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Abstract
The technique for order preference by similarity to ideal solution (TOPSIS) is a widely 
used ranking method which provides a composite index representing the relative proximity 
of each decision alternative to an ideal solution. The relative proximity index construc-
tion relays on the use of a single criterion aggregation approach. Its output, regardless the 
certainty or uncertainty nature of the problem’s data, is usually a real number. In TOPSIS 
classical approach alternatives are ordered based on these numbers. The closer the number 
to 1, the higher the position of the alternative in the ranking. However, although the rela-
tive proximity index can be highly sensible to the weighting scheme, as far as the authors 
of this work know, the relative proximity index has never been treated as a function. In this 
work, a new TOPSIS approach is proposed in which weights are not fixed in an exact way 
a priori. On the contrary, they are handled as decision variables in a set of optimization 
problems where the objective is to maximize the relative proximity of each alternative to 
the ideal solution. The only possible a priori information about the weights is that related 
to the existence of upper and lower bounds in their values. This information is incorporated 
into the optimization problems as constraints. The result is a new relative proximity index 
which is a function depending on the values of the weights. This feature of the proposed 
method could be useful in some decision situations in which the determination of subjec-
tive precise weights from decision makers could be problematic.

Keywords  Weighting schemes · TOPSIS · Un-weighted TOPSIS

1  Introduction

Multiple Criteria Decision Analysis (MCDA) methods are widely used to solve real and 
complex decision-making problems characterized by the existence of multiple conflict-
ing goals. Roy (1996) distinguishes four multiple criteria decision problematics: selection, 
sorting, ranking and description. Within each of these types of problematics, a large num-
ber of approaches exist which significantly differ in terms of complexity, type of data, kind 
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of aggregation procedure and determination of their weighting schemes (Watröbski et al. 
2019).

In this work, we will address the problem regarding the determination of weighting 
schemes reflecting the relative importance of the criteria in a widely used MCDA rank-
ing method, TOPSIS. A common classification of weighting methods is the one that dis-
tinguishes among objective and subjective methods. A significant number of works can 
be found in the literature dealing with objective weights’ determination in TOPSIS-based 
approaches (see Ouenniche et al. 2018). In this objective weighting schemes the relative 
importance of the criteria is mainly given by the nature of the data or by regulations or 
norms, for example, and not directly established by the decision maker based on expert 
knowledge or subjective preferences in most cases, difficult to be uphold, especially in 
those situations where public rankings are published.

The use of subjective weighting schemes is therefore, more controversial than the use 
of objective ones (see for example, Jacquet-Lagrèze and Siskos 1982; Watröbski et  al. 
2019). although is more common in the context of TOPSIS-based approaches. The subjec-
tive preference is usually assigned by the decision makers based on their own experiences, 
knowledge and perception of the problem. Barron and Barrett (1996), Hobbs (1980), 
Alemi-Ardakani (2016), Eshlaghy and Radfar (2006) and Németh et al. (2019) are some 
of the authors that have published reviews on subjective methods for the determination of 
weights in MCDA models.

The inherent difficulty of assigning reliable subjective weights is our main concern in 
this paper and has been well addressed by several authors (see Deng et al. 2000). Fisher 
(1995), Mareschal (1988) and Triantaphyllou and Sanchez (1997) use a sensitivity analysis 
approach to give decision makers’ flexibility in assigning criteria weights trying to show 
how they could affect final decisions. Ribeiro (1996) proposes an interactive method with 
which decision makers are able to select the desirable preference elicitation technique. Yeh 
et al. (1999) develop a weighting approach which takes into account the specific charac-
teristics of a decision situation in order to effectively assign weights and select the most 
suitable alternative. What the authors of this work wonder is, to what extent do the previ-
ous methods contribute to obtain a solution which cannot be obtained with a more general 
method not requiring the a priori establishment of subjective weights. A large number of 
ranking agencies, public and private, using multiple criteria to rank different alternatives, 
use subjective weights to express the different important of decision criteria. However, the 
obtained rankings are quite sensitive to changes in the weights of the criteria and therefore, 
subjective weighting schemes are subject to important criticisms.

In this work, a new approach will be proposed in which criteria weights are not fixed 
in an exact way a priori, overcoming in this way one of the main criticisms given to rank-
ings obtained using subjective weights. In our approach, weights will be handled as deci-
sion variables in a set of optimization problems where the objective is to maximize the 
relative proximity of a set of decision alternatives to an ideal solution. The only possible 
a priori information about the weights is that related to the existence of upper and lower 
bounds in their values. This information is incorporated into the optimization problems as 
constraints. The result is a function depending on the values of the weights which meas-
ures the distance to an ideal solution. This feature of the proposed method could be use-
ful in some decision situations in which the determination of precise subjective weights 
in advance from decision makers could be problematic. By means of two examples, we 
show how, under certain circumstances, the direct establishment of subjective weights at 
the beginning of the ranking process can be avoided, overcoming thus, one of the main 
problematics around subjective weighting schemes determination. The proposed method 
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provides a range of variation of the relative proximity index for each alternative. If we 
take the midpoint of this range as a reference for this index (for example), the result can 
be compared with that obtained with a choice of specific weights. With this, the decision 
maker can know if for a given alternative, the choice of those weights favours it or not. In 
real decision-making contexts, decision makers would like to avoid a situation in which 
an alternative is clearly favoured, preferring a classification of alternatives in which all of 
them have a relative proximity index with a low percentage of variation with respect to the 
average.

In the next section, we will briefly present the main steps of the classical TOPSIS 
approach which is the method selected to illustrate our approach. In Sect. 3, we will intro-
duce our proposal of an un-weighted functional TOPSIS method (UW-TOPSIS). Two 
numerical examples will be discussed in Sect. 4 and a real case study will be presented 
in Sect. 5, where a sample of financial companies will be ranked based on their degree of 
diversity and inclusion. Finally, in Sect. 6 main conclusions will be presented.

