.

Case 1 (a and c): if z1 ≤ z2, we have �z1 + t/CT � ≤ �z2 + t/CT �, and thus
z2 + Γ (z2, t) − (z1 + Γ (z1, t)) = �z2 + t/CT � − �z1 + t/CT � ≥ 0.

123

Annals of Operations Research (2022) 311:921–944 933

Case 2 (a and d): this case is only possible when z1 < z2. We first show that �z1� 	= �z2�.
To see this, if �z1� = �z2� we have from situation (a)

�z2 + t/CT � ≥ �z1 + t/CT � > �z1� = �z2�,
which contradicts with the first condition in (d). Moreover, due to t/CT ≤ 1 we have

z1 + t/CT > �z1 + t/CT � = �z1� + 1.

Rearranging the equation we have

t/CT > 1 + �z1� − z1 = 1 + �z2� − z1 > 1 + �z2� − z2,

and thus z2+ t/CT > 1+�z2� ≥ �z2+ t/CT �, which contradicts with the second condition
in (d).

Therefore �z1� < �z2�, which means that the integer part of z2 is at least 1 more than that
of z1. We then have �z1 + t/CT � ≤ �z2� < z2, and

z2 + Γ (z2, t) − (z1 + Γ (z1, t)) = z2 − �z1 + t/CT � > 0.

Case 3 (b and c): this case is only possiblewhen z1 < z2. From situation (c) and t/CT ≤ 1,
we have �z2 + t/CT � = �z2� + 1 > z2, and thus

z2 + Γ (z2, t) − (z1 + Γ (z1, t)) = �z2 + t/CT � − z1 > z2 − z1 > 0.

Case 4 (b and d): the conclusion is obvious.
(ii) the proof is trivial for the additive linear cost function.
�
The above property ensures the validity of the Principal of Pareto-Optimality (Daellen-

bach and De Kluyver 1980) of the multi-objective DP problem concerned. It allows us to
calculate all the non-dominated cost vector setsFk(xk) recursively as follows. Given the set
Fk+1(xk+1) for all states xk+1, the proposed algorithm first generates for each state xk the
set of cost vectors (

C1 + Γ (C1, tuk),C
2 + Cuk)

)
such that (C1,C2) ∈ Fk+1(f (xk, uk)),∀uk ∈ U(xk). ThenFk(xk) is obtained by discarding
from this set the vectors that are dominated by the other vectors. The boundary condition is
that FN (∅) just contains a zero vector. The recursive procedure is described as follows to
compute Fk(xk) and the corresponding disassembly tasks.

Remark 1 In Algorithm 1 we have calculated the cost function for both objectives via back-
ward recursion. In other words, the algorithm starts from stage N and updates the cost
functions backwards, while the actual disassembly process is undertaken forwards. How-
ever, it can be readily proved that for any feasible disassembly sequence, the resulting final
cost function values for both objectives are essentially the same. The result is trivial for the
second objective. For the first one it can be proved by contradiction. For brevity we do not
provide this rather straightforward proof.

5 Computational experiments

We first demonstrate the solution process of the proposed DP algorithm and its result via an
illustrated example in Sect. 5.1. In Sect. 5.2 its performance is evaluated over a number of

123

934 Annals of Operations Research (2022) 311:921–944

Algorithm 1 Dynamic Programming Algorithm
Initialisation: Set CT and c j , t j for 1 ≤ j ≤ J ; Store the precedence relation of tasks in cell

arrays.
Step 0: Set k := N , xN := ∅ andFN (∅) = {(0, 0)}.
Step 1: Let k := k − 1. For each xk perform the following tasks.

• For every action uk ∈ U(xk), find the next state xk+1 = f (xk , uk).
• For every cost vector C = (C1,C2) inFk+1(xk+1), calculate Ck (xk) = (C1

k (xk),C
2
k (xk)) as below.

C p
k (xk) = C p + gp(xk), p = 1, 2.

• For any two vectors obtained above Ck (xk) and C′
k (xk), if C

p
k (xk) ≤ C ′p

k (xk) for all p and the strict
inequality holds for at least one p, C′

k (xk) is the dominated cost vector and discarded. All the remaining
and non-dominated cost vectors are stored inFk (xk) for state xk , along with the corresponding action
uk .

