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Abstract
The vehicle routing problem (VRP) is a combinatorial optimization management problem 
that seeks the optimal set of routes traversed by a vehicle to deliver products to custom-
ers. A recognized problem in this domain is to serve ‘prioritized’ customers in the short-
est possible time where customers with known demands are supplied by one or several 
depots. This problem is known as the Vehicle Routing with Prioritized Customers (VRPC). 
The purpose of this work is to present and compare two artificial intelligence-based novel 
methods that minimize the traveling distance of vehicles when moving cargo to prioritized 
customers. Various studies have been conducted regarding this topic; nevertheless, up to 
now, few studies used the Cuckoo Search-based hyper-heuristic. This paper modifies a 
classical mathematical model that represents the VRPC, implements and tests an evolu-
tionary Cuckoo Search-based hyper-heuristic, and then compares the results with those of 
our proposed modified version of the Clarke Wright (CW) algorithm. In this modified ver-
sion, the CW algorithm serves all customers per their preassigned priorities while covering 
the needed working hours. The results indicate that the solution selected by the Cuckoo 
Search-based hyper-heuristic outperformed the modified Clarke Wright algorithm while 
taking into consideration the customers’ priority and demands and the vehicle capacity.
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1 Introduction

Transportation has a significant impact on today’s societies; it has large impacts on eco-
nomic growth and employment (Fink et al. 2019). Transportation employs millions of peo-
ple globally and it is considered as a major component of organizations’ costs (Baradaran 
et al. 2019; El Khoury et al. 2014; Comtois et al. 2013). Further, transportation depends 
heavily on oil resources and is considered a focal source of  CO2, CO,  N2O, and  NH3 emis-
sions. As stated by a US EPA report, approximately 28% of the national greenhouse-gas 
emissions in 2017 were generated by transportation. It is therefore becoming a priority for 
transportation companies to optimize their transportation processes since small improve-
ments can lead to huge impacts on the environment and on organizations’ cost reductions. 
Furthermore, today, companies are both concerned with the costs and highly interested 
in providing the best customer service to optimize fulfillment, logistics, and production, 
which in turn lead to tight customer loyalty, and thus better organizational performance.

In transportation, the Vehicle Routing Problem (VRP) deals with the transportation of 
goods between depots and customers, where a set of routes must be defined for a number 
of vehicles to travel from their depot(s) to customers (Côté et al. 2020). The traveling cost 
between the depot and each customer and between each pair of customers is given. The 
VRP solution must find a route for each vehicle, starting and ending at the depot, such that 
a set of customers is served by exactly one vehicle, the overall cost of the routes is mini-
mized and customer satisfaction (fulfilling their demands) is maximized while taking into 
account a set of given constraints. Typically, the solution to a VRP has to take into consid-
eration several other restrictions, such as the capacity of the vehicles, the working hours of 
the salespersons, and the priority of the desired customers. Further, there are several vari-
ants to the VRP that take into account different factors such as the nature of the transported 
goods, the quality of the service required, and the characteristics of the customers and the 
vehicles. In Fig. 1 below, we show a typical input for a VRP problem and one of its pos-
sible outputs:

The literature presents different algorithms that have been used to solve the VRP such 
as the Tabu Search (Du and He 2012; Jin et al. 2012), the Artificial Bee Colony algorithm 
(Szeto et al. 2011; Gomez and Salhi 2014), the Bee Mating Optimization algorithm (Mari-
naki et al. 2010), Ant Colony Optimization (Akpinar 2016), the Genetic Algorithm (GA) 
(Nazif and Lee 2012), Particle Swarm Optimization (PSO) (Kim and Son 2012; Chen et al. 
2006), the Water Flow Alike algorithm (Zainudin et  al. 2015), the membrane algorithm 
(Niu et al. 2015), the Cooperative Parallel metaheuristic (Jin et al. 2014) and the Clarke 

Fig. 1  An instance of a VRP (left) and its solution (right)
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Wright algorithm (Clarke and Wright 1964; Shour et al. 2015). The Clarke Wright (CW) 
algorithm was developed in 1964 to solve the VRP. The CW is classified as a constructive 
method used to addresses a variant number of vehicles and works evenly for both directed 
and undirected problems. Further, a recent metaheuristic known as the cuckoo search (CS) 
was introduced by Yang and Deb in 2009 and has received much attention from researchers 
in various optimization areas. The CS has been applied to continuous optimization prob-
lems where it has shown better performance when compared to popular meta-heuristic 
algorithms such as the GA, Particle Swarm Optimization (PSO) and others (Ouaarab et al. 
2014; Yang and Deb 2010; Yildiz 2013).

Recently, it became very popular among researchers to use search methods for selecting 
heuristics to solve computational search problems (Burke et al. 2010). This new optimiza-
tion paradigm is called Hyper-heuristics and is described as using “heuristics to choose 
heuristics”. The main difference between hyper-heuristics and meta-heuristics is that 
hyper-heuristics directly search a space of heuristics rather than a space of problem solu-
tions. Thus, when applied to a specific problem, a hyper-heuristic aims to find a proper 
combination of easy-to-implement low-level heuristics that could produce an acceptable 
domain solution (Burke et al. 2013).

