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Abstract
We study a dynamic portfolio optimization problem related to convergence trading, which is
an investment strategy that exploits temporarymispricing by simultaneously buying relatively
underpriced assets and selling short relatively overpriced ones with the expectation that
their prices converge in the future. We build on the model of Liu and Timmermann (Rev
Financ Stud 26(4):1048–1086, 2013) and extend it by incorporating unobservable Markov-
modulated pricing errors into the price dynamics of two co-integrated assets.We characterize
the optimal portfolio strategies in full and partial information settings under the assumption
of unrestricted and beta-neutral strategies. By using the innovations approach, we provide
the filtering equation which is essential for solving the optimization problem under partial
information. Finally, in order to illustrate the model capabilities, we provide an example with
a two-state Markov chain.

Keywords Optimal control · Convergence trade · Regime-switching · Partial information

1 Introduction

Convergence-type trading strategies have become one of the most popular trading strategies
that are used to capitalize on market inefficiencies, or deviations from “equilibrium,” espe-
cially with the rapid developments in algorithmic and high-frequency trading. For a typical
convergence trade, temporary mispricing is exploited by simultaneously buying relatively
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underpriced assets and selling short relatively overpriced assets in anticipation that at some
future date their prices will have become closer and thus one can profit by the extent of
the convergence. A prime example of a convergence trade is the pairs trading strategy that
involves a long position and a short position in a pair of similar stocks that have moved
together historically and hence an investor can profit from the relative value trade arising
from the cointegration between asset price dynamics involved in the trade. Other examples
of convergence-type trading strategies are risk arbitrage (known also as merger arbitrage)
that speculates on successful completion of a merger of two companies, or cash and carry
trade that tries to benefit from pricing inefficiencies between spot market and futures market
of the same underlying stock or commodity by simultaneously placing opposite bets on spot
and futures markets.

In this work, we extend the convergence trade model given by Liu and Timmermann
(2013) that investigates the dynamic optimal portfolio allocation via expected utility maxi-
mization from terminal wealth, with two co-integrated assets with pricing errors and amarket
index. Liu and Timmermann (2013) show that under recurring and non-recurring “arbitrage”
opportunities, optimal portfolio allocations could deviate from conventional long-short delta-
neutral strategies and it can be optimal to hold both risky assets long (or short) at the same
time.We extend Liu and Timmermann (2013) mainly in two directions. First, we assume that
pricing errors related to the co-integrated assets are affine functions of the spread and modu-
lated by a continuous-time, finite-state Markov chain, which is taken to be unobservable and
hence needs to be filtered out. Having an affine structure on the pricing errors allows us to
model liquidity effects related to the market microstructure. Moreover, taking pricing errors
(or “alphas” as commonly referred in finance literature) dependent on a hiddenMarkov chain
captures certain salient features of convergence trade. Although most of the existing liter-
ature assumes that pricing errors are fully observable, in reality, those errors, albeit having
a stochastic nature, cannot be known precisely or may depend on some unobservable state
variables that change according to certain factors in the economy or the market. By modeling
those pricing errors as functions of an unobservable regime-switching factor, we would like
to build a more realistic representation for convergence trading. The second extension of
our model is that we allow capital asset pricing model (CAPM) betas of two risky assets
to be different. This characteristic enables us to show the optimal portfolio allocation for
beta-neutral pairs trading, which is designed to keep the portfolio’s beta zero all the time
and hence achieve market neutrality. Hence, in this way we can represent a common market
practice among pairs traders who use to form beta-neutral portfolio to avoid market risk.
Moreover, allowing for different betas also enables us to account for betting against beta
strategies that involve going short with high-beta stocks and going long with low-beta ones.
Betting against beta type strategies are often associated with fluctuating low alpha (Frazzini
and Pedersen 2014), which also justifies our choice of modeling pricing errors under regime
switching and partial information.

There is a growing stream of literature about optimal convergence trading. Liu and
Longstaff (2003) provide a partial equilibrium examination of convergence trading strate-
gies, where the mispricing is modeled using a Brownian bridge. Jurek and Yang (2007)
incorporate an Ornstein–Uhlenbeck process to model the spread for non-myopic investors
and solve the dynamic portfolio allocation for constant relative risk aversion and recursive
Epstein–Zin utility function. By building on the results of Jurek and Yang (2007), Liu and
Timmermann (2013) solve a similar problem by focusing both on recurring and non-recurring
arbitrage opportunities in a continuous error-correction model with two co-integrated assets
and a market index. Lei and Xu (2015) extend Liu and Timmermann (2013) by incorporating
transaction costs. Inspired by the dynamic pairs trading model of Mudchanatongsuk et al.
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(2008), Tourin and Yan (2013) develop an optimal portfolio strategy to invest in two risky
assets and the money market account, assuming that log-prices are co-integrated, and solve
the optimal portfolio allocation problem for the exponential utility. Cartea and Jaimungal
(2016) extend Tourin and Yan (2013) to allow the investor to trade in multiple co-integrated
assets. Chiu andWong (2011) investigate the optimal dynamic trading of co-integrated assets
using the classical mean-variance portfolio selection criterion. Angoshtari (2016) studies the
necessary and sufficient conditions for well-posedness and no-arbitrage for the model of Liu
and Timmermann (2013) by focusing on the concept of investor nirvana.

Considering similar problems under regime-switching and/or partial information, studies
that focus on the dynamic portfolio choice problem are rather limited in the literature. Lee and
Papanicolaou (2016) solve the optimal pairs trading problem within a power utility setting,
where the drift uncertainty is modeled by a continuous time Gaussianmean-reverting process
and necessitates Kalman filtering to extract estimates of the unobservable state process. Altay
et al. (2018) extend the pairs tradingmodel ofMudchanatongsuk et al. (2008) by incorporating
regime switching under partial information and risk penalization. Classical portfolio selection
problems, which do not cover portfolios involving co-integrated assets, in a full or partial
information and/or Markov regime-switching framework can be found, for example, in Zhou
and Yin (2003), Bäuerle and Rieder (2004), and Sotomayor and Cadenillas (2009) for the
full information case with Markov regime switching or Bäuerle and Rieder (2005), Björk
et al. (2010) and Frey et al. (2012) for the partial information case.

In summary, we have the following key contributions. First, we compute the optimal
unrestricted and beta-neutral strategies both in full and partial information settings for a log-
utility trader by using dynamic programming. Second, we characterize the value function
as the unique (classical) solution of the Hamilton–Jacobi–Bellman (HJB) equation, which
is reduced to a system of ordinary differential equations (ODE) in the full information case,
and given by a system of partial differential equations (PDE) in the partial information case.
We also provide verification results for both cases. Third, to solve the convergence trade
problem under partial information we compute the filtering equation by applying the inno-
vations approach, see Sect. 4. Having the filter dynamics enables us to study the equivalent
reduced problemwhere unobservable states of theMarkov chain are replaced by their optional
projections over the available filtration. Comparing optimal strategies under full and partial
information, we obtain that the certainty equivalence principle holds, i.e., the optimal portfo-
lio strategy in the latter case can be obtained by replacing the unobservable state variable with
its filtered estimate. Finally, we analyze numerically an example with a two-state Markov
chain and demonstrate certain features of our proposed model. In particular, we illustrate the
dominance of unrestricted strategies over beta-neutral strategies. Moreover, we show that a
trader who uses averaged data (in terms of parameters) is not performing better than the trader
who uses aMarkov modulated model in a full information setting. For the partial information
case, our example suggests that there is a non-negative information premium, indicating that
the fully informed trader has an advantage over the partially informed one.

The remainder of the paper is organized as follows. Section 2 introduces the model setting
and the notation. In Sect. 3 we study the portfolio optimization problem in a full information
setting with regime switching and compare the optimal strategies with those implied by Liu
and Timmermann (2013) model. In Sect. 4 we solve the utility maximization problem under
partial information. In Sect. 5, we provide a numerical analysis of an example with a two-
state Markov chain. We conclude with Sect. 6. In order to improve the flow of the paper we
provide proofs of all results in the “Appendix”.
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2 Model setting and notation

We study a modification of the continuous-time error-correction model of Liu and Timmer-
mann (2013) in a regime-switching setup under both full and partial information. Precisely
we fix a probability space (Ω, G,P) and a finite-time horizon T which coincides with the
terminal time of an investment. We also introduce a complete and right-continuous filtration
G = {Gt , t ∈ [0, T ]}, representing the global information flow, and assume that all processes
defined below are adapted to G.

Let Y be a continuous-time finite-state Markov chain taking values in E = {e1, . . . , eK },
for K ≥ 2, where, without loss of generality, we assume that ei is the i th canonical vector in
R

K , for every i ∈ {1, . . . , K }. We denote by Q = (qi j )i, j∈{1,...,K } the infinitesimal generator
of Y , with qi j > 0 for every i �= j and qii = −∑ j �=i q

i j , and let Π = (Π1, . . . ΠK ) be its
initial distribution.

Remark 1 The finite-state nature of the Markov chain implies that for every t ∈ [0, T ], and
every function f : E → R we have f (Yt ) = ∑K

i=1 f i1{Yt=ei } where f i = f (ei ), for every
i ∈ {1, . . . , K }.