Step 2: If k ≥ 2, go to Step 1; otherwise terminate.

problem instances. Since ourwork is the first exact approach to solvemultiple objectiveDLBP
problems, there are not any comparable exact algorithms in the literature. Even though some
heuristics have been developed for such problems, they are not comparable either. Instead,
we have decided to evaluate the DP algorithm against another exact solution approach (SRM)
that is designed for single objective DLBP problems, as follows. For each problem instance,
we applied theDP algorithm and found all the non-dominated cost vectors, which also include
the optimal values for each objective. Then we applied the SRM algorithm twice to the same
problem; each time a different objectivewas considered. Since both are exact algorithms, their
solutions (on each objective) would always be the same. Therefore we compared the solution
time and the amount of solvable cases. The algorithms were implemented in MATLAB and
tested on a personal computer with an Intel(R) Core(TM) processor of 2.70GHz clock speed
and 8 GB RAM.

5.1 An illustrative example

We have introduced the example problem in Sect. 3. Figure 1c shows the TAOG of the sample
product; it contains 22 normal nodes and 12 artificial nodes. The complete set of data of the
example is listed in Table 5. The cycle time was set to 16min.

Table 6 summarises the computational results for this example. For each stage, the non-
dominated cost vectors for each state are listed, next to the corresponding disassembly tasks.
For example, for state A4 at stage 3 there are two non-dominated vectors (0.625, 7) and
(1, 5), with the corresponding actions B11 and B12, respectively. The results show that the
optimal value is 1.125 for the first objective and 14 for the second, which are included in the
four non-dominated cost vectors at stage 1. We now demonstrate how to derive the policies
implied in these results. For instance to find the policy that minimises objective 1, we start
with state A0 at stage 1 and identify the cost vector with the minimum value in this objective,
which is (1.125, 18). The corresponding action B3 is then the first task in the policy, which
leads to state A3 in the next stage (Fig. 1c). Given tB3 = 2, cB3 = 5 we know that the action
to take at A3 is B9, leading to the the next state A6. The same procedure is repeated until the
last stage, and we find the optimal sequence for the first objective isB3-B9-B16-B21. Similarly
for objective 2, the optimal sequence is B3-B10-B18-B22.

123

Annals of Operations Research (2022) 311:921–944 935

Ta
bl
e
5

D
at
a
of

th
e
ex
am

pl
e

Ta
sk
(B

j)
Ta
sk

tim
e
(t
j)

Ta
sk

co
st
(c

j)
Im

m
ed
ia
te

su
cc
es
so
rs

Ta
sk

(B
i)

Ta
sk

tim
e
(t
j)

Ta
sk

co
st
(c

j)
Im

m
ed
ia
te

su
cc
es
so
rs

1
7

6
4,
5,

6
12

8
2

20

2
8

6
7,
8

13
8

2
19

3
2

5
9,
10

14
5

6
21

4
8

5
11

,1
2

15
7

5
20

5
6

5
13

,1
4

16
2

3
21

6
2

3
15

,1
6

17
4

6
21

7
3

5
13

,1
4

18
8

2
22

8
5

2
17

,1
8

19
7

4
–

9
8

5
15

,1
6

20
8

3
–

10
8

2
17

,1
8

21
6

5
–

11
3

3
19

22
2

5
–

123

936 Annals of Operations Research (2022) 311:921–944

Table 6 Non-dominated cost vectors and the corresponding actions

Stage States and their cost vectors

5 Node A12
(0, 0)

4 Node A8 Node A9 Node A10 Node A11
(0.4375, 4)→ B19 (0.5, 3)→ B20 (0.375, 5)→ B21 (0.125, 5)→ B22

3 Node A4 Node A5 Node A6 Node A7
(0.625, 7)→ B11 (0.9375, 6)→ B13 (0.5, 8)→ B16 (0.625, 7)→ B18
(1, 5)→ B12 (0.6875, 11)→ B14

2 Node A1 Node A2 Node A3
(1.5, 10)→ B4 (0.875, 16)→ B7 (1, 13)→ B9
(0.625, 11)→ B6 (0.9375, 9)→ B8 (1.5, 9)→ B10

1 Node A0
(1.4375, 17)→ B1
(1.5, 15)→ B2
(1.125, 18)→ B3
(1.625, 14)→ B3

Fig. 3 An example of the TAOG (a, q, N) = (3, 2, 5)

5.2 Performance evaluation

In this section the performance of the proposed DP approach was tested and compared
against the SRM approach by Hezer and Kara (2015) over a number of problem instances.
We followed the scheme proposed by Koc et al. (2009) to generate the instances according to
three parameters (a, q, N), where a is the number of states (i.e. artificial nodes) at each stage
and q the number of admissible tasks (normal nodes) for each state (except those at stage 1
and N − 1), as demonstrated in the example in Fig. 3. The total number of artificial nodes is
given by a × (N − 2) + 2, and the total number of normal nodes a × (t × (N − 3) + 2). The
details on how these test problems are generated can be found in Koc et al. (2009).