2 � Classical TOPSIS

The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) (Hwang and 
Yoon 1981) ranks decision alternatives based on their simultaneous distance to a positive 
ideal solution (PIS) and a negative ideal solution (NIS). The positive ideal solution maxi-
mizes criteria of the type “the more, the better” and minimizes criteria of the type “the less, 
the better”, whereas the negative ideal solution minimizes “the more, the better” criteria 
and maximizes “the more, the better” criteria. Distance to the PIS is minimized and dis-
tance to the NIS maximized. TOPSIS makes full use of the attribute information, provides 
a cardinal ranking of alternatives, and does not require the attribute preferences to be inde-
pendent (Chen and Hwang 1992; Yoon and Hwang 1995).

TOPSIS allows total linear compensation among criteria using a single criterion aggre-
gation approach (Roy 1996). The type of preferential information in a classical TOPSIS 
approach is deterministic and cardinal. Weights of the criteria in TOPSIS-based approaches 
may be quantitative, qualitative or relative; precise or uncertain and objectively or subjec-
tively determined by one or more decision makers (Watröbski et al. 2019). In what follows 
we describe the main steps in the method:

Step 1. Determine the decision matrix  D, where the number of criteria is m and the 
number of alternatives is n,D =

[
xij
]
n×m

.

step 2. Construct the normalized decision matrix  Criteria are expressed in different 
scaling and therefore a normalizing procedure is necessary in order to facilitate compari-
son. Hwang and Yoon (1981) propose a vector normalization,1

(1)
rij =

xij�∑n

i=1

�
xij
�2 ∈ [0, 1], 1 ≤ i ≤ n, 1 ≤ j ≤ m.

1  In addition to the vector normalization proposed in the seminal paper by Hwang and Yoon, many other 
normalization processes have been used (Ouenniche et al. 2018).
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step 3. determine the weighted normalized decision matrix It is well known that the 
weights of the criteria in decision making problems do not have the same mean and not all 
of them have the same importance. The weighted normalised value vij is calculated as:

where wj is the weight associated to each criterion.
step 4. Determine the positive ideal (PIS) and negative ideal solutions (NIS). 

The positive ideal solution, A+ =
(
v+
1
,… , v+

m

)
, and the negative ideal solution, 

A− =
(
v−
1
,… , v−

m

)
, are determined as follows:

where J is associated with the criteria that indicate profits or benefits and J′ is associated 
with the criteria that indicate costs or losses.

step 5. Calculate the separation measures Calculation of the separation of each alter-
native with respect to the PIS and NIS, respectively:

step 6. Calculate the relative proximity to the ideal solution Calculation of the rela-
tive proximity of each alternative to the PIS and NIS using the proximity index.

The Ri value lies between 0 and 1. If Ri = 1 , then Ai = A+ and if Ri = 0, then Ai = A− . 
The closer the Ri value is to 1 the higher the priority of the i-th alternative.

step 7. Rank the preference order. Rank the best alternatives according to Ri  in 
descending order.

Remark 1  To facilitate the comparison of the classic TOPSIS with the UW-TOPSIS we 
express (6) in the following way:

A large number of approaches can be found in the literature dealing with the previous 
questions and giving rise to different TOPSIS-based approaches (see for instance Behza-
dian et al. 2012; Zyoud and Fuchs-Hanusch 2017).

(2)vij = wjrij, 1 ≤ i ≤ n, 1 ≤ j ≤ m,

(3)v+
j
= wjr

+

j
=

{
max
1≤i≤n

vij, j ∈ J

min
1≤i≤n

vij, j ∈ J�
1 ≤ j ≤ m,

(4)v−
j
= wjr

−

j
=

{
min
1≤i≤n

vij, j ∈ J

max
1≤i≤n

vij, j ∈ J�
1 ≤ j ≤ m,

(5)d+
i
=

(
m∑
j=1

(
vij − v+

j

)2

)1∕2

, d−
i
=

(
m∑
j=1

(
vij − v−

j

)2

)1∕2

, 1 ≤ i ≤ n.

(6)Ri =
d−
i

d+
i
+ d−

i

, 1 ≤ i ≤ n.

(7)Ri =

�∑m

j=1

�
wj rij − wj r

−
j

�2
�1∕2

�∑m

j=1

�
wj rij − wj r

+
j

�2
�1∕2

+

�∑m

j=1

�
wj rij − wj r

−
j

�2
�1∕2
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3 � UW‑TOPSIS approach

In what follows we will present the steps of the new algorithm proposed in this paper 
which does not require the introduction of a priori weights. Steps 1 and 2 remain the 
same than in the classical TOPSIS. However, the PIS and NIS solutions are determined 
now without taking into account the relative importance of the criteria. Weights are 
introduced as unknowns in step 4 when separation measures from the PIS and NIS are 
calculated. Their values are determined in step 5 solving two groups of mathematical 
programing problems which maximize and minimize the separation of each alterna-
tive to the PIS and NIS respectively, taking into account different constraints referred to 
the values of the weights. These constraints include the classical constraint in TOPSIS 
approaches which ensures all the weights are positive and sum up one and other con-
straints imposing lower and upper bounds on the weights. The resulting mathematical 
programming problems are, due to the nature of their objective, fractional mathematical 
programming problems. In what follows we describe the main steps of the method in 
detail.

Step 1 Determine the decision matrix 
[
xij
]
, 1 ≤ i ≤ n, 1 ≤ j ≤ m, where the number of 

alternatives is n and the number of criteria is m.
Step 2 Construct the normalized decision matrix

Step 3. Determine the positive ideal A+ = (r+
1
,… , r+

m
) and the negative ideal solutions

A− = (r−
1
,… , r−

m
) , where

where J is associated with “the more, the better” criteria and J is associated with “the less, 
the better” criteria.

