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Abstract
Software systems have been widely applied in numerous safety–critical domains; how-
ever, large-scale software development is still considered as a complicated and expensive 
activity. As the latest trends in software industry accelerate the complexity and depend-
ency of software development, such complicated and human-centered process needs to 
be addressed well. Meanwhile, recent survey investigations (Zhu et  al. in J Syst Softw 
109:150–160, 2015; Zhu and Pham in J Syst Softw 132:72–84, 2017) revealed that envi-
ronmental factors, defined from software development, have significant impacts on soft-
ware reliability. Considering such significant impacts, we first propose a generalized mul-
tiple-environmental-factors software reliability growth model with multiple environmental 
factors and the associated randomness under the martingale framework. The randomness is 
reflected on the process of detecting software fault. Indeed, this is a stochastic fault detec-
tion process. As an illustration, a specific multiple-environmental-factors software reliabil-
ity growth model incorporating two specific environmental factors, percentage of reused 
modules and frequency of program specification change, is further developed. Lastly, we 
employ two real-world data sets to demonstrate the prediction performance of the proposed 
generalized multiple-environmental-factors software reliability growth model.
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1  Introduction

Software system is one of the essential elements in our modern society, which has widely 
applied in numerous safety–critical domains (Ivanov et  al. 2018; De Melo and Sanchez 
2008; Fiondella et al. 2013; Özdamar and Alanya 2001; Zachariah 2015). The emphasis 
of modern software development has changed significantly over the years. As identified 
by Bosch and Bosch-Sijtsema (2010), the latest trends in software industry accelerate the 
complexity and dependency of software development. The first trend is software product 
lines build-up. Bosch and Bosch-Sijtsema (2010) defined software product lines consist 
of platforms which can be used by many products in the organization. Each development 
team will select and configure components from the platforms in order to build a reliable 
and consistent product based on the individual functionality. The adoption of software pro-
duction lines can be helpful on cost and time management, but it also brings extra depend-
ency into the product and organization, which could cause the added complexity (Bosch 
and Bosch-Sijtsema 2010; Clements and Northrop 2002). The second trend is software 
global development within several organizations across different countries. Many software 
companies have placed several sites globally or partnered with remoted companies, mostly 
located in India and China (Garcia-Crespo et al. 2010; Garg et al. 2014; Carmel and Agar-
wal 2001; Herbsleb and Moitra 2001; Sangwan et al. 2006). Software global development 
has its overwhelming advantages but also faces many challenges such as culture differ-
ences, time zone and maturity of software engineering, all of which contribute to the eleva-
tion of the complexity of dependent management to a new level (Bosch and Bosch-Sijt-
sema 2010; Cascio and Shurygailo 2003). The third trend is the establishment of software 
ecosystems. In recent years, software development has transformed from a solo activity 
within the organization to a highly collaborative ecosystems, which can be placed globally 
(Storey et al. 2017). Such ecosystems allow the development of new functionality occurs 
outside of the organization, however blur projects/tasks boundaries (Singer et  al. 2013; 
Harman et al. 2012; Ghazawneh and Henfridsson 2013; Basole and Karla 2011). Hence, 
software ecosystems also contribute to elevate the dependency level between products and 
organizations (Bosch and Bosch-Sijtsema 2010).

Since software systems are included in most areas of human activities so that software 
quality assurance and software reliability prediction are very critical in various industries 
(Condori-Fernandez and Lago 2018; El-Sebakhy 2009). However, delivering high-quality 
and reliable software products is not easy (Ponnurangam and Uma 2005; Zhu and Pham 
2018a, b). Despite of being widely studied and of interested to global market, software 
quality is still a complex and costly task for researchers and practitioners. One of the fun-
damental software quality characteristics is reliability. Software reliability described in Lyu 
(2007) as “the probability of failure-free software operation for a specified period of time 
in a specified environment”.

To estimate the remaining software faults in software program, predict software reli-
ability and software failure rate given the time of interest, and plan release time, a great 
number of nonhomogeneous Poisson process (NHPP) software reliability growth mod-
els (SRGMs) were developed. However, most of SRGMs have not addressed the random 
effect of application environments. Only a few studies have incorporated the random 
effect of environments or fault reduction factor in SRGMs. For instance, Teng and Pham 
(2006) assumed that the random effects were represented by a unit-free environment 
factor. A generalized SRGM with the unit-free environment factor was developed to rep-
resent both software testing and operation phase. This unit-free environment factor was 
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modelled as a beta or gamma distribution in order to propose two specific SRGMs. Fault 
reduction factor (FRF) is the number of the removed faults corresponding to the failures 
(Musa 1980), which could be affected by other factors, e.g., imperfect debugging, delay 
debugging, etc. Hsu et  al. (2011) considered the FRF as a time-variable function and 
further incorporated it in the SRGM to improve the accuracy of failure prediction. Pham 
(2014) incorporated the uncertainty of the operation environment into a software Vtub-
shaped fault detection rate model. Specifically, software fault detection rate follows a 
Vtub-shape function and the uncertainty of the operation environments is represented 
by a random variable, modeled by gamma distribution. Chang et al. (2014) incorporated 
the idea of uncertainty of operating environments into the testing-coverage SRGM. 
Minamino et al. (2017) proposed a two-dimensional SRGM based on a CES type time 
function, which is a generalized form of Cobb–Douglas function with testing-time and 
testing-effort factor. Inoue et al. (2016) proposed a bivariate SRGM with the uncertainty 
of the change of software failure-occurrence phenomenon at the change-point. Zhu and 
Pham (2018c) incorporated a single factor and the impact of this factor in the SRGM. 
Recently, Qiu et al. (2019) proposed the stress testing method with influencing factors 
that cause systems work under certain stress and explored the mathematical relationship 
between mean time to failure and influencing factors.