Three different cycle times (CT = 10, 15, 20) were considered. The instances with
a = 2, 3, q = 1, 2, and N = 5 ∼ 10 were considered as small size problems. The task
time of the normal nodes were generated randomly from a discrete uniform distribution
U [2, 8] (Mete et al. 2016). The disassembly cost of each task was generated randomly from
a discrete uniform distribution U [1, 20]. In total 69 small problems were generated, each of

123

Annals of Operations Research (2022) 311:921–944 937

which was solved by both DP and SRM. The optimal values of each objective and the CPU
time (seconds) for both algorithms are given in Table 7. The first column indicates the test
problem parameters and the second cycle time. The next three columns show the optimal
solutions of each objective and the CPU time for DP, while the last four the optimal solutions
and the CPU time for each run of SRM.

As shown in Table 7, the number of workstations required � f1� and the total operating cost
f2 obtained by both algorithms are always the same over all problem instances, as expected.
They are both very efficient with less than 0.1 second CPU time for these small instances.
The DP algorithm, however, only ran once to obtain the optimal solutions for both objectives
individually, along with all the non-dominated policies that are not available in the SRM
solution.

We continued the experiment for medium size problems with a = 2 ∼ 10; q = 3 ∼
10; N = 15. The task times and costs were generated from the discrete uniform distribution
U [1, 20]. The cycle time was set at both 1.5 and 2 times of the longest task time (Mete et al.
2016). In total 34 test cases were generated and the results are given in Table 8. Note that
OT/OM stands for over time/out of memory; in either situation no solutions were obtained.
According to Table 8, the DP approach found the optimal solutions for all problems with
less CPU time than SRM. For fixed N , a larger value of q (or a) increases the CPU time
remarkably. Moreover, the more the number of normal tasks and parts, the stronger the DP’s
performance compared to SRM. In addition, for fixed a and N , an increase in q results in a
larger solution space, and thus consumes more CPU time or even leads to out of memory for
SRM. This is because SRM checks all possibility to guarantee the optimal solution. This is
however not the case for DP that eliminates a large proportion of partial sequences that are
dominated at each stage.

Finally a number of large problem instances were studied, with a = 3, 4, 5, 10, q =
2, 3, 5, 10 and N = 20, 50, 80. In total we have generated 96 instances and the results are
summarised in Table 9. SRM is no more applicable to such large problems and thus only the
solution time of DP is reported. It is shown that the DP approach was still strong and found
the optimal solutions for all problems within a short time. Even for the very large instances
with a = 10, q = 10, N = 80 the solution time is just 22.8 seconds, while in sharp contrast
the DP proposed in Koc et al. (2009) can only solve up to N = 12 in such cases. The solvable
problem sizes are therefore much larger in our proposal.

In Fig. 4 the set of Pareto optimal solutions, or Pareto Front, are plotted for a few selected
problems. It shows that for fixed q and N , a larger value of a increases the number of Pareto
optimal solutions remarkably. In fact, our results show that no matter which two parameters
in (a, q, N) are fixed, increasing the remaining variable will increase the number of Pareto
optimal solutions. Remember that the proposed algorithm produces the whole Pareto Front,
which offers full information on all objective values and how they trade off between each
other. With these insights, the decision makers can easily compare alternative solutions and
identify the preferred ones based on their domain knowledge.

6 Conclusion

In this study, we consider a multi-objective DLBP problem to minimise in the same time the
number of workstations required and the total operating cost to completely disassemble a
product. A feasible task sequence must satisfy the precedence relationship between tasks and
the cycle time constraints. Unlike the previous works in the literature that convert themultiple

123

938 Annals of Operations Research (2022) 311:921–944

Ta
bl
e
7

R
es
ul
ts
of

D
P
an
d
SR

M
fo
r
sm

al
lp

ro
bl
em

s

P
(a

,
q
,
N

)
C
T

D
P

SR
M

P
(a

,
q
,
N

)
C
T

D
P

SR
M

� f
1
�

f 2
C
PU

(s
)

� f
1
�

C
PU

(s
)

f 2
C
PU

(s
)

� f
1
�

f 2
C
PU

(s
)

� f
1
�

C
PU

(s
)

f 2
C
PU

(s
)

P(
2,

1,
5)

10
2

37
<

0.
1

2
<

0.
1

37
<

0.
1

P(
3,

1,
5)

10
2

36
<

0.
1

2
<

0.
1

36
<

0.
1

15
2

37
<

0.
1

2
<

0.
1

37
<

0.
1

15
1

36
<

0.
1

1
<

0.
1

36
<

0.
1

20
1

37
<

0.
1

1
<

0.
1

37
<

0.
1

20
2

48
<

0.
1

2
<

0.
1

48
<

0.
1

P(
2,

1,
6)