Motivated by the above literature, this paper proposes a modified version of the Clarke 
Wright algorithm and an enhanced cuckoo search-based hyper-heuristic that selects, in 
each step, the most suitable low-level heuristic that directly searches for a VRPC solution 
in the problem’s search space. In fact, the reason for using a hyper-heuristic based on the 
Cuckoo Search metaheuristic was motivated by the advantages of this metaheuristic. Com-
pared to other heuristics, it has fewer adjustable parameters that need to be configured, 
and it also has the potential to better balance exploitation and exploration. Regarding our 
proposed Clarke Wright algorithm, it extends the classical CW to tackle prioritized cus-
tomers. Both methods are tested with a set of eighteen randomly generated test cases that 
simulate actual data in the VRP with a predefined capacity of each vehicle, route time, and 
customer priority. The goal is to minimize the traveling distance of vehicles and reduce 
the time when moving freight from the depot to prioritized customers. In addition, both 
methods are also tested on real data from a distribution company operating in Lebanon. 
The results of the cuckoo search-based hyper-heuristic outperformed the modified Clarke 
Wright algorithm.

The rest of this paper is organized as follows. Section 2 presents the literature review. 
Section 3 describes the VRP problem and its formulation. Section 4 presents a description 
of the classical and modified Clarke Wright algorithms. Section  5 presents the classical 
Cuckoo Search algorithm. The cuckoo search-based hyper-heuristic is presented in Sect. 6. 
Section 7 presents the empirical results. Finally, the conclusion is presented in Sect. 8.

2  Literature review

The Vehicle Routing Problem (VRP) is known to be an NP-hard problem; its computa-
tional complexity increases exponentially as the number of customers grows (Lenstra and 
Rinnooy Kan 1981). Researchers have approached the vehicle routing problem using vari-
ous methods. Exact methods and heuristic algorithms are the most popular ones. Although 
exact methods can obtain an optimal solution, they are not efficient enough, especially 
for large-size instances (Abu-Khzam et al. 2014; Captivo et al. 2003). Hence, the require-
ment to find good solutions quickly (not necessarily the optimal solutions) has led to the 
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development of various heuristic algorithms (Cordeau et al. 2005) and approximate (meta-
heuristic) algorithms (Haraty et al. 2018; Tarhini et al. 2016). Some well-structured heu-
ristics can quickly attain feasible solutions for targeted problems. However, the feasible 
solutions found by heuristic algorithms are not always near the optimal one and thus they 
cannot guarantee the quality of these solutions (Tarhini et al. 2014).

In fact, previous works have shown that it is easy to apply meta-heuristic algorithms to 
various VRPs to obtain near to optimal solutions with an acceptable computational time 
(Yang and Deb 2010; Yang et  al. 2012; Khoury et  al. 2019); thus, several meta-heuris-
tic algorithms, including Particle Swarm Optimization (PSO) (Nazif and Lee 2012; Kim 
and Son 2012), the Tabu Search (TS) (Ai and Kachitvichyanukul 2009; Chen et al. 2006), 
Simulated Annealing (SA) (Gounaris et  al. 2014), Genetic Algorithms (GAs) (Zainudin 
et al. 2015; Jin et al. 2014), and Squeaky Wheel Optimization (SWO) (Zhen 2016), have 
been proposed to solve VRPs. Nevertheless, the literature does not contain any usage of 
the Cuckoo Search (CS) algorithm to solve the vehicle routing problem with prioritized 
customers at the heuristic or hyper-heuristic levels. In fact, an interesting work proposed 
by Ouaarab et al. (2014) used the CS to solve the traveling salesperson problem (TSP), and 
the results show that the CS algorithm outperformed some other popular meta-heuristic 
algorithms. In addition to solving continuous optimization problems (Yang et  al. 2012; 
Gandomi et al. 2013), the CS achieved remarkable performance in constrained optimiza-
tion problems (Yang and Deb 2013; Bulatović et al. 2013; Bhargava et al. 2013), selecting 
the web service composition (Chifu et al. 2012), training a neural network (Vazquez 2011), 
bin packing (Layeb 2011) and manufacturing scheduling systems (Burnwal and Deb 2013).

On the other hand, the literature shows that only a few works have used hyper-heuristics 
to solve the VRP. Asta and Ozcan (2014) used the HyFlex framework-based hyper-heuris-
tic approach to solve the VRP while Garrido and Castro (2009) used an evolutionary hyper-
heuristic approach. Further, Marshall et al. (2014) described a grammatical evolutionary-
based hyper-heuristic for the capacitated VRP. To the best of the authors’ knowledge, the 
use of cuckoo search-based hyper-heuristics to solve the VRPC remains unexplored in the 
literature. Accordingly, this work is motivated to develop a Cuckoo Search-based hyper-
heuristic to solve the nonclassical VRP problem with some realistic constraints such as 
customer priority and constrained route times and to compare its results with those of the 
Clarke Wright algorithm in order to get better and more satisfactory solutions. Our work 
considers two types of heuristics: constructive heuristics and improvement heuristics. A 
constructive heuristic positions customers along a route and creates new routes as needed 
until all the clients have been assigned a route. On the other hand, improvement heuristics 
require an initial solution to start with and then they modify the placement of the custom-
ers within the routes. Thus, the role of improvement heuristics is to reduce the distance 
required to visit all the customers.