The motivations of this paper are described as follows. First, even some studies 
incorporated the uncertainty of environments or a single factor in the model develop-
ment, however they cannot represent a generalized SRGM with random application 
environments. Given the great changes in software development, such complicated and 
human-centered software development process needs to be addressed more appropri-
ately. Second, environmental factors (EFs), such as amount of programming effort, pro-
grammer organization, human nature, testing environment, program complexity, design 
methodology, were firstly defined by Zhang and Pham (2000) from the perspectives of 
software complexity, human nature, team collaboration and the interaction with hard-
ware systems. Recent survey investigations (Zhu et al. 2015; Teng and Pham 2017) have 
also revealed the significant impacts of EFs on software reliability and provided the lat-
est rank of the importance level of EFs in software development. Thus, how to incorpo-
rate multiple EFs and the associated randomness induced by these EFs into the develop-
ment of SRGM is essential yet challenging.

Therefore, we aim to propose a generalized SRGM incorporating multiple EFs and 
the associated randomness induced by these EFs under the martingale framework, in 
which researchers and practitioners are able to obtain a specific SRGM according to 
the individual application environments. Martingale framework, specifically, Brownian 
motion, is introduced to reflect the associated randomness. We consider the associated 
randomness is reflected on the process of software fault detection. Section 2 discusses 
the importance of EFs and introduces two specific EFs from recent studies (Zhu et al. 
2015; Teng and Pham 2017), percentage of reused modules (PoRM) and frequency of 
program specification change (FoPSC). Section 3 first introduces the martingale frame-
work and reviews the related work. Next, we propose a generalized framework of mul-
tiple-environmental-factors NHPP (MEF-NHPP) SRGM and further develop a specific 
MEF-NHPP SRGM incorporating two specific EFs, PoRM and FoPSC. Sections 4 first 
discusses parameter estimation and comparison criteria and then illustrates two numeri-
cal examples with the real-world Open Source Software (OSS) project data sets to dem-
onstrate the prediction powder of the proposed generalized framework of MEF-NHPP 
SRGM. Section 5 draws the conclusion and describes the future research directions.
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2 � Environmental factors

Thirty-two EFs were first identified by Zhang and Pham (2000) from four phases of soft-
ware development and the interactions with hardware subsystems. For example, one of 
the EFs, named program complexity, is defined to measure the program size in terms of 
the kiloline of code. Other EFs, such as requirements analysis is used to verify the under-
standing of the requirements generating from customers. Testing environment is the spe-
cific environment set up in testing phase in order to simulate the operational environment 
and detect software faults. Testing effort can be identified by testing expenditures, testing 
causes or the years of working. The definitions and detailed discussion of all EFs can be 
found in references (Zhang and Pham 2000; Zhu and Pham 2017).

Fifteen years later, Zhu et al. (2015) reinvestigated the impact of these EFs on software 
reliability and aimed to provide the latest ranking of the EFs, the correlation between fac-
tors, reduce the dimension of the EFs and compare the findings with the previous studies 
(Zhang and Pham 2000; Zhang et al. 2001). Most EFs on the top ten group in the previous 
studies (Zhang and Pham 2000; Zhang et al. 2001) still list on the top ten group in the latest 
investigation (Zhu et al. 2015). The latest top ten EFs in developing single-release software 
are FoPSC, testing effort, relationship of detailed design to requirement, testing environ-
ment, testing coverage, program complexity, programmer skill, PoRM, testing methodolo-
gies and domain knowledge. Later, Zhu and Pham (2017) launched another survey study to 
examine the impact of the EFs on software reliability in developing multiple-releases soft-
ware. The top ten EFs in developing multiple-releases software are PoRM, amount of pro-
gramming effort, requirement analysis, FoPSC, level of programming technologies, testing 
effort, relationship of detailed design to requirement, testing coverage, program workload 
and program complexity.

As demonstrated from the previous studies (Zhang and Pham 2000; Zhu et  al. 2015; 
Zhu and Pham 2017; Zhang et al. 2001), EFs have significant impacts on reliability in soft-
ware development; hence, it is plausible to incorporate multiple EFs in software reliably 
model to improve software reliability prediction accuracy. In order to illustrate the effec-
tiveness of the proposed generalized framework of MEF-NHPP SRGM in considerations 
of the ranking and significance levels of EFs and practical applications, we thus develop 
a specific MEF-NHPP SRGM in Sect. 3 with two specific EFs, PoRM and FoPSC. In the 
following Sects. 2.1 and 2.2, we express the reasons of selecting these two EFs and their 
corresponding distributions based on the collected data.

2.1 � PoRM

PoRM (Zhu and Pham 2018c; Zhang and Pham 2000) is defined as follows

where S0 represents the kiloline of code in the existing modules. SN denotes the kiloline of 
code in the new modules (Zhu and Pham 2018c).

The PoRM data was collected from various industries such as manufacturing, high 
technology, online retailing, IT service and research institution (Zhu and Pham 2018c). 
The participants had different positions including managers, testing engineers, pro-
grammers and other roles contributed to software development. To provide valid and 
reliable responses, survey participants were working on software development-related 

(1)PoRM =
S0

SN + S0
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area or IT department during the data collection period. The collected PoRM (Zhu and 
Pham 2018c) is shown in Fig. 1. As the research results obtained in reference (Zhu and 
Pham 2018c), Gamma distribution is employed to model PoRM with parameters �1 and 
�1, expressed as PoRM ∼ Gamma(6.487, 14.726).

