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Abstract
With the convergence of innovation, technology, and supply chain, the world has been 
shrinking, and the retail industry is one of the largest spread across the globe in the past 
few decades. Consumer expectations are on priority for the retailers. Most of the retail 
sector deals with the items whose usefulness declines with time and reaches the expiration 
date, resulting in a decrease in sales and eventually diminishing revenues for the retail-
ers. In such cases, effective replenishment decisions and ordering policies may yield a sig-
nificant increase in revenues. Further, with emerging retail trends, providing trade credit 
is considered a price reduction tool and an alternative to price discounts. Motivated by 
this, an inventory model developed and analyzed for items exhibiting time-varying dete-
rioration with partially backlogged shortages and permissible delay in payment in the two-
warehouse environment. The primary objective is to obtain the optimal ordering and back-
logging policies for the retailer by minimizing the relevant cost. The optimal solution is 
obtained, solved analytically, and the inventory model validated with the help of numerical 
illustrations. The sensitivity analysis of the optimal solution with respect to key parameters 
and the managerial implications are also provided. The model is applicable to perishable 
items such as baked products, fruits, vegetables, groceries, meat, and seafood, where the 
deterioration is time-dependent and is perceived by its expiration date.
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1  Introduction and research motivation

Globalization has led businesses to source and distribute raw materials, semi-finished goods, 
and finished goods across the world. With the dynamic behavior of the business enterprises, 
cut-throat competition in the retail industry, and sprouting technologies, the companies are 
facing a challenge in determining the optimal order quantity under demand uncertainty. The 
advent of e-businesses has added to the problem of retailers since the customer has spread its 
wings across the globe, shifting the focus from product to customer-centric. Thus, efficient 
inventory management, planning, and scheduling have become the target of companies to 
achieve strategic goals. Optimization models have been developed to answer the questions of 
how much and when to replenish the inventory to minimize the inherent costs associated with 
the management of stocks.

The study of inventory management plays a significant role when dealing with items exhib-
iting time-varying deterioration (e.g., perishable products, expiring inventories) depending 
on their category and storage facilities. Products such as pharmaceuticals, chemicals, blood 
banks, foodstuffs, vegetables, and even electronic gadgets have an expiration date or decline 
over time. They start deteriorating once they land on the shelf and, with time, lose their useful-
ness and original value. The primary concern of the customers while purchasing the grocery 
products is to buy one with the farther expiry date so that it can be stored for a longer time. 
Thus for maintaining inventories, researchers have been analyzing the impact of time-varying 
deterioration, which influences the purchase decision of the customers.

Further, trade credit policies have been practiced in developing countries for the past few 
decades because it is benefitting both vendors and buyers. Trade credit allows the retailer flex-
ibility and feasibility in stocking the items and reducing the inventory carrying cost. Thus, 
to avail the opportunity of trade credit and to survive in the volatile market, a significant 
amount of stock is ordered, which creates the need for an additional warehouse to store the 
stock. Thus, the retailer is forced to rent an additional warehouse to store the excess amount 
of items. In many realistic inventory management systems, stock-outs are also considered; in 
such cases, demand may be back-ordered when the order replenished in the system, or it may 
be lost depending on the utility and availability of the product to the customer. The novelty 
of the paper is that it amalgamates the above-mentioned realistic scenarios such as expiring 
inventories, trade credit policy provided by the supplier to the retailer, and partially back-
logged shortages when the retailer has two storage facilities. The numerical in the study illus-
trates deterioration rate firstly with expiration rate for products such as pharmaceuticals, bread 
cakes, etc., and secondly following Weibull distribution deterioration rate. Weibull distribution 
is a versatile distribution that can be used to model the increasing or decreasing rate of deterio-
ration depending on the choice of the parameters. Thus, increasing the efficacy of the model 
in the retail sector. The coordination of the factors mentioned above has been the motivation 
behind the development of the inventory model for time-varying deteriorating products exhib-
iting deterioration with the expiry date and Weibull distribution deterioration rate with two 
storage facilities.
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2  Literature review

2.1  Deteriorating inventories

Nowadays, customers are more conscious about the quality of the product due to which the 
demand for fresh products and packaged goods have intensely increased in current years. 
Freshness is a key element of the products as consumers pay more attention to the expiry 
date. Stock management of time-varying deteriorating items has been kept on top prior-
ity by the retailers considering the associated cost due to deterioration. Expiring inven-
tories such as fruits, vegetables, pharmaceuticals, volatile liquids, electronic goods, etc. 
result in a shrinkage in stock due to several reasons such as evaporation, spoilage, obsoles-
cence, etc., as once deteriorated an item cannot be sold. Ghare and Schrader (1963) were 
the first to propose an EOQ inventory model by assuming the deterioration rate follows 
an exponential distribution. Then Covert and Philip (1973) generalized the constant expo-
nential deterioration rate to a two-parameter Weibull distribution. Goswami and Chaud-
huri (1991) built an EOQ inventory model for deteriorating items considering the linear 
trend in demand. Further, many researchers have done tremendous work in this field, which 
are summarized by Raafat (1991), Goyal and Giri (2001), and Bakker et al. (2012). Effec-
tive management of expiring inventories has been the primary objective of recent studies. 
If not handled efficiently, it may add to waste and thus have a detrimental impact on the 
global environment. Jaggi et al. (2017a, b), Soni et al. investigated an inventory model for 
a non-instantaneous deteriorating item with partial backlogging; demand depends on price 
and promotional effort and shortage. Li and Teng (2018) studied a deterministic inventory 
model with the selling price and reference price, product freshness linked to the expira-
tion date, and displayed stock level. Mishra et al. (2018) investigated trade credit financing 
for items with a preservation-dependent deterioration rate. Numerous researches have been 
done in this area, such as: Chen and Teng (2015), Kaya and Polat (2017), Tavakoli and 
Taleizadeh (2017), Taleizadeh et al. (2020).

