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Abstract
In this paper a stochastic districting problem is investigated. Demand is assumed to be
represented by a random vector with a given joint probability distribution function. A two-
stage mixed-integer stochastic programming model is proposed. The first stage comprises
the decision about the initial territory design: the districts are defined and all the territory
units assigned to one and exactly one of them. In the second stage, i.e., after demand
becomes known, balancing requirements are to be met. This is ensured by means of two
recourse actions: outsourcing and reassignment of territory units. The objective function
accounts for the total expected cost that includes the cost for the first-stage territory design
plus the expected cost incurred at the second stage by outsourcing and reassignment. The
(re)assignment costs are associated with the distances between territory units, i.e., the focus
is put on the compactness of the solution. The model is then extended in different ways to
account for aspects of practical relevance such as a maximum desirable dispersion, reallo-
cation constraints, or similarity of the second-stage solution w.r.t. the first-stage one. The
new modeling framework proposed is tested computationally using instances built using real
geographical data.
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1 Introduction

Districting Problems (DPs) aim at partitioning a set of basic geographic areas, named Ter-
ritorial Units (TUs), into a set of clusters, called districts, according to some criteria. The
latter typically refer to balancing, which expresses the need for districts of equitable size in
terms of dimension, as well as to topological properties like contiguity and compactness.
Contiguity means that in order to travel between TUs in the same district there is no need
to cross other districts. A contiguity requirement is relevant for dealing appropriately with
enclaves (a district within a district). A good districting plan does not contain enclaves. Com-
pactness indicates that a district is somewhat round-shaped and undistorted (Kalcsics and
Ríos-Mercado 2019). Nevertheless, other relevant criteria in DPs include respecting natural
boundaries, existing administrative subdivisions, similarity w.r.t existing districting plans,
and socio-economic and cultural homogeneity (Bozkaya et al. 2003; Kalcsics et al. 2005;
Kalcsics and Ríos-Mercado 2019).

The relevance ofDPs resides in the strategic and long-termnature of the decisions involved,
motivated by a wide spectrum of practical applications arising in different sectors. DPs have
been extensively applied to tackle problems emerging in the context of political districting
(Ricca and Simeone 2008; Ricca et al. 2013) and in strategic service planning and manage-
ment like health-care (Blais et al. 2003; Benzarti et al. 2013), school systems (Ferland and
Guénette 1990; Schoepfle and Church 1991; Caro et al. 2004; Bruno et al. 2016a), energy
and power distribution networks (Bergey et al. 2003; De Assis et al. 2014; Yanık et al. 2016),
police districts (D’Amico et al. 2002), waste collection (Mourão et al. 2009), and transporta-
tion (Bruno and Laporte 2002; Tavares et al. 2007). Other core applications of DPs regard the
design of commercial areas to be assigned to a given sales force (Zoltners and Sinha 2005;
Ríos-Mercado and López-Pérez 2013) and distribution logistics (Zhong et al. 2007).

For extensive reviews on DPs readers are encouraged to refer to Kalcsics et al. (2005)
and, for a more up-to-date overview, to Kalcsics and Ríos-Mercado (2019). Given these
references, next we focus on some recent contributions found in literature.

Bianchi et al. (2016) andKim et al. (2017) explore an interesting application ofDPs, which
consists of the territory design of functional regions. In this kind of problems the hypotheses
of complete and exclusive assignment of TUs to districts are relaxed and only clusters with
a strong spatial interaction are created. Accordingly, the authors seek to optimize a distance-
based compactness measure. The latter is frequently used as an objective function in DPs
and represents a good proxy of users’ accessibility to public facilities (Bruno et al. 2017b); it
usually leads to shorter travel times when designing distribution areas for service provision
(Bender et al. 2016; García-Ayala et al. 2016).

The minimization of maximum territory dispersion, namely the maximum distance
between any TU and the center of the districts they are assigned to, is considered in Ríos-
Mercado (2016) and Ríos-Mercado and Escalante (2016). Due to the multiplicity of planning
goals to be simultaneously achieved, some works adopt a multicriteria setting (Camacho-
Collados and Liberatore 2015; Camacho-Collados et al. 2015; Xie and Ouyang 2016).

The objective to be optimized can also be specifically tailored according to the application.
For instance,DeFréminville et al. (2015) introduce the so-calledFinancial ProductDistricting
Problem, where the goal is to partition a set of geographical units in such a way that a cost
homogeneity is achieved within the designed territories. Such homogeneity is expressed in
terms of the cost variance. Bruno et al. (2016b) define a model to support the rationalization
process of public facilities aimed at optimizing the total cost needed to the activation of
additional capacities to satisfy the reallocated demand generated by the closure of some
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facilities. Lin et al. (2017) propose a mixed-integer programming formulation for a problem
emerging in the context of home health-care services: the so-calledMeals-On-Wheels service
districting problem. The goal is to design the minimum number of districts covering all the
TUs. Akdoğan et al. (2018) consider theminimization of themean response time in a problem
involving the location of emergency services.

One aspect of practical relevance in DPs is the need to cope with changing demand.
This may stem for instance from the expansion of urban areas or migration movements.
Depending on the particular problem we are dealing with, different possibilities emerge.
One is to assume a reactive posture and solve a so-called redistricting problem. This is an
optimization problem that aims at redesigning existing districts. De Assis et al. (2014) tackle
such a problem in the context of meter reading in power distribution networks. A bi-objective
problem is investigated. The objectives are related with compactness and homogeneity of
districts. The authors develop a heuristic algorithm to approximate the Pareto front. Other
works dealing with redistricting problems include those by Caro et al. (2004) and Bruno
et al. (2017b). In particular, Caro et al. (2004) propose amathematical model and aGIS-based
approach to solve a school redistricting problem,whereas Bruno et al. (2017b) present several
formulations to address a redistricting problem emerging in the redesign of administrative
boundaries of the Italian provinces.

One alternative to copewith changes in demand is to becomeproactive andmake a decision
that directly accounts for such changes.When accurate forecasts are available, we can embed
time in the optimization models. To the best of our knowledge, the only papers addressing
multi-period territory design are those by Lei et al. (2015), Bender et al. (2016), Lei et al.
(2016), and Bender et al. (2018). A multicriteria optimization framework is considered in
the first and third works.

Finally, if demand changes are uncertain then embedding uncertainty in the models may
be desirable. Assuming that uncertainty can be measured using a probability function a
stochastic programming model emerges as appropriate.

To the best of the authors’ knowledge, the existing work closely related to stochastic
districting has been developed in the context of vehicle routing problems. In that case,

the problem is cast as a two-stage stochastic program, where districts are designed in the
first stage and routing decisions are planned in the second stage, once demands (Haugland
et al. 2007) or customers (Lei et al. 2012) are revealed. These are problems in which the
districtingdecisions are triggeredby the need to build “good” routes for visiting the customers.
In the above studies, tailored heuristic and metaheuristic solution methods are proposed.
Stochastic vehicle routing problems based on efficient partitioning procedures of the service
region are also exploited by Carlsson (2012) and Carlsson and Delage (2013).

In this paper we introduce a Stochastic Districting Problemwith Recourse (SDPR) aiming
at partitioning a given set of TUs into a previously given number of clusters in order to
maximize the overall compactness while meeting balancing constraints, expressed in terms
of average demand per district. The demand associated to each TU is is represented by a
random variable. Districts are created in the first stage by allocating the basic areas to those
TUs chosen as representative of the districts (centers). In the second stage, two recourse
actions are considered: (i) outsourcing shortage/surplus demand; (ii) solving a redistricting
problem.

The new modeling framework we propose can be useful to solve practical problems,
namely: (i) problems emerging in the context of service districting, where the need to pro-
vide users with high service levels and fair accessibility conditions is a top priority for
decision makers (schools, hospitals, postal and emergency services); (ii) problems aiming
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at redesigning political and administrative boundaries; (iii) planning of sales territory where
demands for goods and services can be highly unpredictable.

Changing conditions in the labor market, the phenomenon of migratory flows and the
strong impact of technology development on customers’ habits and behaviors, are examples
of triggering factors that may push towards profound reorganization processes to meet new
socio-economic and cultural homogeneity requirements and future demand trends (ESPAS,
2015). In all these cases, it is desirable to devise a plan able to hedge against uncer-
tainty.

The contribution of this paper to the literature is fourfold: (i) to introduce a new modeling
framework for a two-stage stochastic districting problem; (ii) to embed redistricting decisions
as a way to hedge against uncertainty; (iii) to show the relevance of capturing stochasticity
in districting problems; (iv) to show that the new models proposed in this paper make sense
i.e., lead to plausible solutions.

Due to the strong connection between districting problems and facility location prob-
lems, we refer the reader to the book chapter by Correia and Saldaha-da-Gama (2019) and
to the references therein for an overview on discrete stochastic facility location problems.
Throughout the current paper we emphasize the specific aspects emerging in the context of
districting.

The remainder of this paper is organized as follows: in Sect. 2we introduce an optimization
model for stochastic districting with outsourcing. This model is extended in Sect. 3 where the
redistricting is assumed as a recourse action. In Sect. 4we discuss the relevance of considering
a stochastic modeling framework for our problem. Some extensions to the base model are
then discussed in Sect. 5. Section 6 reports on the computational tests performed for assessing
the relevance of our findings. Then, the paper ends with an overview of the work done and
the main conclusions drawn from it.