2.2 � FoPSC

Lehman (1980) summarized the Program Evolution Laws. The first law of Program 
Evolution is continuing change, which expresses that large program is never completed 
and will continue evolving. Changes of specifications occur since the initial develop-
ment until product delivery, which increases the risk of adding extra software cost 
but could add more values and improve software reliability (McGee and Greer 2010). 
Changes of specifications, studied by Harker et  al. (1993), mostly due to the reasons 
such as fluctuations within the organization or market, consequence of system-usage, 
customer migratory issues, the increased understanding of requirements and adaption 
issues. Later, many studies have also discussed the importance of the changes of speci-
fications from the perspectives such as product strategy, hardware/software environ-
ment/interaction, testability and functionality enhancement (Nurmuliani et  al. 2004a, 
b; Carlshamre 2002; Shi et al. 2013).

Meanwhile, FoPSC is one of the significant EFs on the top ten list affecting soft-
ware reliability in both survey investigations (Zhu et  al. 2015; Zhu and Pham 2017). 
We define FoPSC as the total times of all the specifications have been changed in all 
the historical versions in software development. In this study, we will use the percent-
age of all the changes in a project to estimate the parameters. We employ the data sets 
provided in references (Shi et al. 2013; Loconsole and Borstler 2005) to estimate the 
distribution of FoPSC. The collected FoPSC data is illustrated in Fig. 2.

Considering the definition of FoPSC, gamma distribution or beta distribution is 
appropriate for modeling FoPSC. We compare the log-likelihood value of gamma dis-
tribution and beta distribution for the collected data. It concludes that beta distribution 
is a better fit for FoPSC. Parameter estimation of the beta distribution is also obtained 
from the collected data, stated as follows: FoPSC ∼ Beta(1.411, 7.409).

Fig. 1   The collected PoRM data
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3 � A generalized MEF‑NHPP SRGM

3.1 � Some related work

The underlying assumptions of NHPP SRGM are the detection of software fault is a 
NHPP and the software failure intensity is proportional to the software fault detection 
rate and the remaining fault in the program. Most NHPP SRGMs are proposed in terms 
of the equation given as follows (Zhu and Pham 2018a, b, c; Teng and Pham 2006; 
Musa 1980; Hsu et al. 2011; Pham 2014; Goel and Okumoto 1979; Pham 2007).

where m(t) is the expected number of software failures detected by time t , N(t) represents 
the fault content function, h(t) is the software fault detection rate per unit of time. Depend-
ing on the model consideration, N(t) and b(t) are modeled as a constant or a time-depend-
ent function, respectively. For example, Goel-Okumoto model (Goel and Okumoto 1979) 
assumed that h(t) = b and N(t) = a. Inflection S-shaped model (Pham 2007) assumed that 
h(t) =

b

1+�e−bt
 and N(t) = a. PNZ model (Pham 2007) assumed that h(t) = b

1+�e−bt
 and 

N(t) = a(1 + �t).
In order to identify the random development/application environments or the impact 

of the EF on software reliability, a stochastic software fault detection is adopted with 
applying h(t) to be h(t, �) , where � represents the random environment effect or the EF. 
Equation (2) will be reformulated as follows

As an illustration, Pham (2014) considered h(t, �) = h(t)� , named dynamic multipli-
cative noise model, and N(t) = N in the model, in which � is a random variable. Pham 
and Pham (2019) considered h(t,w) = h(t) + Ṁ(t,w) as a dynamic additive noise model 
in the software reliability model. Ṁ(t,w) denotes the derivative of M as regards time t  . 
M(t) is defined as a martingale as regards the filtration ( Ft, t ≥ 0).

(2)
d

dt
m(t) = h(t)[N(t) − m(t)]

(3)
d

dt
m(t, �) = h(t, �)[N(t) − m(t, �)]

Fig. 2   The collected FoPSC data
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Later, inspired by references (Pham 2014; Pham and Pham 2019), Zhu and Pham 
(2018c) considered the dynamic multiplicative model as well as the additive noise model 
in the SRGM, which is described as h(t, 𝜂) = h(t) + 𝜆0G(t, 𝜂) + Ḃ(t) . A software reliability 
model considering a single EF and its impact was developed by Zhu and Pham (2018c), 
given as follows

where � represents the EF, PoRM. G(t, �) is a time-dependent function. �0 is the coefficient 
associated with the G(t, �) . Standard Gaussian white noise is represented by Ḃ(t) , in which

where B(t) denotes Brownian motion.
Brownian motion is a martingale as well (Mikosch 1998; Mörters and Peres 2010). 

Mikosch (1998) indicated that { B(t) ∶ t ≥ 0 } and { B2(t) − t ∶ t ≥ 0 } both are martin-
gale in regard to the nature filtration ( Ft, t ≥ 0 ) given { B(t) ∶ t ≥ 0 } denotes as Brownian 
motion. One of the martingale properties can be applied to Eq. (4) is

Meanwhile, Ḃ(t) is a standard Gaussian process with the covariance structure shown as 
follows

where � is the Dirac Delta measure. Thus, the general solution of Eq. (4) obtained by refer-
ence (Zhu and Pham 2018c) is given as follows

However, reference (Zhu and Pham 2018c) only considered a single EF in the software 
reliably model, while many other EFs also have the significant impacts on software reli-
ability in software development (Zhu et al. 2015; Zhu and Pham 2017). Thus, we propose a 
theoretic framework of MEF-NHPP SRGM incorporating multiple EFs and the associated 
randomness in the following section.