2.2  Trade credit

The retail industry has been operating within the dynamic and highly competitive environ-
ment; most of the businesses have no pricing force and operate on a small profit margin. In 
order to upsurge the sales, mostly three different types of payment strategies are employed, 
which are (1) cash on delivery (COD), (2) delayed payment or credit payment and (3) pre-
payment. To dodge lasting price competition and to motivate the buyers to buy more and 
to promote their products, businesses mainly apply delayed payment or credit payment 
schemes as part of their pricing strategy. Trade credit is the credit extended to a company 
or customers by vendors who allow them to “buy now and pay later”. Goyal (1985) was the 
first to develop an economic order quantity (EOQ) model for the buyer when the vendor 
offers a fixed permissible delay period. Aggarwal and Jaggi (1995) developed an order-
ing policy for deteriorating items. Teng (2002) amended Goyal’s model by considering the 
difference between the unit price and unit cost. Teng et al. (2013) considered an inventory 
model for increasing demand in a supply chain with an upstream trade credit linked to 
order quantity. Wu et al. (2014) made the credit period and lot size decisions for deteriorat-
ing items with expiration dates under two-level trade credit financing. Chen et al. (2014) 
determined the economic order quantity when the supplier offers conditional permissible 
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delay in payments linked to order quantity. Tiwari et al. (2018a, b) developed an inventory 
model for deteriorating items considering various trade credit financing policies, namely: 
order-size dependent trade credit and two-level partial trade credit, respectively. Cárdenas-
Barrón et  al. (2018) proposed an algorithm for an EOQ inventory model with nonlinear 
stock-dependent holding cost, nonlinear stock-dependent demand, and trade credit by 
relaxing the terminal condition. Lin et al. (2019) established an integrated inventory model 
for two-stage deterioration under trade credit and variable capacity utilization. Chang et al. 
(2019) presented a manufacturer’s pricing and lot-sizing decisions for perishable goods 
under various payment terms by a discounted cash flow analysis. Shi et al. (2019) build a 
sustainable inventory model for the retailer under upstream advance, cash, credit payment 
schemes. The literature is replete with papers on trade credit such as Jaggi et  al. (2016, 
2017a, b, 2018, 2019), Tiwari et al. (2016), Wu et al. (2014, 2016), Tsao et al., Shaikh et al. 
(2020a, b), Khakzad and Gholamian (2020), Khan et al. (2020).

2.3  Two warehouse environment

The classical Economic Order Quantity (EOQ) model is often based on the assumption of 
the single warehouse (OW) with unlimited capacity. However, there could be many rea-
sons such as the discounted price of goods offered by the supplier, revenue (acquisition 
price) being higher than the holding cost in RW or evading high inflation rates that may 
lead to purchasing an amount of units that may exceed the capacity of OW, resulting in the 
excessive units being stored in an additional rented warehouse (RW), which is assumed 
to be of an ample capacity. Hsieh et al., Yang (2004, 2006, 2012), Banerjee and Agrawal 
(2008), Yang and Chang (2013), and Agrawal et al. (2013) are worth mentioning work in 
the area of two-warehouse. Most recently, Tiwari et al. (2016, 2017) developed two ware-
house inventory models for non-instantaneous deteriorating items under trade credit policy. 
Tiwari et al. (2018c) optimized the pricing and inventory control problem for deteriorating 
items in an SC with limited storage capacity.

Since the past few decades, researchers have been developing inventory models suitable 
for enterprises to strive in various situations to increase sales and profits. For instance, it 
may be beneficial for a system to allow shortages when demand exists. In the area of logis-
tics and supply, chain shortages may generate different impacts depending on the utility of 
the item for the customer. It may either result in backorders or lost sales. Alternatively, the 
case may be only a few customers wait for backorders and rest switch to other sellers to 
fulfill their demand; such a case of partial backlogging is close to the practical scenario and 
has been considered in this study. Inventory models assuming partial backlogging devel-
oped by several researchers are compiled by Pentico and Drake (2011).

From the literature search, it is observed that there is a research scope in inventory man-
agement for items exhibiting time-varying deterioration. Thus, to fill this gap, an inventory 
model is developed for such items considering trade credit under a two-warehouse environ-
ment. Moreover, in order to move closer towards a realistic scenario, shortages are allowed 
and are partially backlogged.

This paper is structured as follows. Section 3 sets the assumptions and notation used. 
Section 4 provides the inventory model formulation. Section 5 proposes some theoretical 
results for the optimal solutions. Sections  6 and 7 validate the inventory model through 
numerical experimentation and illustrates the robustness of the proposed model through 
sensitivity analysis, respectively. Finally, Sect.  8 concludes with some future research 
directions.



143Annals of Operations Research (2020) 295:139–161 

1 3

3  Assumptions and notation

The following assumptions and notations have been used in developing the model.

3.1  Hypothesis of the inventory system

The proposed inventory model has been developed under the following assumptions. The 
replenishment cycle length is constant and unknown. The order is instantaneously replen-
ished, and the lead-time is negligible. The inventory system shows continuously repeated 
behavior; thus, the planning horizon of the inventory system is infinite. The demand rate is 
deterministic at a rate of D quantity units per unit of time. The own warehouse (OW) has a 
predetermined capacity of W units, and the rented warehouse (RW) has a limitless capac-
ity. The unit inventory holding cost per unit time in RW is higher than that in OW. The 
deterioration rate in RW is less than that in OW because of better preservation facilities 
available at RW; thus, it is economical to consume the goods from RW before OW. Short-
ages, if any, are allowed, and unsatisfied demand is partially backlogged that is, will be 
fulfilled from the next replenishment. The fraction of shortages backlogged denoted by �(t) 
is a differentiable and decreasing function of time t. The partial backlogging rate for the 
negative inventory is defined as e−�(T−t) ; where 𝛿(> 0) denotes the backlogging parameter 
and (T − t) is the waiting time up to the next replenishment. The retailer is offered fixed 
credit period M by the supplier, beyond which the retailer begins to pay the interest charges 
for the items in stock at rate Ip. The retailer can use the sales revenue generated before the 
settlement of the replenishment account to earn interest at an annual rate Ie, where Ip ≥ Ie. 
A deteriorating item deteriorates continuously and cannot be sold after its expiration or 
maximum lifetime date. Hence, its deterioration rate is 100% close to its expiration date. 
There exist several real-life products that exhibit time-varying deterioration, such as bakery 
products, pharmaceuticals, fruits, vegetables, fish, dairy products, etc. Thus, it is assumed 
that the deterioration rate �(t) at time t, 0 ≤ t ≤ k , where k is expiration time, satisfies the 
following conditions: 0 ≤ �(t) ≤ 1, ��(t) ≥ 0, and �(k) = 1.
Notation 