Step 4. Let us consider Ω =
�
w =

�
w1,… ,wm

�
∈ ℝ

m, wj ∈ [0,1],
∑m

j=1
wj = 1

�
.

Given A+,A− , we define two separation functions,

Given by

where d is a distance function in ℝm.

Step 5. Calculate the function of relative proximity to the ideal solution, 
Ri ∶ Ω → [0,1], 1 ≤ i ≤ n, as

(8)
[
rij
]
, rij ∈ [0,1], 1 ≤ i ≤ n, 1 ≤ j ≤ m.

(9)r+
j
=

{
max
1≤i≤n

rij, j ∈ J

min
1≤i≤n

rij, j ∈ J�
1 ≤ j ≤ m,

(10)r−
j
=

{
min
1≤i≤n

rij, j ∈ J

max
1≤i≤n

rij, j ∈ J�
1 ≤ j ≤ m, (10)

D+
i
∶ Ω ×ℝ

m [0,1],D−
i
∶ Ω ×ℝ

m [0,1], 1 ≤ i ≤ n,

(11)D+
i
(w) = d

((
w1ri1,… ,wmrim

)
,
(
w1r

+
1
,… ,wmr

+
m

))
, 1 ≤ i ≤ n,

(12)D−
i
(w) = d

((
w1ri1,… , wmrim

)
,
(
w1r

−
1
,… ,wmr

−
m

))
, 1 ≤ i ≤ n,
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Step 6 For each i, 1 ≤ i ≤ n , we calculate the values RL
i
(w), RU

i
(w) solving the two fol-

lowing mathematical programming problems where decision variables are the criteria 
weights:

being lj, uj ≥ 0 lower and upper bounds for each criterion’s weight. Then, we obtain n rela-
tive proximity intervals,

Step 7 We rank the intervals RI
1
 , RI

2
 , …, RI

n
 (see Remark 2).

Remark 2  According to Canós and Liern (2008), given the intervals A = [a1, a2], and B = 
[b1, b2] contained in, we will say that A is bigger than B, if and only if

where k1 and k2 are two pre-established positive constants. In the context that concerns us, 
the values k1 and k2 inform us about the degree of confidence of the decision maker that 
the alternatives are in their best position or on the contrary (Canós and Liern 2008). When 
ordering the intervals 

[
RL
i
,RU

i

]
, 1 ≤ i ≤ n, the relation k2/k1 informs us about the impor-

tance (or truthfulness) given to the best situation of the alternatives RU
i

 regarding of the 
worst situation RL

i
 . In the following examples, since we do not have information that makes 

us opt for the best or worst situation, we have chosen to give the same importance to both, 
that is, k1 = k2 = 1.

By construction, UW-TOPSIS is a generalization of the classical TOPSIS approach. 
Indeed, as it is proven in the following result, if some conditions are added to the formula-
tion of the UW-TOPSIS, this coincides with the classical TOPSIS approach.

Proposition 1  If in UW-TOPSIS the following conditions are verified:

1.	 a vector normalization is used in  (8),
2..	 the Euclidean distance is used in (11) and (12),
3.	 bounds given in (14) and (15) verify lj = uj = w0

j
 , 1 ≤ j ≤ m,

then, UW-TOPSIS and classical TOPSIS coincide.
Proof  According to (a), normalization given in (8) is

(13)Ri(w) =
D−

i
(w)

D+
i
(w) + D−

i
(w)

, 1 ≤ i ≤ n.

(14)RL
i
= Min

{
Ri(w),

m∑
j=1

wj = 1, lj ≤ wj ≤ uj, 1 ≤ j ≤ m

}
, 1 ≤ i ≤ n,

(15)RU
i
= Max

{
Ri(w),

m∑
j=1

wj = 1, lj ≤ wj ≤ uj, 1 ≤ j ≤ m

}
, 1 ≤ i ≤ n,

(16)RI
i
=
[
RL
i
,RU

i

]
, 1 ≤ i ≤ n.

A ≻ B ⇔

{
k1a1 + k2a2 > k1b1 + k2b2, k1a1 + k2a2 ≠ k1b1 + k2b2
a1 > b1, k1a1 + k2a2 = k1b1 + k2b2
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Taking into account (b), the Euclidean distance in (11) and (12) implies

On the other hand, (c) implies that the weight for each criterion is the same in all the 
alternatives, i.e. Ω has only one vector, Ω =

{
(w0

1
,w0

2
,… ,w0

m
)
}
. Taking into account 

the expressions of Ri and Ri(w)  [see (7) and (17)], we have that Ri(w) = Ri . Besides, 
RL
i
= RU

i
= R

i
(w0

1
,… ,w0

m
) , 1 ≤ i ≤ n, and RI

i
=
[
RL
i
,RU

i

]
=
{
Ri

}
 . Therefore, UW-TOPSIS 

and classical TOPSIS coincide.
In addition, under certain conditions, optimization problems (14) and (15) appearing in 

UW-TOPSIS are linear programming problems.

Proposition 2  If and distance d in (11) and (12) is the Manhattan distance, then.

(a)	 The relative proximity function to the positive ideal solution can be calculated as.

(b)	 Intervals Ri =
[
RL
i
,RU

i

]
, 1 ≤ i ≤ n,given in (16) are obtained solving two linear pro-

gramming problems,

where decision variables are the criteria weights and the objective is to minimize and 
maximize, respectively, the relative proximity of each alterantive to the positive ideal 
solution

Proof  In order to prove (a), let us consider and as in (8). As, we have that As d is the Man-
hattan distance, we know that = and Then,

rij =
xij�∑n

i=1

�
xij
�2 , 1 ≤ i ≤ n, 1 ≤ j ≤ m.

(17)Ri(w) =

�∑m

j=1

�
wjrij − wjr

−
j

�2
�1∕2

�∑m

j=1

�
wjrij − wjr

−
j

�2
�1∕2

+

�∑m

j=1

�
wjrij − wjr

−
j

�2
�1∕2

(18)Ri(w) =

m∑
j=1

wjrij,w ∈ Ω, 1 ≤ i ≤ n.