2 A stochastic districting problemwith outsourcing

In this section we introduce a first stochastic districting problem. For modeling purposes our
starting point is the model proposed by Hess et al. (1965) that we revisit briefly to ensure
that this manuscript is self-contained. We start by introducing some notation that we adapt
when necessary according to the specific problem we are investigating.

We consider a set I of territorial units (TUs) that we want to divide into a fixed number,
say p, of districts. Each district has a representative TU. Hence, when some other TU is
assigned to the district we abuse the language and say that we are assigning a TU to the
representative of the district. Single-assignment is assumed for the TUs as customary in
districting problems. Additionally, we consider the following parameters:

di , demand of TU i (i ∈ I );

ci j , cost for assigning TU i to TU j (i, j ∈ I );

μ, target value for the demand in every district.

Typically μ = (1/p)
∑

i∈I di , which we are also assuming unless stated otherwise. α, maximum
desirable deviation of the demand in a district w.r.t. the reference value μ. We consider α ∈ (0, 1).
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Adistricting problemwas first formulated as an optimization problembyHess et al. (1965)
who considered the following binary variables:

xi j =
{
1, if TUi is assigned to TU j;
0, otherwise.

(i, j ∈ I )

In this case, x j j = 1 indicates that TU j is “assigned to itself”, i.e.,
it is selected as the representative of its district.
Using the above decision variables,Hess et al. (1965) proposed the followingmathematical

model:

minimize
∑

i∈I

∑

j∈I
ci j xi j , (1)

subject to
∑

j∈I
xi j = 1, i ∈ I , (2)

∑

j∈I
x j j = p, (3)

(1 − α)μx j j ≤
∑

i∈I
di xi j ≤ (1 + α)μx j j , j ∈ I , (4)

xi j ≤ x j j , i, j,∈ I , (5)

xi j ∈ {0, 1}, i, j ∈ I , (6)

The objective function (1) quantifies the total cost to be minimized. Constraints (2) ensure
that each TU is assigned to exactly one district whereas Constraints (3) guarantee that exactly
p districts will be designed. Constraints (4) are the balancing constraints and Inequalities
(5) state that we can only assign TUs to representatives of a district. Finally (6) define the
domain of the decision variables.

Observing the model we easily conclude that Constraints (5) are redundant in the presence
of (4). We are considering them because they will be relevant to ensure the consistency of
the stochastic programming models to be presented.

In districting problems, the costs ci j are typically related with the distances (Kalcsics and
Ríos-Mercado 2019). Denoting by �i j the distance between i and j (i, j ∈ I ), a common cost
to consider is ci j = �i j or ci j = �2i j . This turns the above objective function into a so-called
compactness measure known as moment of inertia (Hess et al. 1965). The reader may refer
to Kalcsics and Ríos-Mercado (2019) for variants of distance-based compactness measures.
In that book chapter, we also observe cost structures that consider the demands as weighting
factors. Finally, we note that Euclidean distances are often considered (Bergey et al. 2003;
Bard and Jarrah 2009).

Remark 1 The above model does not solve exactly a districting problem but only a relaxation
of it; it solves a location-allocation model with a demand balancing requirement. The model
ignores one important aspect in districting: contiguity (and consequently the exclusion of
enclaves). Therefore, apparently, a solution provided by the model may yield contiguous
solutions only by chance. Nevertheless, when we seek to optimize a compactness measure
in a districting problem the resulting solution is often strong in terms of contiguity.

It is also true that the introduction of balancing constraints may disfavor compactness and,
thus districts’ contiguity. In other words, balancing and compactness may easily become con-
flicting measures. Despite these facts, most of the authors do not explicitly address contiguity
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in their models (Kalcsics and Ríos-Mercado 2019). Hence the model proposed by Hess et al.
(1965) keeps being the basic model considered in the literature on districting problems.

For this reason, we also consider it as a starting point for the developments proposed in
the current paper. ��

2.1 A stochastic districting problemwith auxiliary recourse decisions

A natural source of uncertainty in districting problems are the demands di , i ∈ I and,
consequently, the reference value μ (average demand per district). If the organization of the
territory into districts is a here-and-now decision to make (i.e. made before uncertainty is
revealed) it is desirable that it hedges against such uncertainty.

Under uncertainty, looking for a solution that is feasible for all the possible future obser-
vations (scenarios) of the demand vector ξ = [d1, . . . , d|I |] may be impossible. Even if it is
possible, it may lead to a “fat” solution because we may end up planning for realizations that
are too extreme although occurring with a very low probability. An alternative is to devise
a plan that takes uncertainty into account without being too strict in terms of imposing its
feasibility for every “future” but considering some recourse action in case the initial solution
is rendered infeasible for the demands actually observed.

The above setting can be looked into in the context of two-stage stochastic programming
when ξ = [d1, . . . , d|I |] is a random vector with some known joint cumulative distribution
function (e.g. estimated using historical data).

Under uncertainty, the balancing constraints (4) are not well-defined before the actual
demands become known. Therefore, we must relax such constraints when looking for a
here-and-now solution and assume that extra costs are incurred if, upon observing the actual
demand, we realize that in some district it is above [below] the maximum [minimum] thresh-
old. These costs correspond to additional measures due to having unbalanced demand (e.g.,
outsourcing for surplus demand). As we show next, the deterministic model introduced by
Hess et al. (1965) can be reformulated to capture the new setting we are considering.

Let us denote by g j (> 0) the extra cost in district j for every unit of demand above
the maximum threshold and by h j (> 0) the extra cost for every unit of demand below the
minimum threshold (w.r.t a here-and-now solution).

Additionally, let us consider two sets of auxiliary variables accounting for the “shortage”
and “surplus” demand in each district w.r.t the thresholds initially set:

ψ j = demand surplus w.r.t. the maximum threshold, j ∈ I ;
ϕ j = demand shortage w.r.t. the minimum threshold, j ∈ I ;

If the surplus demand is outsourced, the corresponding amount is represented by variables
ψ j . The new problem we are dealing with can be formulated mathematically as a two-stage
stochastic programming problem:

minimize
∑

i∈I

∑

j∈I
ci j xi j + Q(x),

subject to (2), (3), (5), (6), (7)

with Q(x) = Eξ [Q(x, ξ)] and

Q(x, ξ) =min
∑

j∈I
g jψ j (ξ) +

∑

j∈I
h jϕ j (ξ), (8)

123



Annals of Operations Research (2020) 292:249–285 255

s. t. (1 − α)μx j j ≤
∑

i∈I
di xi j + ϕ j (ξ) − ψ j (ξ) ≤ (1 + α)μx j j , j ∈ I ,

(9)

ϕ j (ξ) ≥ 0, j ∈ I ,
(10)

ψ j (ξ) ≥ 0, j ∈ I .
(11)

In the above model, the first stage problem seeks a here-and-now territory design (possibly
violating the balancing constraints for some—or all—observations of the demand vector).
The second stagemodel (8)–(11) accounts for the extra cost incurred due to the actual demand
observed and given a first-stage decision. Note that in the second-stage model the values of
xi j are constants. Although a feasible solution to the second-stage problem may have ϕ j > 0
and ψ j > 0 for some j ∈ I , it is easy to see that every optimal solution to that problem will
have at most one of those variables above zero (due to g j , h j > 0).

The above stochastic programming problem has simple recourse since the coefficient
matrix of the second-stage decision variables is deterministic and canbewritten as [ I | −I ]. In
particular, we note that for every here-and-now feasible decision there is a feasible completion
in the second stage, which is a nice (and desirable) feature of a stochastic program. Related
with this we also note that the values for the variables ϕ j (ξ) and ψ j (ξ) can be trivially
obtained for every observation of the underlying randomvector. For this reason such variables
do not actually correspond to a decision we can make—they are auxiliary variables that help
us to formulate the problem in a more elegant way (see Remark 3). For this reason we name
the problem we are dealing with as a stochastic districting problem with auxiliary recourse
(SDPAR).

We note that Q(x, ξ) is a random variable since the quantities di (and thus μ) are random
variables. By considering its expected value for defining the recourse function Q(x), we are
assuming a so-called neutral attitude of the decision maker towards risk which in our opinion
defines a reasonable starting point for the study of stochastic districting problems. Other
attitudes towards risk often lead to measures that generalize the one we are considering and
thus their analysis should be performed as follow-up to what we are presenting in the current
paper.

Finally, we note that like the original model proposed by Hess et al. (1965) this model
represents in fact a stochastic location-allocation problemwith balancing requirements. Nev-
ertheless, as the computational results presented in Sect. 6 show, it renders plausible solutions
to our districting problem.

Assuming a finite support, say�, for the random vector ξ , we can go farther in terms of the
model. In that case, we can index the different scenarios in a finite set, say S = {1, . . . , |�|}.
Moreover, we can index in S the stochastic demands, the assignment costs as well as the
second-stage decision variables, as follows:

dis , demand of TU i ∈ I under scenario s ∈ S;
ϕ js demand shortage in district j ∈ I w.r.t. the minimum threshold under scenario s ∈ S;
ψ js demand surplus in district j ∈ I w.r.t. the maximum threshold, j ∈ I under scenario s ∈ S.

We assume that the probabilities associated with the different scenarios are known (for
instance estimated using historical data). We define by πs the probability that scenario s
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occurs, s ∈ S. Naturally, πs ≥ 0, s ∈ S and
∑

s∈S πs = 1. Additionally, we denote by μ̂ the
reference value to be used in the balancing constraints (to be detailed later).