Parameters
 W The storage capacity of OW (units)
 D Demand rate (units/ time unit)
 S The maximum stock level at the beginning of the cycle (units)
 Q Order quantity per cycle (units)
 c The purchase cost per item ($/unit)
 p Unit selling price per item ($/ unit)
 B The maximum amount of backlogged demand
 cb Backlogging cost per unit per unit time ($/unit)
 co Unit opportunity cost due to a lost sale ($/unit)
 A The fixed cost of placing an order ($/order)
 H, F Unit holding cost per unit per unit time at OW and RW respectively, (F > H)
 M The retailer’s trade credit period offered by the supplier (time unit)
 Ie Interest earned per dollar per unit time per year by the retailer (%)
 Ip Interest paid per dollar per unit in stock per year by the retailer (%)
 tw Time at which the inventory level reaches zero in OW (time unit)
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 k Maximum lifetime or expiration time in years
Decision variables
 tr Time at which the inventory level reaches zero in RW (time unit)
 T The length of the replenishment cycle (time unit)

Functions
 Qo(t) Inventory level of OW at time t (units)
 Qr(t) Inventory level of RW at time t (units)
 B(t) Backlogged level at time t (units)
 L(t) Number of lost sales at time t (units)
 TCi(tr, T) Total relevant cost per unit time for case i = 1, 2 and 3 ($/time unit)

3.2  Mathematical model formulation

Given the above notations and assumptions, in this section mathematical formulation of 
two warehouse inventory model for deteriorating items with expiration date and partially 
backlogged shortages is derived. The behavior of the model is shown graphically in Fig. 1. 
Initially, a lot size Q enters the system; after satisfying the backorders of the previous 
cycle, initial inventory left is S. Out of these S units W units are stocked in OW, whereas 
remaining (S −W) units are stored in RW. During the interval, [0, tr] the demand is ful-
filled through RW; thus, the inventory level is depleted by demand and deterioration.

3.3  Inventory levels

The inventory levels are governed by the following differential equation:

0
Time

W

S-W

Inventory level

Lost sales
tr tw

T

Fig. 1  Graphical representation of the inventory system
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with the boundary condition Qr(0) = S −W, and Qr(tr) = 0 , the solution of the differential 
equation is obtained as:

where

Also using initial boundary condition Qr(0) = S −W , gives

During the time interval [0, tr] inventory in OW reduces only due to deterioration. At tr the 
stock at RW is exhausted and the demand is satisfied from OW. Thus, during the time interval 
[tr, tw] inventory in OW depletes due to demand as well as deterioration. the differential equa-
tions that describe the inventory level in OW over the period [0, tr] and [tr, tw] are given by:

with the boundary condition Q0(0) = W , the solution of the differential equation is 
obtained as:

where

Also,

Using boundary condition Q0(tw) = 0 , the solution of differential equation is

Using continuity of Q0(t) at t = tr , it follows that

(1)
dQr(t)

dt
+ �r(t)Qr(t) = −D 0 ≤ t ≤ tr

(2)Qr(t) = De−Zr(t)

tr

�
t

eZr(u)du 0 ≤ t ≤ tr

(3)Zr(t) =

t

∫
0

�r(u)du

(4)S = W + D

tr

∫
0

eZr(u)du

(5)
dQ0(t)

dt
+ �0(t)Q0(t) = 0; 0 ≤ t ≤ tr

(6)Q0(t) = We−Z0(t) 0 ≤ t ≤ tr

(7)Zo(t) =

t

∫
0

�o(u)du

(8)
dQ0(t)

dt
+ 𝜃0(t)Q0(t) = −D; tr < t ≤ tw

(9)Q0(t) = e−Z0(t)D

tw

�
t

eZ0(u)du tr < t ≤ tw
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During the time interval [tw, T] , the demand is partially backlogged, and the differential 
equation is given by:

Using the boundary condition B(tw) = 0 , we have

The amount of lost sales at time t is

The maximum amount of demand backlogged per cycle is

Thus, the order quantity for the replenishment cycle is obtained as

3.4  Retailer’s cost components

Based on the above-obtained inventory levels, the inventory related costs per cycle are 
obtained as follows:

The replenishment cost is A
The inventory holding cost in RW

(10)We−Z0(tr) = e−Z0(tr)D

tw

∫
tr

eZ0(u)du

(11)W = D

tw

∫
tr

eZ0(u)du

(12)
dB(t)

dt
= De−�(T−t) tw ≤ t ≤ T

(13)B(t) =
D

�

(
e−�(T−t) − e−�(T−tw)

)
tw ≤ t ≤ T

(14)L(t) =

t

�
tw

D
(
1 − e−�(T−t)

)
dt tw ≤ t ≤ T

(15)L(t) = D
{
(t − tw) −

1

�

(
e−�(T−t) − e−�(T−tw)

)}
tw ≤ t ≤ T

(16)B(T) =
D

�

(
1 − e−�(T−tw)

)

(17)Q = S + B(T) = W + D

tr

∫
0

eZr(u)du +
D

�

(
1 − e−�(T−tw)

)
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The inventory holding cost in OW

The backlogging cost is

The opportunity cost due to lost sales

The purchasing cost PC = cQ

3.5  Interest earned, and interest paid

In addition, the supplier offers permissible delay in payment to the retailer. The interest 
earned, interest paid, and cost functions for distinct cases are computed as follows:

Case 1 0 < M ≤ tr.
In addition to the interest earned by fulfilling the demand of the current cycle for the 
time period 0 to M the retailer also earns interest on the revenue generated by satisfying 
shortages of the previous cycle. After the payment of the account at M, the retailer must 
finance the unsold items for the time period [M, T]. The interest earned is calculated as:

(18)HCrw = FD

tr

∫
0

e−Zr(t)

tr

∫
t

eZr(u)dudt

(19)

HCow = H

⎡
⎢⎢⎣

tr

∫
0

Q0(t)dt +

tw

∫
tr

Q0(t)dt

⎤
⎥⎥⎦

HCow = H

⎡⎢⎢⎣
W

tr

∫
0

e−Z0(t)dt + D

tw

∫
tr

e−Z0(t)

tw

∫
t

eZ0(u)dudt

⎤⎥⎥⎦

(20)
BC = cb

T

∫
tw

B(t)dt

BC =
cbD

�2

[
1 − e−�(T−tw)

{
1 + �(T − tw)

}]

(21)
LC = coD

T

∫
tw

(
1 − e−�(T−t)

)
dt

LC =
coD

�

[
�(T − tw) −

(
1 − e−�(T−tw)

)]

(22)PC = c

⎧⎪⎨⎪⎩
W + D

tr

∫
0

eZr(u)du +
D

�

�
1 − e−�(T−tw)

�⎫⎪⎬⎪⎭
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Case 2 tr < M ≤ tw.
In this case, also the retailer earns interest on the sales revenue generated during the time 
period 0 to M. Account is settled at M, and the payment for the remaining stock is to be done 
for the time period [M, T].