We consider a market model where a trader can invest in a riskless asset with constant
rate of return r ≥ 0 and three risky assets with price processes S(m), S(1) and S(2). The first
asset represents the market index and the other two are co-integrated assets. We assume that
the price dynamics of market index is given by

dS(m)
t

S(m)
t

= (r + μm) dt + σm dB(m)
t , S(m)

0 > 0, (1)

where μm ∈ R is the market risk premium, σm > 0 is the market volatility and B(m) is a
standard Brownian motion. Co-integrated asset prices are described by the following SDEs,

dS(1)
t

S(1)
t

= (r + β1μm) dt + β1σm dB(m)
t + σ dB(0)

t + b1 dB
(1)
t − λ1(Yt ) (Xt − α1(Yt )) dt,

(2)

dS(2)
t

S(2)
t

= (r + β2μm) dt + β2σm dB(m)
t + σ dB(0)

t + b2 dB
(2)
t + λ2(Yt ) (Xt − α2(Yt )) dt,

(3)

with S(1)
0 > 0 and S(2)

0 > 0. Coefficients β1 ∈ R, β2 ∈ R, b1 > 0, b2 > 0 and σ > 0 are
constant parameters and (B(0), B(1), B(2)) is a three-dimensional standard Brownian motion
independent of B(m).

At any time t ∈ [0, T ], we define the spread between co-integrated assets by Xt =
log S(1)

t − log S(2)
t . The process X represents the mean-reverting component of pricing errors.

We assume thatλ1(Yt )+λ2(Yt ) > 0P-a.s. for every t ∈ [0, T ], so that X becomes a stationary
process with the dynamics

dXt =
(
Γ1 − λ1(Yt )(Xt − α1(Yt )) − λ2(Yt )(Xt − α2(Yt ))

)
dt

+ (β1 − β2) σm dB(m)
t + b1dB

(1)
t − b2 dB

(2)
t , X0 ∈ R, (4)

where

Γ1 := (β1 − β2) μm − 1

2

(
(β2

1 − β2
2 )σ

2
m + b21 − b22

)
. (5)
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Note that X is a mean-reverting process with regime-switching mean-reversion level

θ(Yt ) = Γ1 + λ1(Yt )α1(Yt ) + λ2(Yt )α2(Yt )

λ1(Yt ) + λ2(Yt )
, t ∈ [0, T ]. (6)

We observe that in (2) and (3), the infinitesimal expected returns are

(r + β1μm) dt − λ1(Yt ) (Xt − α1(Yt )) dt

and

(r + β2μm) dt + λ2(Yt ) (Xt − α2(Yt )) dt,

respectively. The form of infinitesimal returns implies that if λ j (·) is chosen to be identical
to zero or Xt is equal to α j (·), for every j ∈ {1, 2}, asset price dynamics satisfy the CAPM
relation, meaning that CAPM establishes the expected returns correctly and there is no
mispricing in either asset. On the other hand, if, for example, −λ1(Y )(X − α1(Y )) > 0,
the first asset has a higher expected return than it is justified by its exposure to market risk,
and hence has a positive alpha, meaning that it is undervalued. By choosing λ1, λ2 and α1, α2

depending on the hidden Markov chain Y , we therefore, postulate that pricing errors depend
on some common factor in the economy or in the market that can not be directly observed
by the trader. Also, as it is suggested by Liu and Timmermann (2013), one can interpret
those pricing errors as reflecting momentarily positive or negative liquidity shocks, which
may vanish in liquid markets. For example, because of liquidity effects, stocks listed in S&P
500 have overstated betas (Vijh 1994), which in turn affects pricing errors. By assuming a
regime-switching framework for pricing errors, we are also able to model these types of
features.

We should also remark that if we take β1 = β2, b1 = b2 and α1(·) = α2(·) = 0, the model
becomes a regime-switching version of the original one suggested by Liu and Timmermann
(2013) which involves two assets with the same payoff traded at different prices. Under
these assumptions the spread is a mean reverting process around zero. However, in our
extended setting, the mean-reversion level of the process X has a more involved expression,
see Eq. (6), which is due to the fact that we allow co-integrated assets to have different betas
and different correlations with the market index, and that mispricing errors are assumed to
be affine functions of the spread rather than just proportional.

To concentrate more on the financial motivation behind our model setup, we can justify
the role of α1 and α2 from a market microstructural point of view. That role is mainly due
to the affine specification of the Markov modulated error correction terms. Suppose for the
sake of simplicity and comparison purposes with the Liu and Timmerman model that Γ1 = 0
and λi (·) = 1, for i = 1, 2. With this parameter choice, we obtain a model where the
long-run mean of the spread process is (α1(Yt ) + α2(Yt ))/2 and depends on the Markov
chain Y . This allows us to model a situation in which the long-run mean of the spread can
be switched on (αi �= 0) or off (αi = 0). From a financial point of view, this setting is
able, for example, to capture the liquidity effects related to Siamese twin companies. These
are dual-listed companies that are incorporated in different countries and listed in different
exchanges simultaneously while operating as a single entity, their shares have same control
rights and dividends are based on the same cash flow. Therefore for such companies, most of
the mispricing between two stocks is due to liquidity effects arising from the microstructural
features of stock exchanges where individual shares are traded; see De Jong et al. (2009) for
more on stock price differentials of dual-listed companies. Although these liquidity effects
may vanish, implying that the spread converges to zero, they may also lead to a certain degree
of persistent error between two stocks in certain states of the economy, manifesting itself in
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alphas that are different than zero. This type of modeling is not possible, if, for example, the
corresponding errors are just proportional to the spread X , because having Γ1 = 0 would
imply zero long-run mean for the spread process in all states of Y .

3 Optimal convergence trade under regime switching

LetWh be the value of a portfolio h = (h(m), h(1), h(2)), where quantities h(m)
t , h(1)

t and h(2)
t

denote fractions of the wealth invested at any time t ∈ [0, T ] in the market index S(m) and in
the co-integrated assets with prices S(1) and S(2), respectively. Consequently the percentage
of wealth invested in the riskless asset is 1−h(m) −h(1) −h(2). We introduce now the suitable
set of strategies.

Definition 1 A G-admissible portfolio strategy is a self-financing, G-predictable strategy
h = (h(m), h(1), h(2)) such that

E

[∫ T

0

(
h(m)
t

2 + h(1)
t

2 + h(2)
t

2)
dt

]

< ∞. (7)

The set of G-admissible strategies is denoted by A.

For every h = (h(m), h(1), h(2)) ∈ A, the dynamics of the convergence trading portfolio is
given by

dWh
t

Wh
t

=
(
r +

(
h(m)
t + h(1)

t β1 + h(2)
t β2

)
μm + h(2)

t λ2(Yt )(Xt − α2(Yt ))

− h(1)
t λ1(Yt )(Xt − α1(Yt ))

)
dt + σm

(
h(m)
t + h(1)

t β1 + h(2)
t β2

)
dB(m)

t

+σ
(
h(1)
t + h(2)

t

)
dB(0)

t + b1h
(1)
t dB(1)

t + b2h
(2)
t dB(2)

t ,

with Wh
0 > 0.

We consider a trader with logarithmic preferences andwho aims tomaximize the expected
utility from terminal wealth at time T in a market with regime switching. In this section, we
assume that the tradermay directly observe the state of theMarkov chainY that influences the
dynamics of price processes and the spread. Formally, we address the following optimization
problem

Maximize Et,w,x,i [logWh
T ] over all h ∈ A, (8)

where Et,w,x,i denotes the conditional expectation given Wt = w, Xt = x and Yt = ei . We
define the value function corresponding to problem (8) as

V (t, w, x, i) := sup
h∈A

Et,w,x,i
[
logWh

T

]
. (9)

Notice that for a given h ∈ A, Wh is a controlled process. For notational simplicity, from
now on we suppress the dependence on h and write W instead of Wh .

In Theorem 1, we apply dynamic programming to solve the optimization problem. Our
goal is to identify the optimal strategy as well as to characterize the value function as the
unique solution of the corresponding HJB equation. This approach permits to examine the
value function of the control problem in detail. One could alternatively derive the stochastic
representation of the value function and characterize it up to the solution of a system of partial
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differential equations via Feynman–Kac type arguments for Markov-modulated diffusion
processes; see, e.g., Baran et al. (2013) and Escobar et al. (2015).

In the sequel, we use the following notation for partial derivatives: for every function
g : [0, T ] × R+ × R → R, we write, for instance, ∂g

∂t = gt . Moreover, according to
Remark 1 we have that λ j (ei ) = λij and α j (ei ) = αi

j , for j ∈ {1, 2} and i ∈ {1, . . . , K }.
Theorem 1 Consider a trader endowed with a logarithmic utility function. Then the optimal
portfolio strategy h∗ = (h(1)∗, h(2)∗, h(m)∗) ∈ A is

h(1)∗(t, x, i) = −λi1(x − αi
1) + λi2(x − αi

2)�2

b21 + b22�2
, (10)

h(2)∗(t, x, i) = λi2(x − αi
2) + λi1(x − αi

1)�1

b22 + b21�1
, (11)

h(m)∗(t, x, i) = μm

σ 2
m

− β1h
(1)∗(t, x, i) − β2h

(2)∗(t, x, i), (12)

with �1 = σ 2

σ 2+b21
and �2 = σ 2

σ 2+b22
. The value function is of the form

V (t, w, x, i) = log(w) + m(t, i)x2 + n(t, i)x + u(t, i), (13)

where functions m(t, i), n(t, i) and u(t, i) for i ∈ {1, . . . , K } solve the following system of
ordinary differential equations

mt (t, i) − 2(λi1 + λi2)m(t, i) +
K∑

j=1

m(t, j)qi j + Θ i
1 = 0, (14)

nt (t, i) − (λi1 + λi2)n(t, i) +
K∑

j=1

n(t, j)qi j + 2(Γ1 + λi1α
i
1 + λi2α

i
2)m(t, i) − Θ i

2 = 0,

(15)

ut (t, i) +
K∑

j=1

u(t, j)qi j + Γ2m(t, i) + (Γ1 + λi1α
i
1 + λi2α

i
2)n(t, i) + Θ i

3 = 0, (16)

with terminal conditions m(T , i) = 0, n(T , i) = 0 and u(T , i) = 0 for all i ∈ {1, . . . , K },
and where Γ1 is given in (5) and