3  Vehicle routing problem description

3.1  Preliminary

Due to the fierce competition with their rivals, transportation and logistics companies 
noticed decreases in their profit margins if their trucks were not loaded at the needed 
capacity and routes were not optimally traversed. Accordingly, efficient and effective meas-
ures had to be taken at the operational level by optimally routing vehicles to customers. To 
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elaborate on the effect of such routing, the following example, illustrated in Fig. 2, shows 
two different permutations to establish a route between the central depot 0 and 4 customers 
(represented as nodes), where the distance between each customer is displayed on the edge 
between the nodes and the demand  di is found in the node itself. Assume that the maximum 
capacity per vehicle is 40. The two permutations lead to two different costs. Assume that 
the first permutation travels from depot 0 to customer 1 and then returns back to depot, 
from which it travels to customer 2 and back again to depot. Thus, the path will be 0–1–0, 
0–2, 0. The demand in this trip is fulfilled with a cost of 12 + 12 + 11 + 11 = 46. Assume 
that in the second permutation we traverse the path 0–1–2–0. The demand (10 + 15) of this 
trip is less than the vehicle capacity and thus it is fulfilled; therefore, the cost of this trip 
would be 12 + 8+11 = 31. This obviously shows that the selection of the appropriate route 
would reduce the cost of the trip between customers.

3.2  Mathematical formulation

Given a set of customers C= {1,…,n} with priorities γi ∈ γ = {1…n} and demands di ∈ D
= {1,…k} for a product that must be served using a set of vehicles. The vehicles are situ-
ated at a central depot to which they must return after serving customers. The cost of trave-
ling between customer i and customer j is related to the distance traversed and is denoted 
by cij. Each vehicle has a given maximum capacity Q. In a VRP, we need to determine a 
routing schedule that minimizes the total cost of deliveries such that each route starts and 
ends at the depot; further, every customer belongs exactly to one route, and the vehicle 
capacity is not exceeded in any route. The route represents a sequence of customers for 
each vehicle.

The VRP is known to be an NP-hard problem (Lenstra and Rinnooy Kan 1981), 
and we represent it using graphs. Let G (VG, EG) be a graph in which the following 
exists: vertex vi ∈ VG represents a customer to be visited, where |VG| = n; the customer’s 
demand di represents the number of products requested by customer vi; the edge e ∈ EG 
joins the two vertices vi and vj and represents the existence of a flow between customer 
vi and customer vj; and the cost of traversing this edge e, cij, represents the distance 
between the two customers vi and vj. There exists m vehicles, where mi ∈ M= {1,…y}, 
with capacities Qj, where j = 1…q, that start and end at the central depot, which is at 
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Fig. 2  VRP route establishment, the first permutation
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vertex 0. The problem to be handled is to determine the cycles R1,…Rn for the vehicles 
that start from vertex 0 and service all vertices such that the load of vehicle j does not 
exceed its capacity Qj, and the total cost of the cycles is minimized.

To sum up, in a VRP, we need to determine a routing schedule that minimizes the 
total cost of deliveries such that the following constraints are met:

1. each route starts and ends at the depot,
2. every customer belongs exactly to one route,
3. the total demand on each route does not exceed the vehicle capacity Q,
4. the total duration of each route does not exceed a predefined limit T,
5. a vehicle can do more than one route, and
6. a preference priority is assigned to every customer such that γ preferred customers could 

not be visited in the same route. The route represents a sequence of customers for each 
vehicle.

Given a set of customers C , a set of vehicles M , and the operating time at each customer 
to
i
 , the following represents our proposed mathematical formulation:

which is subject to

In the first two constraints, xijm represents the degree of a vertex that ensures that 
exactly one edge enters and exactly one leaves each vertex associated with a customer, 
respectively. Constraint 3 ensures that the vehicle capacity for each vehicle m does not 
exceed the defined maximum. Constraint 4 ensures that each tour does not include more 
than � prioritized customers. In constraint 5, we ensure that the travel time for each 
vehicle (maybe for more than one tour) does not exceed a specified time limit.

min�i�j

(
tij + to

j

)
xijm

(1)
n∑
i=0

xijm = 1 ∀j ∈ C,m ∈ M

(2)
n∑
j=0

xijm = 1 ∀i ∈ C,m ∈ M

(3)
n∑
i

n∑
j,i≠j

xijmqi ≤ Q ∀m ∈ M

(4)
n∑
i

n∑
j,i≠j

xijmPi ≤ � ∀m ∈ M

(5)
∑
k

xijk
(
tij + to

i

)
≤ T; x ∈ {0, 1}
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4  Clarke–Wright algorithm

4.1  The classical Clarke–Wright algorithm

The Clarke–Wright savings algorithm is one of the known heuristics that can be used 
to solve the VRP. It was developed in 1964 and is classified as a constructive method in 
which tours are built up by adding nodes to partial tours or combining subtours to meet 
the capacities and costs (Clarke and Wright 1964). It applies to problems for which the 
number of vehicles is not fixed (it is a decision variable), and it works equally well for both 
directed and undirected problems. When two routes (0,…,i,0) and (0,j,…,0) can feasibly be 
merged into a single route (0,…,i,j,…,0), a distance saving  Sij = ci0 + c0j − cij is generated. A 
description of the classical Clarke Wright (CW) algorithm is given as follows.