Case 3 tw < M ≤ T.
In this case, the complete stock bought on credit by the retailer from the supplier is sold. 
Hence the interest paid is zero. In addition to the interest earned on sold items up to M the 
retailer also earns additional interest on inventory from M to T.

4  Retailer’s total cost function

Therefore, the total cost per unit time during the cycle time (0, T) is determined as:

(23)
Interest earned IE1 =

1

2
pIeDM

2 + pIe

M

∫
0

B(T)dt

IE1 =
1

2
pIeDM

2 + pIe
D

�
M
(
1 − e−�(T−tw)

)

(24)

Interest paid IP1 = cIp

⎡
⎢⎢⎣

tr

∫
M

Qr(t)dt +

tr

∫
M

Q0(t)dt +

tw

∫
tr

Q0(t)dt

⎤
⎥⎥⎦

IP1 = cIp

⎡⎢⎢⎣

tr

∫
M

De−Zr(t)

tr

∫
t

eZr(u)dudt +

tr

∫
M

We−Z0(t)dt +

tw

∫
tr

e−Z0(t)D

tw

∫
t

eZ0(u)dudt

⎤⎥⎥⎦

(25)
Interest earned IE2 =

1

2
pIeDM

2 + pIe

M

∫
0

B(T)dt

IE2 =
1

2
pIeDM

2 + pIe
D

�
M
(
1 − e−�(T−tw)

)

(26)

Interest paid IP2 = cIp

tw

∫
M

Q0(t)dt

IP2 = cIpD

tw

∫
M

e−Z0(t)

tw

∫
t

eZ0(u)dudt

(27)Interest earned IE3 =
1

2
pIeDt

2
w
+ pIeD(M − tw)tw + pIe

D

�
M
(
1 − e−�(T−tw)

)
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TCi(tr, T) =
1

T

[
A + HCrw + HCow + BC + LC + PC − IEi + IPi

]
, i = 1, 2, 3

(28)TC(t
r
, T) =

⎧
⎪⎨⎪⎩

TC1(tr, T) if 0 < M ≤ t
r

TC2(tr, T) if t
r
< M ≤ t

w

TC3(tr, T) if t
w
< M ≤ T or T < M

(29)

TC1(tr , T) =
1

T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A + c

⎧⎪⎨⎪⎩
W + D

tr

�
0

eZr (u)du +
D

𝛿

�
1 − e−𝛿(T−tw )

�⎫⎪⎬⎪⎭
+ FD

tr

�
0

e−Zr (t)

tr

�
t

eZr (u)dudt

+H

⎧⎪⎨⎪⎩
W

tr

�
0

e−Z0 (t)dt + D

tw

�
tr

e−Z0 (t)

tw

�
t

eZ0 (u)dudt

⎫⎪⎬⎪⎭
+

cbD

𝛿2

�
1 − e−𝛿(T−tw )

�
1 + 𝛿(T − tw)

��

+
coD

𝛿

�
𝛿(T − tw) −

�
1 − e−𝛿(T−tw )

��
−
�
1

2
pIeDM

2 + pIe
D

𝛿
M
�
1 − e−𝛿(T−tw )

��

+cIp

⎧⎪⎨⎪⎩

tr

�
M

De−Zr (t)

tr

�
t

eZr (u)dudt +

tr

�
M

We−Z0 (t)dt +

tw

�
tr

e−Z0 (t)D

tw

�
t

eZ0 (u)(u)dudt

⎫⎪⎬⎪⎭

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; 0 < M ≤ tr

(30)
TC2(tr , T) =

1

T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A + c

⎧⎪⎨⎪⎩
W + D

tr

�
0

eZr (u)du +
D

𝛿

�
1 − e−𝛿(T−tw)

�⎫⎪⎬⎪⎭
+ FD

tr

�
0

e−Zr (t)

tr

�
t

eZr (u)dudt

+H

⎧⎪⎨⎪⎩
W

tr

�
0

e−Z0(t)dt + D

tw

�
tr

e−Z0(t)

tw

�
t

eZ0(u)dudt

⎫⎪⎬⎪⎭
+
cbD

𝛿2

�
1 − e−𝛿(T−tw)

�
1 + 𝛿(T − tw)
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5  Theoretical theorems and results

In this section, the retailer’s optimal solution and the optimal replenishment cycle time is 
determined. Now the problem is to minimize the total cost function:

According to Theorems 3.2.9 and 3.2.10 in Cambini and Martein (2009), the real-val-
ued function

is (strictly) pseudo-convex, if g(x) is non-negative, differentiable and (strictly) convex, and 
h(x) is positive, differentiable, and concave. Let

Without any loss of generality, it can be assumed that J > 0 . Given tr , and using Eq. (32) 
it can be proved that the retailer’s total cost TC(tr, T) in Eq. (28) is strictly pseudo-con-
vex in T if J > 0 . Consequently, there exists a unique global optimal solution T∗ such that 
TC(tr, T) is minimized.

Theorem 1 Given the time when the stock level of RW reaches zero, if J > 0 then TC(tr, T) 
in Eq. (28) is a strictly pseudo-convex function in T, and there exists a unique minimum 
solution T*.

Proof See Appendix 1.

Given the time when the stock level of RW reaches zero, applying Theorem 1, taking 
the first-order derivative of TC1(tr, T) with respect to T and equating to zero, the neces-
sary and sufficient conditions for the optimal replenishment cycle time T* are obtained as 
follows:

Minimize TC(tr, T)

s.t. 0 < tr < tw, S ≥ W

(32)q(x) =
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The detailed derivation of Case 2 and Case 3 are provided in Appendix 2.
Similarly, for given replenishment cycle time T it can be further proved that TC(tr, T) in 

Eq. (28) is a strictly convex function in tr . Let

Without any loss of generality, it can be assumed that L > 0 . Thus, the following result is 
obtained.

Theorem 2 For given replenishment cycle time T, if L > 0 , then TC(tr, T) in Eq. (28) is a 
strictly convex function of tr and hence there exists a unique optimal solution t∗

r
.