We can finally write the so-called extensive form of the deterministic equivalent that we
call model (M1):

minimize
∑

i∈I

∑

j∈I
ci j xi j +

∑

s∈S
πs

⎛

⎝
∑

j∈I
g jψ js +

∑

j∈I
h jϕ js

⎞

⎠ , (12)

subject to (2), (3), (5), (6),

(1 − α)μ̂x j j ≤
∑

i∈I
dis xi j − ψ js + ϕ js ≤ (1 + α)μ̂x j j , j ∈ I , s ∈ S,

(13)

ϕ js ≥ 0, j ∈ I , s ∈ S,

(14)

ψ js ≥ 0, j ∈ I , s ∈ S.

(15)

The objective function (12) can be written in a different way:
∑

i∈I

∑

j∈I
ci j xi j +

∑

j∈I
(g j

∑

s∈S
πsψ js) +

∑

j∈I
(h j

∑

s∈S
πsϕ js), (16)

Remark 2 In the original model by Hess et al. (1965) the target demand per district is defined
as the average demand per district (total demand divided by the number of districts). Under
uncertainty, demand is not known beforehand, the same holding with the average demand
per district that becomes a random variable. For this reason, in general, the best we can do is
to consider the expected average. Considering that uncertainty is captured by a finite number
of scenarios such expectation is obtained as follows:

For every scenario s ∈ S,
∑

i∈I dis is the total demand under that scenario. Accordingly,∑
s∈S(πs

∑
i∈I dis) is the expected total demand. Hence, we get the value we are looking

for:

μ̂ = 1

p

∑

s∈S
(πs

∑

i∈I
dis). (17)

��

Remark 3 The knowledge about the values of the x-variables as well as of the occurring
scenario immediately determines the values of the (auxiliar) variables ϕ js and ψ js ( j ∈ I ,
s ∈ S):

ϕ js = max

{

0, (1 − α)μ̂x j j −
∑

i∈I
di xi j

}

, j ∈ I , s ∈ S;

ψ js = max

{

0,
∑

i∈I
di xi j − (1 + α)μ̂x j j

}

, j ∈ I , s ∈ S.

Hence, we could easily reformulate our problem as a single-stage problem. However, we
omit this reformulation since it is not helpful when it comes to solving the problem. ��
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3 A stochastic districting-redistricting problem

In the stochastic model presented in the previous section, a here-and-now decision is made
and there is no effective recourse decision. As stated in Remark 3, the second-stage decision
variables considered simply help us to account for the costs of having demand surplus or
shortage w.r.t. the minimum and maximum thresholds set for the districts.

In practice, it may be relevant to be proactive. This means that upon observing a violation
in the balancing constraints in some scenarios, instead of simply taking recourse actions that
overcome infeasibilities of the here-and-now solution (and thus accounting for the corre-
sponding costs), we may try to adapt slightly the territory design (the first-stage solution) to
the occurring demands. In other words, we may think of performing a so-called redistricting,
in line with works such as those by Bruno et al. (2017b), Caro et al. (2004), and De Assis
et al. (2014). This is what we propose next.

We still seek to define a fixed number p of districts. This corresponds to a major decision
that keeps being done here-and-now. As mentioned before, we may end up facing a scenario
for which the demand in some district is above or below the thresholds initially set. In this
case, in addition to the recourse actions discussed in the previous section we also consider a
“redistricting” recourse decision for some (hopefully just a few) territories. This means that
such territories would be included in other district(s) as a reaction to the occurring scenario.
This type of recourse action makes sense since it corresponds to a “redistribution” of the
demand in order to get an overall balanced solution. The only TUs that cannot be reassigned
are those that were set as district representatives by the first stage decision.

We keep assuming that the support of the random vector underlying the problem is finite.
Hence, we consider directly scenario-indexed demands. Furthermore, we assume that reas-
signing a TU incurs an extra cost.We define by ri js the cost for reassigning the demand of TU
i to the district represented by TU j , under scenario s ∈ S. Like for the previous models, the
reassignment costs ri js can be related with the distances. Nevertheless, it may be desirable
to “penalize” reassignments. For this extension we consider one additional set of decision
variables:

wi js =
{
1, if TUi is assigned to district junderscenarios;
0, otherwise.

(i, j ∈ I , s ∈ S)

In addition to these variables, we consider a set of auxiliary variables that help us to present
a linear model: for every i, j ∈ I , s ∈ S, vi js is a binary variable equal to 1 if the assignment
of TU i to TU j under scenario s corresponds actually to a reassignment. More formally, we
can define these variables as:

vi js =
{
1, ifwi js = 1 and xi j = 0;
0, otherwise.

(i, j ∈ I , s ∈ S)

The new problem will be called a Stochastic Districting Problem with Recourse (SDPR).
Given all the aspects already discussed as well as the notation above introduced we can
directly present the extensive form of the deterministic equivalent denoted by (M2):

minimize
∑

i∈I

∑

j∈I
ci j xi j

+
∑

s∈S
πs

⎛

⎝
∑

i∈I

∑

j∈I
ri jsvi js +

∑

j∈I
g jψ js +

∑

j∈I
h jϕ js

⎞

⎠ , (18)
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subjet to (2), (3), (5), (6), (14), (15),
∑

j∈I
wi js = 1, i ∈ I , s ∈ S

(19)

(1 − α)μ̂x j j ≤
∑

i∈I
diswi js − ψ js + ϕ js ≤ (1 + α)μ̂x j j , j ∈ I , s ∈ S,

(20)
∑

��= j

w j�s ≤ 1 − x j j , j ∈ I , s ∈ S,

(21)

vi js ≥ wi js − xi j , i, j ∈ I , s ∈ S,

(22)

vi js ≥ 0 i, j ∈ I , s ∈ S,

(23)

wi js ∈ {0, 1}, i, j ∈ I , s ∈ S.

(24)

The objective function (18) accounts for the initial territory design plus the expected
cost for redesigning the territory, and the expected costs for demand shortage and surplus in
each district (w.r.t. the minimum and maximum thresholds, respectively). Constraints (19)
and (20) seek a territory redesign (dependent on the observed scenario). Constraints (21)
guarantee that a district that is selected as a district representative according to the first-stage
solution is not reassigned in the second stage. Constraints (22) and (23) are an alternative
way of writing that vi js ≥ max{0, wi js − xi j }, i, j ∈ I , s ∈ S. On the other hand, due to
the non-negativity costs ri js we know that in every optimal solution the equality holds, i.e.,
vi js = max{0, wi js − xi j }, i, j ∈ I , s ∈ S. Therefore, we are paying the reassignment cost
for the demand that is actually reassigned. Finally, constraints (24) define the domain of the
w-variables.

In principle, the above model allows the reassignment of all territories. However, since
there are extra costs for reassignments as well as for demand shortage and surplus, an optimal
solution to the problem will seek to reassigning as little demand as necessary to achieve an
overall balancing.

Remark 4 The above model is a generalization of model min (16), s. t. (2), (3), (5), (6),
(13)–(15): setting the costs ri js = ∞, i, j ∈ I , s ∈ S, all the v-variables become equal to
zero in an optimal solution which leads to the redundancy of all constraints involving these
variables. ��
Remark 5 Due to the auxiliary variablesψ js and ϕ js ( j ∈ I , s ∈ S) there is always a feasible
solution to the above model. Hence, for every feasible first-stage solution, there is always
a feasible completion at the second stage, which means that we are again dealing with a
stochastic programming with complete recourse. ��

4 The relevance of considering a stochastic modeling framework

In the previous sections we have considered stochastic programming modeling frameworks
for a districting problem under uncertainty. One important question in this case concerns the
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relevance of considering such frameworks instead of simpler ones (e.g. deterministic). Two
measures are usually considered for evaluating such relevance: the Value of the Stochastic
Solution (VSS) and the Expected Value of Perfect Information (EVPI). The reader can refer
to Birge and Louveaux (2011) for further details. Next we specialize these measures to the
more general problem that we considered: SDPR.

Consider the model:

minimize (18),

subjet to (2), (3), (5), (6), (14), (15),

(19) − (24),

and denote by SP its optimal value.
Consider the single-scenario problem obtained by replacing all the random variables with

the corresponding expected values. By solving that model, we obtain a first-stage solution,
say x̂, that is also feasible for the stochastic problem. Hence, we can evaluate its cost as a
feasible solution to the stochastic problem. To do so, we just need to fix the values of the
x-variables according to x̂ in the problem min (18) s. t. (2), (3), (5), (6),(14),(15), (19)–(24).
The resulting value is denoted by EEV (the Expected value of the optimal solution provided
by the Expected Value problem, see Birge and Louveaux 2011).

The value of the stochastic solution is computed as VSS=EEV-SP. This (non-negative)
value indicates how good is the optimal solution to the expected value problem as an approx-
imation to the optimal solution of the stochastic problem.

The EVPI is a measure of how much a decision maker would be willing to pay to get
access to perfect information. A high EVPI indicates that having access to that information
is quite relevant which means that uncertainty plays an important role in the problem. In
order to compute the EVPI we start by solving the single scenario problem for every possible
scenario. Denote by Vs the corresponding optimal value (s ∈ S). The so-calledWait-and-See
solution value is defined as WS=

∑
s∈S πsVs . The expected value of perfect information is

equal to EVPI=SP-WS.

5 Extensions of the proposedmodel

In this section, we discuss some possible extensions to the problem investigated in the pre-
vious sections. These extensions are motivated by the need to include features of practical
relevance that were not considered in our formulations. Examples of such features include
territory dispersion and similarity w.r.t. to an existing districting plan. Furthermore, it may
be relevant to manage some practical issues related with the second-stage decisions since the
reassignment recourse action that we have considered can lead to disadvantageous allocations
for TUs as we discuss below.