RL
i
= Min

{
m∑
j=1

wjrij,

m∑
j=1

wj = 1, lj ≤ wj ≤ uj, 1 ≤ j ≤ m

}
,

RU
i
= Max

{
m∑
j=1

wjrij,

m∑
j=1

wj = 1, lj ≤ wj ≤ uj, 1 ≤ j ≤ m

}
,
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Replacing in (13), we have

Part (b) is immediate from (a) and expressions (14) and (15).

Remark 3  The hypothesis given in Proposition 2, is not as restrictive as it may seem. 
In fact, it would be enough to transform all the criteria into the-more-the better criteria 
(Ouenniche et al. 2018) and to consider the PIS and NIS independent from the data, such 
that they do not need to be modified if new data are incorporated. On the other hand, if we 
normalize data taking into account their similarity with the ideal reference,

where [Aj,Bj] is the range for the valuations of criterion j and [aj, bj] ⊆ [Aj,Bj] is the ideal 
fixed for criterion j, we can demonstrate that A+ and A−, expressed in (9) and (10), will be 
A+ = (1,… , 1),A− = (0,… , 0) (see Acuña-Soto et al. 2018).

Remark 4  In this work, we have only taken into account the case in which the decision 
matrix is expressed in terms of precise values. The generalization to the case in which 
the matrix is composed of uncertain data and expressed by intervals will depend on the 
selected departure model for the UW-TOPSIS approach.

If the relative proximity of each alternative is expressed using a real number Ri 
(Jahanshahloo et al. 2006), values RL

i
 and RU

i
 will be obtained similarly to (14) and (15).

(a)	 If the relative proximity of each alternative is expressed using an interval 
[
R1
i
,R2

i

]
 (León 

et al. 2019), values RL
i
 and RU

i
 are calculated in a similar manner than in (14) and (15) 

but in this case for R1
i
 and R2

i
 , that is

where Ω∗ =
{
w ∈ Ω, lj ≤ wj ≤ uj, 1 ≤ j ≤ m

}
.

D+
i
(w) = d

(
wri,wA

+
)
=

m∑
j=1

|||wjrij − wj
||| =

m∑
j=1

(
wj − wjrij

)
=

m∑
j=1

wj −

m∑
j=1

wjrij = 1 −

m∑
j=1

wjrij.

D−
i
(w) = d

(
wri,wA

−
)
=

m∑
j=1

|||wjrij
||| =

m∑
j=1

wjrij.

Ri(w) =
D−

i
(w)

D+
i
(w) + D−

i
(w)

=

∑m

j=1
wjrij

1 −
∑m

j=1
wjrij +

∑m

j=1
wjrij

=

m�
j=1

wjrij, 1 ≤ i ≤ n

(19)
−
rij=

⎧⎪⎨⎪⎩

xij−Aj

aj−Aj

, Aj ≤ xij ≤ aj

1, aj ≤ xij ≤ bj
Bj−xij

Bj−bj
bj ≤ xij ≤ Bj

1 ≤ i ≤ n, 1 ≤ j ≤ m,

(20)RL
i
= Min

{
min
w∈Ω∗

R1
i
(w), min

w∈Ω∗
R2
i
(w)

}
,

(21)RU
i
= Max

{
max
w∈Ω∗

R1
i
(w), max

w∈Ω∗
R2
i
(w)

}
,
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4 � Illustrative examples

Let us present in this section, two illustrative examples in order to show the advan-
tages of the proposed method. To be able to compare the obtained results we will use 
two published examples from Jacquet-Lagrèze and Siskos (1982) and Alper and Basdar 
(2017), respectively. The authors of both papers used a classical TOPSIS approach to 
solve to different real problems. To apply UW-TOPSIS we have used the Euclidean dis-
tance and the optimization problems have been solved with LINGO.

Example 1  In this section we will first present a real numerical example used by Kao 
(2010), previously proposed by Jacquet-Lagrèze and Siskos (1982). The example consisted 
of a real decision problem in which the best car is selected from a set of 10 cars taken into 
account 6 criteria. Table 1 displays the decision matrix of this problem. In the first column 
we have displayed the alternatives followed by a reference number which identifies them. 
Last six columns display the assessment of the cars with regards to six different decision 
criteria.

The three first criteria are of the type the-more-the-better (speed, power and space) 
and the three last ones of the type the-less-the-better for the decision maker (consump-
tion in town, consumption at 120 km/h and price). From a direct observation of data in 
Table 1, we can see how, for equal importance of the criteria, there is not a clear winner. 
We have used bold characters to identify the best value for each criterion.

The car with the hightest speed is the model BMW 520; Citroën CX and Mercedes 
230 are both the cars with more power being Mercedes 230 as well, the car with most 
space. With regards to the criteria to be minimized, there is a clear winner, Citroën 
Dyane, which has the minimum consumption in town and at 120 km/h and the minimum 
price.

Table 1   Decision matrix Source: Kao (2010)

Alternatives # Ref. Criteria

C1 C2 C3 C4 C5 C6

Maximal 
speed
(km/h)

Horse 
power
(CV)

Space
(m2)

Consumption 
in town
(lt/100 km)

Consumption 
at 120 km/h
(lt/100 km)

Price
(Francs)

Peugeot 505 GR 1 173 10 7.88 11.4 10.01 49,500
Opel Record 2000 LS 2 176 11 7.96 12.3 10.48 46,700
Citroën Visa Super “E” 3 142 5 5.65 8.2 7.3 32,100
VW Golf 1300 GLS 4 148 7 6.15 10.5 9.61 39,150
Citroën CX 2400 Pallas 5 178 13 8.06 14.5 11.05 64,700
Mercedes 230 6 180 13 8.47 13.6 10.4 75,700
BMW 520 7 182 11 7.81 12.7 12.26 68,593
Volvo 244 DL 8 145 11 8.38 14.3 12.95 55,000
Peugeot 104 ZS 9 161 7 5.11 8.6 8.42 35,200
Citroën Dyane 10 117 3 5.81 7.2 6.75 24,800
Objective Max Max Max Min Min Min
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Therefore, if the same importance was given to all the criteria and, from a simple direct 
observation of the decision matrix, a decision maker might select the model Citroën Dyane, 
as it is the apparent winner with regard to three different criteria.