Proof See Appendix 3.

6  Numerical examples

To illustrate the proposed model, two numerical examples have been considered.
In the first numerical example, the newly adopted deterioration rate 

�(t) = 1∕(1 + k − t) with t ≤ k is used to incorporate the fact that the deterioration rate is 
100% near to its expiration date. In the second example, the most commonly known Weibull 
non-decreasing deterioration rate 𝜃(t) = 𝛼𝛽t𝛽−1, 0 < 𝛼 < 1, 𝛽 ≥ 1, and t ≥ 0 is used.

To demonstrate numerically the proposed system, the following data set is taken:
A = $1000 per order, D = 1000 units per year, W = 200 units, H = $ 0.5 per unit per year, 

F = $0.7 per unit per year, c = $1.0 per unit, p = $3.0 per unit, cb = $0.8 per unit, co = $2 per 
unit, δ = 0.9, M = 0.25 or 0.50 years, Ie = 0.12 per dollar per year, Ip = 0.15 per dollar per year.

Example 1 For �i(t) = 1∕(1 + ki − t) with t ≤ ki, i = r, o , let kr = 1 year, ko = 1 year. The 
optimal solution to M = 0.25 and 0.50 is obtained for each case as shown in Table 1.

Table 1 reveals that a higher value of the trade credit period diminishes the total relevant 
cost. Although the order quantity and the cycle length remain unaffected but the extended 
credit terms for payments to the supplier reduces costs incurred by the retailer.

Example 2 Using the same data set as in Example 1 except for M = 0.30 years, an optimal 
solution obtained for kr = ko = 1 year and 2 years for each case is shown in Table 2.

It is observed from Table 2 that if the maximum lifetime k is high, order quantity increases, 
which eventually results in declining total relevant cost. This pattern of change suggests that 
if the maximum lifetime k is high, then the retailer can reduce the total cost by increasing the 
order quantity, thereby balancing the cost due to deterioration.

(35)
(
co − cb(T − tw) − c

)
= L

Table 1  Impact of 
credit period M, when 
�(t) = 1∕(1 + k − t) with t ≤ k

Parameter Q T TC

M = 0.25 517.89 0.53 1291.71
M = 0.50 517.95 0.53 1201.71
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Example 3 Considering the Weibull deterioration rate �i(t) = �i�it
�i−1, i = r, o , where 

�o = 0.05, �o = 1.8, �r = 0.02, �r = 1.8 , the optimal solution obtained for M = 0.25 and 
0.50 for each case is presented in Table 3.

Table 3 shows that the increase in trade credit period slightly lowers the order quan-
tity and the cycle length and eventually reduces the retailer’s total relevant cost.

Example 4 Considering Weibull deterioration rate �i(t) = �i�it
�i−1, i = r, o the optimal 

solution obtained for different values of α and β at M = 0.30 is presented in Table 4.

The total relevant cost it quite sensitive to the parameter of the deterioration rate αo 
and αr. When αo and αr increases, the order quantity declines, which eventually results 
in higher costs. Whereas, the total cost is not so sensitive to the shape parameters of the 
deterioration rate βo and βr.

7  Sensitivity analysis and managerial insights

In this section, some managerial implications based on the sensitivity analysis of the 
parameters are displayed. Further sensitivity analysis is performed on the two different 
time-varying deterioration rates, but both show similar results with the change in sig-
nificant parameters of the model. Thus, to avoid unnecessary repetitions, computational 
results of sensitivity analysis performed on maximum lifetime data set based on Exam-
ple 1 are presented in Table 5.

The sensitivity analysis reveals the following managerial insights:

Table 2  Impact of a 
maximum lifetime, when 
�(t) = 1∕(1 + k − t) with t ≤ k

Parameter Q T TC

kr = ko = 1 517.95 0.53 1273.71
kr = ko = 2 533.17 0.55 1260.42

Table 3  Impact of 
credit period M, when 
𝜃(t) = 𝛼𝛽t𝛽−1, 0 < 𝛼 < 1, 𝛽 ≥ 1, and t ≥ 0

Parameter Q T TC

M = 0.25 571.14 0.59 1255.42
M = 0.50 549.82 0.57 1168.01

Table 4  Impact of α and β, when 
𝜃(t) = 𝛼𝛽t𝛽−1, 0 < 𝛼 < 1, 𝛽 ≥ 1, and t ≥ 0

αo βo αr βr Q T TC

0.05 1 0.02 1 562.46 0.58 1242.89
0.5 1 0.02 1 546.04 0.55 1281.56
0.05 1.8 0.02 1 560.51 0.58 1239.68
0.05 1 0.2 1 539.87 0.55 1246.91
0.05 1 0.02 1.8 564.64 0.58 1242.46
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7.1  Impact of deterioration distribution parameters

It has been demonstrated from a sensitivity analysis that the maximum lifetime or dete-
rioration distribution parameters of the product are of prime considerations in decision 
making by the retailer. The time to the expiration date is of utmost importance while 
dealing with deteriorating items, especially in decisions regarding optimal cycle time. 
Also, as can be observed, the total relevant cost decreases as the maximum lifetime 
increases, thus, to achieve the optimal total cost managing the order quantity and the 
cycle time in the presence of maximum lifetime and deterioration distribution param-
eters is essential.

Table 5  Sensitivity analysis on 
parameters

Parameter Parameter value T Q TC

C 0.5 0.47 464.27 798.5
1.5 0.59 547.43 1767.66
2 0.77 669.43 2216.29

D 800 0.61 470.04 1067.74
1200 0.48 564.37 1511.63
1500 0.43 627.51 1836.12

H 0.3 0.54 527.57 1279.69
0.8 0.52 503.25 1307.77
1 0.52 491.02 1317.12

F 0.5 0.54 528.73 1290.74
1.2 0.52 502.71 1293.29
1.5 0.51 496.7 1293.94

ko 0.5 0.52 509.88 1302.84
2 0.54 526.94 1279.54
3 0.55 530.74 1273.07

kr 0.5 0.53 511.73 1292.36
2 0.54 526.96 1290.88
3 0.54 532.47 1290.38

A 50 0.38 372.19 1181.17
200 0.78 742.88 1444.82
500 1.35 1198.99 1730.93

P 2.5 0.54 523.26 1303.09
4 0.53 509.4 1268.46
6 0.53 509.4 1221.41

M 0.2 0.54 524.42 1309.16
0.4 0.53 517.95 1237.7
0.6 0.53 517.95 1165.7

Ip 0.12 0.53 517.89 1291.7
0.18 0.53 517.89 1291.7
0.2 0.53 517.89 1291.7

Ie 0.1 0.54 523.26 1303.09
0.15 0.53 511.45 1274.33
0.2 0.52 501.72 1244.67
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7.2  Impact of selling price and purchase cost

Similar to the common practice increase in purchase cost results in an increase in total 
relevant cost. Retailers have been taking benefit of this result through bulk purchases or 
engaging in discounting strategies that provide a lesser unit cost of the product. Also, the 
increase in selling price results in decreasing the total relevant cost.

