
Vol.:(0123456789)

Annals of Operations Research (2022) 308:549–570
https://doi.org/10.1007/s10479-020-03625-5

1 3

S.I. : ARTIFICIAL INTELLIGENCE IN OPERATIONS MANAGEMENT

Swarm intelligence‑based hyper‑heuristic for the vehicle
routing problem with prioritized customers

Abbas Tarhini1 · Kassem Danach2 · Antoine Harfouche3

Published online: 7 May 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
The vehicle routing problem (VRP) is a combinatorial optimization management problem
that seeks the optimal set of routes traversed by a vehicle to deliver products to custom-
ers. A recognized problem in this domain is to serve ‘prioritized’ customers in the short-
est possible time where customers with known demands are supplied by one or several
depots. This problem is known as the Vehicle Routing with Prioritized Customers (VRPC).
The purpose of this work is to present and compare two artificial intelligence-based novel
methods that minimize the traveling distance of vehicles when moving cargo to prioritized
customers. Various studies have been conducted regarding this topic; nevertheless, up to
now, few studies used the Cuckoo Search-based hyper-heuristic. This paper modifies a
classical mathematical model that represents the VRPC, implements and tests an evolu-
tionary Cuckoo Search-based hyper-heuristic, and then compares the results with those of
our proposed modified version of the Clarke Wright (CW) algorithm. In this modified ver-
sion, the CW algorithm serves all customers per their preassigned priorities while covering
the needed working hours. The results indicate that the solution selected by the Cuckoo
Search-based hyper-heuristic outperformed the modified Clarke Wright algorithm while
taking into consideration the customers’ priority and demands and the vehicle capacity.

Keywords Warm intelligence · Hyper-heuristic · Combinatorial problem · Vehicle routing
problem · Clarke Wright algorithm · Cuckoo search algorithm

 * Abbas Tarhini
 abbas.tarhini@lau.edu.lb

 Kassem Danach
 kassem.danach@iul.edu.lb

 Antoine Harfouche
 Antoine.HARFOUCHE@edhec.edu

1 Information Technology and Operations Management Department, Lebanese American University,
Beirut, Lebanon

2 Department of Management Information Systems, Islamic University of Lebanon, Khalde,
Lebanon

3 Department of Management Information Systems, Université Paris Nanterre, Paris, France

http://orcid.org/0000-0002-9441-1649
http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-020-03625-5&domain=pdf

550 Annals of Operations Research (2022) 308:549–570

1 3

1 Introduction

Transportation has a significant impact on today’s societies; it has large impacts on eco-
nomic growth and employment (Fink et al. 2019). Transportation employs millions of peo-
ple globally and it is considered as a major component of organizations’ costs (Baradaran
et al. 2019; El Khoury et al. 2014; Comtois et al. 2013). Further, transportation depends
heavily on oil resources and is considered a focal source of CO2, CO, N2O, and NH3 emis-
sions. As stated by a US EPA report, approximately 28% of the national greenhouse-gas
emissions in 2017 were generated by transportation. It is therefore becoming a priority for
transportation companies to optimize their transportation processes since small improve-
ments can lead to huge impacts on the environment and on organizations’ cost reductions.
Furthermore, today, companies are both concerned with the costs and highly interested
in providing the best customer service to optimize fulfillment, logistics, and production,
which in turn lead to tight customer loyalty, and thus better organizational performance.

In transportation, the Vehicle Routing Problem (VRP) deals with the transportation of
goods between depots and customers, where a set of routes must be defined for a number
of vehicles to travel from their depot(s) to customers (Côté et al. 2020). The traveling cost
between the depot and each customer and between each pair of customers is given. The
VRP solution must find a route for each vehicle, starting and ending at the depot, such that
a set of customers is served by exactly one vehicle, the overall cost of the routes is mini-
mized and customer satisfaction (fulfilling their demands) is maximized while taking into
account a set of given constraints. Typically, the solution to a VRP has to take into consid-
eration several other restrictions, such as the capacity of the vehicles, the working hours of
the salespersons, and the priority of the desired customers. Further, there are several vari-
ants to the VRP that take into account different factors such as the nature of the transported
goods, the quality of the service required, and the characteristics of the customers and the
vehicles. In Fig. 1 below, we show a typical input for a VRP problem and one of its pos-
sible outputs:

The literature presents different algorithms that have been used to solve the VRP such
as the Tabu Search (Du and He 2012; Jin et al. 2012), the Artificial Bee Colony algorithm
(Szeto et al. 2011; Gomez and Salhi 2014), the Bee Mating Optimization algorithm (Mari-
naki et al. 2010), Ant Colony Optimization (Akpinar 2016), the Genetic Algorithm (GA)
(Nazif and Lee 2012), Particle Swarm Optimization (PSO) (Kim and Son 2012; Chen et al.
2006), the Water Flow Alike algorithm (Zainudin et al. 2015), the membrane algorithm
(Niu et al. 2015), the Cooperative Parallel metaheuristic (Jin et al. 2014) and the Clarke

Fig. 1 An instance of a VRP (left) and its solution (right)

551Annals of Operations Research (2022) 308:549–570

1 3

Wright algorithm (Clarke and Wright 1964; Shour et al. 2015). The Clarke Wright (CW)
algorithm was developed in 1964 to solve the VRP. The CW is classified as a constructive
method used to addresses a variant number of vehicles and works evenly for both directed
and undirected problems. Further, a recent metaheuristic known as the cuckoo search (CS)
was introduced by Yang and Deb in 2009 and has received much attention from researchers
in various optimization areas. The CS has been applied to continuous optimization prob-
lems where it has shown better performance when compared to popular meta-heuristic
algorithms such as the GA, Particle Swarm Optimization (PSO) and others (Ouaarab et al.
2014; Yang and Deb 2010; Yildiz 2013).

Recently, it became very popular among researchers to use search methods for selecting
heuristics to solve computational search problems (Burke et al. 2010). This new optimiza-
tion paradigm is called Hyper-heuristics and is described as using “heuristics to choose
heuristics”. The main difference between hyper-heuristics and meta-heuristics is that
hyper-heuristics directly search a space of heuristics rather than a space of problem solu-
tions. Thus, when applied to a specific problem, a hyper-heuristic aims to find a proper
combination of easy-to-implement low-level heuristics that could produce an acceptable
domain solution (Burke et al. 2013).

Motivated by the above literature, this paper proposes a modified version of the Clarke
Wright algorithm and an enhanced cuckoo search-based hyper-heuristic that selects, in
each step, the most suitable low-level heuristic that directly searches for a VRPC solution
in the problem’s search space. In fact, the reason for using a hyper-heuristic based on the
Cuckoo Search metaheuristic was motivated by the advantages of this metaheuristic. Com-
pared to other heuristics, it has fewer adjustable parameters that need to be configured,
and it also has the potential to better balance exploitation and exploration. Regarding our
proposed Clarke Wright algorithm, it extends the classical CW to tackle prioritized cus-
tomers. Both methods are tested with a set of eighteen randomly generated test cases that
simulate actual data in the VRP with a predefined capacity of each vehicle, route time, and
customer priority. The goal is to minimize the traveling distance of vehicles and reduce
the time when moving freight from the depot to prioritized customers. In addition, both
methods are also tested on real data from a distribution company operating in Lebanon.
The results of the cuckoo search-based hyper-heuristic outperformed the modified Clarke
Wright algorithm.

The rest of this paper is organized as follows. Section 2 presents the literature review.
Section 3 describes the VRP problem and its formulation. Section 4 presents a description
of the classical and modified Clarke Wright algorithms. Section 5 presents the classical
Cuckoo Search algorithm. The cuckoo search-based hyper-heuristic is presented in Sect. 6.
Section 7 presents the empirical results. Finally, the conclusion is presented in Sect. 8.