The additional aspects discussed in this section are modeled mathematically by the intro-
duction of new sets of constraints in the optimization model presented in Sect. 3. Unless
stated otherwise, we adopt the assumptions and modeling considerations presented in that
section.

5.1 Maximum dispersion

As we mentioned directly in Sect. 1, territory dispersion indicates the maximum distance
between any TU and the center of the district it is allocated to (Ríos-Mercado 2016; Ríos-
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Mercado and Escalante 2016). In the context of the stochastic districting problem we are
studying, let us suppose that there is a maximum desirable dispersion, say lmax, for the
districting to be obtained. This can be easily ensured for the first-stage solution by setting
xi j = 0, for all (i, j) ∈ I such that �i j > lmax. Moreover, if a maximum value for the
dispersion should also hold for the second-stage solution then all variables xi j , wi js , and vi js
with �i j > lmax are set equal to 0 for every s ∈ S. In this case, such variables do not even
need to be considered/defined.

There is a trivial maximum dispersion that makes sense to impose to a solution which is
the one that results from solving the plain model (M2). This aspect is taken into account later
when we report on the computational tests performed.

5.2 Reallocation constraints

In the SDPR that we are studying, second-stage decisions ensure TUs reallocations to avoid-
ing demand shortages or surplus in the created districts. However, as our computational
experiments show, adapting a solution to the occurring scenarios may disfavor the compact-
ness (and thus contiguity) of the districts. Hence, a natural extension to the problem consists
of limiting the number of reassignments in the second stage.

Denoting by m the maximum number of allowed reassignments , we can make use of the
v-variables presented in the previous section, and impose:

∑

i∈I

∑

j∈I
vi js ≤ m, s ∈ S. (25)

5.3 Similarity with respect to an initial plan

Another relevant aspect often considered in DPs, regards the need to guarantee a certain
degree of “similarity” w.r.t. some territory organization already planned (Bozkaya et al.
2003; Caro et al. 2004; Bruno et al. 2017a).

In our stochastic setting we can consider similarity constraints associated with the second
stage in order to ensure that we redesign districts keeping a certain degree of similarity w.r.t.
the first-stage districting plan. This can be ensured using the following inequalities:

∑

i∈I
xi jwi js ≥ γ

∑

i∈I
xi j , j ∈ I , s ∈ S, (26)

In this expression, γ ∈ [0, 1] is the minimum percentage of TUs to be kept together in the
same district according to the first-stage plan.

Constraints (26) can be linearized by considering the following linear constraints:

vi js ≤ wi js, i, j ∈ I , s ∈ S, (27)

xi j + vi js ≤ 1, i, j ∈ I , s ∈ S, (28)

Constraints (27) guarantee that in each scenario the v-variables do not account for a reas-
signment to some district if the assignment does not hold in the second stage solution.
Constraints (28) ensure that TU i can be either assigned to district j in the first-stage solution
or reassigned to the same district in a second-stage districting plan for every scenario s ∈ S.

Hence, Constraints (26) can be rewritten as follows:
∑

i∈I
(wi js − vi js) ≥ γ

∑

i∈I
xi j , j ∈ I , s ∈ S, (29)
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6 Computational experiments

In this section, we report on the computational tests performed to assess the relevance of our
contribution. The tests aim at checking whether the models yield plausible solutions. In this
analysis we consider real geographical data.

In Sect. 6.1 we describe the test data used. In Sect. 6.2 we focus on one particular instance
as a way to better understand the type of solutions we obtain using our model and also
to understand the consequences driven by changing the reallocation costs. We proceed in
Sect. 6.3 by using the same instance to analyze the effect in the solutions by considering the
extensions proposed in Sect. 5. In Sect. 6.4 we extend the results to all the instances with
a fixed number of TUs. In this case we focus on the VSS, EVPI and CPU time. Finally, in
Sect. 6.5 we extend the results farther by considering all the generated instances (i.e., varying
number of TUs). In this case our focus will be the CPU time required to solve the model.

6.1 Test data

The stochastic programmingmodels proposed in the previous sections were tested using data
corresponding to the province of Novara, in northern Italy. This is a province divided into 88
municipalities (ISTAT, 2011) that we take as the reference TUs for our study.

Making use of the GIS software QGIS we discretized the region by determining the cen-
troids of the municipalities. Afterwards, we identified set I with the set of the extracted
centroids, where we suppose that demands di are concentrated. Euclidean distances �i j
between all pairs of centroids i, j ∈ I have been computed. The province of Novara, its
municipalities, and their centroids are depicted in Fig. 1.

Since no real data could be found in terms of the demand for existing services we decided
to randomly generate the missing data. A so-called intermediate scenario was obtained by
randomly generating the 88 demands according to a uniform distribution in the range [1, 10].

Fig. 1 Novara province: the
municipalities and the
corresponding centroids
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Table 1 Probability distributions
across the scenarios

s (scenario) πs1 πs2 πs3 πs4

1 (20% below intermediate) 1/3 1/6 1/6 2/3

2 (intermediate) 1/3 1/6 2/3 1/6

3 (20% above intermediate) 1/3 2/3 1/6 1/6

Then, two additional scenarios were computed by considering a 20% positive and negative
deviation respectively, from the intermediate scenario.

The reason for considering only three scenarios has to do with the purpose of our com-
putational tests: to check the relevance of the stochastic models proposed in the previous
sections. If they are relevant for a small number of scenarios—as we show—they should also
be relevant when a larger number of scenarios is considered.

In order to obtain extended data that can better help evaluating the modeling framework
we are proposing in this paper, we tested instances that differ among each other in terms of
the number of TUs involved. We considered the data corresponding to Fig. 1 and produced
a larger instance with 120 TUs. This was done by looking for additional municipalities that
have a border in common with some TU(s) already considered. Additionally, we considered
2 subsets of the 88 initial TUs: one with 60 TUs drawn from the 88-TU-instance and another
one with 40 TUs drawn from the 60-TU-instance. The selection of the 60 TUs to draw from
the 88 was made in such a way that the remaining region would be meaningful (e.g., no
holes). The same was done when drawing the 40-TU-instance from the one with 60 TUs. In
the appexdix, Tables 5 and 6 we detail the relevant information.

Four probability distributions, indexed in K = {1, 2, 3, 4}, were considered inducing an
equal number of base data sets for the computational tests. We denote by πsk the probability
of scenario s according to the k-th probability distribution (k ∈ K ). The information is
provided in Table 1.

As we discussed in Sect. 2.1, the target demand (μ̂) to be used in the balancing constraints
needs to be specified in every instance of the problem. In our case, we follow expression (17)
and thus we consider a value that depends on the underlying probability distribution. For a
particular probability distribution k ∈ K we can specify it as follows:

μ̄k = 1

p

∑

i∈I

∑

s∈S
πskdis, k ∈ K .

Demands have been chosen as weighting factors in the computation of the assignment
costs. For the instance associated with probability distribution k (k ∈ K ) we defined:

c(k)
i j = �i j

∑

s∈S
πskdis, i, j ∈ I .

Concerning the reassignment costs, they were set as follows:

ri js = ω dis �i j , i, j ∈ I , s ∈ S.

Wemake the above costs dependent on the observed demand, andEuclidean distance between
the centroids of interest and a parameter ω that accounts for the penalty due to the reassign-
ment. The chosen expressions for generating the reassignment costs bare resemblance with
those used in the redistricting problems investigated by Caro et al. (2004) and Bruno et al.
(2017b).
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Remark 6 In case ω = 1 we have c(k)
i j = ∑

s∈S πskri js . This means that we have a relation
between the initial assignment costs and the second stage (re)assignment costs. This relation
allows us to quantify the expected “total second stage (re)assignment cost”, which can be
accomplished by considering the expression

∑
i∈I

∑
j∈I

∑
s∈S πskri jswi js . We recall that

w-variables define the second stage territory design in which some TUs remain assigned
like in the first stage (the w-variable coincides with the corresponding x-variable but some
other TUs are assigned to other TU and a reassignment occurs). This expression is directly
comparable with

∑
i∈I

∑
j∈I ci j xi j .

In other words, if ω = 1 we can directly compare the (expected) compactness of the
second-stage territory design with the compactness of the first-stage one. ��

In our experiments, in addition to ω = 1 (to allow the above mentioned comparison) we
also considered ω = 2.

Concerning the unit costs for shortage and surplus demand (w.r.t. the reference value) we
defined:

g(k)
j = h(k)

j = Mk = max
i∈I {�i j

∑

s∈S
πskdis}, j ∈ I , k ∈ K .

The above values seem too high. However, we think they are appropriate to foster reallocation
mechanism by adapting the solution to the occurring demands.

Finally, in order to better test the behavior of our modeling framework, parameter α was
varied from 0.05 up to 0.30 with a step of 0.05, while p was set equal to 4 and 6.

In total, for the 88-TU territory depicted in Fig. 1 we generated 96 instances: four values
for k, two values for ω, six values for α and two values for p.

All themodels were solved using the commercial solver IBMCPLEX v12.8 on an Intel(R)
Celeron(R) with 1.50GHz and 4GB of RAM. Next, we report on the computational results
obtained by the implementation of the models proposed for the SDPR. In particular, we focus
only on model (M2) since it includes (M1) as a particular case.