Θ i
1 := b21(λ

i
2)

2 + b22(λ
i
1)

2 + σ 2
(
λi1 + λi2

)2

2
(
b21b

2
2 + σ 2(b21 + b22)

) ,

Θ i
2 := αi

1λ
i
1(λ

i
1(b

2
2 + σ 2) + λi2σ

2) + αi
2λ

i
2(λ

i
2(b

2
1 + σ 2) + λi1σ

2)

b21b
2
2 + σ 2(b21 + b22)

,

Θ i
3 := (αi

1λ
i
1b2)

2 + (αi
2λ

i
2b1)

2 + σ 2(αi
1λ

i
1 + αi

2λ
i
2)

2

2
(
b21b

2
2 + σ 2(b21 + b22)

) + r + μ2
m

2σ 2
m

,

Γ2 = σ 2
m(β1 − β2)

2 + b21 + b22.

The proof of the Theorem 1 is provided in the “Appendix”.
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3.1 Discussion on the optimal trading strategy

The optimal trading strategy is Markov modulated and has a typical structure of a mean-
variance portfolio weights. More specifically, the numerator of each portfolio weight h( j)∗ ,
j ∈ {1, 2}, depends on the regime-switching parameters, λ1(Y ), λ2(Y ) and α1(Y ), α2(Y ),
related to the co-integration between S(1) and S(2), or equivalently, to pricing errors. The
denominator, on the other hand, is akin to the idiosyncratic risk components, b1, b2 and
σ . We should also emphasize that h(1)∗ and h(2)∗ do not depend on market parameters,
β1, β2, μm and σm , since the market exposure of each asset is covered by investing in the
market index. The coefficients �1 and �2 can be seen as the relative idiosyncratic variation
of S(1) (resp. S(2) ) with respect to S(2) (resp. S(1)). The role of �1 is actually to scale the
contribution of pricing error and the independent idiosyncratic variance of S(2) in h(1)∗.
Naturally, �2 has the analogous interpretation. Note that when σ = 0, meaning that there
is no correlation between S(1) and S(2), those contributions vanish and the optimal portfolio
weights in each stock only depend on their own pricing errors and idiosyncratic risks. The
structure of the market portfolio weight is similar to that in Liu and Timmermann (2013)
and given by the sum of Sharpe’s ratio of the market index and a linear combination of
h(1)∗ and h(2)∗, weighted by their corresponding betas. Another important feature implied
by our model is that, although the market index dynamics is independent of the Markov
chain, the optimal investment strategy in the market index h(m)∗ is Markov modulated. This
characteristic, indeed is not directly related to the market index, but arises as a consequence
of the fact that optimal investments in co-integrated assets, h(1)∗ and h(2)∗, are prone to
different regimes.

We observe that h(1)∗ and h(2)∗ are linear functions of the spread and depend on
mispricing errors of stocks S(1) and S(2). When the spread touches the value αi

1, the
dependence of optimal strategies on mispricing error of the first stock vanishes. The
same holds for αi

2. Consequently if, for some state of the Markov chain it holds that
αi
1 = αi

2 = α, then the investor’s optimal choice, when the spread takes the value
α, would be to allocate all her wealth in the market index. Roughly speaking, when
x = α an investor cannot not take advantages from mispricing errors and then the
only profitable investment would be the market index and riskless asset. In this case
any investment in stocks S(1) and S(2) would not be convenient since the risk of the
entire portfolio would be larger then the investment in the market index only, but with
the same expected return. More precisely, for x = α the infinitesimal return of the

portfolio is
(
r + μ2

m
σ 2
m

)
dt and it is easily seen that by choosing the optimal strategy

h(1)∗ = h(2)∗ = 0 and h(m)∗ = μm
σ 2
m
, the portfolio volatility is μm

σm
. Any other portfo-

lio with non-zero weights in stocks S(1) and S(2) would have higher volatility, given by√
μ2
m

σ 2
m

+ σ 2(h(1) + h(2))2 + (b1h(1))2 + (b2h(2))2.

Remark 2 [Comparison with Liu and Timmermann (2013)] By setting the parameter values

b1 = b2 = b, β1 = β2 = β, λi1 = λ1, λi2 = λ2, αi
1 = αi

2 = 0 (17)

for i ∈ {1, . . . , K }, one gets the optimal trading strategies implied by the model of Liu and
Timmermann (2013) in the case of logarithmic utility, which are explicitly given by
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h(1)∗(t, x) = − (λ1 + �λ2)x

b2(1 + �)
, (18)

h(2)∗(t, x) = (λ2 + �λ1)x

b2(1 + �)
, (19)

h(m)∗(t, x) = μm

σ 2
m

− β
(
h(1)∗(t, x) + h(2)∗(t, x)

)
(20)

with � = σ 2

σ 2+b2
. To gain a better intuition on the characteristics of our model, we investigate

the following cases;

i. Consider the parameter restrictions in (17) except for Markov modulated λi1 and λi2, for
i ∈ {1, . . . , K }. This leads to a simple regime-switching version of Liu and Timmermann
(2013) model. The optimal strategies, in this case, preserve the same structure of (18)–
(20), meaning that the investor allocates her portfolio according to the same rule of Liu
and Timmermann (2013), conditional on the state of the Markov chain.

ii. If we take only regime-switching αi
1 and αi

2, for i ∈ {1, . . . , K }, we see that the optimal
strategy has two components:

h(1)∗(t, x, i) = − (λ1 + �λ2)x

b2(1 + �)
+ λ1α

i
1 + �λ2α

i
2

b2(1 + �)
,

h(2)∗(t, x, i) = (λ2 + �λ1)x

b2(1 + �)
− λ2α

i
2 + �λ1α

i
1

b2(1 + �)
,

h(m)∗(t, x, i) = μm

σ 2
m

− β
(
h(1)∗(t, x) + h(2)∗(t, x)

)
.

Relations above imply that to account for the mispricing errors, optimal strategies in
(18)–(20) need to be adjusted. For example, assuming that the spread is larger than αi

1
and αi

2 and that also λ1, λ2 > 0, the correction for mispricing suggests that an investor
should short sell a smaller amount of stock S(1) and buy a smaller amount of stock S(2).
This is intuitively reasonable since in this case the first asset is overpriced and the second
one is underpriced.

Note that for Liu and Timmermann (2013) model, under recurring arbitrage opportunities,
(h(1)∗, h(2)∗), are zero as soon as the process Xt hits its mean reversion level. This is due to
two observations. The first observation is that the errors, and hence optimal strategies, are just
proportional to X , and the second one is that the long run mean of the spread is zero. In our
model, the mean reversion level of the spread is Markov modulated, given by θ(Y ), and error
terms are affine functions of the spread.Therefore,wehave a clear interpretationof the optimal
strategies when the spread Xt hits α1 or α2. For example, if the spread hits α1, the portion

of the portfolio weights related to the first asset, i.e., in h(2)∗ the term
λi1(x−αi

1)

b22+b21�1
, vanishes.

Similar results apply when X hits α2. If for example α1 = α2 = α, the investor chooses not
to invest in S(1) or S(2) when X reaches the level α, since there is no mispricing between
two co-integrated assets. Basically this implies that the portfolio contribution arising from
the relative mispricing errors vanishes when the spread hits that error term and consequently,
we may not expect (h(1)∗, h(2)∗) to vanish as soon as X hits θ(Y ).
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3.2 Optimal beta-neutral investment

To achieve market neutrality, traders may chose investment strategies so that the resulting
portfolio has zero (CAPM) beta. The goal of this section is to characterize this type of trading
strategies which are called beta-neutral. We should also remind the reader that this type of
strategies can also be used for “betting against betas” type strategies in which an high beta
asset (short leg) is deleveraged so that its beta decreases to 1 and a low beta asset (long leg)
is leveraged so that its beta becomes 1. We start with a formal definition.

Definition 2 A G-admissible beta-neutral portfolio strategy is a G-predictable self-financing
strategy hβ = (h(β,1), h(β,2), h(β,m)) such that

β1h
(β,1)
t + β2h

(β,2)
t = 0, t ∈ [0, T ],

and satisfies E

[
∫ T
0

(

h(β,m)
t

2 + h(β,1)
t

2
)

dt

]

< ∞. We denote the set of G-admissible beta-

neutral strategies by Aβ .

In the next theorem we compute the optimal beta-neutral investment strategies and the cor-
responding value function. The proof of this result replicates that of Theorem 1 and it is
therefore omitted.