Algorithm 1 – Classical Clarke Wright
1. Starting solution: each of the n vehicles serves one customer.
2. For all pairs of nodes i, j, i…j, calculate the savings for joining the cycles using edge [i,j]: Sij = c0i + 

c0j - cij.
3. Sort the savings in decreasing order.
4. Take edge [i,j] from the top of the savings list. Join two separate cycles with edge [i,j] by deleting 

(0,j) and (i,0) and introducing (i,j) if
(i) the nodes belong to separate cycles

(ii) the maximum capacity of the vehicle is not exceeded
(iii) i and j are the first or last customer on their cycles, one starting with (0,j) and one ending with 

(i,0)
5. Repeat (4) until the savings list is formed or the capacities do not allow more merging.

4.2  The modified Clarke–Wright algorithm

A modified version of the Clarke–Wright algorithm (CW) can be implemented by applying 
two new constraints to the algorithm. The first is the driver time parameter, which should 
not be less than the upper bound, Ut; and the second parameter is the customer preference 
priority, Pp, where the route should not contain more than n preferred customers. In the 
modified CW algorithm, customers are clustered by vehicles. First, compute the Euclidean 
distance matrix  (di,j) according to the following equation:

where Xi, Yi and Xj, Yj are the geographical locations of customers i and j, respectively. Sec-
ond, the savings value between customers i and j is calculated as follows:

where d0,j is the traveling distance between the depot and customer j, and di,j is the trave-
ling distance between customers i and j. Bodin et  al. (1983) updated the Clarke–Wright 
formulation. After the calculation, all savings values are collected in the savings list and 
calculated as follows:

di,j =

√(
Xi − Xj

)2
+
(
Yi − Yj

)2

Si,j = d0,j − di,j
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A description of the modified Clarke Wright (CW) algorithm is given as follows.

Algorithm 2 – Modified Clarke Wright
1. Import_Instance()
2. Calculate the Saving Method as 
3. IF(cst_Route_time && cst_Priority_cdt) Then

a. For all pairs of nodes i, j, i…j, calculate the savings for joining the cycles using edge [i,j]
b. Sort the savings in decreasing order.
c. Take edge [i,j] from the top of the savings list. Join two separate cycles with edge [i,j] by 

deleting (0,j) and (i,0) and introducing (i,j) if
i. the nodes belong to separate cycles

ii. the maximum capacity of the vehicle is not exceeded
iii. i and j are the first or last customer on their cycles, one starting with (0,j) and one ending 

with (i,0)
d. Repeat (c) until the savings list is formed or the capacities do not allow more merging.
EndIf

5  A classical cuckoo search algorithm

Nature-inspired meta-heuristics have proven their adeptness and efficacy on a wide range 
of problems, which has contributed to the introduction of new nature-inspired meta-heu-
ristic solutions over the years. All meta-heuristic algorithms share two important charac-
teristics, which are intensification and diversification. The dominance of these algorithms 
comes from the fact that they imitate the best features of nature, especially those of biologi-
cal systems that evolved from natural selection over millions of years.

The Cuckoo Search (CS) is one of the latest nature-inspired metaheuristic algorithms 
that belong to the swarm intelligence category. The results of several studies show that the 
CS has better performance than other natural algorithms such as PSO and the GA (Yang 
and Deb 2009, 2010) when solving continuous optimization problems. Yang and Deb 
(2009) first introduced the CS in 2009 based on the brood parasitism behavior of cuckoos. 
It is inspired by the aggressive reproduction behavior of cuckoo birds that lay their eggs in 
communal nests through which they might remove others’ eggs to increase the hatching 
probability of their own eggs. If a host bird discovers the eggs are not its own, it will either 
throw away these strange eggs or simply desert its nest and build a new nest elsewhere. The 
cuckoo’s egg might be found by the host bird with a certain probability  Ped ∈ [0,1].

The behavior of cuckoos is modeled by the CS algorithm. After each step, the worst 
solutions are discarded and new solutions are generated. This models that the worst nests 
are being identified by host birds, which means that they have to be discarded and new 
nests are created by host birds. Then, in each iteration, a cuckoo solution tries to replace a 
nest among the solution nests to get the best solution after each repetition. Thus, solution 
Xt+1
i

 is generated from solution Xt
i
 of cuckoo i by performing a Lévy flight (a method for 

generating eggs) as per the equation below:

Si,j = d0,j + dj,0 − di,j

Xt+1
i

= Xt
i
+ 𝛼 ⊕ Lé vy (s, 𝜆)
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where α < 0 is the step size, which is related to the scale of the problem of interest. In the 
majority of cases, the most commonly used value of α is 1. The most important character-
istic of Lévy flights is their intensive search around a solution and the occasional big steps 
of Lévy flights can minimize the probability of falling into the local optima. A Lévy flight 
is modeled as a probability density function:

 This has an infinite variance with an infinite mean. Here, s is the step size drawn from a 
Lévy distribution. A detailed description of the CS can be found in the work done by Yang 
and Deb (2010).

6  Proposed swarm intelligence cuckoo search based hyper‑heuristic 
for the VRPC

The hyper-heuristic algorithm (Algorithm 3) that we propose in this paper uses the Cuckoo 
Search algorithm (Yang and Deb 2009) to combine low-level heuristics such that a domain 
specific solution, soldomain, (i.e., the VRPC) would be guided towards the optimal or a near-
optimal solution. In our approach, we have used two sets of low-level heuristics. The first 
set is applied sequentially to improve the solution; this set is named llh-imp and shown in 
Table 1. The second set is applied according to a selection method using the levy-flight 
concept; this set is named llh_levy and shown in Table 2.