7.3  Impact of cost parameters

The increment in the cost parameters H, F, A results in an increase in total relevant cost. 
The order quantity declines with increment in H, F since the retailer is forced to procure 
less when the deterioration cost incremented, which eventually results in increased total 
cost. Whereas, the order quantity increases with a decrement in A, thus resulting in lesser 
total cost.

Traditionally, the supplier offers trade credit to the retailer in order to stimulate the 
retailer’s order quantity. Whereas, in the numerical examples, it is observed that there is a 
marginal change in order quantity as the credit period rises. This variation suggests that as 
the credit period increases, it results in higher opportunity costs for the supplier and lower 
opportunity cost of capital for the retailer. Thus, to obtain the minimum cost, there is no 
substantial deviation in order quantity and hence the cycle length.

8  Conclusion and further research

In this paper, the following essential factors are captured: (1) stock management of expir-
ing inventories is essential for emerging retail outlets and plays a vital role in effective 
decision making, thus in contrast to a constant decay rate it is assumed that perishable 
products have a fixed lifetime, (2) trade credit has a substantial impact on retailers’ inven-
tory policies, (3) additional warehouse helps to cope with uncertainties of demand in busi-
ness settings, and (4) consideration of partial backlogging provides a real-life scenario of 
the retail sector where the customer is free to look for substitutes of the unavailable prod-
uct, and the backlogged rate depends on the waiting time up to the next replenishment. 
Several theoretical results are also established to characterize the existence and unique-
ness of the optimal solution of the proposed model. Sensitivity analysis is performed to 
investigate the impact of the crucial model parameter on the total relevant cost. Several 
managerial insights have been obtained, such as considering the deterioration distribution, 
or expiration dates of the items is beneficial for inventory management, and accordingly, 
the decision strategies can be employed. By implementing the policies and considering the 
factors mentioned in the proposed model, the manager can retard the total cost. The model 
is practical for fruits, vegetables, medicine, grains, electronic products, and other goods 
that deteriorate or decline over time. Retailers want to sell such products before their expiry 
date else, they lose their invested amount. Thus the model reflects the pragmatic views 
by considering the time-dependent deterioration with maximum lifetime, trade credit, two 
warehouse, and partial backlogging.

It would be interesting to extend the model by considering advance payment and other 
trade credit options. Deterministic demand can also be replaced by stochastic demand or 
price-dependent demand. Future extensions for research can be including multi-items in an 
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integrated supply chain, inflation, and quantity discount effects, two-stage trade credit financ-
ing, different demand forms such as stock-dependent demand, credit-linked demand, or pro-
motion dependent demand.
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Appendix 1

Proof of Theorem  1 Let g1(T) = A + HCrw + HCow + BC + LC + PC − IE1 + IP1 and 
h(T) = T > 0.

Therefore,

For the given value of tr , the first order derivative of g1(T) is obtained as

A derivative of (36) is further obtained as,

This implies, if J > 0 , then g��

1
(T) > 0 and hence g1(T) is non-negative, differentiable 

and strictly convex.
It has been calculated and verified that g�

2
(T) and g�

3
(T) is the same as g�

1
(T) , where

Thus, if J > 0 then the total cost TC(tr, T) in Eq. (28) is a strictly pseudo-convex func-
tion in T, and there exists a unique optimal solution.

Appendix 2

It is observed that gi(T)
h(T)

= TCi(tr, T), i = 1, 2, 3 . Hence given tr , taking the first order 
derivative of TC1(tr, T) with respect to T, and setting the result to zero, the necessary and 
sufficient condition to find T∗ , is obtained as follows:

Thus from Eqs. (29) and (36), if J > 0 then the necessary and sufficient condition for T∗ 
is

q1(T) =
g1(T)

h(T)
= TC1(tr, T)

(36)g
�

1
(T) =

{
cb�(T − tw) − co − c − pIeM
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g2(T) = A + HCrw + HCow + BC + LC + PC − IE2 + IP2

g3(T) = A + HCrw + HCow + BC + LC + PC − IE3

dTC1(tr, T)

dT
=

g
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(T)

T
−

g1(T)

T2
= 0

⇒ g
�

1
(T)T − g1(T) = 0
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Similarly, the necessary and sufficient conditions for TC2

(
tr, T

)
 , TC3

(
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)
 with respect 

to T are obtained as follows:
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Appendix 3

Proof of Theorem 2 For any given T, the first and second order derivatives of TC1

(
tr, T

)
 

with respect to tr are obtained as:
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Let (co − cb(T − tw) − c) = L , then for any given T, if L > 0 , then TC1(tr, T) , TC2(tr, T) 
and TC3(tr, T) given in Eqs. (29), (30) and (31) respectively are a strictly convex function 
of tr . Consequently, there exists a unique optimal solution for a total cost TC(tr, T) in Eq. 
(28).

References

Aggarwal, S. P., & Jaggi, C. K. (1995). Ordering policies of deteriorating items under permissible delay in 
payments. Journal of the Operational Research Society, 46(5), 658–662.

Agrawal, S., Banerjee, S., & Papachristos, S. (2013). Inventory model with deteriorating items, ramp-type 
demand and partially backlogged shortages for a two-warehouse system. Applied Mathematical Mod-
elling, 37(20), 8912–8929.

Bakker, M., Riezebos, J., & Teunter, R. H. (2012). Review of inventory systems with deterioration since 
2001. European Journal of Operational Research, 221(2), 275–284.

Banerjee, S., & Agrawal, S. (2008). A two warehouse inventory model for items with three parameter 
Weibull distribution deterioration, shortages and linear trend in demand. International Transactions in 
Operational Research, 15(6), 755–775.