3.2 � A generalized MEF‑NHPP SRGM

Considering the significant impacts of EFs on software reliability in software development 
in recent survey investigations (Zhu et al. 2015; Zhu and Pham 2017) and the great changes 
in the complicated and human-centered software development process, we develop a gen-
eralized MEF-NHPP SRGM incorporating multiple EFs and the associated randomness 
induced by these EFs under the martingale framework.

The assumptions of the proposed MEF-NHPP SRGM are described below.

(4)
d

dt
m(t, 𝜂) =

[
h(t) + 𝜆0G(t, 𝜂) + Ḃ(t)

]
[N(t) − m(t, 𝜂)]

(5)
d

dt
B(t) = Ḃ(t)

(6)E

[
t

∫
v

h(s,w)ds

]
=

t

∫
v

h(s)ds

(7)E
[
Ḃ(t)Ḃ(u)

]
= 𝛿(u − t), 0 < t < u

(8)m(t, 𝜂) = N(t) − N(0)e
−

t

∫
0
[h(s)+𝜆0G(s,𝜂)+Ḃ(s)]ds

−
t

∫
0

e
−

t

∫
u
[h(s)+𝜆0G(s,𝜂)+Ḃ(s)]ds

N�(u)du
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(1)	 Software fault detection is a NHPP.
(2)	 Software failure intensity is proportional to the remaining faults in the program.
(3)	 The manifestation of software failures is due to the remaining faults in the program.
(4)	 Software faults are independent.
(5)	 Multiple EFs are considered in the proposed model. All EFs are independent. We do 

not consider correlation between EFs in this study.
(6)	 The randomness induced by the impact of EFs, is imposed on software fault detection 

rate and modeled by martingale process; specifically, Brownian motion.

Hence, a theoretic MEF-NHPP software reliability model is proposed as follows

where m

⎛⎜⎜⎜⎝
0, �1, �2,… , �n
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

⎞⎟⎟⎟⎠
= 0. �1, �2,… , �n

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
 represents the n-dimensional vector. �i is a ran-

dom variable and represents EFi, i = 1, 2,… , n. m

⎛⎜⎜⎜⎝
t, �1, �2,… , �n
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

⎞⎟⎟⎟⎠
 represents the expected 

number of software failures detected by time t considering multiple EFs. h(t) represents 
software fault detection rate per unit of time without the impact of EFs. Gi

(
t, �i

)
 is a time-

dependent function, which also denotes the effect brought by EFi, i = 1, 2,… , n , on soft-
ware fault detection rate per unit of time. �i denotes the coefficient associated with Gi

(
t, �i

)
 . 

N(t) is the fault content function. Ḃ(t) is a standard Gaussian white noise, as presented in 
Eq. (5).

With the applications of the martingale property and the general solution from references 
(Zhu and Pham 2018c; Pham and Pham 2019), the mean value function of the proposed MEF-
NHPP SRGM is obtained

By applying Eqs. (6) and (7) on h(t) +
n∑
i=1

𝜆iGi

⎛⎜⎜⎜⎝
t, 𝜂1, 𝜂2,… , 𝜂n
�����������

⎞
⎟⎟⎟⎠
+ Ḃ(t) , we can obtain the 

following equation

(9)
d

dt
m

⎛⎜⎜⎜⎝
t, 𝜂1, 𝜂2,… , 𝜂n
�����������

⎞⎟⎟⎟⎠
=

�
h(t) +

n�
i=1

𝜆iGi

�
t, 𝜂i

�
+ Ḃ(t)

�⎡⎢⎢⎢⎣
N(t) − m

⎛⎜⎜⎜⎝
t, 𝜂1, 𝜂2,… , 𝜂n
�����������

⎞⎟⎟⎟⎠

⎤⎥⎥⎥⎦

(10)

m

⎛
⎜⎜⎜⎝
t, 𝜂1, 𝜂2,… , 𝜂

n

�����������

⎞
⎟⎟⎟⎠
= N(t) − N(0)e

−
t

∫
0

⎛
⎜⎜⎜⎜⎝
h(s)+

n∑
i=1

𝜆iGi

⎛
⎜⎜⎜⎜⎝
s,𝜂1, 𝜂2,… , 𝜂

n

�����������

⎞
⎟⎟⎟⎟⎠
+Ḃ(s)

⎞
⎟⎟⎟⎟⎠
ds

−
t

∫
0

e

−
t

∫
u

⎛
⎜⎜⎜⎜⎝
h(s)+

n∑
i=1

𝜆iGi

⎛
⎜⎜⎜⎜⎝
s,𝜂1, 𝜂2,… , 𝜂

n

�����������

⎞
⎟⎟⎟⎟⎠
+Ḃ(s)

⎞
⎟⎟⎟⎟⎠
ds

N
�(u)du

(11)

t

∫
0

⎡⎢⎢⎢⎣
h(s) +

n�
i=1

𝜆iGi

⎛⎜⎜⎜⎝
s, 𝜂1, 𝜂2,… , 𝜂n
�����������

⎞⎟⎟⎟⎠
+ Ḃ(s)

⎤⎥⎥⎥⎦
ds =

t

∫
0

⎡⎢⎢⎢⎣
h(s) +

n�
i=1

𝜆iGi

⎛⎜⎜⎜⎝
s, 𝜂1, 𝜂2,… , 𝜂n
�����������

⎞⎟⎟⎟⎠

⎤⎥⎥⎥⎦
ds + B(t)
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By substituting Eq. (11) to Eq. (10), the mean value function is thus obtained

Let

where vi(t) is a time-dependent function, which also represents the effect of time on EFi , 
i = 1,… , n.