2 Literature review

The Vehicle Routing Problem (VRP) is known to be an NP-hard problem; its computa-
tional complexity increases exponentially as the number of customers grows (Lenstra and
Rinnooy Kan 1981). Researchers have approached the vehicle routing problem using vari-
ous methods. Exact methods and heuristic algorithms are the most popular ones. Although
exact methods can obtain an optimal solution, they are not efficient enough, especially
for large-size instances (Abu-Khzam et al. 2014; Captivo et al. 2003). Hence, the require-
ment to find good solutions quickly (not necessarily the optimal solutions) has led to the

552 Annals of Operations Research (2022) 308:549–570

1 3

development of various heuristic algorithms (Cordeau et al. 2005) and approximate (meta-
heuristic) algorithms (Haraty et al. 2018; Tarhini et al. 2016). Some well-structured heu-
ristics can quickly attain feasible solutions for targeted problems. However, the feasible
solutions found by heuristic algorithms are not always near the optimal one and thus they
cannot guarantee the quality of these solutions (Tarhini et al. 2014).

In fact, previous works have shown that it is easy to apply meta-heuristic algorithms to
various VRPs to obtain near to optimal solutions with an acceptable computational time
(Yang and Deb 2010; Yang et al. 2012; Khoury et al. 2019); thus, several meta-heuris-
tic algorithms, including Particle Swarm Optimization (PSO) (Nazif and Lee 2012; Kim
and Son 2012), the Tabu Search (TS) (Ai and Kachitvichyanukul 2009; Chen et al. 2006),
Simulated Annealing (SA) (Gounaris et al. 2014), Genetic Algorithms (GAs) (Zainudin
et al. 2015; Jin et al. 2014), and Squeaky Wheel Optimization (SWO) (Zhen 2016), have
been proposed to solve VRPs. Nevertheless, the literature does not contain any usage of
the Cuckoo Search (CS) algorithm to solve the vehicle routing problem with prioritized
customers at the heuristic or hyper-heuristic levels. In fact, an interesting work proposed
by Ouaarab et al. (2014) used the CS to solve the traveling salesperson problem (TSP), and
the results show that the CS algorithm outperformed some other popular meta-heuristic
algorithms. In addition to solving continuous optimization problems (Yang et al. 2012;
Gandomi et al. 2013), the CS achieved remarkable performance in constrained optimiza-
tion problems (Yang and Deb 2013; Bulatović et al. 2013; Bhargava et al. 2013), selecting
the web service composition (Chifu et al. 2012), training a neural network (Vazquez 2011),
bin packing (Layeb 2011) and manufacturing scheduling systems (Burnwal and Deb 2013).

On the other hand, the literature shows that only a few works have used hyper-heuristics
to solve the VRP. Asta and Ozcan (2014) used the HyFlex framework-based hyper-heuris-
tic approach to solve the VRP while Garrido and Castro (2009) used an evolutionary hyper-
heuristic approach. Further, Marshall et al. (2014) described a grammatical evolutionary-
based hyper-heuristic for the capacitated VRP. To the best of the authors’ knowledge, the
use of cuckoo search-based hyper-heuristics to solve the VRPC remains unexplored in the
literature. Accordingly, this work is motivated to develop a Cuckoo Search-based hyper-
heuristic to solve the nonclassical VRP problem with some realistic constraints such as
customer priority and constrained route times and to compare its results with those of the
Clarke Wright algorithm in order to get better and more satisfactory solutions. Our work
considers two types of heuristics: constructive heuristics and improvement heuristics. A
constructive heuristic positions customers along a route and creates new routes as needed
until all the clients have been assigned a route. On the other hand, improvement heuristics
require an initial solution to start with and then they modify the placement of the custom-
ers within the routes. Thus, the role of improvement heuristics is to reduce the distance
required to visit all the customers.

3 Vehicle routing problem description

3.1 Preliminary

Due to the fierce competition with their rivals, transportation and logistics companies
noticed decreases in their profit margins if their trucks were not loaded at the needed
capacity and routes were not optimally traversed. Accordingly, efficient and effective meas-
ures had to be taken at the operational level by optimally routing vehicles to customers. To

553Annals of Operations Research (2022) 308:549–570

1 3

elaborate on the effect of such routing, the following example, illustrated in Fig. 2, shows
two different permutations to establish a route between the central depot 0 and 4 customers
(represented as nodes), where the distance between each customer is displayed on the edge
between the nodes and the demand di is found in the node itself. Assume that the maximum
capacity per vehicle is 40. The two permutations lead to two different costs. Assume that
the first permutation travels from depot 0 to customer 1 and then returns back to depot,
from which it travels to customer 2 and back again to depot. Thus, the path will be 0–1–0,
0–2, 0. The demand in this trip is fulfilled with a cost of 12 + 12 + 11 + 11 = 46. Assume
that in the second permutation we traverse the path 0–1–2–0. The demand (10 + 15) of this
trip is less than the vehicle capacity and thus it is fulfilled; therefore, the cost of this trip
would be 12 + 8+11 = 31. This obviously shows that the selection of the appropriate route
would reduce the cost of the trip between customers.