Theorem 2 Consider a trader with a logarithmic utility function. Then the optimal beta-
neutral investment strategy hβ∗ = (h(β,1)∗, h(β,2)∗, h(β,m)∗) ∈ Aβ is given by

h(β,1)∗(t, x, i) = −λi1(x − αi
1) + β1

β2
λi2(x − αi

2)

b21 + β2
1

β2
2
b22 + σ 2

(
1 − β1

β2

)2 , (21)

h(β,2)∗(t, x, i) = −β1

β2
h(β,1)∗(t, x, i), (22)

h(β,m)∗(t, x, i) = μm

σ 2
m

. (23)

The value function is of the form

V (t, w, x, i) = log(w) + m(t, i)x2 + n(t, i)x + u(t, i), (24)

where the functions m(t, i), n(t, i) and u(t, i) for i ∈ {1, . . . , K } solve the following system
of ordinary differential equations

mt (t, i) − 2(λi1 + λi2)m(t, i) +
K∑

j=1

m(t, j)qi j + Φ i
1 = 0, (25)

nt (t, i) − (λi1 + λi2)n(t, i) +
K∑

j=1

n(t, j)qi j + 2(Γ1 + λi1α
i
1 + λi2α

i
2)m(t, i) − Φ i

2 = 0,

(26)

ut (t, i) +
K∑

j=1

u(t, j)qi j + Γ2m(t, i) + (Γ1 + λi1α
i
1 + λi2α

i
2)n(t, i) + Φ i

3 = 0, (27)
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with terminal conditions m(T , i) = 0, n(T , i) = 0 and u(T , i) = 0 for all i ∈ {1, . . . , K },
and where Γ1 and Γ2 are as given in Theorem 1 and

Φ i
1 :=

(
β2λ

i
1 + β1λ

i
2

)2

2
(
b21β

2
2 + b22β

2
1 + σ 2 (β1 − β2)

2) ,

Φ i
2 :=

(
αi
1β2λ

i
1 + αi

2β1λ
i
2

) (
β1λ

i
2 + β2λ

i
1

)

b21β
2
2 + b22β

2
1 + σ 2 (β1 − β2)

2 ,

Φ i
3 :=

(
αi
1β2λ

i
1 + αi

2β1λ
i
2

)2

2
(
b21β

2
2 + b22β

2
1 + σ 2 (β1 − β2)

2) + r + μ2
m

2σ 2
m

.

Remark 3 Notice that the ratio β1/β2 plays the role of �2 in Theorem 1. In addition, setting
β1 = β2 in the current context corresponds to the so-called delta-neutral strategies. This
is a class of investment strategies that satisfy h(δ,1) = −h(δ,2) that is, the same amount of
capital is invested in each of the co-integrated stocks. In this setting the optimal delta-neutral
strategy is given by

h(δ,1)∗(t, x, i) = −h(δ,2)∗(t, x, i) = −λi1(x − αi
1) + λi2(x − αi

2)

b21 + b22
,

h(δ,m)∗(t, x, i) = μm

σ 2
m

.

4 Optimal convergence trade under partial information

The goal of this section is to study the utility maximization problem related to convergence
trade from the point of view of a partially informed investor. Therefore we now assume
that the investor cannot directly observe the state of the Markov chain Y , and that her
information comes from the observation of price processes S(m), S(1) and S(2). Mathemati-
cally, the available information flow is given by the filtration F := {Ft , t ∈ [0, T ]}, where
Ft = σ(S(1)

u , S(2)
u , S(m)

u , 0 ≤ u ≤ t). Since the investor chooses how to allocate her wealth
according to the available information, we will now consider the following set of admissible
strategies.

Definition 3 AnF-admissible portfolio strategy is a self-financing andF-predictable strategy
h = (h(m), h(1), h(2)) that satisfies integrability condition (7), and AF is the set of all F-
admissible strategies.

In order to solve the optimization problem under partial information we first need to
infer information about the state of the Markov chain Y from the observation process
(S(1), S(2), S(m)), using filtering techniques. The idea is to determine the conditional dis-
tribution of the unobservable state process Y , given the observed history. To this, for every
function f : E → R we define the filter π( f ) as the optional projection of the process f (Y )

on the available filtration, i.e.

πt ( f ) = E [ f (Yt )|Ft ] , t ∈ [0, T ].
Due to the nature of process Y , we get that

πt ( f ) =
K∑

i=1

f (ei )P (Yt = ei |Ft ) , t ∈ [0, T ].
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Therefore, solving the filtering problem amounts to compute conditional state probabilities,

π i
t := P (Yt = ei |Ft ) , t ∈ [0, T ],

for every i ∈ {1, . . . , K }. In the sequel we will use the notation π to indicate the
K -dimensional process (π1, . . . , πK )	 and πt ( f ) = f	π t = ∑K

i=1 f iπ i
t where f =

( f 1, . . . , f K )	 and f i = f (ei ) for every i ∈ {1, . . . , K }. We characterize processes π i

for i ∈ {1, . . . , K } using the innovations approach. This is a standard technique that allows
to formulate the filtering problem in the context of martingale theory, see, e.g. Fujisaki et al.
(1972). Concretely, in our setting, we will derive conditional state probabilities via a system
of coupled stochastic differential equations driven by a (multidimensional) Brownian motion
in the observation filtration F, called the innovation process. The name innovation comes
from the fact that “new information” on the signal from t to t +Δt is given by the increment
of the innovation process between t and t +Δt , and it is independent of the observed history
up to time t . To begin, we introduce the processes

R(1)
t = −

∫ t

0
λ1(Ys)(Xs − α1(Ys))ds + σ B(0)

t + b1B
(1)
t , t ∈ [0, T ],

R(2)
t =

∫ t

0
λ2(Ys)(Xs − α2(Ys))ds + σ B(0)

t + b2B
(2)
t , t ∈ [0, T ],

and observe that the triplets (S(1), S(2), S(m)) and (R(1), R(2), S(m)) generate the same infor-
mation flow. Define (G,P)-Brownian motions Z (1) and Z (2) by

Z (1)
t = σ B(0)

t + b1B
(1)
t

σ1
, Z (2)

t = σ B(0)
t + b2B

(2)
t

σ2
, t ∈ [0, T ],

where σ1 =
√

σ 2 + b21 and σ2 =
√

σ 2 + b22. Note that Z
(1) and Z (2) are correlated Brownian

motions with correlation coefficient ρ = σ 2

σ1σ2
∈ [0, 1] and that there exists a (G,P)-

Brownian motion Z̃ (2) independent of Z (1) such that Z (2) = ρZ (1) + √
1 − ρ2 Z̃ (2). We

now introduce the innovation process I = (I (1), I (2))	 in the following way. Define

μ1(Xt , Yt ) = −λ1(Yt )(Xt − α1(Yt )), t ∈ [0, T ],
μ2(Xt , Yt ) = λ2(Yt )(Xt − α2(Yt )), t ∈ [0, T ],

and denote by πt (μi ) = E
[
μi (Xt , Yt )|F S

t

] = μi (Xt )
	π t where, for i ∈ {1, 2} and t ∈

[0, T ] vector μi (Xt ) = (μi (Xt , e1), . . . , μi (Xt , eK )); then we get that

I (1)
t = Z (1)

t +
∫ t

0

μ1(Xu, Yu) − μ1(Xu)
	πu

σ1
du,

I (2)
t = Z̃ (2)

t +
∫ t

0

σ1(μ2(Xu, Yu) − μ2(Xu)
	πu) − ρσ2(μ1(Xu, Yu) − μ1(Xu)

	πu)

σ1σ2
√
1 − ρ2

du,

for every t ∈ [0, T ]. In the sequel we will use also the matrix/vector form of the process I ,
given by

It = Zt +
∫ t

0
Σ−1(A(Xu, Yu) − πu(A))du, t ∈ [0, T ], (28)
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where Z = (Z (1), Z̃ (2))	, A(X , Y ) = (μ1(X , Y ), μ2(X , Y ))	,

Σ =
(

σ1 0
σ2ρ σ2

√
1 − ρ2

)

.

Remark 4 The innovation process I in (28) has two important features. First, I is an (F,P)-
Brownianmotion; see, for instance, (Bain and Crisan 2009, Proposition 2.30). Second, by the
independence between the Markov chain Y and the vector (B(m), B(0), B(1), B(2)) driving
the observation we get that the filtration generated by (S(m), R(1), R(2)) and that generated
by (S(m), I (1), I (2)) are the same; see Allinger and Mitter (1981, Theorem 1). Then, we
can apply (Jacod and Shiryaev 1987, Theorem III.4.34-(a)) and get that every (F,P)-local
martingale M admits the following representation

Mt = M0 +
∫ t

0
γu dIu, t ∈ [0, T ], (29)

for some F-predictable 2-dimensional process γ such that
∫ T

0
‖γu‖2 du < ∞, P − a.s.

The filtering equation is computed in the next proposition. The proof of this result is given
in “Appendix”.

Proposition 1 For every i ∈ {1, . . . , K }, conditional state probabilities of the process Y
satisfy the following system of SDEs

dπ i
t =

K∑

j=1

q jiπ
j
t dt + Hi (Xt ,π t )dIt (30)

with π i
0 = p0, where for i = 1, . . . , K, Hi (X ,π) := {Hi (Xt ,π t ), t ≥ 0} is the 2-

dimensional process with components

Hi,(1)(Xt ,π t ) = π i
t (μ1(Xt , ei ) − μ1(Xt )

	π t )

σ1
,

Hi,(2)(Xt ,π t ) = π i
t

(
σ1(μ2(Xt , ei ) − μ2(Xt )

	π t ) − σ2ρ(μ1(Xt , ei ) − μ1(Xt )
	π t )

)

σ1σ2
√
1 − ρ2

,

for every t ∈ [0, T ] with σ1 =
√

σ 2 + b21 and σ2 =
√

σ 2 + b22 .