10
3

48
<

0.
1

3
<

0.
1

48
<

0.
1

P(
3,

1,
6)

10
3

48
<

0.
1

3
<

0.
1

48
<

0.
1

15
2

48
<

0.
1

2
<

0.
1

48
<

0.
1

15
2

48
<

0.
1

2
<

0.
1

48
<

0.
1

20
2

48
<

0.
1

2
<

0.
1

48
<

0.
1

20
2

55
<

0.
1

2
<

0.
1

55
<

0.
1

P(
2,

1,
7)

10
5

49
<

0.
1

5
<

0.
1

49
<

0.
1

P(
3,

1,
7)

10
4

55
<

0.
1

4
<

0.
1

55
<

0.
1

15
3

49
<

0.
1

3
<

0.
1

49
<

0.
1

15
2

55
<

0.
1

2
<

0.
1

55
<

0.
1

20
2

49
<

0.
1

2
<

0.
1

49
<

0.
1

20
2

55
<

0.
1

2
<

0.
1

55
<

0.
1

P(
2,

1,
8)

10
5

75
<

0.
1

5
<

0.
1

75
<

0.
1

P(
3,

1,
8)

10
5

61
<

0.
1

5
<

0.
1

61
<

0.
1

15
3

75
<

0.
1

3
<

0.
1

75
<

0.
1

15
3

61
<

0.
1

3
<

0.
1

61
<

0.
1

20
3

75
<

0.
1

3
<

0.
1

75
<

0.
1

20
2

61
<

0.
1

2
<

0.
1

61
<

0.
1

P(
2,

1,
9)

10
4

69
<

0 .
1

4
<

0.
1

69
<

0.
1

P(
3,

1,
9)

10
3

69
<

0.
1

3
<

0.
1

69
<

0.
1

15
3

69
<

0.
1

3
<

0.
1

69
<

0.
1

15
3

69
<

0.
1

3
<

0.
1

69
<

0.
1

20
2

69
<

0.
1

2
<

0.
1

69
<

0.
1

20
2

69
<

0.
1

2
<

0.
1

69
<

0.
1

P(
2,

1,
10

)
10

5
85

<
0.
1

5
<

0.
1

85
<

0.
1

P(
3,

1,
10

)
10

4
93

<
0.
1

4
<

0.
1

93
<

0.
1

15
3

85
<

0.
1

3
<

0.
1

85
<

0.
1

15
3

93
<

0.
1

3
<

0.
1

93
<

0.
1

20
3

85
<

0.
1

3
<

0.
1

85
<

0.
1

20
2

93
<

0.
1

2
<

0.
1

93
<

0.
1

P(
2,

2,
5)

10
2

26
<

0.
1

2
<

0.
1

26
<

0.
1

P(
3,

2,
5)

10
2

27
<

0.
1

2
<

0.
1

27
<

0.
1

15
2

26
<

0.
1

2
<

0.
1

26
<

0.
1

15
1

27
<

0.
1

1
<

0.
1

27
<

0.
1

20
1

26
<

0.
1

1
<

0.
1

26
<

0.
1

20
1

27
<

0.
1

1
<

0.
1

27
<

0.
1

P(
2,

2,
6)

10
2

34
<

0.
1

2
<

0.
1

34
<

0.
1

P(
3,

2,
6)

10
2

25
<

0.
1

2
<

0.
1

25
<

0.
1

15
2

34
<

0.
1

2
<

0.
1

34
<

0.
1

15
1

25
<

0.
1

1
<

0.
1

25
<

0.
1

20
1

34
<

0.
1

1
<

0.
1

34
<

0.
1

20
1

25
<

0.
1

1
<

0.
1

25
<

0.
1

123

Annals of Operations Research (2022) 311:921–944 939

Ta
bl
e
7

co
nt
in
ue
d

P
(a

,
q
,
N

)
C
T

D
P

SR
M

P
(a

,
q
,
N

)
C
T

D
P

SR
M

� f
1
�

f 2
C
PU

(s
)

� f
1
�

C
PU

(s
)

f 2
C
PU

(s
)

� f
1
�

f 2
C
PU

(s
)

� f
1
�

C
PU

(s
)

f 2
C
PU

(s
)

P(
2,

2,
7)

10
2

30
<

0.
1

2
<

0.
1

30
<

0.
1

P(
3,

2,
7)