3.2 Mathematical formulation

Given a set of customers C= {1,…,n} with priorities γi ∈ γ = {1…n} and demands di ∈ D
= {1,…k} for a product that must be served using a set of vehicles. The vehicles are situ-
ated at a central depot to which they must return after serving customers. The cost of trave-
ling between customer i and customer j is related to the distance traversed and is denoted
by cij. Each vehicle has a given maximum capacity Q. In a VRP, we need to determine a
routing schedule that minimizes the total cost of deliveries such that each route starts and
ends at the depot; further, every customer belongs exactly to one route, and the vehicle
capacity is not exceeded in any route. The route represents a sequence of customers for
each vehicle.

The VRP is known to be an NP-hard problem (Lenstra and Rinnooy Kan 1981),
and we represent it using graphs. Let G (VG, EG) be a graph in which the following
exists: vertex vi ∈ VG represents a customer to be visited, where |VG| = n; the customer’s
demand di represents the number of products requested by customer vi; the edge e ∈ EG
joins the two vertices vi and vj and represents the existence of a flow between customer
vi and customer vj; and the cost of traversing this edge e, cij, represents the distance
between the two customers vi and vj. There exists m vehicles, where mi ∈ M= {1,…y},
with capacities Qj, where j = 1…q, that start and end at the central depot, which is at

1211
10

8
9

9

5

0

2

1
4

3

7

15

7

d1=10

d2=15

d3=18

d4=17

Fig. 2 VRP route establishment, the first permutation

554 Annals of Operations Research (2022) 308:549–570

1 3

vertex 0. The problem to be handled is to determine the cycles R1,…Rn for the vehicles
that start from vertex 0 and service all vertices such that the load of vehicle j does not
exceed its capacity Qj, and the total cost of the cycles is minimized.

To sum up, in a VRP, we need to determine a routing schedule that minimizes the
total cost of deliveries such that the following constraints are met:

1. each route starts and ends at the depot,
2. every customer belongs exactly to one route,
3. the total demand on each route does not exceed the vehicle capacity Q,
4. the total duration of each route does not exceed a predefined limit T,
5. a vehicle can do more than one route, and
6. a preference priority is assigned to every customer such that γ preferred customers could

not be visited in the same route. The route represents a sequence of customers for each
vehicle.

Given a set of customers C , a set of vehicles M , and the operating time at each customer
to
i
 , the following represents our proposed mathematical formulation:

which is subject to

In the first two constraints, xijm represents the degree of a vertex that ensures that
exactly one edge enters and exactly one leaves each vertex associated with a customer,
respectively. Constraint 3 ensures that the vehicle capacity for each vehicle m does not
exceed the defined maximum. Constraint 4 ensures that each tour does not include more
than � prioritized customers. In constraint 5, we ensure that the travel time for each
vehicle (maybe for more than one tour) does not exceed a specified time limit.