Having the dynamics of the filtered probabilities enables us to derive a semimartingale
decomposition for the co-integrated asset price processes with respect to the information
filtration. Precisely, we have that

dS(1)
t

S(1)
t

= (r + β1μm)dt + β1σmdB
(m)
t + σ1dI

(1)
t + μ1(Xt )

	π tdt, (31)

dS(2)
t

S(2)
t

= (r + β2μm)dt + β2σmdB
(m)
t + σ2ρdI

(1)
t + σ2

√
1 − ρ2dI (2)

t + μ2(Xt )
	π tdt,

(32)
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with S(1)
0 > 0 and S(2)

0 > 0, and the market index price process S(m) which is not affected by
the Markov chain, preserves its dynamics. This leads to the following stochastic differential
equations for the spread and the wealth processes

dXt =
(
Γ1 +

(
μ1(Xt )

	π t − μ2(Xt )
	π t

))
dt

+ (β1 − β2) σmdB
(m)
t + (σ1 − ρσ2)dI

(1)
t − σ2

√
1 − ρ2dI (2)

t , X0 ∈ R, (33)

dWh
t

Wh
t

=
(
r +

(
h(m)
t + h(1)

t β1 + h(2)
t β2

)
μm +

(
h(1)
t μ1(Xt )

	π t + h(2)
t μ2(Xt )

	π t

))
dt

+ σm

(
h(m)
t + h(1)

t β1 + h(2)
t β2

)
dB(m)

t + (σ1h
(1)
t + ρσ2h

(2)) dI (1)
t

+ σ2
√
1 − ρ2h(2)

t dI (2)
t , Wh

0 > 0, (34)

respectively. Moreover, thanks to uniqueness of the solution of the filtering equation we can
consider the (K + 2)-dimensional process (W , X ,π) as the state process and introduce the
equivalent optimal control problem under full information, called the separated problem;
see, e.g., Fleming and Pardoux (1982). The optimization problem we address now is

Maximize Et,w,x,p[logWT ] over all h ∈ AF (35)

where E
t,w,x,p denotes the conditional expectation given Wt = w, Xt = x and π t = p,

where (w, x,p) ∈ R+ × R × ΔK , with ΔK denoting the (K − 1)-dimensional simplex.
Next, we resort to the HJB approach to solve problem (35). We define the value function by

V (t, w, x,p) := sup
h∈AF

Et,w,x,p [logWT
]
. (36)

In order to get explicit form for the value function up to the solution of a system of PDEs
we restrict to the case where λ1(y) = λ1 ∈ R and λ2(y) = λ2 ∈ R. In this case coefficients
H (i),1(X ,π) and H (i),2(X ,π), for i = 1, . . . , K in Eq. (30) do not depend on X and are
given by

Hi,(1)(Xt ,π t ) = Hi,(1)(π t ) = λ1π
i
t (α

i
1 − α	

1 π t )

σ1
,

Hi,(2)(Xt ,π t ) = Hi,(2)(π t ) = −λ2σ1π
i
t (α

i
2 − α	

2 π t ) − σ2λ1ρπ i
t (α

i
1 − α	

1 π t )

σ1σ2
√
1 − ρ2

,

for every t ∈ [0, T ].
Theorem 3 Suppose that λ1(y) = λ1 ∈ R and λ2(y) = λ2 ∈ Rwith λ1+λ2 > 0 and assume
that the investor has logarithmic utility preferences. Then the optimal portfolio strategy
h∗ = (h(1)∗, h(2)∗, h(m)∗) ∈ AF is

h(1)∗(t, x,p) = μ1(x)
	p − μ2(x)

	p�2

b21 + b22�2
, (37)

h(2)∗(t, x,p) = μ2(x)
	p − μ1(x)

	p�1

b22 + b21�1
, (38)

h(m)∗(t, x,p) = μm

σ 2
m

− β1h
(1)∗(t, x,p) − β2h

(2)∗(t, x,p). (39)

The value function is of the form

V (t, w, x,p) = log(w) + m̄(t)x2 + n̄(t,p)x + ū(t,p), (40)
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where function m̄(t) solves the ordinary differential equation

m̄t (t) − 2m̄(t)(λ1 + λ2) + Θ1 = 0 (41)

with terminal condition m̄(T ) = 0 and functions n̄(t,p) and ū(t,p) solve the following
system of partial differential equations

n̄t (t,p) − n̄(t,p)(λ1 + λ2) +
K∑

i, j=1

n̄ pi (t,p)q ji p j + 2(Γ1 + λ1α
	
1 p + λ2α

	
2 p)m̄(t)

+ 1

2

K∑

i, j=1

n̄ pi p j (t,p)
(
Hi,(1)(p)H j,(1)(p) + Hi,(2)(p)H j,(2)(p)

)
− Θ2(p) = 0, (42)

ūt (t,p) + Γ2m̄(t) + (Γ1 + λ1α
	
1 p + λ2α

	
2 p)n̄(t,p) + Θ3(p)

+
K∑

i=1

ū pi (t,p)q ji p j + 1

2

K∑

i, j=1

ū pi p j (t,p)(Hi,(1)(p)H j,(1)(p) + Hi,(2)(p)H j,(2)(p))

+
K∑

i=1

n̄ pi (t,p)

⎛

⎝
b21√

σ 2 + b21

Hi,(1)(p) −
√

σ 2(b21 + b22) + b21b
2
2

√
σ 2 + b21

Hi,(2)(p)

⎞

⎠ = 0 (43)

with terminal conditions n̄(T ,p) = 0 and ū(T ,p) = 0 and where Γ1 and Γ2 are the same
of Theorem 1 and

Θ1 := (σ 2 + b22)λ
2
1 + (σ 2 + b21)λ

2
2 + 2σ 2λ1λ2

2(σ 2b21 + σ 2b22 + b21b
2
2)

,

Θ2(p) := λ1α
	
1 p(λ1(b22 + σ 2) + λ2σ

2) + λ2α
	
2 p(λ2(b21 + σ 2) + λ1σ

2)

b21b
2
2 + σ 2(b21 + b22)

,

Θ3(p) := (λ1b2α	
1 p)2 + (λ2b1α	

2 p)2 + σ 2(λ1α
	
1 p + λ2α

	
2 p)2

2
(
b21b

2
2 + σ 2(b21 + b22)

) + r + μ2
m

2σ 2
m

.

The proof of Theorem 3 is given in “Appendix”. We observe here that the function m̄ driving
the quadratic term is independent of p. Mathematically this is due to the fact that λ1 and
λ2 are assumed to be constant and therefore the trader does not account for the effect of
partial information on the quadratic level of the current spread. The optimal portfolio strategy
under partial information shares similar properties of the full information one (see Remark
3.1), except that unobserved parameters are replaced by the filtered estimates. That is, the
certainty equivalence principle holds for the optimization problem under partial information;
see Kuwana (1995) and Bäuerle and Rieder (2004).

4.1 Optimal beta-neutral investment under partial information

For comparison purposes we also investigate the structure of strategies leading to zero
(CAPM) beta in the partial information setting. This means to consider investment strategies
of the form outlined below.

Definition 4 An F-admissible beta-neutral investment strategy is an F-predictable self-
financing investment strategy hβ = (h(β,1), h(β,2), h(β,m)) such that

β1h
(β,1)
t + β2h

(β,2)
t = 0, t ∈ [0, T ] (44)
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with E

[
∫ T
0

(

h(β,m)
t

2 + h(β,1)
t

2
)

dt

]

< ∞. We denote by AF,β the set of all F-admissible

beta-neutral strategies.

The optimal beta-neutral investment strategy under restricted information and the correspond-
ing value function are given in Theorem 4 below. The proof is similar to that of Theorem 3
and it is therefore omitted.

Theorem 4 Assume that λ1(y) = λ1 ∈ R and λ2(y) = λ2 ∈ R with λ1 + λ2 > 0 and
consider a trader with a logarithmic utility function. Then, the optimal beta-neutral strategy
under partial information hβ∗ = (h(β,1)∗, h(β,2)∗, h(β,m)∗) ∈ AF,β is

h(β,1)∗(t, x,p) = −λ1(x − α	
1 p) + β1

β2
λ2(x − α	

2 p)

b21 + b22
β2
1

β2
2

+ σ 2
(
1 − β1

β2

)2 ,

h(β,2)∗(t, x,p) = −β1

β2
h(β,1)∗(t, x, i),

h(β,m)∗(t, x,p) = μm

σ 2
m

.