Lé vy(s, 𝜆) ∼ s−𝜆, (1 < 𝜆 ≤ 3)

Table 1  The set of considered low-level heuristics used for the improvement step

llh-imp# Description of the Low-level heuristic for the improvement step

llh-imp1 Re-Order: Reorder the sequence of customers (in a random tour) in order to find a better order of 
customers along the route

llh-imp2 Re-allocate: Remove a random customer from a random tour and add it to another tour if and 
only if the solution is improved

llh-imp3 Swap: Randomly swap 2 customers from 2 different tours if and only if the solution is improved
llh-imp4 Destroy: Destroy a part of the solution and reconstruct it using the proposed constructive heuris-

tic if the solution is improved
llh-imp5 Merge: Merge an existing tour into other tours if the solution is improved

Table 2  The set of Lévy-flight low-level heuristics used for the perturbation step

llh-lévy# Description of Low-level heuristic for perturbation step

llh-lévy1 Swap1: Randomly swap 2 customers from 2 different existing tours
llh-lévy2 Swap2: Randomly swap 3 customers from 3 different tours if that many exist
llh-lévy3 Insert/Delete: Remove an allocated customer from a random tout and re-

allocate it to another tour
llh-lévy4 NoisyDestroy: Destroy a part of the solution and reconstruct it using the 

proposed constructive heuristic
llh-lévy5 NoisyMerge: Merge an existing tour into the other tours
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6.1  Egg representation

In this work, we assume that a cuckoo lays a single egg in one nest; thus, an egg in a 
nest is a solution represented by one individual in the population, while the nest is the 
container of that new cuckoo egg and its abandonment involves its egg being replaced in 
the population by a new one. The cuckoo egg is defined as follows:

where llh_levy represents a sequence of n low-level heuristics that will be applied on an 
improved domain solution (VRPC), soldomain, in the order that they appear in the sequence, 
and soldomain represents the domain solution (i.e., the VRPC).

6.2  Host nest initialization

In the initialization stage, an initial solution, soldomain, is developed using a constructive 
heuristic. The constructive heuristic constructs the first current solution from scratch 
given a set of predefined rules. In this work, the Constructive Algorithm is executed as 
follows.

a. Step 1 Choose the customer who has the highest priority.
b. Step 2 Construct the tour by trying to add the nearest customer to the tour.
c. Step 3 When the tour is unable to add any more customers from the rest, a new tour will 

be created and the same scenario will be repeated in the second step.

6.3  Local search (intensification and diversification) and levy flight

To reduce the probability of their eggs being discovered, some cuckoo species have 
evolved in such a way that they can engage in a kind of surveillance on nests likely to 
be a host (Payne and Sorensen 2005). This work uses improvement and perturbation 
heuristics to help the cuckoo bird’s eggs imitate the pattern and shape of the host nest’s 
eggs, and therefore they have a good chance to survive. These heuristics are iteratively 
performed in two separate steps until a stopping condition is satisfied. The new solu-
tion is accepted based on the simulated annealing acceptance criterion (Metropolis cri-
terion). In this way, the optimization process might be prevented from getting stuck in a 
local optimum.

In the improvement step, a permutation of all low-level heuristics in the set llh-imp, 
shown in Table 1, is applied sequentially to the current solution. Each of the low-level 
heuristics llh-impi is applied repeatedly before applying llh-impi+1 as long as llh-impi is 
able to improve the solution.

In the perturbation step, we simulate the moves conducted by cuckoos in the search 
space via Lévy flights. The cuckoo chooses a direction and step size from its current 
nest to search for the best nest in a restrictive range of its current nest according to the 

cuckooegg =
(
llh_levy, soldomain

)
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value of the Lévy flights, which depend on two factors: the remaining time for a cuckoo 
to lay its egg (i.e., the algorithm execution time) and the performance enhancement of 
the solution. This step guarantees a certain level of diversification by selecting one of 
the following three strategies to be applied according to Eq. 2.

• Strategy 1: From Table 2, choose a random permutation heuristic llh_lévyi and apply 
it to the candidate solution.

• Strategy 2: From Table 2, randomly choose a permutation of the perturbation heuristics 
and apply it as long as the candidate solution in hand is improved. Hence, the improv-
ing low-level-heuristic is applied repeatedly as long as it is able to improve the solution.

• Strategy 3: From Table 2, choose the perturbation heuristic that is known to have the 
best reward.

The strategy selection depends on the variable Lévy described in Eq. 6:

where Tl is the algorithm’s remaining execution time. K is calculated as per the equation 
below:

The value of m is based on whether the performance improvement level falls below 
30%, from 30 to 60%, or above 60%.