6.2 First observations

We start by analyzing one specific instance to illustrate the relevance of capturing uncertainty
in districting problems. The instance considered is the one defined by p = 4, k = 3, ω = 1,
and α = 0.20. The results obtained for the SDPR are depicted in Fig. 2, where

different colors refer to different districts. The TUs selected as districts’ centers or rep-
resentatives are depicted in yellow. We also note that each TU is labeled with a unique ID
code.

In Fig. 2a we observe that the stochastic model led to a firts-stage solution with very com-
pact clusters. The cost associated with this territory design is

∑
i∈I

∑
j∈I ci j xi j = 3299.38.

Additionally we observe that apart from TU 44, contiguity holds although it was not explic-
itly imposed ( TU 44 belongs to the green district although it is contiguous only to TU 68
and TU 8 that belong to the cyan district).

In Fig. 2b–d we observe the second-stage solutions—one for each possible realization of
the demandvector. Looking into these figureswe conclude thatwhen demandbecomes known
the model “suggests” some reassignments in order to meet balancing constraints without
incurring in too high penalty costs. For instance, when scenario 1 (“below intermediate”)
is observed, 6 TUs (16, 50, 53, 59, 74, and 87) are reallocated from the orange and cyan
districts to the dark blue one. This is a way to let the latter to comply with the minimum
demand threshold. Similarly, when scenario 3 (“above intermediate”) occurs, 7 TUs (19, 53,
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Fig. 2 Solutions for the instance defined by p = 4, k = 3, ω = 1, α = 0.20

59, 74, 79, 83, and 87) are reassigned to avoid above-threshold demand in the districts. To
accomplish this, for example, the model “suggests” the reallocation of TUs 79 and 83 to
the orange district. According to the chosen probability distribution (k = 3), the first stage
solution remains unchanged when scenario 2 (“intermediate”) is considered.

Finally,wenote that the total expected reassignment cost is
∑

i∈I
∑

j∈I
∑

s∈S πskri jsvi js =
163.82. Since the total penalty cost is equal to zero (all variables ψ js and ϕ js are equal to
zero) we obtain 3299.38+ 163.82 = 3463.2 as the optimal value to the stochastic problem.

Not surprisingly, we observe that the second stage (re)allocation decisions lead to lower
quality solutions both in terms of contiguity and compactness. The latter is testified by the
expected total (re)assignment costs

∑
i∈I

∑
j∈I

∑
s∈S πsri jswi js = 3396.09 (seeRemark 6).

Overall, in this illustrative instance we observe what we would expect (and wish) in
practice: a major plan is initially devised (the first-stage solution) that suffers several minor
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Fig. 3 First stage solutions for the instances with p = 4, k = 3, and α = 0.20

changes according to how uncertainty is revealed. A major change in the first-stage solution
would indicate that it was not hedging appropriately against uncertainty.

In a second phase of the experiments, we wanted to see the effect of changing the penalty
factor ω. Hence, we considered the instance similar to the previous one but with ω = 2. In
Fig. 3 we depict side by side the first-stage solution for both instances. Figure 3a is the same
as Fig. 2a but we repeat it for the sake of an easier comparison.

When ω = 2, the penalty for reassignment decisions becomes higher. In this case, the
model suggests no reassignment independently from the demand observed. However, in order
to better hedge against uncertainty, some changes are observed in the first-stage solution: for
ω = 2, TUs 7, 19, and 73 are assigned to the dark blue district, while units 26 and 59 are
included in the orange one whose representative is now TU 15. These changes are reflected
in a lower compactness of the solution that is reflected in a higher value of the objective
function of the model, which increases up to 3498.56.

Finally, in addition to determining the solutions for the above two instances we computed
both theVSS and theEVPI. This is done in percentagew.r.t. the optimal value of the stochastic
problem (SP), i.e., we compute 100×V SS/SP and 100× EV P I/SP . As explained before,
this is a means to quantify the relevance of considering the stochastic approach we have
proposed.

We start by computing the solution for the single-scenario (deterministic) problem that
results from replacing the randomdemands by their expectation. Since the difference between
the two above instances regards the value of ω it is easy to conclude that the single scenario
problem has the same optimal solution for both ω = 1 and ω = 2. Note that when we
consider just one scenario, no reassignment is made. The resulting solution is depicted in
Fig. 4. Clearly, this solution differs from the optimal first-stage solutions depicted in Fig. 3.

The optimal solution to the expected value problem presents a higher compactness
value than the two first-stage solutions previously analyzed (the territory design costs—∑

i∈I
∑

j∈I ci j xi j—have decreased to 3249.18). Nevertheless, it turns out to be very weak
when implemented as a first-stage solution in our stochastic problem. When scenarios 1 and
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Fig. 4 Optimal solution to the
expected value problem (p = 4,
k = 3, α = 0.20)

Fig. 5 Map of the solutions to the expected value problem (p = 4, α = 0.20, k = 3)

3 occur the model forces the reallocation of 10 TUs in order to meet the balancing constraints
(Fig. 5). Thus, we obtained 100× V SS/SP equal to 3.87% (ω = 1) and to 12.77% (ω = 2).
This shows that for the two instances considered the expected value problem provides a
poor approximation to the stochastic problem, which indicates a high relevance of capturing
uncertainty in these cases.

Finally, we computed the percentage value of the EVPI w.r.t. SP, obtaining 6.00% (ω = 1)
and 17.64% (ω = 2). This means that the EVPI is equal to 6% of the optimal value of the
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Table 2 Results for different thresholds (lmax) defining the maximum dispersion (lmax = ∞ corresponds to
ignoring the additional constraints)

lmax SP EEV 100 × V SS

SP
WS 100 × EV P I

SP
CPU (s)

∞ 3463.21 3597.21 3.87 3249.18 6.18 534.33

31.00 3463.99 3597.21 3.85 3249.18 6.20 300.44

27.00 3464.43 3601.97 3.97 3249.18 6.21 313.25

26.00 3464.91 3601.97 3.96 3249.18 6.23 401.59

25.00 3465.68 3601.97 3.93 3249.18 6.25 122.50

22.00 3474.10 3620.88 4.23 3249.18 6.63 293.56

18.00 3479.85 6731.63 93.45 3249.18 12.02 662.77

16.00 3693.27 7080.40 91.71 3249.18 50.08 222.99

15.00 6551.23 7099.49 8.37 3270.69 50.00 86.98

14.00 8890.62 The corresponding EEV is infeabible 39.08

stochastic problem forω = 1 and 17.64% forω = 2. Again, we conclude for a clear relevance
of the introduced stochastic approach in the analyzed cases.

6.3 The effect of extending themodel

We focus now on the extensions to the base model that were proposed in Sect. 5. We consider
the same instance as before (p = 4, k = 3, ω = 1, α = 0.20). This allows us to perform
some sensitivity analysis and thus to better capture the effect of considering either amaximum
dispersion, reallocation constraints or similarity w.r.t. the first-stage districting plan.

6.3.1 Maximum dispersion

To evaluate the effect of including a maximum dispersion constraint, we considered the
exclusion of subsets of decision variables as discussed in Sect. 5.1.

In order the ensure the effectiveness of these constraints and thus to analyze their effect,
we established a maximum value for lmax defined by

lmax =
⌊

max
i, j∈I , s∈S{�i j w̃i js}

⌋

,

where w̃ stands for the second-stage districting obtained using model (M2).
In the particular case of the instance we are analyzing we have maxi, j∈I , s∈S{�i jwi js} =

31.60, which gives lmax = 31. Starting from this value, we produced several instances by
decreasing the value of lmax successively until the expected value problembecomes infeasible.
The results are depicted in Table 2.

Before commenting on Table 2 we note that if we focus on the single-scenario solutions
we have maxi, j∈I {�i j xi j } = 15.60. This explains why in this table the wait-and-see values
are the same before lmax drops to 15.00.

Concerning the relative values of VSS and EVPI w.r.t SP we observe an increasing trend
with the decrease of lmax. They become quite large when we set more stringent values for
lmax. We have 100 ∗ V SS/SP larger than 90% for lmax equal to 16.00 and 18.00. This holds
due to the fact that the expected value problem produces a first-stage solution that implies
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higher penalties for reallocations in the second stage namely, when the allowed maximum
dispersion decreases. Interestingly, when lmax decreases to 15.00, 100×V SS/SP decreases
significantly. This is due to the fact that the value for that parameter is so stringent that not
even the stochastic model can find a good first-stage solution (avoiding high penalties in the
second stage). We see that the optimal value to the stochastic problem increases significantly
when lmax decreases from 16.00 to 15.00. This is an indication that stringent values of lmax

that are not extreme give relevance to a stochastic modeling framework when accounting for
maximum dispersion.

Concerning the CPU time required to solve the model with maximum dispersion con-
straints, the trend is not clear. Nevertheless, we observe that the model can be solved up to
proven optimality within a reasonable CPU time.

6.3.2 Reallocation constraints

To evaluate the impact of considering reallocation constraints, we added Constraints (25) to
model (M2). Like for lmax we tried several values of m starting with the first non-binding
one that is given by maxs∈S{∑i∈I

∑
j∈I ṽi js}, where ṽ stands for the optimal values of v-

variables when the plain model (M2) is considered. In our specific instance we obtained a
value of 7, i.e., ifm is larger than or equal to 7 then Constraints (25) are non-binding.We note
that the smallest value we can consider for m is zero which corresponds to the case in which
we do not allow for reallocations in the second stage. The results obtained can be observed
in Table 3.