The value function is of the form

V (t, w, x,p) = log(w) + m̄(t)x2 + n̄(t,p)x + ū(t,p),

where function m̄(t) solves the ordinary differential equation

m̄t (t) − 2m̄(t)(λ1 + λ2) + Φ1 = 0,

with the terminal condition m̄(T ) = 0 and functions n̄(t,p) and ū(t,p) solve the following
system of partial differential equations

n̄t (t,p) + 2m̄(t)(Γ1 + λ1α1 + λ2α2) − n̄(t,p)(λ1 + λ2) +
K∑

i, j=1

n̄ pi (t,p)q ji p j

+ 1

2

K∑

i, j=1

n̄ pi p j (t,p)
(
Hi,(1)(p)H j,(1)(p) + Hi,(2)(p)H j,(2)(p)

)
− Φ2(p) = 0,

ūt (t,p) + (Γ1 + λ1α1 + λ2α2)n̄(t,p) + Γ2m̄(t) + Φ3(p)

+
K∑

i, j=1

ū pi (t,p)q ji p j + 1

2

K∑

i, j=1

ū pi p j (t,p)(Hi,(1)(p)H j,(1)(p) + Hi,(2)(p)H j,(2)(p))

+
K∑

i=1

n̄ pi (t,p)

⎛

⎝
b21√

σ 2 + b21

Hi,(1)(p) −
√

σ 2(b21 + b22) + b21b
2
2

√
σ 2 + b21

Hi,(2)(p)

⎞

⎠ = 0
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with terminal conditions n̄(T ,p) = 0 and ū(T ,p) = 0 and where Γ1 and Γ2 are the same
of Theorem 1 and

Φ1 := (β2λ1 + β1λ2)
2

2
(
b21β

2
2 + b22β

2
1 + σ 2 (β1 − β2)

2) ,

Φ2(p) :=
(
β2λ1α

	
1 p + β1λ2α

	
2 p
)
(β1λ2 + β2λ1)

b21β
2
2 + b22β

2
1 + σ 2 (β1 − β2)

2 ,

Φ3(p) :=
(
β2λ1α

	
1 p + β1λ2α

	
2 p
)2

2
(
b21β

2
2 + b22β

2
1 + σ 2 (β1 − β2)

2) + r + μ2
m

2σ 2
m

.

Finally we again observe that choosing β1 = β2 we recover delta-neutral strategies in
partial information which are given by

h(δ,1)∗(t, x,p) = −h(δ,2)∗(t, x,p) = −λ1(x − α	
1 p) + λ1(x − α	

1 p)

b21 + b22
,

h(δ,m)∗(t, x,p) = μm

σ 2
m

.

5 Numerical study with a 2-state Markov chain

In this section, we consider a 2-state Markov chain Y , that is, E = {e1, e2}. Here we resort to
a numerical approach in order to get qualitative characteristics of optimal strategies and the
value function both under full and partial information. In the sequel, we fix the values for the
following parameters as w = 1, r = 0.02, β1 = 1.2, β2 = 1.05, σm = .35, μm = 0.05 and
σ = 0.2.

5.1 Optimization problem under full information

We first consider the full information setting where the trader is assumed to observe the state
of the Markov chain. We begin with a simulation of a data set from which we generate a
Markov chain and the price processes, respectively. In Fig. 1 we investigate the behavior of
the optimal investment strategy for the simulated data. Clearly, we see that strategies depend
on different regimes and present jumps at the jump times of the Markov chain. We also
observe that the resulting optimal portfolio weights for the first and second assets change
sign through time. In particular, we have long-long, long-short and short-short type optimal
portfolios, which may indicate the flexibility of our modeling framework.

Next we investigate the properties of the value function. To do this, we solve the system of
ODEs in Theorem 1 numerically. Figure 2 summarizes our results. To explain the outcomes,
let (p, 1 − p) denote the stationary distribution of the Markov chain Y . We consider two
traders, one of which ignores the Markov modulated nature of the underlying parameters
and use the averaged data λi = pλ1i + (1 − p)λ2i . The second trader, on the other hand,
behaves optimally under our Markov modulated model. We set q12 = 0.7 and q21 = 0.2,
and compute p = q21/(q12 + q21) = 0.22. Then, we get λ1 = −0.12 and λ2 = 0.45. In
Fig. 2 we plot V Av(t, x), the value function obtained in the model assuming averaged data,
and E

p[V (t, x, Yt )] = pV (t, x, 1) + (1 − p)V (t, x, 2). We observe that E
p[V (t, x, Yt )] >

V Av(t, x), that is, averaged data do not suffice to obtain the optimal value for the convergence
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Fig. 1 Optimal trading strategy for simulated data. Parameter values: b1 = 0.3, b2 = 0.5, λ11 = 0.5, λ21 =
−0.3, λ12 = −0.1, λ22 = 0.6, α1 = α2 = 0, x = 0.01, q12 = 0.7, q21 = 0.2

trade problem and hence on the average, the second trader performs better than the first one.
We repeat this analysis for the case of beta-neutral trading and obtain same qualitative results.

Figure 2 also illustrates the dominance of the unrestricted strategies over the beta-neutral
ones. This is quite natural since by restricting the set of admissible strategies, the trader could
not realize all the benefits resulting from the co-integration between S(1) and S(2). The gap
between values depends on the choice of parameters and in particular it increases in initial
spread, x , and time to maturity, T − t .

5.2 Optimization problem under partial information

We now consider the partial information case. Since conditional state probabilities π1 and
π2 satisfy π1

t +π2
t = 1 for every t ∈ [0, T ], we can reduce the number of state variables for

the optimization problem. In the following we denote by p = p1 and 1 − p = p2. In Fig. 3
we plot the optimal strategies followed by a fully informed investor who observes the state
of the underlying Markov chain Y and the partially informed one who can only estimate the
state of Y through observation of prices, for the simulated data. The plot in Fig. 4 provides
the corresponding path of the spread process X .

We see from Fig. 4 that, for instance, at the beginning of the investment period the spread
is below the values α1(Yt ) and α2(Yt ), meaning that the first stock is undervalued and the
second is overvalued. Figure 3 shows that a fully informed investor goes long in the first asset
and short-sells the second one until the first jump occurs, which is consistent with Fig. 4.
Notice that just before the first jump, the spread stays above the level α1(Yt ) for a short period
of time, meaning that the first asset is overvalued. However the investor still goes long in the
first asset, and the reason is due to the relative mispricing with the second asset. This is inline
with the analytical result provided in equations (10)–(12).

When the first jump occurs characteristics of stocks change. The informed investor imme-
diately reacts to the regime switch and changes her position from long to short in the first
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Fig. 2 Optimal value corresponding to Markov regime-switching (RS) case and averaged data (AV) case
for unrestricted and β-neutral trading as a function of initial spread (x) (upper panel) and time to maturity
(T-t) (lower panel). Parameter values: b1 = 0.3, b2 = 0.5, λ11 = 0.5, λ21 = −0.3, λ12 = −0.1, λ22 = 0.6,

α1 = α2 = 0, x = 0.5, q12 = 0.7, q21 = 0.2

stock and from short to long in the second one. This is not the case for the uninformed investor
who cannot observe the true values of the mispricing errors. She needs time for learning from
the observation of stock prices and adjust her portfolio weights. How fast she can catch the
state of the Markov chain mainly depends on two parameters. First, the amplitude of noise
and second the speed of mean reversion of the spread towards its long-run mean. Figure 5
shows optimal investment strategies under full (solid lines) and partial information (dashed
lines) for a parameter set where σ is large relative to λ1 + λ2. In this situation the effect
of the noise dominates the drift and the partially informed investor is not able to estimate
mispricing errors correctly. That means her investment strategy strongly deviates from the
one under full information. Figure 3, instead represents the case where σ is small relative
to λ1 + λ2. In this case, we see that the spread converges faster to its mean reversion level
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Fig. 3 Comparison of optimal strategy under full (h(·)) and partial information (h(·)
p ) for simulated data.

Parameter values: λ1 ≡ 1.9, λ2 ≡ 1.8, α11 = −0.4, α21 = 0.2, α12 = −0.5, α22 = 0.5, p0 = 0.3, x = 0.01
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Fig. 4 Spread process versus Markov modulated pricing errors. Parameter values: λ1 ≡ 1.9, λ2 ≡ 1.8,
α11 = −0.4, α21 = 0.2, α12 = −0.5, α22 = 0.5, x = 0.01

and consequently the filter approaches the true state of the Markov chain. The uninformed
investor is, therefore, able to detect the signal and the investment strategy becomes closer to
the one under full information.

Now we measure the advantage of the fully informed investor over the partially informed
one. In order to do that, we introduce the process L defined by

Lt = E

[
V f (t,Wt , Xt , Yt ) − V p(t,Wt , Xt ,π t )|{Wt = w} ∨ Ft

]
, t ∈ [0, T ],
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Fig. 5 Comparison of optimal strategy under full (h(·)) and partial information (h(·)
p ) for simulated data

(impact of mean-reversion speed). Parameter values: λ1 ≡ 0.2, λ2 ≡ 0.3, α11 = −0.4, α21 = 0.2, α12 = −0.5,

α22 = 0.5, p0 = 0.3, x = 0.01

where V f represents the value function corresponding to the full information setting and V p

that corresponding to the partial information one. The process L represents the loss of utility
due to partial information (see, e.g., Lee and Papanicolaou 2016 for the definition). The
form of value functions and the Markov property of the pair (X ,π) imply that there exists
a function l(t, x,p) such that Lt = l(t, Xt ,π t ), P − a.s. for every t ∈ [0, T ]. In Fig. 6 we
plot the loss of utility in the 2-state Markov chain case. We observe that this is always greater
than or equal to zero, meaning that information premium exists and it is always non-negative.
Moreover it is larger when conditional state probabilities are close to 0.5. This reflects the
fact that more uncertainty about the state of the Markov chain leads to higher losses in utility.