As discussed in the model assumptions, all EFs are independent in this study. Each EF 
will be represented by a random variable. To present an explicit solution of Eq. (12), we 
apply the expectation on both sides of Eq. (12) with respect to �1,�2,… , and �n . Hence, the 
mean value function of the proposed MEF-NHPP SRGM can be expressed as

Equation (14) is the generalized mean value function in consideration of multiple EFs 
and the associated randomness. If the distribution of each EF is known, by applying the 
Laplace transform of each probability density function, we have high possibility to obtain a 
closed-form expression of Eq. (14).

3.3 � A specific MEF‑NHPP SRGM

As discussed above, to demonstrate the performance of the proposed MEF-NHPP SRGM, 
we apply two specific EFs, PoRM and FoPSC, into the proposed model. The mean value 
function of the specific MEF-NHPP SRGM is thus obtained as follows

where �1 denotes PoRM, �2 denotes FoPSC. �1 and �2 are the coefficients associated with 
the function G1

(
t, �1

)
 and G2

(
t, �2

)
 , respectively. v1(t) and v2(t) represent the time-depend-

ent function and reflect the effect of time on PoRM and FoPSC, respectively.
Gamma distribution, with parameters �1 and �1 , is applied to model PoRM . The prob-

ability density function (PDF) of PoRM is given as follows

(12)

m̄

⎛⎜⎜⎜⎝
t, 𝜂1, 𝜂2,… , 𝜂n
�����������

⎞⎟⎟⎟⎠
= N(t) − N(0)e

−
t

∫
0

h(s)ds
e

t

2 e
−

t

∫
0

n∑
i=1

𝜆iGi(s,𝜂i)ds
−

t

∫
0

e
−

t

∫
u
h(s)ds

e
t−u

2 e
−

t

∫
u

n∑
i=1

𝜆iGi(s,𝜂i)ds
N�(u)du

(13)Gi

(
t, �i

)
= �ivi(t)

(14)

m̄𝜂1, 𝜂2,… , 𝜂
n

�����������

(t) = N(t) − N(0)e
−

t

∫
0

h(s)ds

e
t

2

[
n∏
i=1

∞

∫
0

e
−

t

∫
0
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Beta distribution, with parameters �1 and �2 , is applied to model FoPSC. The PDF of 
FoPSC is given as follows

The Laplace transform is given as follows

By applying Eq. (18), the Laplace transform of Eq. (16) is given as follows

By applying Eq. (18), the Laplace transform of Eq. (17) is given as follows (Teng and 
Pham 2006)

where HG
([
�2
]
, [�1 + �2

]
, s) is the generic hypergeometric function such as

Therefore, the Laplace transform of beta distribution can be further written as

wherePoisson(j, s) =
sje−s

j!
.

Substituting Eqs.  (19) and (22) into Eq.  (15), the mean value function of the specific 
MEF-NHPP SRGM is thus obtained as follows

(16)f
(
�1
)
=

�
�1
1
�
�1−1

1
e−�1�1

�
(
�1
)

(17)f
(
�2
)
=

�
(
�1 + �2

)
�
�1−1

2
(1 − �2)

�2−1

�
(
�1
)
� (�2)

(18)
∞

∫
0

xe−sxf (x)dx = −
dF∗(s)

ds

(19)F∗

�1
(s) =

[
�1

�1 + s

]�1

(20)F∗

�2
(s) = e−s × HG

([
�2
]
, [�1 + �2

]
, s)

(21)HG
��
a1, a2,… , am

�
, [b1, b2,… , bn

�
, s) =

∞�
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⎡⎢⎢⎢⎣

sj
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where Poisson
(
j,

t

∫
0

�2v2(s)ds

)
=

(
∫ t

0
�2v2(s)ds

) j

e
− ∫ t

0
�2v2 (s)ds

j!
.

Different formulations of h(t), vi(t) and N(t) considering different testing scenarios 
assumptions can be substituted into Eq. (23) to obtain the final solution. As an example, 
let h(t) = b

1+ce−bt
, v1(t) = e−a1t, v2(t) = e−a2t and N(t) = 1

k
ekt, where b, c, a1, a2, and k are the 

coefficient of h(t), v1(t), v2(t), and N(t), respectively. Substituting h(t), v1(t), v2(t) and N(t) 
into Eq. (23), the mean value function of the proposed specific MEF-NHPP SRGM with 
the selected functions is obtained as follows

where Poisson
(
j,

�2

a2
(1 − e−a2t)

)
=

[
�2

a2
(1 − e−a2t)

] j

e
−
�2
a2
(1−e−a2 t)

j!
.

4 � Applications

Recently, the increasing adoption of OSS by individuals, software companies and govern-
ment-supported organizations has promoted the wide application of OSS in our modern 
society. We employ two Apache1 OSS project data sets, named Whirr and Juddi, to eluci-
date the effectiveness and performance of the proposed generalized MEF-NHPP SRGM. 
As an illustration, we compare the performance of failure prediction of the specific MEF-
NHPP SRGM with other SRGMs given in Table 1. Note that only the single-environmen-
tal-factor (SEF) model (Zhu and Pham 2018c) considers EF.