10
3

40
<

0.
1

3
<

0.
1

40
<

0.
1

15
2

30
<

0.
1

2
<

0.
1

30
<

0.
1

15
2

40
<

0.
1

2
<

0.
1

40
<

0.
1

20
1

30
<

0.
1

1
<

0.
1

30
<

0.
1

20
2

40
<

0.
1

2
<

0.
1

40
<

0.
1

P(
2,

2,
8)

10
3

46
<

0.
1

3
<

0.
1

46
<

0.
1

P(
3,

2,
8)

10
3

34
<

0.
1

3
<

0.
1

34
<

0.
1

15
2

46
<

0.
1

2
<

0.
1

46
<

0.
1

15
2

34
<

0.
1

2
<

0.
1

34
<

0.
1

20
2

46
<

0.
1

2
<

0.
1

46
<

0.
1

20
2

34
<

0.
1

2
<

0.
1

34
<

0.
1

P(
2,

2,
9)

10
3

41
<

0.
1

3
<

0.
1

41
<

0.
1

P(
3,

2,
9)

10
3

60
<

0.
1

3
<

0.
1

60
<

0.
1

15
3

41
<

0.
1

3
<

0.
1

41
<

0.
1

15
2

60
<

0.
1

2
<

0.
1

60
<

0.
1

20
2

41
<

0.
1

2
<

0.
1

41
<

0.
1

20
2

60
<

0.
1

2
<

0.
1

60
<

0.
1

P(
2,

2,
10

)
10

4
51

<
0.
1

4
<

0.
1

51
<

0.
1

–
–

–
–

–
–

–
–

–

15
3

51
<

0.
1

3
<

0.
1

51
<

0.
1

–
–

–
–

–
–

–
–

–

20
2

51
<

0.
1

2
<

0.
1

51
<

0.
1

–
–

–
–

–
–

–
–

–

123

940 Annals of Operations Research (2022) 311:921–944

Table 8 Results of DP and SRM for medium problems with N = 15

P(a, q, N) CT DP SRM

� f1� f2 CPU (s) � f1� CPU (s) f2 CPU (s)

P(2, 2, 15) 1.5Max 4 75 < 0.1 4 170.6907 75 < 0.1

2max 3 75 < 0.1 3 68.0226 75 < 0.1

P(3, 2, 15) 1.5Max 3 94 < 0.1 3 146.8943 94 < 0.1

2max 3 94 < 0.1 3 47.3238 94 < 0.1

P(4, 2, 15) 1.5Max 3 65 < 0.1 3 260.5494 65 < 0.1

2max 2 65 < 0.1 2 65.7011 65 < 0.1

P(5, 2, 15) 1.5Max 4 74 < 0.1 4 632.6653 74 < 0.1

2max 3 74 < 0.1 3 122.3351 74 < 0.1

P(6, 2, 15) 1.5Max 3 76 < 0.1 3 509.0572 76 < 0.1

2max 3 76 < 0.1 3 160.3625 76 0.1022

P(7, 2, 15) 1.5Max 2 81 < 0.1 2 140.3457 81 0.1105

2max 2 81 < 0.1 2 148.8845 81 0.1462

P(8, 2, 15) 1.5Max 3 81 < 0.1 3 579.0014 81 0.2054

2max 2 81 < 0.1 2 230.2225 81 0.1204

P(9, 2, 15) 1.5Max 3 70 < 0.1 3 1849.4 70 0.1246

2max 2 70 < 0.1 2 445.379 70 0.1332

P(10, 2, 15) 1.5Max 3 71 < 0.1 3 766.8686 71 0.1603

2max 2 71 < 0.1 2 506.8079 71 0.1578

P(2, 3, 15) 1.5Max 3 68 < 0.1 OT 3600 68 2.0273

2max 2 68 < 0.1 OT 3600 68 2.1666

P(2, 4, 15) 1.5Max 3 52 < 0.1 – OM – OM

2max 3 52 < 0.1 – OM – OM

P(2, 5, 15) 1.5Max 2 74 < 0.1 – OM – OM

2max 1 74 < 0.1 – OM – OM

P(2, 6, 15) 1.5Max 3 57 < 0.1 – OM – OM

2max 3 57 < 0.1 – OM – OM

P(2, 7, 15) 1.5Max 3 40 < 0.1 – OM – OM

2max 2 40 < 0.1 – OM – OM

P(2, 8, 15) 1.5Max 3 38 0.1218 – OM – OM

2max 2 38 < 0.1 – OM – OM

P(2, 9, 15) 1.5Max 2 39 < 0.1 – OM – OM

2max 1 39 < 0.1 – OM – OM

P(2, 10, 15) 1.5Max 2 38 < 0.1 – OM – OM

2max 1 38 < 0.1 – OM - OM

objectives into a single one, we propose to generate all the Pareto optimal solutions (tasks
sequences), thus allowing managers to make informed decisions. To this end we formulate
the problem into amulti-objective dynamic program based on the TAOG representation of the
disassembly sequences. We prove the monotonicity property for both objective functions to
ensure the principal of optimality of dynamic programming. An efficient backward recursive
algorithm has been proposed to update the value function vectors. Our numerical experiments