Cambini, A., & Martein, L. (2009). Convex functions (pp. 1–21). Berlin Heidelberg: Springer.
Cárdenas-Barrón, L. E., Shaikh, A. A., Tiwari, S., & Treviño-Garza, G. (2018). An EOQ inventory model 

with nonlinear stock dependent holding cost, nonlinear stock dependent demand and trade credit. Com-
puters and Industrial Engineering. https ://doi.org/10.1016/j.cie.2018.12.004.

Chang, C. T., Ouyang, L. Y., Teng, J. T., Lai, K. K., & Cárdenas-Barrón, L. E. (2019). Manufacturer’s pric-
ing and lot-sizing decisions for perishable goods under various payment terms by a discounted cash 
flow analysis. International Journal of Production Economics, 218, 83–95.

Chen, S. C., Cárdenas-Barrón, L. E., & Teng, J. T. (2014). Retailer’s economic order quantity when the sup-
plier offers conditionally permissible delay in payments link to order quantity. International Journal of 
Production Economics, 155, 284–291.

Chen, S.-C., & Teng, J.-T. (2015). Inventory and credit decisions for time-varying deteriorating items with 
up-stream and down-stream trade credit fnancing by discounted cash fow analysis. European Journal 
of Operational Research, 243(2), 566–575.

Covert, R. P., & Philip, G. C. (1973). An EOQ model for items with Weibull distribution deterioration. AIIE 
Transactions, 5(4), 323–326.

Ghare, P. M., & Schrader, G. F. (1963). A model for exponentially decaying inventory. Journal of Industrial 
Engineering, 14(5), 238–243.

d2TC3

�
tr , T

�
dt2

=
1

T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

FD

⎧⎪⎨⎪⎩
eZr(tr)𝜃r

�
tr
� tr

�
0

e−Zr (t)dt + 1

⎫⎪⎬⎪⎭
+ cDeZr(tr)𝜃r

�
tr
�

+

⎧⎪⎨⎪⎩
HDeZ0(tw)

tw

�
tr

e−Z0(t)dt +
�
co − cb

�
T − tw

�
− c

�
De−𝛿(T−tw) − coD

⎫⎪⎬⎪⎭

d2tw

dt2
r

+

⎧
⎪⎨⎪⎩
HDeZ0(tw)𝜃o

�
tw
� tw

�
tr

e−Z0(t)dt + D𝛿e−𝛿(T−tw)
�
co − cb

�
T − tw

�
− c

�
+ cbDe

−𝛿(T−tw)

⎫
⎪⎬⎪⎭

�
dtw

dtr

�2

+ pIeD

��
M𝛿e−𝛿(T−tw) + 1

�� dtw

dtr

�2

+
�
M
�
e−𝛿(T−tw) − 1

�
+ tw

� d2tw

dt2
r

�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

tw < M ≤ T or T < M

https://doi.org/10.1016/j.cie.2018.12.004


160 Annals of Operations Research (2020) 295:139–161

1 3

Goswami, A., & Chaudhuri, K. (1991). EOQ model for an inventory with a linear trend in demand and 
finite rate of replenishment considering shortages. International Journal of Systems Science, 22(1), 
181–187.

Goyal, S. K. (1985). Economic order quantity under conditions of permissible delay in payments. Journal of 
the Operational Research Society, 36(4), 335–338.

Goyal, S. K., & Giri, B. C. (2001). Recent trends in modeling of deteriorating inventory. European Journal 
of Operational Research, 134(1), 1–16.

Hsieh, T. P., Chang, H. J., Dye, C. Y., & Weng, M. W. (2009). Optimal lot size under trade credit financing 
when demand and deterioration are fluctuating with time. International Journal of Information and 
Management Sciences, 20(2), 191–204.

Jaggi, C. K., Cárdenas-Barrón, L. E., Tiwari, S., & Shafi, A. A. (2017a). Two-warehouse inventory model 
for deteriorating items with imperfect quality under the conditions of permissible delay in payments. 
Scientia Iranica. Transaction E, Industrial Engineering, 24(1), 390.

Jaggi, C. K., Gupta, M., Kausar, A., & Tiwari, S. (2019). Inventory and credit decisions for deteriorating 
items with displayed stock dependent demand in two-echelon supply chain using Stackelberg and Nash 
equilibrium solution. Annals of Operations Research, 274(1–2), 309–329.

Jaggi, C. K., Tiwari, S., & Goel, S. K. (2017b). Credit financing in economic ordering policies for non-
instantaneous deteriorating items with price dependent demand and two storage facilities. Annals of 
Operations Research, 248(1–2), 253–280.

Jaggi, C. K., Tiwari, S., & Gupta, M. (2018). Impact of trade credit on inventory models for Weibull dis-
tribution deteriorating items with partial backlogging in two-warehouse environment. International 
Journal of Logistics Systems and Management, 30(4), 503–520.

Jaggi, C. K., Yadavalli, V. S. S., Sharma, A., & Tiwari, S. (2016). A fuzzy EOQ model with allowable 
shortage under different trade credit terms. Applied Mathematics and Information Sciences, 10(2), 
785–805.

Kaya, O., & Polat, A. L. (2017). Coordinated pricing and inventory decisions for perishable products. 
OR Spectrum, 39(2), 589–606.

Khakzad, A., & Gholamian, M. R. (2020). The effect of inspection on deterioration rate: An inventory 
model for deteriorating items with advanced payment. Journal of Cleaner Production, 120117.

Khan, M. A. A., Shaikh, A. A., Panda, G. C., Bhunia, A. K., & Konstantaras, I. (2020). Non-instantane-
ous deterioration effect in ordering decisions for a two-warehouse inventory system under advance 
payment and backlogging. Annals of Operations Research, 289, 243–275.

Li, R., & Teng, J. T. (2018). Pricing and lot-sizing decisions for perishable goods when demand depends 
on selling price, reference price, product freshness, and displayed stocks. European Journal of 
Operational Research, 270(3), 1099–1108.

Lin, F., Jia, T., Wu, F., & Yang, Z. (2019). Impacts of two-stage deterioration on an integrated inven-
tory model under trade credit and variable capacity utilization. European Journal of Operational 
Research, 272(1), 219–234.

Mishra, U., Tijerina-Aguilera, J., Tiwari, S., & Cárdenas-Barrón, L. E. (2018). Retailer’s joint ordering, 
pricing, and preservation technology investment policies for a deteriorating item under permissible 
delay in payments. Mathematical Problems in Engineering. https ://doi.org/10.1155/2018/69624 17.