Possible Estimation Method. Although, we have focused more on the theoretical side of the
convergence trading within a regime-switching and partial information framework in this
study, here we find it useful to mention possible estimation methods that may be necessary
for the practical and the data-driven side of the investment problem. In our co-integrated
asset dynamics framework, the application of the model to data amounts to the filtering of
unobserved states of the Markov chain as well as estimating the regime-switching unknown
model parameters. In the literature, several Markov regime-switching cointegration mod-
els have been studied; see e.g., Krolzig (1997) and Hansen and Seo (2002). More recently,
Elliott andBradrania (2017) consider the estimation of a discrete-timepairs tradingmodel that
includes regime changes in the dynamics, where they utilized the Expectation-Maximization
[EM] algorithm (see also Elliott 1993 or Damian et al. 2018 for details). This methodology
provides an iterative procedure to compute maximum likelihood estimates. Each iteration of
the EM algorithm consists of two steps. In the (E)xpectation-step, the likelihood function
is averaged over the unobserved states given the observed data and the current estimates of
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Fig. 6 Loss of utility due to partial information as a function of estimated state probability (p) and time to
maturity (T–t). Parameter values: λ1 ≡ 0.3, λ2 ≡ 0.4, α11 = 0.5, α21 = −0.2, α12 = 0.2, α22 = −0.3, x = 0.05,

q12 = 0.2, q21 = 0.5

parameters. In the (M)aximization-step, the parameter values that maximize this likelihood
function are obtained based on the previously estimated values. Given the need for a sub-
stantial effort to tailor this method to our setting, we leave obtaining the corresponding EM
algorithm and application to real data for future research.

6 Conclusion

In this paper, we have considered an extension of the model proposed by Liu and Timmer-
mann (2013). We have studied the optimization problem for a trader with logarithmic utility
preferences under different levels of information. We have assumed that the mean-reverting
component of pricing errors depends on a hidden Markov switching factor which may or
may not be directly observed by the investor.

In the full information setting, that is when the state of the Markov chain is observable,
we have computed the optimal strategy and characterized the value function as the unique
(classical) solution of the HJB equation. In this framework, we can reduce the HJB to a
system of ODEs. We have analysed optimal strategies under full information and related our
results to those implied by Liu and Timmermann (2013) model, to underline the effect of
Markov modulated mispricing errors. We have also discussed the structure of beta-neutral
strategies, achieved by taking long and short positions in such a way that the impact of the
overall market on the portfolio is minimized. In the partial information case, we have trans-
formed the original problem into the so-called reduced (or separated) problem via filtering
by replacing unobservable states of the Markov chain with their optional projections over the
available filtration. Then we have addressed the resulting control problem by dynamic pro-
gramming, and we have represented the value function in terms of the solution of a system of
PDEs. Beta-neutral strategies are also obtained in the partial information framework. Finally,
we have studied a numerical example with a two-state Markov chain. We have provided a
comparison between optimal decisions of fully informed and partially informed investors.
We have concluded that averaged data are not sufficient to obtain the optimal value in the full
information case, and that there is always positive premium due to information superiority
when we compare the optimal value under full and partial information.
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A Proofs

Proof of Theorem 1 Existence We denote by Lh
G
the generator of the process (t,W , X , Y ),

that is

Lh
G
F(t, w, x, i) = Ft (t, w, x, i) +

(
Γ1 + λi1α

i
1 + λi2α

i
2 − (λi1 + λi2)x

)
Fx (t, w, x, i)

+ w
(
r + μm

(
h(m) + h(1)β1 + h(2)β2

)

+ h(2)λi2(x − αi
2) − h(1)λi1(x − αi

1)
)
Fw(t, w, x, i)

+ 1

2
w2
(

σ 2
m

(
h(m) + h(1)β1 + h(2)β2

)2 + σ 2
(
h(1) + h(2)

)2

+ (h(1)b1)
2 + (h(2)b2)

2
)
Fww(t, w, x, i)

+ w
(
σ 2
m(β1 − β2)

(
h(m) + h(1)β1 + h(2)β2

)
+ h(1)b1 − h(2)b2

)
Fwx (t, w, x, i)

+ 1

2
Γ2Fxx (t, w, x, i) +

K∑

j=1

F(t, w, x, j)qi j ,

for every function F(·, i) ∈ C1,2,2([0, T ] × R+ × R), i.e. bounded, differentiable with
respect to t and twice differentiable with respect to w and x , for every i ∈ {1, . . . , K }.

Suppose that the value function V (·, i) ∈ C1,2,2([0, T ] × R+ × R) for every i ∈
{1, . . . , K }. Then it solves the HJB equation given by

0 = sup
h∈A

LhV (t, w, x, i) (45)

for every i ∈ {1, . . . , K }, subject to the terminal condition V (T , w, x, i) = log(w), for all
(w, x) ∈ R+ ×R and i ∈ {1, . . . , K }. It follows from the form of the utility function that for
all i ∈ {1, . . . , K } the value function can be rewritten as V (t, w, x, i) = log(w)+ ν(t, x, i),
for some function ν(t, x, i) such that ν(T , x, i) = 0. Inserting the ansatz for the value
function in Eq. (45) and taking first order conditions leads to

0 = μm

σ 2
m

− h(1)β1 − h(2)β2 − h(m),

0 = β1μm − λi1(x − αi
1) − β1σ

2
m

(
h(m) + h(1)β1 + h(2)β2

)
− σ 2(h(1) + h(2)) − h(1)b21,

0 = β2μm + λi2(x − αi
2) − β2σ

2
m

(
h(m) + h(1)β1 + h(2)β2

)
− σ 2(h(1) + h(2)) − h(2)b22.

Second order conditions imply that portfolio weights given in (10)–(12) are candidates to be
optimal strategies. Next, we insert the optimal portfolio weights in the HJB equation. This
yields the following PDE:
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0 = νt (t, x, i) + Θ i
1x

2 − Θ i
2x + Θ i

3 +
K∑

j=1

ν(t, x, j)qi j + 1

2
Γ2νxx (t, x, i)

+
(
Γ1 + λi1α

i
1 + λi2α

i
2 − (λi1 + λi2)x

)
νx (t, x, i). (46)

We conjecture that ν(t, x, i) = m(t, i)x2 + n(t, i)x + u(t, i). Substituting this ansatz in
(46) results in a quadratic equation for x . Setting the coefficients of the terms x2, x and the
independent term to zero yields that the functionsm, n and u solve the system of ODEs given
in (14)–(16) see, e.g., (2012, Theorem 3.9).
Verification. In the sequel we verify martingale conditions that ensure that V in (13) is indeed
the value function. To this, let v(t, w, x, i) be a solution of the HJB equation (45) and h ∈ A
and admissible control. By Itô’s formula we get

v(T ,Wh
T , XT , YT ) = v(t, w, x, i) +

∫ T

t
L�(r ,Wh

r , Xr , Yr ) dr

+
∫ T

t
σmvw(r ,Wh

r , Xr , Yr )W
h
r

(
h(m)
r + h(1)

r β1 + h(2)
r β2

)
dB(m)

r

+
∫ T

t
σm + vx (r ,W

h
r , Xr , Yr ) (β1 − β2) dB

(m)
r

+
∫ T

t
vw(r ,Wh

r , Xr , Yr )W
h
r σ
(
h(1)
r + h(2)

r

)
dB(0)

r

+
∫ T

t

(
vw(r ,Wh

r , Xr , Yr )W
h
r b1h

(1)
r + vx (r ,W

h
r , Xr , Yr )b1

)
dB(1)

r

+
∫ T

t

(
vw(r ,Wh

r , Xr , Yr )W
h
r b2h

(2)
r − vx (r ,W

h
r , Xr , Yr )b2

)
dB(2)

r

+
∫ T

t

K∑

j=1

v(r ,Wh
r , Xr , j) − v(r ,Wh

r , Xr , Yr−)(m − ν)(dr × { j}).

The last term in the expression above corresponds to the compensated integral with respect
to the jump measure of Y , that is

∫ T

t

K∑

j=1

v(r ,Wh
r , Xr , j) − v(r ,Wh

r , Xr , Yr−)(m − ν)(dr × { j})

=
∑

t≤r≤T

Δv(r ,Wh
r , Xr , Yr ) −

∫ T

t

K∑

j=1

v(r ,Wh
r , Xr , j) − v(r ,Wh

r , Xr , Yr−)qYr− j dr .

where Δv(t,Wh
t , Xt , Yt ) = v(t,Wh

t , Xt , Yt ) − v(t,Wh
t , Xt , Yt−) for every t ∈ [0, T ],

m([0, t] × { j}) :=
∑

n≥1

1{YTn= j}1{Tn≤t}, j ∈ {1, . . . , K }, t ∈ [0, T ],

is the jump measure of Markov chain Y with the compensator

ν([0, t] × { j}) =
∫ t

0

∑

i �= j

qi j1{Yr−=i} dr , j ∈ {1, . . . , K }, t ∈ [0, T ].
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and {Tn}n∈N is the sequence of jump times of Y . Since v satisfies equation (45) we get

v(T ,Wh
T , XT , YT )

≤ v(t, w, x, i) +
∫ T

t
σmvw(r ,Wh

r , Xr , Yr )W
h
r

(
h(m)
r + h(1)

r β1 + h(2)
r β2

)
dB(m)

r

+
∫ T

t
σm + vx (r ,W

h
r , Xr , Yr ) (β1 − β2) dB

(m)
r

+
∫ T

t
vw(r ,Wh

r , Xr , Yr )W
h
r σ
(
h(1)
r + h(2)

r

)
dB(0)

r

+
∫ T

t

(
vw(r ,Wh

r , Xr , Yr )W
h
r b1h

(1)
r + vx (r ,W

h
r , Xr , Yr )b1

)
dB(1)

r

+
∫ T

t

(
vw(r ,Wh

r , Xr , Yr )W
h
r b2h

(2)
r − vx (r ,W

h
r , Xr , Yr )b2

)
dB(2)

r

+
∫ T

t

K∑

j=1

v(r ,Wh
r , Xr , j) − v(r ,Wh

r , Xr , Yr−)(m − ν)(dr × { j}).