Let us now suppose that criteria have different importance for the decision maker. Let us 
consider now the weights expressed in Table 2 which are the ones proposed by Kao (2010). 
These weights, wi, are positive and they sum up one.

We can observe how the hightest importance is given to speed, followed by the price 
having the rest of criteria the same importance. Speed, however, has almost double impor-
tance than price.

If we now observe the weighted decision matrix displayed in Table 3, we can see how 
the situation is the same than the previously obtained one. However, based on rational deci-
sion criteria such as the one hightligthed in Ishizaka and Labib (2011), if a decision context 
with more than two criteria one criterion has an importance greater than 50% compared 
with the rest, the MCDM selection process would not be neccesary as the selected alterna-
tive should be the one with the best assessment on that criterion.

In this example, speed is given an importance of more than 60% and thus, from the pre-
vious point of view, alternative 7, BMW 520, should be selected. However, this is not a car 
with a low price and this criterion has almost 30% of importance. A new decision might be 
then taken taking into account this fact.

In order to select a car taking into account all the considered criteria, even those cri-
teria with only 1% of importance, power, space and consumption in town, the classical 

Table 2   Criteria Weights Source: Kao (2010)

Maximal 
Speed
(Km/h)

Horse 
power
(CV)

Space
(m2)

Consumption 
in town
(lt/100 km)

Consumption 
at 120 km/h
(lt/100 km)

Price
(Francs)

Weight 0.6346 0.01 0.01 0.01 0.01 0.3254

Table 3   Weighted decision matrix

Alternatives # Ref. Criteria

Maximal 
speed
(km/h)

Horse 
power
(CV)

Space
(m2)

Consumption 
in town
(lt/100 km)

Consumption 
at 120 km/h
(lt/100 km)

Price
(Francs)

Peugeot 505 GR 1 109.786 0.100 0.079 0.114 0.100 16,107,300
Opel Record 2000 LS 2 111.690 0.110 0.080 0.123 0.105 15,196,180
Citroën Visa Super “E” 3 90.113 0.050 0.057 0.082 0.073 10,445,340
VW Golf 1300 GLS 4 93.921 0.070 0.062 0.105 0.096 12,739,410
Citroën CX 2400 Pallas 5 112.959 0.130 0.081 0.145 0.111 21,053,380
Mercedes 230 6 114.228 0.130 0.085 0.136 0.104 24,632,780
BMW 520 7 115.497 0.110 0.078 0.127 0.123 22,320,162
Volvo 244 DL 8 92.017 0.110 0.084 0.143 0.130 17,897,000
Peugeot 104 ZS 9 102.171 0.070 0.051 0.086 0.084 11,454,080
Citroën Dyane 10 74.248 0.030 0.058 0.072 0.068 8,069,920
Objective Max Max Max Min Min Min



1109Annals of Operations Research (2022) 311:1099–1121	

1 3

TOSPIS approach described in Sect.  2 will be applied. After normalization of all the 
data and taking into account the different weights of the criteria (see Table 4), a positive 
and a negative ideal solutions are identified. The positive ideal solution describes an 
imaginary car with best scores in all criteria. On the contrary the negative ideal solution 
represents an imaginary car with the worst scores. Table 5 displays the scores of both 
imaginary cars for each criterion.

The obtained ranking of the cars, based on the classical TOPSIS approach described 
in Sect. 2, is the one displayed in Table 6.

Table 4   Weighted and normalized decision matrix

Alternatives # Ref. Criteria

Maximal 
speed
(km/h)

Horse 
power
(CV)

Space
(m2)

Consumption 
in town
(lt/100 km)

Consumption 
at 120 km/h
(lt/100 km)

Price
(Francs)

Peugeot 505 GR 1 0.21497 0.00327 0.00345 0.00311 0.00313 0.09858
Opel Record 2000 LS 2 0.21870 0.00360 0.00348 0.00335 0.00328 0.09301
Citroën Visa Super “E” 3 0.17645 0.00164 0.00247 0.00224 0.00229 0.06393
VW Golf 1300 GLS 4 0.18391 0.00229 0.00269 0.00286 0.00301 0.07797
Citroën CX 2400 Pallas 5 0.22118 0.00426 0.00352 0.00395 0.00346 0.12886
Mercedes 230 6 0.22367 0.00426 0.00370 0.00371 0.00326 0.15076
BMW 520 7 0.22615 0.00360 0.00342 0.00346 0.00384 0.13661
Volvo 244 DL 8 0.18018 0.00360 0.00366 0.00390 0.00405 0.10954
Peugeot 104 ZS 9 0.20006 0.00229 0.00223 0.00234 0.00264 0.07010
Citroën Dyane 10 0.14538 0.00098 0.00254 0.00196 0.00211 0.04939
Objective Max Max Max Min Min Min

Table 5   Positive and negative ideal solutions

Maximal 
speed
(km/h)

Horse 
power
(CV)

Space
(m2)

Consumption 
in town
(lt/100 km)

Consumption 
at 120 km/h
(lt/100 km)

Price
(Francs)

Postive ideal solution 0.22615 0.00426 0.00370 0.00196 0.00211 0.04939
Negative ideal solution 0.14538 0.00098 0.00223 0.00395 0.00405 0.15076