123

Annals of Operations Research (2022) 311:921–944 941

Ta
bl
e
9

T
he

C
PU

tim
e
of

D
P
fo
r
la
rg
e
pr
ob

le
m
s

P
(a

,
q
,
N

)
C
T

D
P-
C
PU

(s
)

P
(a

,
q
,
N

)
C
T

D
P-
C
PU

(s
)

N
=

20
N

=
50

N
=

80
N

=
20

N
=

50
N

=
80

P(
3,

2,
–)

1.
5M

ax
<

0.
1

<
0.
1

0.
22

70
P(
5,

2,
–)

1.
5m

ax
<

0.
1

0.
12

72
0.
21

38

2m
ax

<
0.
1

<
0.
1

0.
14

47
2m

ax
<

0.
1

<
0.
1

0.
13

72

P(
3,

3,
–)

1.
5M

ax
<

0.
1

0.
15

96
0.
39

43
P(
5,

3,
–)

1.
5m

ax
<

0.
1

0.
12

83
0.
51

81

2m
ax

<
0.
1

<
0.
1

0.
37

06
2m

ax
<

0.
1

0.
17

83
0.
51

96

P(
3,

5,
–)

1.
5M

ax
<

0.
1

0.
43

1
2.
55

23
P(
5,

5,
–)

1.
5m

ax
<

0.
1

0.
12

83
2.
91

07

2m
ax

<
0.
1

0.
38

76
2.
89

36
2m

ax
<

0.
1

0.
17

83
4.
26

07

P(
3,

10
,–
)

1.
5m

ax
0.
17

97
4.
17

28
8.
10

26
P(
5,

10
,–
)

1.
5m

ax
0.
14

44
2.
45

63
4.
26

07

2m
ax

0.
20

32
5.
50

63
12

.0
30

2
2m

ax
0.
14

81
2.
95

33
16

.4
01

9

P(
4,

2,
–)

1.
5m

ax
<

0.
1

<
0.
1

0.
26

15
P(
10

,2
,–

)
1.
5m

ax
<

0.
1

0.
24

54
0.
51

35

2m
ax

<
0.
1

<
0.
1

0.
18

45
2m

ax
<

0.
1

0.
16

91
0.
55

50

P(
4,

3,
–)

1.
5m

ax
<

0 .
1

0.
27

78
0.
40

19
P(
10

,3
,–

)
1.
5m

ax
<

0.
1

0.
56

39
0.
99

98

2m
ax

<
0.
1

0.
22

01
0.
44

04
2m

ax
<

0.
1

0.
41

90
1.
17

65

P(
4,

5,
–)

1.
5m

ax
<

0.
1

0.
54

37
1.
26

87
8

P(
10

,5
,–

)
1.
5m

ax
0.
11

01
0.
99

12
3.
08

63

2m
ax

<
0.
1

0.
51

49
1.
47

41
2m

ax
0.
17

01
0.
94

85
3.
49

73

P(
4,

10
,–
)

1.
5m

ax
0.
13

51
1.
70

58
21

.1
33

4
P(
10

,1
0,

–)
1.
5m

ax
0.
25

04
3.
42

49
17

.7
20

9

2m
ax

0.
10

26
1.
97

73
37

.8
76

7
2m

ax
0.
27

19
3.
49

39
22

.8
10

3

123

942 Annals of Operations Research (2022) 311:921–944

Fig. 4 The Pareto optimal solutions for selected instances (P(a, q, N)) with a = 3 ∼ 5, 10, q =
2, 3, 5, 10, N = 20, 50, 80

show that the proposed DP algorithm is much more efficient than SRM, an exact algorithm
for single objective DLBP problems. Moreover, compared to the DP algorithm proposed in
Koc et al. (2009), our proposal is capable of handling much larger problem instances. Our
proposal can be readily extended to problems with more than two objectives, as long as they
all satisfy the monotonicity property. However, it is worth mentioning that the computational
complexity will increases quickly with the number of objectives, as well as the number of
non-dominated solutions. It may no longer be possible to solve the problem exactly. In such
cases, the very rich techniques in approximate dynamic programming could be employed to
address these challenges.

One of the future research directions could look into multi-objective DLBP problems
with parallel tasks. The DP approach proposed in this paper is not directly applicable to such
problems. Another direction could consider uncertain processing times of tasks, which is
quite common in practice. Finally, the DP approach may be applied to mixed-model DLBP.