The form of v and integrability condition (7) ensure that integrals with respects to Brownian
motions B(m), B(0), B(1), B(2) and the compensated jump measure m − ν are true (G,P)-
martingales. Then, taking expectations we get that

V (t, w, x, i) ≤ v(t, w, x, i),

and the equality holds if h is a maximizer of Eq. (45). �

Proof of Proposition 1 In the following we use the notation ĝ(Yt ) = E [g(Yt )|Ft ], t ∈ [0, T ].
Consider the semimartingale decomposition of f (Y ) given by

f (Yt ) = f (Y0) +
∫ t

0
〈Qf, Yu−〉 du + M (1)

t , t ∈ [0, T ],

where M (1) is a (G,P)-martingale. Now, projecting over F leads to

f̂ (Yt ) − f̂ (Y0) −
∫ t

0
〈Qf, Ŷu−〉 du = M (2)

t , t ∈ [0, T ],

where M (2) is an (F,P)-martingale. Using the martingale representation in (29) we get

f̂ (Yt ) − f̂ (Y0) −
∫ t

0
〈Qf, Ŷu−〉 du =

∫ t

0
γu dIu, t ∈ [0, T ].

Letmt = It +
∫ t
0 XuΣ

−1 ̂A(Xu, Yu) du, for every t ∈ [0, T ]. Computing the product f (Y )·m
and projecting on F, we obtain

̂f (Yt ) · mt =
∫ t

0
mu〈Qf, Ŷu〉 du +

∫ t

0
XuΣ

−1
(

̂f (Yu)A(Xu, Yu)
)
du + M (3)

t , (47)

for every t ∈ [0, T ] and for some (F,P)-martingale M (3). The hat in the second integrand
of Eq. (47) stands for ̂f (Yu)A(Xu, Yu) = E [ f (Yu)A(Xu, Yu)|Fu].
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We now compute the product f̂ (Y ) · m as

f̂ (Yt ) · mt =
∫ t

0
mu〈Qf, Ŷu〉 du +

∫ t

0
XuΣ

−1 f̂ (Yu) ̂A(Xu, Yu) du +
∫ t

0
γu du + M (4)

t .

(48)

for every t ∈ [0, T ], where M (4) is an (F,P)-martingale. Comparing the finite variation
terms in (47) and (48), we get

γ
(1)
t = ̂f (Yt )μ1(Xt , Yt ) − f̂ (Yt ) ̂μ1(Xt , Yt )

σ1
,

γ
(2)
t = σ1( ̂f (Yt )μ2(Xt , Yt ) − f̂ (Yt ) ̂μ2(Xt , Yt )) − σ2ρ( ̂f (Yt )μ1(Xt , Yt ) − f̂ (Yt ) ̂μ1(XtYt ))

σ1σ2
√
1 − ρ2

,

for every t ∈ [0, T ]. By taking f (Yt ) = 1{Yt=ei }, we obtain the result. Finally, since the drift
and diffusion coefficients in (30) are continuous, bounded and locally Lipschitz, we get that
π = (π1, . . . , πK ) is the unique strong solution of the system (30) . �

Proof of Theorem 3 Existence For notational ease we set σ1 =
√

σ 2 + b21 and σ2 =
√

σ 2 + b22. Assume first that function V (t, w, x,p) is regular. Then it satisfies the following
HJB equation

0 = sup
h∈AF

Lh
F
V (t, w, x,p) (49)

subject to the terminal condition V (T , w, x,p) = log(w), for all w > 0, x ∈ R and for
every p ∈ ΔK , where Lh

F
is given by

Lh
F
f (t, w, x, p) =

⎧
⎨

⎩
ft + fx

(
Γ1 + μ1(x)

	p − μ2(x)
	p
)

+
K∑

i, j=1

f pi q
ji p j

+
(
r +

(
h(m) + h(1)β1 + h(2)β2

)
μm + h(1)μ1(x)

	p + h(2)μ2(x)
	p
)

w fw(t, w, x,p)

+1

2
fxxΓ2 + 1

2

K∑

i, j=1

f pi p j (H (i),1(p)H ( j),1(p) + H (i),2(p)H ( j),2(p))

+1

2
fwww2

(
(h(m) + h(1)β1 + h(2)β2)

2σ 2
m + (σ1h

(1) + ρσ2h
(2))2 + σ 2

2 (1 − ρ2)h(2)2
)

+ fwxw
(
σ 2
m(β1 − β2)(h

(m) + h(1)β1 + h(2)β2) + σ 2
1 h

(1)−σ 2
2 h

(2)−ρσ1σ2(h
(1) − h(2))

)

+
K∑

i=1

fwpi w

(

H (i),1(p)(σ1h
(1) + ρσ2h

(2)) + H (i),2(p)

√

1 − ρ2h(2)σ2

)

+
K∑

i=1

fxpi

(

(σ1 − ρσ2)H
(i),1(p) − H (i),2(p)σ2

√

1 − ρ2
)
⎫
⎬

⎭
(50)

for every function f : [0, T ] × R
+ × R × ΔK → R, which is bounded, differentiable with

respect to time and twice differentiable with respect to (w, x,p)with bounded derivatives. By
the form of the utility function we have that the value function has the form V (t, w, x, π) =
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log(w) + v(t, x, π), for some function v(t, x, π), such that v(T , x,p) = 0 for all (x,p) ∈
(R×ΔK ). By inserting the first ansatz in Eq. (50) and considering the first order condition we
get that the candidate for an optimal strategy is given by (37), (38),(39). Since V (t, w, x,p)

is concave and increasing in w, the second order condition implies that (37),(38) and (39) is
the maximizer and the optimal portfolio strategy. Here, we choose v of the form v(t, x,p) =
m̄(p)x2 + n̄(t,p)x + ū(t,p). Inserting this ansatz in Eq. (50) leads to the system of linear
partial differential equations in (41), (42), (43).

Verification. To conclude that V is the value function, we show a verification result. Let
Ṽ (t, w, x,p) be a solution of (49) with the boundary condition Ṽ (T , w, x,p) = log(w).
Let h ∈ AF be an F-admissible control, let Wh the solution to Eq. (34). By applying Itô’s
formula we get

Ṽ (T ,Wh
T , XT , πT ) = Ṽ (t, w, x, p) +

∫ T

t
Lh
F
Ṽ (u,Wh

u , Xu , πu) du

+
∫ T

t

(
Ṽw(u,Wh

u , Xu , πu)Wh
u (h(m)

u + h(1)
u β1 + h(2)

u β2)

+Ṽx (u,Wh
u , Xu , πu)(βi − β2)

)
σmdB

(m)
u

+
∫ T

t

(
Ṽw(u,Wh

u , Xu , πu)Wh
u (σ1h

(1)+ρσ2h
(2))+(σ1 − ρσ2)Ṽx (u,Wh

u , Xu , πu)
)
dI (1)u

+
∫ T

t

K∑

i=1

Ṽpi (u,Wh
u , Xu , πu)H̄ (i),1(π t )dI

(1)
u

+
∫ T

t

(

σ2

√

1 − ρ2(Ṽw(u,Wh
u , Xu , πu)Wh

u h
(2)
u − Ṽx (u,Wh

u , Xu , πu))

)

dI (2)u

+
∫ T

t

K∑

i=1

Ṽpi (u,Wh
u , Xu , πu)H (i),2(πt )dI

(2)
u .

By Eq. (50) we get

Ṽ (T ,Wh
T , XT , πT ) ≤ Ṽ (t, w, x, p)

+
∫ T

t

(
Ṽw(u,Wh

u , Xu , πu)Wh
u (h(m)

u + h(1)
u β1 + h(2)

u β2)

+Ṽx (u,Wh
u , Xu , πu)(βi − β2)

)
σmdB

(m)
u

+
∫ T

t

(
Ṽw(u,Wh

u , Xu , πu)Wh
u (σ1h

(1)+ρσ2h
(2))+(σ1 − ρσ2)Ṽx (u,Wh

u , Xu , πu)
)
dI (1)u

+
∫ T

t

K∑

i=1

Ṽpi (u,Wh
u , Xu , πu)H̄ (i),1(π t )dI

(1)
u

+
∫ T

t

(

σ2

√

1 − ρ2(Ṽw(u,Wh
u , Xu , πu)Wh

u h
(2)
u − Ṽx (u,Wh

u , Xu , πu))

)

dI (2)u

+
∫ T

t

K∑

i=1

Ṽpi (u,Wh
u , Xu , πu)H (i),2(π t )dI

(2)
u . (51)
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Note that stochastic integrals with respect to B(m), I (1) and I (2) are true martingales. This is
a consequence of the fact that function Ṽ (t, w, x,p) = log(w)+m̄(t)x2+ n̄(t,p)x+ ū(t,p)

solves the HJB equation, that (h(m), h(1), h(2)) is an F-admissible strategy and that functions
m̄(t), n̄(t,p), ū(t,p) and their derivatives are bounded over the compact interval [0, T ]×ΔK .
Then taking the expectation on both sides of inequality (51) implies that V (t, w, x,p) ≤
Ṽ (t, w, x,p). Moreover if (h(m)∗, h(1)∗, h(2)∗) is a maximizer of Eq. (49), then we obtain
the equality V (t, w, x,p) = Ṽ (t, w, x,p). �
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