L indicates the performance level and is calculated as follows:

6.4  Termination criterion

The termination criterion or stopping condition is the condition that ends the search. In 
this work, the hyper-heuristic will stop searching when the number of nonimproved solu-
tions reaches a defined threshold (related to the number of customers) or the execution time 
reaches a certain limit ɷ. The termination criterion is defined in the following equation:

(6)Levy(k, t) =

⎧
⎪⎨⎪⎩

1, if k = 2 and t <
Tl

3

2, if k = 2 and t >
Tl

3

3, if k ≥ 3

(7)K = Levy(k, t)−1 + m

(8)m =

⎧
⎪⎨⎪⎩

1, if 𝛼 ∗ L < L + 0.3 ∗ L

2, if L + 0.3 ∗ L < 𝛼 ∗ L < L + 0.6 ∗ L

3, if 𝛼 ∗ L > L + 0.6 ∗ L

L =
|||||
ObjectiveFunction(Current Solution) − Objective

Function(Best Solution)

ObjectiveFunction(Current Solution)

|||||
.
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Algorithm 3- Swarm intelligence Cuckoo Search based Hyper-heuristic

1 Inputs: Ç; γ; D; searchSpace; llh-imp; llh-lévy; diverseStrategies; Output: solopt
2 begin
3 soldomaint = Constructive_Heuristic_Domain_Sol(Ç; γ; D; searchSpace, L)
4 soldomaintOpt = Improvement_Local_Search_Heuristic (soldomain; llh-imp, accept_criteria)
5 cuckooeggSet = Create_Diverse_Set_Cuckoo_Eggs(llh-lévy, diverseStrategies, soldomainOpt)
6 foreach cuckooegg in cuckooeggSet do
7 cuckooegg = Evaluate_LévyFlight(cuckooegg, LévyFlightsEqu,soldomainOpt ,L, accept_criteria)
8 end foreach
9 nestSet = Create_Random_Nest_Eggs(llh-lévy, diverseStrategies, soldomainOpt)
10 foreach nestegg in nestSet do
11 nestegg = Evaluate_ LévyFlight(nestegg, LévyFlightsEqu, soldomainOpt , L, accept_criteria)
12 end foreach
13 while (stopping condition not satisfied) do
14 cuckooegg = Get_Random_Cuckoo_Egg(CuckooeggSet)
15 nestegg = Get_Random_Nest(nestSet)
16 cuckooegg = Modify_ llh-lévy(cuckooegg)
17 cuckooegg =Evaluate_ LévyFlight(cuckooegg,LévyFlightsEqu,soldomainOpt ,L, accept_criteria)
18 if (Fitness(cuckooegg) < Fitness(nestegg)) then
19 begin
20 nestegg = cuckooegg
21 best_ llh-lévy = cuckoo. llh-lévy
22 end if
23 soldomainOpt  = Update_Optimal_Solution(cuckoo, nest, soldomainOpt )
24 nestSet = Replace_Worst_Nests(nestSet, Percent_eggDisc)
25 end while
26 return soldomainOpt
27 end

7  Experimental results

In this section, the results of a Cuckoo Search-based hyper-heuristic are presented and are 
compared with those of the modified Clarke Wright algorithm. These algorithms are tested 
on real and synthetic data. A set of eighteen synthetic test cases were generated based on 
the methodology adopted by Tarhini et  al. (2016); each of these test cases has different 
numbers of customers and vehicles. Further, real data were collected from a distribution 
company operating in Lebanon. The company distributes products to more than 200 cus-
tomers in several industries across Lebanon. This section will present the results of the 
synthetic data first followed by the results of the real data.

7.1  Synthetic data

Each of the eighteen synthetic test cases is represented by four main components. They are 
the distance matrices, the route time matrices, the demands of customers and the custom-
er’s priority. Table 3 summarizes the results of the modified Clarke Wright (CW) algorithm 
and the Cuckoo Search-based hyper-heuristic (CsHh) applied on the eighteen test cases of 

(9)
T(ms) = Min{max{�, nbofcustomers ∗ 1000}, nb of consecutive non-improved solutions}.
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TC1-TC18. The second column of Table 3 (Cn) represents the number of customers to be 
visited and the third column (Vn) represents the number of vehicles used. The remaining 
columns show the Objective function, traversed distance, and execution time in millisec-
onds for both the CW algorithm and the CS Hyper-heuristic. The CW algorithm and CsHh 
were both implemented using VB.Net.1 Furthermore, the tests were carried on a PC with 
an Intel core i3 CPU operating at 1.2 GHz, 4 GB of Ram, and Windows 10.

In Table 3, for each instance, several parameters are shown and compared: the objective 
function value (best found cost), the distance of the best route, and the time taken to find 
this best route. Figure 3 illustrates the results shown in Table 3 in which it is found that the 
CSs hyper-heuristic outperformed the CW algorithm in terms of the Objective function 
value and the route distance for the eighteen test cases.

Moreover, it is worth noticing from Table  3 that the magnitude of the performance 
improvement of the CS over the CW algorithm incrementally increases as the problem size 
gets larger; this is illustrated in Fig. 4. One explanation for these results is that for small 
problem sizes, the CS hyper-heuristic was able to cover similar diverse solutions in the nar-
row solution space as the CW and thus it gave similar results. However, for large problem 
sizes, the diversification method in the CS enabled this hyper-heuristic to find a better solu-
tion than the CW by covering all possible combinations.