min�i�j

(
tij + to

j

)
xijm

(1)
n∑
i=0

xijm = 1 ∀j ∈ C,m ∈ M

(2)
n∑
j=0

xijm = 1 ∀i ∈ C,m ∈ M

(3)
n∑
i

n∑
j,i≠j

xijmqi ≤ Q ∀m ∈ M

(4)
n∑
i

n∑
j,i≠j

xijmPi ≤ � ∀m ∈ M

(5)
∑
k

xijk
(
tij + to

i

)
≤ T; x ∈ {0, 1}

555Annals of Operations Research (2022) 308:549–570

1 3

4 Clarke–Wright algorithm

4.1 The classical Clarke–Wright algorithm

The Clarke–Wright savings algorithm is one of the known heuristics that can be used
to solve the VRP. It was developed in 1964 and is classified as a constructive method in
which tours are built up by adding nodes to partial tours or combining subtours to meet
the capacities and costs (Clarke and Wright 1964). It applies to problems for which the
number of vehicles is not fixed (it is a decision variable), and it works equally well for both
directed and undirected problems. When two routes (0,…,i,0) and (0,j,…,0) can feasibly be
merged into a single route (0,…,i,j,…,0), a distance saving Sij = ci0 + c0j − cij is generated. A
description of the classical Clarke Wright (CW) algorithm is given as follows.

Algorithm 1 – Classical Clarke Wright
1. Starting solution: each of the n vehicles serves one customer.
2. For all pairs of nodes i, j, i…j, calculate the savings for joining the cycles using edge [i,j]: Sij = c0i +

c0j - cij.
3. Sort the savings in decreasing order.
4. Take edge [i,j] from the top of the savings list. Join two separate cycles with edge [i,j] by deleting

(0,j) and (i,0) and introducing (i,j) if
(i) the nodes belong to separate cycles

(ii) the maximum capacity of the vehicle is not exceeded
(iii) i and j are the first or last customer on their cycles, one starting with (0,j) and one ending with

(i,0)
5. Repeat (4) until the savings list is formed or the capacities do not allow more merging.

4.2 The modified Clarke–Wright algorithm

A modified version of the Clarke–Wright algorithm (CW) can be implemented by applying
two new constraints to the algorithm. The first is the driver time parameter, which should
not be less than the upper bound, Ut; and the second parameter is the customer preference
priority, Pp, where the route should not contain more than n preferred customers. In the
modified CW algorithm, customers are clustered by vehicles. First, compute the Euclidean
distance matrix (di,j) according to the following equation:

where Xi, Yi and Xj, Yj are the geographical locations of customers i and j, respectively. Sec-
ond, the savings value between customers i and j is calculated as follows:

where d0,j is the traveling distance between the depot and customer j, and di,j is the trave-
ling distance between customers i and j. Bodin et al. (1983) updated the Clarke–Wright
formulation. After the calculation, all savings values are collected in the savings list and
calculated as follows:

di,j =

√(
Xi − Xj

)2
+
(
Yi − Yj

)2

Si,j = d0,j − di,j

556 Annals of Operations Research (2022) 308:549–570

1 3

A description of the modified Clarke Wright (CW) algorithm is given as follows.

Algorithm 2 – Modified Clarke Wright
1. Import_Instance()
2. Calculate the Saving Method as
3. IF(cst_Route_time && cst_Priority_cdt) Then

a. For all pairs of nodes i, j, i…j, calculate the savings for joining the cycles using edge [i,j]
b. Sort the savings in decreasing order.
c. Take edge [i,j] from the top of the savings list. Join two separate cycles with edge [i,j] by

deleting (0,j) and (i,0) and introducing (i,j) if
i. the nodes belong to separate cycles

ii. the maximum capacity of the vehicle is not exceeded
iii. i and j are the first or last customer on their cycles, one starting with (0,j) and one ending

with (i,0)
d. Repeat (c) until the savings list is formed or the capacities do not allow more merging.
EndIf

5 A classical cuckoo search algorithm

Nature-inspired meta-heuristics have proven their adeptness and efficacy on a wide range
of problems, which has contributed to the introduction of new nature-inspired meta-heu-
ristic solutions over the years. All meta-heuristic algorithms share two important charac-
teristics, which are intensification and diversification. The dominance of these algorithms
comes from the fact that they imitate the best features of nature, especially those of biologi-
cal systems that evolved from natural selection over millions of years.

The Cuckoo Search (CS) is one of the latest nature-inspired metaheuristic algorithms
that belong to the swarm intelligence category. The results of several studies show that the
CS has better performance than other natural algorithms such as PSO and the GA (Yang
and Deb 2009, 2010) when solving continuous optimization problems. Yang and Deb
(2009) first introduced the CS in 2009 based on the brood parasitism behavior of cuckoos.
It is inspired by the aggressive reproduction behavior of cuckoo birds that lay their eggs in
communal nests through which they might remove others’ eggs to increase the hatching
probability of their own eggs. If a host bird discovers the eggs are not its own, it will either
throw away these strange eggs or simply desert its nest and build a new nest elsewhere. The
cuckoo’s egg might be found by the host bird with a certain probability Ped ∈ [0,1].