(23)
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1  https​://www.apach​e.org

https://www.apache.org
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4.1 � Parameter estimation and comparison criteria

Least squares estimation (LSE) and maximum likelihood estimation are commonly applied to 
estimate the unknown parameters. LSE finds the optimal parameter values by minimizing S , 
described as follows

where yi is the observed number of software failures at time ti, i = 1, 2,… , n. m
(
ti
)
 is the 

expected number of software failures at time ti, i = 1, 2,… , n . LSE is employed to estimate 
the unknown parameters in this study. We consider the parameters for PoRM and FoPSC 
are estimated from the real data, as seen in Sect. 2; hence, we will only need to estimate 
other seven unknown parameters seen in Eq. (24), which are k , b , c, �1, �2, a1, and a2. The 
genetic algorithm is applied to solve the Eq. (25) and estimate the unknown parameters.

Four comparison criteria (Pham 2007; Huang and Kuo 2002; Li et al. 2012), mean squared 
error (MSE), predictive-ratio risk (PRR), predictive power (PP) and Variation, are employed 
to evaluate the model performance, listed as follows.

(25)S =

n∑
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[
m
(
ti
)
− yi

]2

(26)MSE =

∑n
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�
m
�
ti
�
− yi

�2
n − N
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m
(
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m
(
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)

]2

(28)PP =

n∑
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[
m
(
ti
)
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yi

]2

Table 1   NHPP SRGMs

NHPP SRGM Mean value function

Goel-Okumoto model (Goel and Okumoto 1979) m(t) = a
(
1 − e−bt

)
Inflection S-shaped model (Pham 2007)

m(t) =
a(1−e−bt)
1+�e−bt

Delayed S-shaped model (Pham 2007) m(t) = a
[
1 − (1 + bt)e−bt

]
Yamada imperfect debugging model (Pham 

2007)
m(t) = a

(
1 − e−bt

)(
1 −

�

b

)
+ �at

PNZ model (Pham 2007)
m(t) =

a

[
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(
1−

�

b

)
+�t

]

1+�e−bt

IFD model (Pham 2007) m(t) = a − ae−bt
[
1 + (b + d)t + bdt2

]
SEF model (Zhu and Pham 2018c)
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where Bias = 1

n

∑n

i=1

�
m
�
ti
�
− yi

�
. n denotes the total number of observations. N denotes 

the number of unknown parameters in each model. MSE evaluates the distance of the fail-
ure prediction to the observed data. PRR evaluates the distance of the predicted failures to 
the observed failures against the predicted failures; while PP evaluates the distance of the 
predicted failures to the observed failures against the observed failures.

We understand the evaluated model tends to give better prediction as the number of 
unknown parameters increases. That is the reason we employ the above four criteria to com-
pare the models from different perspectives. For all the four comparison criteria, the evaluated 
model has better prediction power as the criteria become smaller.

4.2 � Numerical example I

In this first numerical example, Whirr OSS project data, collected from September 2010 to 
April 2013, is applied to demonstrate the model performance. Whirr is a group of libraries 
to run cloud service. Whirr OSS project data is denoted as data set I (DS-I) in this paper. 
Table 2 describes time unit ti , software failures between ti−1 and ti , denoted as yi − yi−1 , and 
cumulative software failures by ti , denoted as yi , as seen in Eqs. (25–29). For example, the 
observed software failures between time unit t1 and t2 is 6. The cumulative software failures 
by time unit t2 is 12. The observed software failures between time unit t2 and t3 is 6. The 
cumulative software failures by time unit t3 is 18. The observed software failures between 
time unit t31 and t32 is 3. The cumulative software failures by time unit t32 is 136.

The first 24 observations of DS-I,y1,… , y24 , are considered as training set to estimate 
the parameters of the selected SRGMs. The observations, y25,… , y32 , are thus considered 
as testing set. Table 3 presents the selected criteria comparison and the estimated param-
eters of SRGMs based on the training set by applying LSE. Comparing with other SRGMs 

(29)Variation =

√√√√ 1

n − 1

n∑
i=1

[
yi − m

(
ti
)
− Bias

]2

Table 2   DS-I

Time 
unit t

i

Failures 
between
t
i−1 and t

i

Cumu-
lative 
failures 
by t

i

Time 
unit t

i

Failures 
between 
t
i−1 and t

i

Cumu-
lative 
failures 
by t

i

Time 
unit t

i

Failures 
between
t
i−1 and t

i

Cumulative 
failures 
by t

i

1 6 6 12 4 66 23 6 102
2 6 12 13 0 66 24 22 124
3 6 18 14 4 70 25 3 127
4 8 26 15 5 75 26 1 128
5 13 39 16 5 80 27 1 129
6 6 45 17 2 82 28 0 129
7 8 53 18 10 92 29 0 129
8 2 55 19 1 93 30 0 129
9 3 58 20 1 94 31 4 133
10 3 61 21 2 96 32 3 136
11 1 62 22 0 96  - -  - 
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without considering EF (Pham 2007) and considering a single EF, SEF model (Zhu and 
Pham 2018c), the proposed MEF-NHPP SRGM has the smallest values of all four criteria, 

Table 3   Parameter estimates and model comparisons of DS-I

NHPP model Parameter estimates MSE PRR PP Variation

Goel-Okumoto model (Goel and Okumoto 
1979)

â = 201.250

b̂ = 0.033

36.561 0.315 0.228 6.076

Inflection S-shaped model (Pham 2007) â = 150.030

b̂ = 0.096

𝛽 = 1.830

68.326 0.789 0.483 7.992

Delayed S-shaped model (Pham 2007) â = 131.400

b̂ = 0.144

110.047 20.902 2.123 10.544

Yamada imperfect debugging model (Pham 
2007)