Further, although the CS algorithm outperformed the CW in large problem sizes with 
the chance of obtaining a better diversified solution space, nevertheless, the execution time 

Table 3  Comparison results of the modified Clarke Wright and the cuckoo search based hyper-heuristic

Problem Cn Vn Extended Clarke Wright Cuckoo search-based hyper-heuristic

O.F (cost) Distance Exe time (s) O.F. (cost) Distance Exe time (s)

Tc-1 8 3 150 556 0.59 150 556 0.72
Tc-2 8 4 198 716 0.74 183 701 0.78
Tc-3 10 4 211 691 0.74 191 671 0.92
Tc-4 10 6 211 859 0.89 199 841 0.99
Tc-5 10 7 453 1063 1.08 422 1032 1.04
Tc-6 11 5 201 701 0.75 196 683 1.00
Tc-7 20 5 265 760 0.80 242 744 2.00
Tc-8 25 5 298 783 1.00 281 771 2.01
Tc-9 30 5 314 802 1.01 287 792 2.11
Tc-10 40 5 342 821 1.03 313 801 4.80
Tc-11 40 7 328 811 1.08 302 797 4.90
Tc-12 50 5 389 877 1.11 344 823 5.00
Tc-13 50 7 372 862 1.12 322 808 6.70
Tc-14 75 10 413 895 1.18 388 870 7.80
Tc-15 100 12 453 916 1.32 413 890 10.47
Tc-16 100 20 429 899 1.40 389 871 15.36
Tc-17 150 25 530 1028 1.47 481 998 17.00
Tc-18 200 30 577 1103 1.67 512 1089 21.51

1 The code is found at the following link: https ://githu b.com/abbas tarhi ni/VRP.git.

https://github.com/abbastarhini/VRP.git
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for the CS (21.5 s) was much longer than that of the CW (1.67 s), as shown in Fig. 5; how-
ever, this is still acceptable since such solutions are produced off-line. In Fig. 5, the x-axis 
shows the test cases, the left y-axis is the execution time, and the right y-axis shows the 
performance enhancement of the CS over the CW. In fact, one reason for the CS hyper-
heuristic having a higher computational time than the CW goes back to the fact that the 
operations performed in any hyper-heuristic are more complex than those done in the CW’s 
iterations. In the CS hyper-heuristic, all operations, ranging from the initial constructive 
solutions to the local search improvement method and ending with the perturbation meth-
ods, take more time than what is done in the CW, which is based on the notion of saving 
operations; thus, the CW scores very high on simplicity and speed. In fact, this is clearly 
noticed as the problem size gets bigger where the diversified set of solutions needs more 
computational efforts to be created than in small-sized problems where the computational 
efforts are close to those in the CW.

150
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400
450
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550

CS and CW performance

O.F (CW) O.F. (CS)

Fig. 3  A comparison of the Cuckoo Search-based Hyper-heuristic results with the Clarke Wright algorithm 
results
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Fig. 4  The magnitude of the CS performance enhancement over the CW
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In addition, we tuned the cuckoo-search hyper-heuristic performance by using three differ-
ent acceptance criteria. The first acceptance criterion is Naive Acceptance, which allows the 
nonimproving solutions to be accepted with a probability of 0.5. The second adopted accept-
ance criterion is All Moves, which accepts the candidate solution regardless of its objective 
function. As shown in Fig. 6, the CS hyper-heuristic is best tuned using the SA acceptance 
criterion because it enables it not to be stuck in a local optimum.

In addition, further tuning is applied to the termination criteria to measure the effect on the 
execution time and thus on the solution quality. There are two termination criteria: the execu-
tion time reaches a certain limit ɷ, as mentioned in Eq. 4, or the number of nonimproved solu-
tions reaches a predefined threshold (related to the number of customers). The second termi-
nation criterion is when the number of nonimproved solutions reaches a predefined threshold 
(related to the number of customers):

(5)T(ms) = max{�, nbofcustomers ∗ 1000}.

Fig. 5  Enhancement percentage of the CS algorithm over the CW across execution times
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Fig. 6  Cuckoo search-based hyper-heuristic tuned on three acceptance criteria
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Figure  7 shows the results of the CsHh for both termination criteria. The first crite-
rion (Eq. 4) provided more efficient solutions. This is because Eq. 5 is based only on the 
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number of customers. When it grows, the termination criterion will grow exponentially and 
will never stop, even if the solution is found.

Finally, in order to test the solution stability of our algorithm, we conducted 5 runs of 
the algorithm for each test case. Figure 8a and b correspondingly show the results of exe-
cuting the 5 runs on the first test case (Tc-1) with a small number of customers (8 custom-
ers) and the last test case (Tc-18) with a large number of customers (200 customers). The 
x-axis represents the execution time and the y-axis represents the value of the objective 
function. Each of the dotted colored lines represents one run of the algorithm. The solid 
red line represents the average of the 5 runs for the same test case. The results clearly show 
that the algorithm’s execution is stable, where trajectory of the 5 runs are evenly distrib-
uted around the average of these runs with minimal deviation.

7.2  Case study: applying the algorithms on real data (Fueled application)

In this section, we compare the results of the CsHh and CW on real data collected from a 
distribution company operating in Lebanon (IBC 2019). The company distributes prod-
ucts to more than 200 customers in several industries across Lebanon. We applied our 
solution within the same time frame to a scenario with 12 customers distributed over an 
area of 60 km2 shown in Fig. 9. The distance between the customers is determined via 
the Google Maps API. The constraints placed by our client (the Distribution Company) 
limit the tour to being completed within a maximum of 4 h using only three vehicles. 
In addition, three customers had a higher priority than others (Ghobeiry, Chiyah, and 
Mansourieh) and need to be served within the first hour. Further, the service times are 

Fig. 9  Customers’ locations over an area of 60 km2
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almost the same for all customers and will not exceed 10 min; thus, it is assumed that 
service time is counted within the customer travel time.