Table 6   Ranking obtained using classical TOPSIS

Alternatives Ri Alternatives Ri

Peugeot 104 ZS 0.74473 Citroën Dyane 0.55642
Opel Record 2,000 LS 0.67828 Citroën CX 2400 Pallas 0.49787
Citroën Visa Super “E” 0.64012 BMW 520 0.48465
Peugeot 505 GR 0.63288 Mercedes 230 0.43589
VW Golf 1300 GLS 0.61731 Volvo 244 DL 0.41628
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As we can observe, car number 9, Peugeot 104 ZS, is ranked first taking into account 
the weights fixed by the decision maker. However, if we focus only on the speed, which 
is a criterion with more than 60% importance, this car appears in the sixth position. 
The decision maker is giving the price almost a 30% of importance and with regards 
to this criterion, car number 9 occupies the third position. All the cars ranked on top of 
Peugeot with respect to speed have a sensible highest price, almost double or in some 
cases more than double the price of Peugeot 104 ZS. Figure  1 represents the relative 
position of the 10 cars with respect to the fictitious positive and negative ideal solutions.

Let us apply now the proposed method in this paper described in Sect. 3. With this 
purpose we will now consider the weights as unknown variables. The only a priori 
information regarding the weights could be, if considered neccesary by the decision 
maker, the establishment of certain upper and/or lower bounds on the weights. Let us 
suppose that we want to ensure all the criteria are taken into account (e.g. all criteria 
have an importance of at least 1%) and that a criterion cannot be given a weight higher 
than 75%. The following constraints should be then included in the model:

The obtained results applying the stepts of the proposed UW-TOPSIS algorithm are 
the ones displayed in Table 7. Second column shows the obtained intervals expressing 
the relative proximity of each alternative to the positive ideal solution. The lower and 
upper bounds are respectively, the minimum and maximum possible relative proxim-
ity values for a given set of optimal weights. This information could be very relevant 
for the decision maker as it let us know the possible range of variation of the relative 
proximity of an alternative depending on the relative importance given to each criterion.

lj = 0.01, uj = 0.75, 1 ≤ j ≤ 6.

Fig. 1   Example 1: Similarity ratios



1111Annals of Operations Research (2022) 311:1099–1121	

1 3

As the relative proximity value is used to determine the position of the alternatives 
in the ranking, with the proposed method we are able to know the possible worst and 
best situation of each alternative in the ranking which will depend on the set of weights 
assigned by the decision maker. The third column displays the values of the decision 
variables, the criteria weights.

On view of these results it would be easy to interact with the decision maker in order 
to obtain the solution with which he/she is more confortable without asking him/her to 
fix the weights at the beginning of the process.

In Fig.  1, we have represented the similarity ratios obtained using the maximum, 
minimum and central point (in what follows, average), of the obtained intervals of 
weights and the values obtained by Jacquet-Lagrèze and Siskos (1982). We can observe, 
how alternative 9 is the car for which an anomaly can be observed.

Example 2  Let us now consider a second example in which the criteria weights are not so 
much extreme, that is, in which all the criteria have an importance of less than 20%. In this 
example, taken from Alper and Basdar (2017) six factoring companies are ranked based on 
six financial statement ratios using as well a classical TOPSIS approach.

Table 7   Ranking using UW-TOPSIS

Alternative Minimum Maximum Average Kao (2010)

Peugeot 505 GR 0.4276476 0.8560963 0.64187195 0.632877911
Opel Record 2000 LS 0.3078024 0.8984179 0.60311015 0.678284923
Citroën Visa Super “E” 0.1715504 0.9056597 0.53860505 0.640119993
VW Golf 1300 GLS 0.3174212 0.7160294 0.51672530 0.617313555
Citroën CX 2400 Pallas 0.0624455 0.9849322 0.52368883 0.497873164
Mercedes 230 0.0263905 0.9850762 0.50573336 0.435888646
BMW 520 0.1172695 0.9353834 0.52632645 0.484645897
Volvo 244 DL 0.0225147 0.9068528 0.46468374 0.416284604
Peugeot 104 ZS 0.1156937 0.8062151 0.46095440 0.744727239
Citroën Dyane 0.0166673 0.9846395 0.50065342 0.556424329

Table 8   Decision criteria Source: Alper and Basdar (2017)

Criteria Ratios Formula Weights Type

C1 Current ratio Current assets/current liabilities 0.180 Max
C2 Leverage ratio Total liabilities/total assets 0.130 Max
C3 Earnings per share Net period profit/number of shares 0.200 Max
C4 Return on equity Net profits/equity 0.160 Max
C5 Asset profitability Net profits/total assets 0.190 Max
C6 Total assets turnover Net sales/total assets 0.140 Max

Total 1.000
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Financial ratio analysis is commonly used to evaluate the financial performance of 
businesses. Table 8 displays the financial ratios selected by a group of experts as deci-
sion criteria and their relative importance determined as well by the group of experts. 
All the criteria are of the type “the more, the better”.

Table  9 displays the original decision matrix and Table  10 shows the normalized 
and weighted decision matrix. The positive and negative ideal solutions are shown in 
Table 11. Positive ideal solution (PIS) is composed of the maximum values in Table 10 
and the Negative ideal solution (NIS) is composed of the minimum values in Table 10 
(Table 12).