â = 185.180

b̂ = 0.033

𝛼̂ = 0.010

60.193 0.401 0.300 74.941

PNZ model (Pham 2007) â = 161.010

b̂ = 0.069

𝛼̂ = 0.001

𝛽 = 0.930

54.515 0.523 0.333 6.795

IFD model (Pham 2007) â = 143.045

b̂ = 0.129

d̂ = 0.001

143.253 40.461 2.665 11.076

SEF model (Zhu and Pham 2018c) k̂ = 0.014

b̂ = 0.589

ĉ = 0.039

â = 75.000

�̂0 = 2.001

35.173 0.254 0.311 5.390

Proposed MEF-NHPP SRGM k̂ = 0.013

b̂ = 0.574

ĉ = 0.0004

â1 = 231.432

�̂1 = 1.920

â2 = 161.203

�̂2 = 3.291

35.065 0.021 0.016 5.091

Fig. 3   DS-I comparison of actual failures with failure prediction by SEF model
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as seen in Table 3. As an illustration of model comparison, we only present Figs. 3 and 4 in 
this section. Figure 3 illustrates the comparison of the actual failures with failure prediction 
by SEF model. Figure 4 illustrates the comparison the predicted software failures based on 
the proposed MEF-NHPP SRGM and the actual failures.

Based on the research outcomes obtained in references (Teng and Pham 2006; Musa 
1980; Hsu et al. 2011; Pham 2014; Zhu and Pham 2018c), software reliability model with 
considering the random environments has better performance in terms of failure prediction 
and reliability estimation. Hence, we only present the criteria comparison of SEF model 
and the proposed MEF-NHPP SRGM for the testing set. The values of MSE, PRR, PP and 
Variation of SEF model for the testing set are 273.750, 0.176, 0.131 and 34.903, respec-
tively. The values of MSE, PRR, PP and Variation of the proposed MEF-NHPP SRGM 
for the testing set are 161.750, 0.099, 0.078 and 26.445, respectively. The proposed MEF-
NHPP SRGM has smaller values of all four criteria for the testing set, as compared with 
SEF model. We thus conclude that the proposed MEF-NHPP SRGM has the best fitting 
performance.

The given dataset, as seen in Table 2, describes software failures from time unit t1 to 
t32 . One of the great advantages of SRGMs is to estimate software failures based on the 
time of interest and determine the optimal release time of the software product. Software 

Fig. 4   DS-I comparison of actual failures with failure prediction by the proposed MEF-NHPP SRGM

Fig. 5   DS-I software failure prediction between time unit t
i
 to t

i+1, i = 32, 33,… , 41
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practitioners and researchers are also interested in the software failure prediction after time 
unit t32. Thus, we estimate the software failures after time unit t32 based on the proposed 
MEF-NHPP SRGM. Figure 5 shows the predicted software failures between time unit ti to 
ti+1, i = 32, 33,… , 41, which provides a practical reference for software development team 
to decide the time to stop testing and how much testing resource will be allocated to the 
project.

4.3 � Numerical example II

The second numerical example applies Apache Juddi OSS project data, collected from 
February 2009 to February 2014. Juddi OSS project data is denoted as data set II (DS-II) 
in this paper. Table 4 describes time unit ti , software failures between ti−1 and ti , denoted 
as yi − yi−1 , and cumulative software failures by ti , denoted as yi , as seen in Eqs. (25–29). 
For example, the observed software failures between time unit t1 and t2 is 2. The observed 
software failures between time t2 and t3 is 8. The cumulative software failures by time unit 
t2 is 9. The observed software failures between time unit t32 and t33 is 0. The cumulative 
software failures by time unit t33 is 185.

The first 28 observations of DS-II,y1,… , y28 , are considered as training set to estimate 
the parameters of the selected SRGMs in the second numerical example. The observa-
tions, y29,… , y33 , are thus considered as testing set. Based on LSE method, we estimate the 
unknown parameters of the selected SRGMs by the training set. Accordingly, the model 
comparisons between the proposed MEF-NHPP SRGM and other SRGMs based on the 
selected criteria can be obtained. As listed in Table 5, the proposed MEF-NHPP SRGM has 
the smallest values of the selected criteria, such as MSE, PP and Variation, compared with 
other SRGMs. In term of the comparison criterion PRR, PNZ model carries the smallest 
PRR value, however PNZ model also has much larger MSE value compared with the pro-
posed MEF-NHPP SRGM. PRR is the criterion that evaluates the distance of the predicted 
failures to the observed failures against the predicted failures; in other words, it assigns 

Table 4   DS-II

Time 
unit t

i

Failures 
between
t
i−1 and t

i

Cumu-
lative 
failures 
by t

i

Time 
unit t

i

Failures 
between
t
i−1 and t

i

Cumu-
lative 
failures 
by t

i

Time 
unit t

i

Failures 
between
t
i−1 and t

i

Cumulative 
failures by t

i

1 7 7 12 22 88 23 11 140
2 2 9 13 11 99 24 4 144
3 8 17 14 8 107 25 0 144
4 9 26 15 2 109 26 5 149
5 2 28 16 7 116 27 0 149
6 5 33 17 3 119 28 9 158
7 5 38 18 4 123 29 13 171
8 7 45 19 1 124 30 1 172
9 10 55 20 0 124 31 1 173
10 9 64 21 0 124 32 12 185
11 2 66 22 5 129 33 0 185
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larger penalty to the model which underestimates the failures. MSE is generally considered 
as the priority criterion since it penalizes larger prediction errors more than others. Hence, 