Funding This work is supported by the National Natural Science Foundation of China (Grant number
71471151).

References

Altekin, F. T. (2016). A piecewise linear model for stochastic disassembly line balancing. IFAC-PapersOnLine,
49(12), 932–937.

123

Annals of Operations Research (2022) 311:921–944 943

Altekin, F. T. (2017). A comparison of piecewise linear programming formulations for stochastic disassembly
line balancing. International Journal of Production Research, 55(24), 7412–7434.

Altekin, F. T., Kandiller, L., & Ozdemirel, N. E. (2008). Profit-oriented disassembly-line balancing. Interna-
tional Journal of Production Research, 46(10), 2675–2693.

Aydemir-Karadag, A., & Turkbey, O. (2013). Multi-objective optimization of stochastic disassembly line
balancing with station paralleling. Computers and Industrial Engineering, 65(3), 413–425.

Carraway, R. L., Morin, T. L., & Moskowitz, H. (1990). Generalized dynamic programming for multicriteria
optimization. European Journal of Operational Research, 44, 95–104.

Daellenbach, H. G., & De Kluyver, C. A. (1980). Note on multiple objective dynamic programming. The
Journal of the Operational Research Society, 31(7), 591–594.

Deniz, N., & Ozcelik, F. (2019). An extended review on disassembly line balancing with bibliometric & social
network and future study realization analysis. Journal of Cleaner Production, 225, 697–715.

Ding, L. P., Feng, Y. X., Tan, J. R., & Gao, Y. C. (2010). A new multi-objective ant colony algorithm for
solving the disassembly line balancing problem. The International Journal of Advanced Manufacturing
Technology, 48(5), 761–771.

Duta, L., Filip, F. G., & Henrioud, J. M. (2005). Applying equal piles approach to disassembly line balancing
problem. In:Proceedings of the 16thWorldCongress of the International Federation of AutomaticControl
(pp. 152–157), Prague.

Fang, Y. L., Liu, Q., Li, M. Q., Laili, Y. J., & Pham, D. T. (2019). Evolutionary many-objective optimiza-
tion for mixed-model disassembly line balancing with multi-robotic workstations. European Journal of
Operational Research, 276, 160–174.

Gungor, A., & Gupta, S. M. (2001). A solution approach to the disassembly line balancing problem in the
presence of task failures. International Journal of Production Research, 39(7), 1427–1467.

Hezer, S., & Kara, Y. (2015). A network-based shortest route model for parallel disassembly line balancing
problem. International Journal of Production Research, 53(6), 1849–1865.

Kalayci, C. B., & Gupta, S. M. (2013a). Ant colony optimization for sequence dependent disassembly line
balancing problem. Journal of Manufacturing Technology Management, 24(3), 413–427.

Kalayci, C. B., & Gupta, S. M. (2013b). A particle swarm optimization algorithm with neighborhood-based
mutation for sequence-dependent disassembly line balancing problem. The International Journal of
Advanced Manufacturing Technology, 69(1–4), 197–209.

Kalayci, C. B., & Gupta, S. M. (2013c). Artificial bee colony algorithm for solving sequence-dependent
disassembly line balancing problem. Expert Systems with Applications, 40(18), 7231–7241.

Kalayci, C. B., & Gupta, S. M. (2013d). Balancing a sequence-dependent disassembly line using simulated
annealing algorithm. Applications of Management Science, 16, 81–103.

Kalayci, C. B., & Gupta, S. M. (2013e). River formation dynamics approach for sequence-dependent disas-
sembly line balancing problem. In S. M. Gupta (Ed.), Chapter 12: Reverse supply chains: issues and
analysis (pp. 289–312). Boca Raton, FL: CRC Press. ISBN 978-1439899021.

Kalayci,C.B.,&Gupta, S.M. (2014).A tabu search algorithm for balancing a sequence-dependent disassembly
line. Production Planning and Control: The Management of Operations, 25(2), 149–160.

Kalayci, C., Polat, O., & Gupta, S. M. (2015). A variable neighbourhood search algorithm for disassembly
lines. Journal of Manufacturing Technology Management, 26(2), 182–194.

Kalayci, C., Polat, O., &Gupta, S.M. (2016). A hybrid genetic algorithm for sequence-dependent disassembly
line balancing problem. Annals of Operations Research, 242(2), 321–354.

Kalaycilar, E. G., Azizoglu,M., &Yeralan, S. (2016). A disassembly line balancing problemwith fixed number
of workstations. European Journal of Operational Research, 249, 592–604.