The behavior of cuckoos is modeled by the CS algorithm. After each step, the worst
solutions are discarded and new solutions are generated. This models that the worst nests
are being identified by host birds, which means that they have to be discarded and new
nests are created by host birds. Then, in each iteration, a cuckoo solution tries to replace a
nest among the solution nests to get the best solution after each repetition. Thus, solution
Xt+1
i

 is generated from solution Xt
i
 of cuckoo i by performing a Lévy flight (a method for

generating eggs) as per the equation below:

Si,j = d0,j + dj,0 − di,j

Xt+1
i

= Xt
i
+ 𝛼 ⊕ Lé vy (s, 𝜆)

557Annals of Operations Research (2022) 308:549–570

1 3

where α < 0 is the step size, which is related to the scale of the problem of interest. In the
majority of cases, the most commonly used value of α is 1. The most important character-
istic of Lévy flights is their intensive search around a solution and the occasional big steps
of Lévy flights can minimize the probability of falling into the local optima. A Lévy flight
is modeled as a probability density function:

 This has an infinite variance with an infinite mean. Here, s is the step size drawn from a
Lévy distribution. A detailed description of the CS can be found in the work done by Yang
and Deb (2010).

6 Proposed swarm intelligence cuckoo search based hyper‑heuristic
for the VRPC

The hyper-heuristic algorithm (Algorithm 3) that we propose in this paper uses the Cuckoo
Search algorithm (Yang and Deb 2009) to combine low-level heuristics such that a domain
specific solution, soldomain, (i.e., the VRPC) would be guided towards the optimal or a near-
optimal solution. In our approach, we have used two sets of low-level heuristics. The first
set is applied sequentially to improve the solution; this set is named llh-imp and shown in
Table 1. The second set is applied according to a selection method using the levy-flight
concept; this set is named llh_levy and shown in Table 2.

Lé vy(s, 𝜆) ∼ s−𝜆, (1 < 𝜆 ≤ 3)

Table 1 The set of considered low-level heuristics used for the improvement step

llh-imp# Description of the Low-level heuristic for the improvement step

llh-imp1 Re-Order: Reorder the sequence of customers (in a random tour) in order to find a better order of
customers along the route

llh-imp2 Re-allocate: Remove a random customer from a random tour and add it to another tour if and
only if the solution is improved

llh-imp3 Swap: Randomly swap 2 customers from 2 different tours if and only if the solution is improved
llh-imp4 Destroy: Destroy a part of the solution and reconstruct it using the proposed constructive heuris-

tic if the solution is improved
llh-imp5 Merge: Merge an existing tour into other tours if the solution is improved

Table 2 The set of Lévy-flight low-level heuristics used for the perturbation step

llh-lévy# Description of Low-level heuristic for perturbation step

llh-lévy1 Swap1: Randomly swap 2 customers from 2 different existing tours
llh-lévy2 Swap2: Randomly swap 3 customers from 3 different tours if that many exist
llh-lévy3 Insert/Delete: Remove an allocated customer from a random tout and re-

allocate it to another tour
llh-lévy4 NoisyDestroy: Destroy a part of the solution and reconstruct it using the

proposed constructive heuristic
llh-lévy5 NoisyMerge: Merge an existing tour into the other tours

558 Annals of Operations Research (2022) 308:549–570

1 3

6.1 Egg representation

In this work, we assume that a cuckoo lays a single egg in one nest; thus, an egg in a
nest is a solution represented by one individual in the population, while the nest is the
container of that new cuckoo egg and its abandonment involves its egg being replaced in
the population by a new one. The cuckoo egg is defined as follows:

where llh_levy represents a sequence of n low-level heuristics that will be applied on an
improved domain solution (VRPC), soldomain, in the order that they appear in the sequence,
and soldomain represents the domain solution (i.e., the VRPC).