The first aspect to point out in Table 3 concerns the wait-and-see value (WS) which is
the same regardless the value of m. This holds because reallocations affect only the second-
stage solutions, which under a single scenario does not produce any change w.r.t. the first-
stage solution. In other words, the reallocation constraints are redundant in a single-scenario
instance.

From the above table we can draw other conclusions. First, the relative values of VSS and
EVPI w.r.t SP have an increasing trend with the reduction of m.

Concerning the relative values of EVPI we see that the values are in general small. The
stochastic program is not much affected by penalties and thus the differences between the
wait-and-see solution and the solution to the stochastic problem are rather limited.

Concerning the relative values of VSS (w.r.t. SP), we can see how they rapidly increase
whenm decreases. This is explained by the fact that the (first-stage) solution for the expected

Table 3 Results corresponding to reallocation constraints for different values of m (m = ∞ corresponds to
ignoring the additional constraints)

m SP EEV 100 × V SS

SP
WS 100 × EV P I

SP
CPU (s) max

s∈S {
∑

i, j∈I
vi js }

∞ 3463.21 3597.21 3.87 3249.18 6.18 534.33 7

6 3464.00 3629.55 4.78 3249.18 6.20 519.21 5

4 3465.67 5332.71 53.87 3249.18 6.25 209.87 4

3 3469.52 6961.19 100.64 3249.18 6.35 236.44 3

2 3473.69 8625.23 148.30 3249.18 6.46 664.57 2

1 3480.25 10,398.22 198.78 3249.18 6.64 461.14 1

0 3498.56 12,175.12 248.00 3249.18 7.13 27.00 0
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value problem implies significant changes (penalties) in the second stage which is not the
case when we consider the first-stage solution produced by our stochastic model. This shows
that the stochastic programming problem is able to produce solutions that can better hedge
against uncertainty.

Finally, as far as the CPU time required to solve the models to proven optimality is
concerned, we do not observe a clear trend. In any case, we can solve the model within an
acceptable CPU time.

6.3.3 Similarity w.r.t. the first-stage districts

To analyze the effect of imposing a some degree of similarity between the first- and second-
stage solutions, we included Constraints (27)–(29) in model (M2).

To ensure that Constraints (29) are binding, we looked for the 
minimum value of
similarity�, say γ ∗, between the first- and second-stage solution that we could observe
in our instance. Such a value was found as follows: for every district and scenario we com-
puted the percentage of TUs belonging to the district that remain so in the second stage. Then
we look for the minimum value. In synthesis, we set

γ ∗ = min
j∈I , s∈S

{∑
i∈I xi jwi js
∑

i∈I xi j

}

.

For the instance we have been working with we obtained γ ∗ = 0.84 ( using the solutions
depicted in Fig. 2). The cyan district is the one to which this lowest value corresponds. In
the first-stage solution (Fig. 2a), 25 TUs are in this district out of which 21 remain so in the
second stage both for scenarios 1 and 3 (Figs. 2b, d). Higher values are found in the other
cases.

Hence, when implementing Constraints (29) we set γ = 0.85. To get a deeper insight
on parameter γ we then tested other possibilities, namely: 0.90, 0.95, and 1.00. The last
one corresponds to the case in which we have full similarity between the first-stage and the
second-stage solutions (no reallocation occurs in the second stage).

The results are summarized in Table 4.
Like for the reallocation constraints, similarity constraints are redundant in a single-

scenario setting, which explains the constant value observed for the wait-and-see solution
(WS).

Both the the relative values of VSS and EVPI w.r.t SP exhibit an increasing trend when γ

increases.
Again, the values observed for the (relative) EVPI are not very high. The explanation is

similar to that presented for a similar aspect when considering the reallocation constraints.

Table 4 The effect of constraints imposing similarity between the first- and the second-stage solutions

γ SP EEV 100 × V SS

SP
WS 100 × EV P I

SP
CPU (s)

0.00 3463.21 3597.21 3.87 3249.18 6.18 534.33

0.85 3464.00 3606.23 4.11 3249.18 6.20 516.58

0.90 3468.80 4184.58 20.63 3249.18 6.33 1405.86

0.95 3473.69 8718.12 150.98 3249.18 6.46 850.02

1.00 3498.56 12,175.12 248.00 3249.18 7.13 2095.78
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The relative values of VSS increases significantly when γ increases. This is an indication
that the first-stage solution obtained when solving the expected value problem is not good
hedging against uncertainty (and thus incurs on much penalties in the second stage). In any
case, this is a clear indication that our stochastic programming model produces solutions that
can better hedge against uncertainty.

Regarding the CPU time required to solve the model up to proven optimality, we see an
increasing trend with the increase in γ . It is interesting to note that for γ = 1.00 the solver
required more than 2000s of CPU. However, the same solution can be obtained by imposing
a maximum number of reallocations m = 0, which requires only 27s.

6.4 Computational results for the tested instances

Having presented some detailed results for one instance, we proceeded with results obtained
by solving themathematicalmodel proposed for theSDPR(M2) for all the generated instances
described in Sect. 6.1. For obvious reasons we do not present the solutions obtained. Instead,
we focus on measures that help us to quantify the relevance of capturing stochasticity in our
problem: the relative values of VSS and EVPI w.r.t. SP.

The results for the relative VSS are depicted in Fig. 6. The values used in this figure can
be found in Tables 7 and 8 that we include in the appendix.

One expected conclusion from observing Fig. 6 is that we obtain larger values for ω = 2.
As explained above, the optimal solution to the expected value problem does not change
with ω (in a single scenario, no relocation occurs because we can directly plan optimally for
that scenario). Therefore, when that solution is considered as a first-stage solution for the
stochastic problem, relocations cost more when ω = 2 than when ω = 1. This explains why
the optimal solution to the expected value problem provides a better approximation for the
stochastic problem when ω = 1. Overall, we observe an average 100 × V SS/SP equal to
1.29 for ω = 1 and 3.60 for ω = 2. Additionally, this value decreases with an increase in p.
This means that when more districts are considered, the expected value problem provides a
better approximation to the stochastic problem. This indicates that with a larger number of
districts we typically observe less reassignments required.

When we focus our analysis on the pairs (ω, p), we observe that probability distribution
1 seems to “dominate” the others in terms of VSS. This is an indication that a stochastic
approach is less effective when one scenario is more likely than the others.

When we focus our attention on the pairs (k, p), we see that the value of the stochastic
solution is typically higher for α = 0.20, 0.25. On average, 100 × V SS/SP is equal to
14.32% when α = 0.20 and ω = 2. Given the generated demand scenarios, on one hand, the
high penalties paid for demand shortages or surplusmake the two approaches equivalentwhen
α ≤ 0.15. On the other, no significant differences are detected when balancing constraints are

Fig. 6 The relative value of VSS w.r.t. SP (%)
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Fig. 7 The compactness value of the stochastic solution (%)

Fig. 8 The relative value of EVPI w.r.t. SP (%)

loose (α = 0.30). Not by chance, all the instances characterized by a null VSS are associated
with these values of α.

The above comments suggest a deeper look into the solutions we are obtaining. In our
objective function we are considering the (re)assignment costs as well as the penalty costs for
shortage/surplus demands w.r.t. the reference values. Since the penalty costs are high, they
may blur a solution feature of great relevance to us: compactness. Therefore, we decided to
take the instances for which penalties are observed and focus only on the (re)assignment costs
which, as we have explained before, are a reliable measure of the solution compactness. We
computed a measure that we call the Compactness Value of the Stochastic Solution (CVSS).
It is computed like the VSS (i.e. for the same solutions) but ignoring the penalty costs
(i.e. setting them to 0). The results can be observed in Fig. 7. Overall, these results show
that although the values VSS are rather small, in terms of compactness, the expected value
solution provides a poor approximation to the stochastic problem.

In Fig. 8 we present the results obtained for the relative values of EVPI w.r.t. the optimal
value of the stochastic problem. The detailed results can be found in the Appendix—Tables 7
and 8. Our computational experience reveals quite significant values for 100 × EV P I/SP .
On average, it is equal to 50.00% for ω = 1 and 52.36% for ω = 2. These high values
give an indication that capturing uncertainty in our districting problem is of great relevance.
Moreover, the behavior of the EVPI is clear: it is rather insensitive to the adopted value of
p and it shows a decreasing trend with α. Not surprisingly, the lower the parameter α the
higher the risk of observing demand surplus or shortages. Therefore, a decision maker would
be willing to pay a higher price to know perfect information about the future.

Finally we report on the CPU time required to solve our stochastic programming model
(M2). This information is depicted in Fig. 9 with the details provided in the Appendix—
Tables 7 and 8.
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Fig. 9 CPU time (seconds)

Fig. 10 Performance evaluation regarding the CPU time (seconds) required to solve the instances

Overall, we conclude that the model could be solved for all the instances within an accept-
able CPU time. Most of the instances were solved in less than 1000s and often much below
that. The extreme cases can be devised in Fig. 9.

The CPU times observed show that a stochastic districting problem such as the one that
we are investigating in this paper can be solved to optimality using tools that are available to
most practitioners. We also note that the instances with p = 6 seem “easier” to solve than
those with p = 4. We can also observe a tendency for higher CPU times with ω = 1 than
with ω = 2. For the former we observed an average of 306s while for the latter we observed
249s. The averages per each value of p can be found in the Appendix.