Pentico, D. W., & Drake, M. J. (2011). A survey of deterministic models for the EOQ and EPQ with par-
tial backordering. European Journal of Operational Research, 214(2), 179–198.

Raafat, F. (1991). Survey of literature on continuously deteriorating inventory models. Journal of the 
Operational Research Society, 42(1), 27–37.

Seifert, D., Seifert, R. W., & Protopappa-Sieke, M. (2013). A review of trade credit literature: Oppor-
tunities for research in operations. European Journal of Operational Research, 231(2), 245–256.

Shaikh, A. A., Cárdenas-Barrón, L. E., & Tiwari, S. (2020a). Economic production quantity (EPQ) 
inventory model for a deteriorating item with a two-level trade credit policy and allowable short-
ages. In Optimization and inventory management (pp. 1–19). Singapore: Springer.

Shaikh, A. A., Tiwari, S., & Cárdenas-Barrón, L. E. (2020b). An economic order quantity (EOQ) inven-
tory model for a deteriorating item with interval-valued inventory costs, price-dependent demand, 
two-level credit policy, and shortages. In  Optimization and inventory management  (pp. 21–53). 
Singapore: Springer.

Shi, Y., Zhang, Z., Chen, S. C., Cárdenas-Barrón, L. E., & Skouri, K. (2019). Optimal replenishment 
decisions for perishable products under cash, advance, and credit payments considering carbon tax 
regulations. International Journal of Production Economics, 107514.

Taleizadeh, A. A., Tavassoli, S., & Bhattacharya, A. (2020). Inventory ordering policies for mixed sale 
of products under inspection policy, multiple prepayment, partial trade credit, payments linked to 
order quantity and full backordering. Annals of Operations Research, 287(1), 403–437.

https://doi.org/10.1155/2018/6962417


161Annals of Operations Research (2020) 295:139–161 

1 3

Tavakoli, S., & Taleizadeh, A. A. (2017). An EOQ model for decaying item with full advanced payment 
and conditional discount. Annals of Operations Research, 259(1–2), 415–436.

Teng, J. T. (2002). On the economic order quantity under conditions of permissible delay in payments. 
Journal of the Operational Research Society, 53(8), 915–918.

Teng, J. T., Yang, H. L., & Chern, M. S. (2013). An inventory model for increasing demand under two 
levels of trade credit linked to order quantity. Applied Mathematical Modelling, 37(14), 7624–7632.

Tiwari, S., Cárdenas-Barrón, L. E., Goh, M., & Shaikh, A. A. (2018a). Joint pricing and inventory model 
for deteriorating items with expiration dates and partial backlogging under two-level partial trade 
credits in supply chain. International Journal of Production Economics, 200, 16–36.

Tiwari, S., Cárdenas-Barrón, L. E., Khanna, A., & Jaggi, C. K. (2016). Impact of trade credit and infla-
tion on retailer’s ordering policies for non-instantaneous deteriorating items in a two-warehouse 
environment. International Journal of Production Economics, 176, 154–169.

Tiwari, S., Cárdenas-Barrón, L. E., Shaikh, A. A., & Goh, M. (2018b). Retailer’s optimal ordering pol-
icy for deteriorating items under order-size dependent trade credit and complete backlogging. Com-
puters and Industrial Engineering. https ://doi.org/10.1016/j.cie.2018.12.006.

Tiwari, S., Jaggi, C. K., Bhunia, A. K., Shaikh, A. A., & Goh, M. (2017). Two-warehouse inventory model 
for non-instantaneous deteriorating items with stock-dependent demand and inflation using particle 
swarm optimization. Annals of Operations Research, 254, 401–423.

Tiwari, S., Jaggi, C. K., Gupta, M., & Cárdenas-Barrón, L. E. (2018c). Optimal pricing and lot-sizing policy 
for supply chain system with deteriorating items under limited storage capacity. International Journal 
of Production Economics, 200, 278–290.

Wang, W. C., Teng, J. T., & Lou, K. R. (2014). Seller’s optimal credit period and cycle time in a sup-
ply chain for deteriorating items with maximum lifetime. European Journal of Operational Research, 
232(2), 315–321.

Wu, J., Al-Khateeb, F. B., Teng, J. T., & Cárdenas-Barrón, L. E. (2016). Inventory models for deteriorating 
items with maximum lifetime under downstream partial trade credits to credit-risk customers by dis-
counted cash-flow analysis. International Journal of Production Economics, 171, 105–115.

Wu, J., Ouyang, L. Y., Cárdenas-Barrón, L. E., & Goyal, S. K. (2014). Optimal credit period and lot size for 
deteriorating items with expiration dates under two-level trade credit financing. European Journal of 
Operational Research, 237(3), 898–908.

Yang, H. L. (2004). Two-warehouse inventory models for deteriorating items with shortages under inflation. 
European Journal of Operational Research, 157(2), 344–356.

Yang, H. L. (2006). Two-warehouse partial backlogging inventory models for deteriorating items under 
inflation. International Journal of Production Economics, 103(1), 362–370.

Yang, H. L. (2012). Two-warehouse partial backlogging inventory models with three-parameter Weibull 
distribution deterioration under inflation. International Journal of Production Economics, 138(1), 
107–116.

Yang, H. L., & Chang, C. T. (2013). A two-warehouse partial backlogging inventory model for deteriorat-
ing items with permissible delay in payment under inflation. Applied Mathematical Modelling, 37(5), 
2717–2726.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1016/j.cie.2018.12.006

	Retailer’s ordering policies for time-varying deteriorating items with partial backlogging and permissible delay in payments in a two-warehouse environment
	Abstract
	1 Introduction and research motivation
	2 Literature review
	2.1 Deteriorating inventories
	2.2 Trade credit
	2.3 Two warehouse environment

	3 Assumptions and notation
	3.1 Hypothesis of the inventory system
	3.2 Mathematical model formulation
	3.3 Inventory levels
	3.4 Retailer’s cost components
	3.5 Interest earned, and interest paid

	4 Retailer’s total cost function
	5 Theoretical theorems and results
	6 Numerical examples
	7 Sensitivity analysis and managerial insights
	7.1 Impact of deterioration distribution parameters
	7.2 Impact of selling price and purchase cost
	7.3 Impact of cost parameters

	8 Conclusion and further research
	Acknowledgements 
	References