Table 9   Original decision matrix 
Source: Alper and Basdar (2017)

Alternative No C1 C2 C3 C4 C5 C6

Başer 1 0.888 0.757 0.097 0.071 0.017 0.183
Creditwest 2 1.257 0.796 0.317 0.169 0.034 0.183
Garanti 3 1.063 0.936 0.248 0.106 0.007 0.084
Huzur 4 1.102 0.867 0.214 0.157 0.021 0.239
Lider 5 0.956 0.895 0.712 0.190 0.020 0.142
Yapı Kredi 6 1.074 0.930 1.182 0.175 0.012 0.063

Table 10   Normalized and 
weighted decision matrix Source: 
Alper and Basdar (2017)

Alternative C1 C2 C3 C4 C5 C6

Başer 0.061 0.046 0.013 0.031 0.065 0.065
Creditwest 0.087 0.049 0.044 0.073 0.130 0.065
Garanti 0.073 0.057 0.034 0.046 0.026 0.030
Huzur 0.076 0.053 0.029 0.068 0.079 0.085
Lider 0.066 0.055 0.098 0.082 0.075 0.050
Yapı Kredi 0.074 0.057 0.162 0.076 0.046 0.022
Max 0.087 0.057 0.162 0.082 0.130 0.085
Min 0.061 0.046 0.013 0.031 0.026 0.022

Table 11   Positive (PIS) and 
negative ideal solutions (NIS) 
Source: Alper and Basdar (2017)

C1 C2 C3 C4 C5 C6

PIS 0.087 0.057 0.162 0.082 0.130 0.085
NIS 0.061 0.046 0.013 0.031 0.026 0.022

Table 12   Rank based on the relative proximity to the PIS obtained by Alper and Basdar (2017) Source: 
Alper and Basdar (2017)

Numbers within parenthesis express the order of the alternative in the obtained ranking

Alternative 1 2 3 4 5 6

Ri 0.250 (5) 0.512 (3) 0.152 (6) 0.397 (4) 0.553 (2) 0.599 (1)
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Let us consider now intervals for the weights letting the weights proposed by Alper and 
Basdar vary between 10% and 20%. The following results have been obtained applying the 
proposed method in this paper, using the same normalization technique and the same dis-
tance function than in the classical TOPSIS approach (see Fig. 2; Table 13).

Examples 1 and 2 show that the ranking using UW-TOPSIS (Average) seems to be dif-
ferent to the one obtained by Kao (2010) and similar to the one obtained by Alper and 
Basdar (2017). The reason for this difference lies in the choice of weights made in these 
papers.

While the weights shown in Alper and Basdar (2017) do not significantly favour the 
ranking position of any alternative (see Fig. 2), the weights in Kao (2010) favour the rank-
ing position of alternative 9. Figure 1 shows how alternative 9 is the closest to the maxi-
mum similarity value that could be obtained. Detecting these anomalies may be another of 
the UW-TOPSIS utilities.

Fig. 2   Example 2: Similarity ratios

Table 13   Obtained relative proximity scores and ranking and comparison between results

Numbers within parenthesis represent the order in the ranking of the correspondent alternative. Bold char-
acters show coincidence in the ranking

Alternative UW-TOPSIS

Minimum Maximum Average Alper and Basdar (2017)

Başer 0.1768904 0.3888506 0.28287050 (5) 0.24758 (5)
Creditwest 0.4283943 0.6743262 0.55136025 (2) 0.50941 (3)
Garanti 0.1368155 0.2060412 0.17142835 (6) 0.14989 (6)
Huzur 0.3489264 0.5876978 0.46831210 (4) 0.39434 (4)
Lider 0.5030404 0.5891874 0.54611394 (3) 0.55208 (2)
Yapı Kredi 0.4017557 0.7128243 0.55729000 (1) 0.59886 (1)
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5 � Case study: ranking firms based on their diversity and Inclusion 
degree

Lord Kelvin said “You can’t change what you can’t measure”. That is, in words of Diana 
van Maasdijk, CEO from Equileap, why Equileap collects data on gender equality and this 
is the purpose of this section. We aim at measuring the degree of gender equality in a sam-
ple of 8 companies from the financial sector in Europe, the biggest banks and insurance 
companies (see Table 14).

We will use data collected by Equileap, the leading organisation providing data and 
insights on gender equality in the corporate sector. This non-profit company researches 
and ranks over 3500 public companies in 23 developed countries using their Gender 
Equality Scorecard™ with 19 criteria (see Table 15), including the gender balance of 
the workforce, senior management and board of directors, as well as the pay gap, paren-
tal leave, and sexual harassment.

Equileap rank companies according to their overall Equileap gender equality score 
based on the 19 criteria listed in the Scorecard displayed in Table 15. Equileap use a 
two-fold research approach. First, they gather publicly available information provided 
by the companies themselves, including in their annual reports, sustainability reports 
and/or on their websites. Second, they engage with companies to allow them to send 
Equileap the latest publicly available data they have.

Companies are awarded points on a scale of 0-100 being all the criteria of the type 
“the more the better”. The first and second stages may produce a series of groups in 
which companies have the same total score. When two or more companies have the 
same score, Equileap break the ranking tie by determining which company performs 
best on criterion C5: Promotion and Career Development, and then, if necessary, on cri-
teria C4, C3, C2, C1, in this order.

Table  16 displays comparison among Equileap’s ranking and the ranking obtained 
with our approach. To apply UW-TOPSIS we have used the Euclidean distance. The 
optimization problems have been solved with LINGO. In addition, we have assumed 
that each of the four blocks shown in Table  14 has a minimum weight of 5% and a 
maximum of 40%. On the other hand, since Equileap do not rank using the TOPSIS 
method, comparing only the scores obtained by both methods does not provide much 
information. For this reason, we have added, in columns 4 and 8 in Table 16, a score 
that depends on the order of the company and not on the ranking method used. The 
points assigned to each company have been calculated as follows: 

Table 14   Selected European 
financial companies

Alternative Country Group

F1 DE Insurance
F2 IT Insurance
F3 GB Insurance
F4 FR Insurance
F5 ES Banks
F6 GB Banks
F7 FR Banks
F8 FR Banks
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Table 15   Gender equality criteria Source: Equileap (2019)

Criteria Description

Gender balance in leadership and workforce
C1 board of directors Gender balance of the company’s board of directors
C2 executives Gender balance of the company’s executives
C3 senior management Gender balance of the company’s senior management
C4 workforce Gender balance of the company’s workforce
C5 promotion and career development Gender balance of the company’s senior management 

compared to the gender balance of the company’s 
workforce, signalling career progression opportuni-
ties