6.5 Extended results: computational performance of themodel

So far in terms of computational results we have focused on a single geographical data
corresponding to the 88 municipalities of the province of Novara in Northern Italy. We
extend now this analysis by considering the 120-, 60-, and 40-TU instances that were also
built. In terms of the tractability of the model (M2) we focused in the CPU time required to
solve it to proven optimality. The detailed results can be found in the Appendix—Tables 9
and 10. In Fig. 10 we depict the performance analysis.

The most significant aspect to highlight in Fig. 10 is that the stochastic model (M2) could
be solved to proven optimality for all instances: approximately 95% of the largest instances
could be solved in less than 1 hour of CPU. Apart from this, we see that changing the value
of the relocation costs ω does not have a significant impact in the performance of the model.
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7 Conclusions

In this paper we investigated a stochastic districting problem triggered by uncertainty in the
demand vector. Assuming that uncertainty can be captured by a finite set of scenarios each of
which occurring with a given probability, a mixed-integer two-stage stochastic programming
framework with some variants and extensions was developed. Computational tests were
performed with instances built from real geographical data—and thus instances of a realistic
size.

The results show that all instances could be solved to proven optimality using a general
purpose solver. This aspect is of particular relevance for a practitioner who may be interested
in this type of problems but who does not master sophisticated stochastic programming tools.
Moreover, by making use of appropriate measures, the computational results also show that
capturing uncertainty may be of great relevance in the districting problems studied.

The work presented suggests several future research directions. First, some discussion
provided in this work shows the multicriteria nature of some districting problems. This calls
for investigating multicriteria stochastic programming variants of the problems we have
investigated in this work. Another aspect that may be interesting to investigate concerns
the possibility of capturing uncertainty using chance constraints. This means that instead of
modeling the balancing requirements as hard constraints, a (high) probability can be imposed
to the satisfaction of these constraints. This possibility leads to a totally different modeling
framework which, nonetheless, is worth investigating.

Finally, we note that we have dealt with uncertainty by adopting stochastic programming
models. This implies that uncertainty can be captured by some joint cumulative distribution
function. If this is not the case, then wemay need to resort to other possibilities such as robust
optimization. This may also be a promising research direction.

Acknowledgements This work was partially supported by National Funding from FCT - Fundação para a
Ciância e a Tecnologia, under the project: UIDB/04561/2020. The authors would like to thank the anonymous
reviewer for his/her detailed comments on our work, which helped us improving the manuscript.

Appendix

In this Appendix we details the information concerning the test data used to realize our
computational experiments and we present the detailed results that were reported in Sect. 6.

For each TU, Table5 reports the generated demand vector and the coordinates of the
respective centroid. The original code assigned by ISTAT to uniquely identify TUs (i.e.
PRO_COM) is also reported. TUs constituting each of the considered instances are indicated
in Table 6.

For each tested instance, Tables 7 and 8 contain the realtive values of VSS and EVPI
w.r.t. SP as well as the CPU time in seconds required by the general purpose solver to solve
the instance to optimality. Tables 7 refers to the instances with 4 districts and Tables 8 to
instances with 6 districts.

Finally, Tables9 and 10 contain the CPU time (seconds) required to solve the instances to
proven optimalty for different values of |I | (40, 60, 88, and 120).
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Table 5 Demands and coordinates of the centroids (Coordinate Reference System: ED50 / UTM Zone 32N
EPSG:23032)

ID PRO_COM dis Coordinates

s = 1 s = 2 s = 3 East North

1 3001 6.75 8.44 10.13 466469.14504 5057067.1243

2 3002 5.89 7.36 8.84 457360.80298 5070654.0651

3 3006 1.46 1.82 2.18 458367.29932 5075525.7021

4 3008 3.36 4.20 5.04 464446.58482 5067475.4455

5 3012 2.49 3.11 3.73 461875.07870 5046430.6506

6 3016 7.89 9.87 11.84 472099.39165 5044532.8846

7 3018 7.69 9.62 11.54 458985.68591 5033119.2462

8 3019 7.19 8.99 10.79 453880.03626 5058773.2059

9 3021 1.06 1.33 1.60 463746.59461 5056614.7870

10 3022 2.17 2.71 3.25 457024.24652 5067694.9180

11 3023 5.52 6.91 8.29 475867.80907 5018179.9833

12 3024 7.57 9.47 11.36 458699.59655 5060623.5753

13 3025 7.86 9.82 11.78 468748.77429 5059930.7118

14 3026 2.48 3.10 3.72 457842.88085 5064441.1431

15 3027 7.04 8.80 10.56 461282.20632 5042304.8950

16 3030 1.76 2.21 2.65 466912.71807 5041541.5946

17 3032 4.50 5.62 6.75 473850.03066 5040149.0316

18 3036 7.25 9.06 10.87 454699.16093 5043248.9589

19 3037 4.98 6.22 7.46 458991.70292 5030668.8422

20 3039 7.10 8.87 10.64 461166.84122 5037284.9291

21 3040 6.94 8.67 10.41 463005.20972 5025693.9844

22 3041 1.63 2.04 2.44 458378.23864 5027594.6762

23 3042 6.77 8.46 10.15 460503.39529 5039893.8916

24 3043 2.56 3.21 3.85 470498.76541 5062038.8052

25 3044 7.03 8.79 10.55 460868.97196 5049643.6911

26 3045 7.87 9.83 11.80 458950.25351 5050881.8889

27 3047 2.61 3.26 3.91 453526.82528 5056717.3786

28 3049 5.17 6.46 7.75 483575.37782 5027888.5133

29 3051 5.45 6.81 8.17 460382.95820 5071036.2688

30 3052 3.91 4.89 5.87 465786.31118 5062579.1039

31 3055 6.07 7.58 9.10 461747.81832 5054842.8247

32 3058 5.42 6.77 8.13 457533.19728 5057309.6913

33 3060 6.13 7.67 9.20 468713.20787 5055875.8227

34 3062 0.86 1.08 1.29 466864.84219 5064613.2523

35 3065 1.94 2.43 2.92 457701.83486 5045208.0775

36 3066 7.86 9.83 11.79 458575.19316 5054272.8637

37 3068 1.51 1.89 2.27 477534.51025 5036924.0803
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Table 5 continued

ID PRO_COM dis Coordinates

s = 1 s = 2 s = 3 East North

38 3069 3.11 3.89 4.67 473442.27320 5026539.8587

39 3070 5.22 6.52 7.83 454155.87151 5063674.1402

40 3071 2.06 2.57 3.09 462422.41720 5062293.6956

41 3073 1.68 2.10 2.52 455155.14409 5049449.1661

42 3076 2.00 2.50 3.00 455550.01313 5066322.1538

43 3077 3.51 4.38 5.26 467749.87556 5024050.9054

44 3079 6.21 7.76 9.31 448971.22997 5059702.1691

45 3082 1.68 2.10 2.52 459582.26479 5067240.2467

46 3083 1.03 1.28 1.54 454760.04052 5038118.2791

47 3084 5.33 6.67 8.00 465893.29552 5074607.1588

48 3088 7.05 8.82 10.58 454327.56414 5060819.1108

49 3090 3.36 4.20 5.03 457952.80278 5038661.6660

50 3091 2.26 2.83 3.39 471150.33893 5053044.6259

51 3093 3.41 4.27 5.12 463470.02560 5074904.4577

52 3095 2.51 3.13 3.76 463306.10194 5070284.7056

53 3097 3.14 3.92 4.71 468822.98580 5051981.1486

54 3098 2.43 3.04 3.65 456024.65705 5072731.6257

55 3100 7.23 9.03 10.84 466041.49339 5046326.8202

56 3103 4.12 5.15 6.18 462321.93172 5072918.0747

57 3104 7.79 9.74 11.69 472386.06706 5024115.7316

58 3106 0.96 1.20 1.44 469940.80509 5031855.8341

59 3108 5.80 7.25 8.70 472407.19707 5049331.7995

60 3109 4.14 5.17 6.20 463432.25366 5065757.3825

61 3112 4.73 5.92 7.10 454556.77546 5070880.6136

62 3114 4.06 5.07 6.09 461944.95197 5066077.7231

63 3115 5.30 6.63 7.95 452274.44434 5073187.9210

64 3116 6.57 8.22 9.86 453719.36938 5075116.2267

65 3119 7.73 9.66 11.59 461721.07286 5071260.5003

66 3120 1.65 2.06 2.47 451532.46926 5067352.7839

67 3121 3.80 4.75 5.70 472451.22094 5054797.6926

68 3122 0.97 1.21 1.46 450911.25600 5056848.3821

69 3129 7.82 9.78 11.73 455062.48449 5034226.2727

70 3130 3.78 4.72 5.67 453178.69320 5053187.4802

71 3131 5.52 6.90 8.28 480191.40095 5034504.9385

72 3133 1.10 1.38 1.65 452854.75017 5069497.8989

73 3134 6.25 7.82 9.38 454650.75588 5030566.1747

74 3135 2.38 2.98 3.57 464109.73496 5035165.9598

75 3138 4.76 5.95 7.14 456097.21856 5040500.8095

76 3139 4.81 6.01 7.22 456553.86665 5047228.1749

77 3140 1.88 2.35 2.82 453174.03926 5064999.2855
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Table 5 continued