The solution generated by the Clarke Wright algorithm is detailed in Table  4 and 
shown in Fig. 10. The total distance needed to serve the 12 customers is 101.5 km and 
the maximum time needed for the three tours is within 240 min.

Table 4  Solution generated by the Clarke Wright algorithm for the distribution company’s real data

Tour 
1

Route Beirut Chiyah Ghobeiry Borj 
Brajneh Baabda Dikwaneh Beirut Total

Distance 3.9 km 2.5 km 3.3 km 7.7 km 7.8 km 5.9 km 31.1 km

Route 
time 9 min 5 min 8 min 42 min 16 min 12 min 92 min

Tour 
2

Route Beirut Hadath Mansourieh Ain Saadeh Bsalim Beirut Total

Distance 6.2 km 6.8 km 6.1 km 8.5 km 12.8 km 40.4 km

Route
Time 96 min 105 min 8 min 14 min 17 min 240 min

Tour 
3

Rout e Beirut Fanar Naqqache Zalka Beirut Total

Distance 9.5 km 6.9 km 3.6 km 10 km 30 km

Route
time 16 min 13 min 12 min 15 min 56 min

Total tour distance 101.5 km

Fig. 10  The solution generated by the Clarke Wright algorithm
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The solution generated by the Cuckoo search hyper-heuristic is shown in Fig.  11 
and detailed in Table 5. The total distance needed to serve the 12 customers is 96.5 km 
and the maximum time needed for the three tours is within 179 min.

It is clear from these results that the CsHh is able to get a better quality solution 
than the CW in terms of the route distance and route time. Nevertheless, the CW 
scored very high on simplicity and speed.

Fig. 11  The solution generated by the cuckoo search-based hyper-heuristic

Table 5  Solution generated by the cuckoo search-based hyper heuristic for the distribution company’s real 
data

Tour 
1

Route Beirut Ghobeiry Chiyah Borj 
Brajneh Baabda Hadath Beirut Total

Distance 4 km 3 km 5 km 7.2 km 3 km 6.1 km 28.3 km

time 5 min 8 min 10 min 18 min 42 min 96 min 179 min

Tour 
2

Route Beirut Dekwaneh Mansourieh Fanar Zalka Beirut Total

Distance 6.2 km 5.1 km 6.1 km 3.4 km 10 km 30.8 km

time 15 min 13 min 12 min 10 min 15 min 65 min

Tour 
3

Route Beirut Ain Saadeh Bsalim Naqqache Beirut Total

Distance 14.1 km 8.1 km 4.2 km 11 km 37.4 km

time 25 min 14 min 11 min 15 min 65 min

Total tour distance 96.5 km
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8  Conclusion

In this paper, we presented our vision to minimize the traveling distance of vehicles when 
moving cargo to prioritized customers. The problem under study (the VRPC) is a combi-
natorial optimization management problem that seeks the optimal set of routes traversed 
by a vehicle to deliver products to prioritized customers in the shortest possible time. We 
presented a modified version of the Clarke Wright algorithm and a Cuckoo Search-based 
Hyper-heuristic for the VRPC with the purpose of comparing the performances of these 
competing methods.

The Clarke–Wright (CW) savings algorithm is one of the popular heuristics known to 
efficiently solve the VRP. The Clarke–Wright proved to be very quick and simple to imple-
ment. However, in contexts where vehicle routes span long distances to cover a large num-
ber of customers, it is worthwhile to explore other methods that reduce the distance covered 
and the needed time. The Cuckoo search is one of the latest nature-inspired metaheuristic 
algorithms that belong to the swarm intelligence category. The proposed Cuckoo search-
based hyper-heuristic combines low-level heuristics such that a domain specific solution 
would be guided towards the optimal or a near-optimal solution. In fact, the CW algorithm 
has been enhanced to solve the VRPC. One contribution of this work is modifying the clas-
sical VRPC mathematical model to include prioritized customers. Another contribution is 
enhancing the CW algorithm to solve the VRP with prioritized customers. A third con-
tribution is proposing and testing a unique hyper-heuristic (CsHh) that has not been used 
before for solving the VRPC and comparing it with a modified version of the modified CW.

The results indicate that our proposed CsHh outperformed the modified CW algorithm. 
Mainly, the focus in the CsHh was on the intensification and diversification generation 
method and the acceptance criteria that guarantees escaping from a local optima. A unique 
constructive method has been used to boost the quality of the initial population, and, con-
sequently, the quality of the solution space was improved in every generation using a local 
search stimulated by a Lévy flight. Clearly, this process affected the final results since it 
aided in yielding better solutions than the CW. An additional contribution is the practi-
cality of the proposed method. We applied this solution to a distribution company (IBC 
2019) operating in Lebanon. The company distributes products to more than 200 clients 
in several industries. The distribution company believes that our CsHh solution offers an 
attractive alternative to their commercial solver since it is more flexible at handling the 
company constraints regarding the customers’ priority, capacity, and number of trucks, and 
the computation time is reasonable as long as it significantly reduced the time and cost of 
the distribution process.
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