Fair remuneration
C6 living wage Commitment to pay a living wage to all employees, 

even in those countries that do not legally require a 
minimum wage

C7 gender pay gap Transparency on the gender pay gap at company level 
and on multiple pay bands, commitment to close 
the pay gap

C8 parental leave Paid leave programs (at least 2/3 paid) for child care 
to both primary or secondary carers globally or at 
least in the country of incorporation

C9 flexible work options Option to employees to control and/or vary the start 
and end times and or vary the location from which 
employees

Policies promoting gender equality
C10 training and career development Commitment to ensure equal access to training and 

career development irrespective of gender
C11 recruitment strategy Commitment to ensure non-discrimination against 

any type of demographic group and equal opportu-
nities to ensure gender parity

C12 freedom from violence, abuse and sexual 
harassment

Prohibit all forms of violence in the work place, 
including verbal, physical and sexual harassment

C13 safety at work Commitment to the safety of employees in the work-
place, in travel to and from the workplace, and on 
company related business, and ensure the safety of 
vendors in the workplace

C14 human rights Commitment to ensure the protection of human 
rights, including employees’ rights to participate in 
legal, civic and political affairs

C15 social supply chain Commitment to reduce social risks in its supply chain 
such as forbid business-related activities that con-
done, support, or otherwise participate in traffick-
ing, force and child labour or sexual exploitation

C16 supplier diversity Commitment to ensure diversity in its supply chain, 
including procurement from women owned busi-
nesses in the supply chain

C17 employee protection Systems and policies for the reporting of internal 
ethical compliance complaints without retaliation 
or retribution, such as access to confidential third-
party ethics hotlines or systems for confidential 
written complaints

Commitment, transparency and accountability
C18 commitment to women’s empowerment Signatory of the women’s empowerment principles
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In Fig. 3, we have represented the scores obtained with (20). As we can observe, the 
representation of these values (columns 4 and 8 in Table 16) facilitates the comparison 
between rankings obtained with different methods.

The rankings obtained by Equileap and by the UW-TOPSIS are quite similar reflect-
ing this fact the robustness of the ranking published by Equileap. Small differences in 
the global scores of some firms can be observed among both rankings. However, the 
tendency lines are almost the same in both cases (see Fig. 3).

(22)Points
(
Fi

)
= (Number of companies + 1) − (order occupied by Fi)

Table 15   (continued)

Criteria Description

C19 audit Undertaken and awarded an independent gender audit 
certificate by an Equileap recognised body

Table 16   Equileap’s scores and ranking and UW-TOPSIS ranking

Numbers within parenthesis represent the order in the ranking of the alternative

Firm Equileap’s UW- TOPSIS

Score Score/100 Points Ri Min Ri Max Average Points

F1 47.3 0.473 (6) 3 0.023580847 0.382649508 0.203115178 (8) 1
F2 47.1 0.471 (7) 2 0.049045108 0.428874354 0.238959731 (6) 3
F3 56.5 0.565 (3) 6 0.545572756 0.937518003 0.741545379 (3) 6
F4 58.9 0.589 (2) 7 0.588540774 0.960165606 0.774353190 (2) 7
F5 51.3 0.513 (5) 4 0.095995168 0.489815814 0.292905491 (5) 4
F6 56.3 0.563 (4) 5 0.111141278 0.740122102 0.425631690 (4) 5
F7 63.0 0.630 (1) 8 0.783793256 0.989253923 0.886523589 (1) 8
F8 45.9 0.459 (8) 1 0.039834394 0.411459226 0.225646810 (7) 2

Fig. 3   Comparison between Equileap and UW-TOPSIS rankings
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6 � Conclusions

In this work, a new TOPSIS approach is proposed in which weights are not fixed a priori. 
On the contrary, they are handled as decision variables in a set of optimization problems 
where the objective is to maximize the relative proximity of each alternative to the ideal 
solution. With this objective, we a new relative proximity index has been proposed which 
is a function depending on the values of the weights. If we take the maximum and mini-
mum values of this function, given the considered constraints, an interval is obtained for 
the index of relative proximity of each alternative. When the decision maker considers 
it necessary or adequate, he/she can fix upper and lower bounds expressing the different 
importance of the criteria. With this the amplitude of the intervals is reduced.

The proposed method in this paper could be useful in those real decision making con-
texts in which the decision maker is not able or does not want to fix exact weights for the 
decision criteria. This is the case addressed in this paper, where a rating body ranks firms 
based on their diversity and inclusion degree without fixing a priori the relative importance 
of the decision criteria in an objective or subjective way.

The obtained rankings with both, Equileap’s method and our approach are quite similar 
showing the results the robustness of the rankings proposed by Equileap. The main conclu-
sion derived from the similarity of the rankings is that regardless the assigned weights to 
the different decision criteria, the order in the ranking would remain almost the same. This 
feature could be of great importance in those situations where reporting and measurement 
of diversity and inclusion practices are public and mandatory for the firms which is the 
tendency nowadays in most of the developed countries. In this situation, there would be 
no need to fix precise weights a priori reflecting the different relative importance of the 
decision criteria. The proposed method in this paper, would allow the ranking of the alter-
natives taking into account several decision criteria with no need to establish a precise sub-
jective weighting scheme in advance. The ranking problem is carried out for an unknown 
set of weights and, an interval of relative proximity to the ideal solution is obtained for 
each decision alternative indicating its possible range of possitions in the ranking. The 
alternative will occupy this range of possitions in the ranking regardless the relative impor-
tance of the decision criteria.

Acknowledgements  This work has been supported by the Spanish Ministerio de Ciencia, Innovación y Uni-
versidades, project reference number: RTI2018-093541-B-I00. The authors would like to sincerely thank 
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Appendix

Tables 17, 18 and 19 show the values of the weights providing the maximum and minimum 
Ri in Examples 1, 2 and the Case Study, respectively. In all cases, the optimization prob-
lems have been solved with LINGO. 
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