Table 5   Parameter estimates and model comparisons of DS-II

NHPP model Parameter
estimates

MSE PRR PP Variation

Goel-Okumoto model (Goel and Okumoto 1979) â = 181.250

b̂ = 0.056

136.477 1.285 3.462 11.892

Inflection S-shaped model (Pham 2007) â = 179.230

b̂ = 0.193

𝛽 = 13.159

176.235 5.292 1.513 12.794

Delayed S-shaped model (Pham 2007) â = 200.090

b̂ = 0.112

67.922 27.778 1.536 8.221

Yamada imperfect debugging model (Pham 2007) â = 230.250

b̂ = 0.034

𝛼̂ = 0.008

69.510 0.625 1.180 103.480

PNZ model (Pham 2007) â = 300.130

b̂ = 0.048

𝛼̂ = 0.001

𝛽 = 1.321

90.902 0.372 0.418 8.809

IFD model (Pham 2007) â = 189.960

b̂ = 0.134

d̂ = 0.010

74.124 528.248 2.576 8.240

SEF model (Zhu and Pham 2018c) k̂ = 0.009

b̂ = 0.626

ĉ = 1.078

â = 51.725

�̂0 = 25.346

63.989 4.895 1.224 7.576

Proposed MEF-NHPP SRGM k̂ = 0.008

b̂ = 0.597

ĉ = 0.900

â1 = 100.000

�̂1 = 40.148

â2 = 113.644

�̂2 = 29.289

44.780 0.990 0.327 5.421

Fig. 6   DS-II comparison of actual failures with failure prediction by SEF model
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the proposed model is concluded to be the best fit since it has the lowest value of MSE, 
PP and Variation for the training set, compared with other SRGMs incorporating a single 
EF (Zhu and Pham 2018c) and without considering EF (Pham 2007). As an illustration, 
Fig. 6 displays the comparison between the failures predicted by SEF model and the actual 
failures. Figure 7 displays the comparison between the failures predicted by the proposed 
generalized MEF-NHPP SRGM and the actual failures.

Moreover, the criteria comparison of SEF model and the proposed MEF-NHPP SRGM 
for the testing set are described as follows. The values of criteria such as MSE, PRR, 
PP and Variation of SEF model for the testing set are 736.800, 0.162, 0.115 and 50.793, 
respectively. The values of criteria such as MSE, PRR, PP and Variation of the proposed 
MEF-NHPP SRGM for the testing set are 289.800, 0.056, 0.045 and 37.357, respectively. 
The proposed MEF-NHPP SRGM has smaller values of all four criteria for the testing set. 
Therefore, the proposed MEF-NHPP SRGM is concluded as the best fit.

Software failure prediction can be calculated based on the proposed MEF-NHPP 
SRGM. Indeed, we provide software failure prediciton after time unit t33 for failure DS-II as 
well. Figure 8 shows software failure predition between time unit ti to ti+1, i = 33, 34,… , 42 
based on the proposed generalized MEF-NHPP SRGM. Software failure prediction can be 

Fig. 7   DS-II comparison of actual failures with failure prediction by the proposed MEF-NHPP SRGM

Fig. 8   DS-II software failure prediction between time unit t
i
 to t

i+1, i = 33, 34,… , 42
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a great help for testing resource allocation, software multiple releases planning and the 
determiantion of software optimal release time.

4.4 � Reliability prediction

Software reliability within (t, t + x) can be determined after the unknown parameters esti-
mated by LSE. Software reliability is calculated by the equation stated as follows

All other models have not considered EFs, except SEF model. Since OSS projects are 
significantly impacted by the EFs (Zhu and Pham 2017), indeed, we only compare the reli-
ability prediction predicted by SEF model and the proposed MEF-NHPP SRGM. Given 
time unit t = 32 and t = 33 for DS-I and DS-II and varying x from time unit 0 to 1.2 in 
Eq.  (30), Figs. 9 and 10 illustrate the comparison of the reliability prediction calculated 
by SEF model and the proposed MEF-NHPP SRGM for these two data sets, respectively. 
As seen from Figs. 9 and 10, the reliability value predicted by the proposed MEF-NHPP 
SRGM is less than SEF model for both data sets.

(30)R(x|t) = e−[m(t+x)−m(t)]

Fig. 9   Reliability prediction comparison of DS-I

Fig. 10   Reliability prediction comparison of DS-II
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5 � Conclusions and future research

Given the great changes in software development, such complicated and human-centered 
software development process needs to be addressed well. Meanwhile, recent survey inves-
tigations (Zhu et al. 2015; Zhu and Pham 2017) have revealed the significant impacts of 
EFs on software reliability and provided the latest rank of the importance level of EFs in 
software development. Hence, how to incorporate multiple EFs and the randomness caused 
by these EFs into the development of software reliability model is essential yet challenging.

We firstly develop a generalized MEF-NHPP SRGM with multiple EFs and the associ-
ated randomness. Each EF is modeled as a random variable. The randomness induced by 
the EFs is elucidated by the martingale framework. We then incorporate a stochastic soft-
ware fault detection process in the model due to the associated randomness. Software prac-
titioners and researchers are able to obtain a specific MEF-NHPP SRGM according to the 
individual application environments from the proposed generalized MEF-NHPP SRGM. In 
order to elucidate the effectiveness of the proposed MEF-NHPP SRGM, we select two EFs, 
PoRM and FoPSC, from recent studies (Zhu et al. 2015; Zhu and Pham 2017) to further 
develop a specific MEF-NHPP SRGM. Lastly, two OSS data sets are employed to dem-
onstrate the predictive power in terms of software failure and reliability of the proposed 
generalized MEF-NHPP SRGM.

Future research can be drawn from many directions. First, the dependencies between 
EFs and the impact of such dependencies on software reliability can be further investigated 
in the next step. Secondly, the impact of EFs is reflected on software fault detection process 
in this study. The investigation of such impact on the total fault content can be conducted.
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