Kannan, D., Garg, K., Jha, P. C., &Diabat, A. (2017). Integrating disassembly line balancing in the planning of
a reverse logistics network from the perspective of a third party provider. Annals of Operations Research,
253(1), 353–376.

Koc, A., Sabuncuoglu, I., & Erel, E. (2009). Two exact formulations for disassembly line balancing problems
with task precedence diagram construction using an AND/OR graph. IIE Transactions, 41(10), 866–881.

Li, J. L., Chen, X. H., Zhu, Z. G., Yang, C. J., & Chu, C. B. (2019). A branch, bound, and remember algorithm
for the simple disassembly line balancing problem. Computers and Operations Research, 105, 47–57.

Li, Z. X., Zeynel, A. Ç., Süleyman, M., & Ibrahim, K. (2019). A fast branch, bound, and remember algorithm
for disassembly line balancing problem. International Journal of Production Research,. https://doi.org/
10.1080/00207543.2019.1630774.

Liu, J., & Wang, S. W. (2017). Balancing disassembly line in product recovery to promote the coordinated
development of economy and environment. Sustainability, 9(3), 309–323.

McGovern, S.M.,&Gupta, S.M. (2010).The disassembly line: Balancing andmodeling. NewYork:McGraw-
Hill.

123

https://doi.org/10.1080/00207543.2019.1630774
https://doi.org/10.1080/00207543.2019.1630774

944 Annals of Operations Research (2022) 311:921–944

McGovern, S. M., & Gupta, S. M. (2007). A balancing method and genetic algorithm for disassembly line
balancing. European Journal of Operational Research, 179(3), 692–708.

Mete, S., Cil, Z. A., Agpak, K., Özceylan, E., & Dolgui, A. (2016). A solution approach based on beam search
algorithm for disassembly line balancing problem. Journal of Manufacturing Systems, 41, 188–200.

Mete, S., Cil, Z. A., Celik, E., & Ozceylan, E. (2019). Supply-driven rebalancing of disassembly lines: A novel
mathematical model approach. Journal of Cleaner Production, 213, 1157–1164.

Montoya, J., Rathinam, S., & Wood, Z. (2014). Multiobjective departure runway scheduling using dynamic
programming. IEEE Transactions on Intelligent Transportation Systems, 15(1), 399–413.

Pistolesi, F., Lazzerini, B.,Mura,M.D.,&Dini, G. (2018). EMOGA:Ahybrid genetic algorithmwith extremal
optimization core for multiobjective disassembly line Balancing. IEEE Transactions on Industrial Infor-
matics, 14(3), 1089–1098.

Ren, Y. P., Yu, D. Y., Zhang, C. Y., Tian, G. D., Meng, L. L., & Zhou, X. Q. (2017). An improved gravitational
search algorithm for profit-oriented partial disassembly line balancing problem. International Journal of
Production Research, 55(24), 7301–7316.

Ren, Y. P., Zhang, C. Y., Zhao, F., Tian, G. D., Lin, W. W., Meng, L. L., et al. (2018). Disassembly line
balancing problem using interdependent weights-based multi-criteria decision making and 2-optimal
algorithm. Journal of Cleaner Production, 174, 1475–1486.

Riggs, R. J., Battaïa, O., & Hu, S. J. (2015). Disassembly line balancing under high variety of end of life states
using a joint precedence graph approach. Journal of Manufacturing Systems, 37(3), 638–648.

Tuncel, E., Zeid, A., & Kamarthi, S. (2012). Solving large scale disassembly line balancing problem with
uncertainty using reinforcement learning. Journal of Intelligent Manufacturing, 25(4), 647–659.

Wang, K., Li, X., & Gao, L. (2019). A multi-objective discrete flower pollination algorithm for stochastic two-
sided partial disassembly line balancing problem. Computers and Industrial Engineering, 130, 634–649.

Zhang, Z. Q.,Wang, K. P., Zhu, L. X., &Wang, Y. (2017). A Pareto improved artificial fish swarm algorithm for
solving a multi-objective fuzzy disassembly line balancing problem. Expert Systems with Applications,
86, 165–176.

Zhu, L. X., Zhang, Z. Q., & Wang, Y. (2018). A Pareto firefly algorithm for multi-objective disassembly
line balancing problems with hazard evaluation. International Journal of Production Research, 56(24),
7354–7374.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	A dynamic programming approach to a multi-objective disassembly line balancing problem
	Abstract
	1 Introduction
	2 Literature review
	3 Problem description
	4 A DP approach for the DLBP
	5 Computational experiments
	5.1 An illustrative example
	5.2 Performance evaluation

	6 Conclusion
	References