ID PRO_COM dis Coordinates

s = 1 s = 2 s = 3 East North

78 3141 5.26 6.58 7.90 478459.44218 5026931.1238

79 3143 2.84 3.55 4.26 464592.96713 5052731.0257

80 3144 4.83 6.04 7.25 476071.80757 5024724.1517

81 3146 6.40 8.00 9.60 478582.56269 5022122.4477

82 3149 7.53 9.42 11.30 479715.00701 5031009.2853

83 3153 1.93 2.42 2.90 465341.01996 5050075.1151

84 3154 5.20 6.51 7.81 472051.37971 5057268.5926

85 3157 6.68 8.35 10.02 464398.05591 5059931.6808

86 3158 7.76 9.70 11.64 473466.51007 5021464.4636

87 3159 1.06 1.33 1.59 457661.23491 5035969.1381

88 3164 1.28 1.60 1.92 460929.96937 5019673.6840

89 2003 2.75 3.44 4.13 451587.72756 5030408.5340

90 2006 4.55 5.68 6.82 451189.24473 5037731.9913

91 2016 1.39 1.74 2.08 442402.90635 5064408.0814

92 2061 2.10 2.62 3.15 449891.01426 5050281.1567

93 2062 7.42 9.28 11.13 451158.19037 5041667.9385

94 2065 7.68 9.60 11.53 451590.18473 5033778.3472

95 2068 4.44 5.55 6.66 450614.65991 5045115.2207

96 2089 1.58 1.98 2.37 451961.72239 5027182.4993

97 2137 3.36 4.20 5.04 446192.63681 5057878.2684

98 2152 4.54 5.67 6.81 449317.83691 5064083.3625

99 12003 5.15 6.44 7.73 468430.89537 5069222.6098

100 103040 2.58 3.22 3.87 449061.30687 5070968.4963

101 103048 2.53 3.16 3.80 450775.35735 5077946.2349

102 103050 1.88 2.35 2.82 454800.43809 5079842.5669

103 103064 2.84 3.56 4.27 463195.29007 5081605.6265

104 12077 2.20 2.75 3.30 473815.55655 5060439.6383

105 12084 3.13 3.91 4.69 469880.75965 5073430.2163

106 103004 4.20 5.25 6.31 449056.65847 5073774.0274

107 103010 4.87 6.09 7.30 467316.57267 5076966.6717

108 103013 5.96 7.45 8.94 463278.73221 5077379.6383

109 103022 3.14 3.92 4.71 449945.46283 5075647.1474

110 103034 6.31 7.89 9.47 461098.38868 5079134.5808

111 12090 6.49 8.11 9.74 479306.44706 5048536.7730

112 12116 6.17 7.71 9.25 466978.51711 5071665.1749

113 12120 1.32 1.65 1.98 471629.51782 5065263.6445

114 12123 2.10 2.62 3.14 476531.35641 5057331.5110

115 12140 1.54 1.92 2.31 475512.05575 5052567.0634

116 15062 4.90 6.13 7.35 481758.26552 5044110.0784
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Table 5 continued

ID PRO_COM dis Coordinates

s = 1 s = 2 s = 3 East North

117 15096 1.14 1.42 1.71 484316.24048 5039026.0351

118 15155 6.04 7.56 9.07 478227.02345 5044640.2035

119 15183 5.09 6.36 7.63 481459.00295 5040243.0124

120 15226 0.86 1.07 1.29 479315.12052 5041507.7121

Table 6 TUs that are part of each
instance

ID |I | = 40 |I | = 60 |I | = 88 |I | = 120

1
√ √ √ √

2
√ √ √

3
√ √

4
√ √ √ √

5
√ √ √ √

6
√ √ √

7
√ √

8
√ √ √ √

9
√ √ √ √

10
√ √ √

11
√ √

12
√ √ √ √

13
√ √ √ √

14
√ √ √ √

15
√ √ √ √

16
√ √ √

17
√ √

18
√ √ √

19
√ √

20
√ √ √

21
√ √

22
√ √

23
√ √ √

24
√ √ √ √

25
√ √ √ √

26
√ √ √ √

27
√ √ √ √

28
√ √

29
√ √ √

30
√ √ √ √

31
√ √ √ √

32
√ √ √ √

33
√ √ √ √
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Table 6 continued ID |I | = 40 |I | = 60 |I | = 88 |I | = 120

34
√ √ √ √

35
√ √ √ √

36
√ √ √ √

37
√ √

38
√ √

39
√ √ √ √

40
√ √ √ √

41
√ √ √ √

42
√ √ √ √

43
√ √

44
√ √ √

45
√ √ √ √

46
√ √ √

47
√ √

48
√ √ √ √

49
√ √ √

50
√ √ √ √

51
√ √

52
√ √ √

53
√ √ √ √

54
√ √ √

55
√ √ √ √

56
√ √ √

57
√ √

58
√ √

59
√ √ √ √

60
√ √ √ √

61
√ √ √

62
√ √ √ √

63
√ √

64
√ √

65
√ √ √

66
√ √ √

67
√ √ √ √

68
√ √

69
√ √ √ √

70
√ √

71
√ √ √

72
√ √

73
√ √

74
√ √ √

75
√ √ √ √

76
√ √ √
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Table 6 continued ID |I | = 40 |I | = 60 |I | = 88 |I | = 120

77
√ √

78
√ √ √ √

79
√ √

80
√ √

81
√ √

82
√ √ √ √

83
√ √ √ √

84
√ √ √ √

85
√ √

86
√ √

87
√ √

88
√ √ √ √

89
√

90
√

91
√

92
√

93
√

94
√

95
√

96
√

97
√

98
√

99
√

100
√

101
√

102
√

103
√

104
√

105
√

106
√

107
√

108
√

109
√

110
√

111
√

112
√

113
√

114
√

115
√

116
√
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Table 6 continued ID |I | = 40 |I | = 60 |I | = 88 |I | = 120

117
√

118
√

119
√

120
√

Table 7 Computational results for the 88-TU instances, p = 4

k α 100 × V SS/SP 100 × EV P I/SP CPU (seconds)

ω = 1 ω = 2 ω = 1 ω = 2 ω = 1 ω = 2

1 0.05 0.05 0.00 88.72 88.73 452.72 376.95

0.10 0.01 0.12 84.28 84.30 441.78 414.91

0.15 0.54 1.94 73.33 73.85 291.45 252.05

0.20 12.77 32.66 7.13 29.99 643.20 303.42

0.25 8.73 22.62 5.38 22.98 386.17 134.56

0.30 0.00 0.56 2.95 4.39 50.08 66.30

2 0.05 0.23 0.06 87.40 87.42 791.45 791.92

0.10 1.34 3.43 77.85 78.59 1198.25 1043.63

0.15 1.38 3.83 69.49 70.63 176.98 238.45

0.20 3.54 8.48 61.31 64.38 141.77 328.81

0.25 3.24 8.06 52.07 55.82 211.97 354.64

0.30 1.43 4.22 31.68 35.51 44.91 262.92

3 0.05 0.01 0.00 79.74 79.74 241.64 412.03

0.10 0.00 0.02 72.83 72.86 504.72 441.26

0.15 0.21 0.85 57.99 58.54 451.30 311.66

0.20 3.87 12.77 6.18 17.64 534.33 351.13

0.25 3.05 8.73 4.10 12.98 795.24 514.28

0.30 0.31 1.93 2.15 4.79 69.69 40.03

4 0.05 0.12 0.22 86.04 86.08 305.08 301.78

0.10 2.21 5.40 72.06 73.49 492.23 491.58

0.15 1.11 2.73 64.97 65.98 2935.17 1020.39

0.20 4.85 10.26 49.52 54.41 135.13 294.61

0.25 5.20 11.01 27.23 35.19 226.77 607.14

0.30 0.70 2.32 2.58 6.30 54.39 59.75

Average 2.29 5.93 48.62 52.69 482.35 392.26
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Table 8 Computational results for the 88-TU instances, p = 6

100 × V SS/SP 100 × EV P I/SP CPU (seconds)

k α ω = 1 ω = 2 ω = 1 ω = 2 ω = 1 ω = 2

1 0.05 0.00 0.00 91.56 91.56 124.09 116.30

0.10 0.00 0.00 87.90 87.90 90.23 97.03

0.15 0.36 0.81 78.46 78.64 90.27 131.25

0.20 3.36 8.91 2.20 10.21 338.22 174.81

0.25 1.77 4.24 0.79 4.92 41.31 50.95

0.30 0.50 1.19 0.19 1.37 19.30 16.77

2 0.05 0.01 0.01 90.55 90.55 111.53 111.08

0.10 0.34 1.00 82.58 82.75 671.36 471.08

0.15 0.67 1.42 75.05 75.41 46.11 76.63

0.20 0.35 0.80 66.91 67.18 55.89 41.41

0.25 0.22 0.51 57.74 57.96 36.43 29.11

0.30 0.36 1.02 35.56 36.26 51.05 61.75

3 0.05 0.00 0.00 84.44 84.44 100.78 116.73

0.10 0.00 0.00 78.41 78.41 95.83 102.45

0.15 0.24 0.59 64.58 64.80 66.50 127.88

0.20 1.02 3.36 1.77 5.38 237.00 125.00

0.25 0.76 1.77 0.53 2.52 25.75 70.08

0.30 0.15 0.50 0.19 0.69 27.59 16.91

4 0.05 0.02 0.00 89.47 89.48 127.89 149.48

0.10 0.66 1.79 77.63 78.03 535.90 291.39

0.15 0.61 1.38 71.11 71.51 90.73 57.45

0.20 0.22 0.52 55.70 55.93 48.27 51.61

0.25 0.13 0.45 31.49 31.88 64.66 52.39

0.30 0.20 0.60 0.25 0.88 27.72 19.05

Average 0.50 1.29 51.04 52.02 130.18 106.61
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