6.2 Host nest initialization

In the initialization stage, an initial solution, soldomain, is developed using a constructive
heuristic. The constructive heuristic constructs the first current solution from scratch
given a set of predefined rules. In this work, the Constructive Algorithm is executed as
follows.

a. Step 1 Choose the customer who has the highest priority.
b. Step 2 Construct the tour by trying to add the nearest customer to the tour.
c. Step 3 When the tour is unable to add any more customers from the rest, a new tour will

be created and the same scenario will be repeated in the second step.

6.3 Local search (intensification and diversification) and levy flight

To reduce the probability of their eggs being discovered, some cuckoo species have
evolved in such a way that they can engage in a kind of surveillance on nests likely to
be a host (Payne and Sorensen 2005). This work uses improvement and perturbation
heuristics to help the cuckoo bird’s eggs imitate the pattern and shape of the host nest’s
eggs, and therefore they have a good chance to survive. These heuristics are iteratively
performed in two separate steps until a stopping condition is satisfied. The new solu-
tion is accepted based on the simulated annealing acceptance criterion (Metropolis cri-
terion). In this way, the optimization process might be prevented from getting stuck in a
local optimum.

In the improvement step, a permutation of all low-level heuristics in the set llh-imp,
shown in Table 1, is applied sequentially to the current solution. Each of the low-level
heuristics llh-impi is applied repeatedly before applying llh-impi+1 as long as llh-impi is
able to improve the solution.

In the perturbation step, we simulate the moves conducted by cuckoos in the search
space via Lévy flights. The cuckoo chooses a direction and step size from its current
nest to search for the best nest in a restrictive range of its current nest according to the

cuckooegg =
(
llh_levy, soldomain

)

559Annals of Operations Research (2022) 308:549–570

1 3

value of the Lévy flights, which depend on two factors: the remaining time for a cuckoo
to lay its egg (i.e., the algorithm execution time) and the performance enhancement of
the solution. This step guarantees a certain level of diversification by selecting one of
the following three strategies to be applied according to Eq. 2.

• Strategy 1: From Table 2, choose a random permutation heuristic llh_lévyi and apply
it to the candidate solution.

• Strategy 2: From Table 2, randomly choose a permutation of the perturbation heuristics
and apply it as long as the candidate solution in hand is improved. Hence, the improv-
ing low-level-heuristic is applied repeatedly as long as it is able to improve the solution.

• Strategy 3: From Table 2, choose the perturbation heuristic that is known to have the
best reward.

The strategy selection depends on the variable Lévy described in Eq. 6:

where Tl is the algorithm’s remaining execution time. K is calculated as per the equation
below:

The value of m is based on whether the performance improvement level falls below
30%, from 30 to 60%, or above 60%.

L indicates the performance level and is calculated as follows:

6.4 Termination criterion

The termination criterion or stopping condition is the condition that ends the search. In
this work, the hyper-heuristic will stop searching when the number of nonimproved solu-
tions reaches a defined threshold (related to the number of customers) or the execution time
reaches a certain limit ɷ. The termination criterion is defined in the following equation:

(6)Levy(k, t) =

⎧
⎪⎨⎪⎩

1, if k = 2 and t <
Tl

3

2, if k = 2 and t >
Tl

3

3, if k ≥ 3

(7)K = Levy(k, t)−1 + m

(8)m =

⎧
⎪⎨⎪⎩

1, if 𝛼 ∗ L < L + 0.3 ∗ L

2, if L + 0.3 ∗ L < 𝛼 ∗ L < L + 0.6 ∗ L

3, if 𝛼 ∗ L > L + 0.6 ∗ L

L =
|||||
ObjectiveFunction(Current Solution) − Objective

Function(Best Solution)

ObjectiveFunction(Current Solution)

|||||
.

560 Annals of Operations Research (2022) 308:549–570

1 3

Algorithm 3- Swarm intelligence Cuckoo Search based Hyper-heuristic

1 Inputs: Ç; γ; D; searchSpace; llh-imp; llh-lévy; diverseStrategies; Output: solopt
2 begin
3 soldomaint = Constructive_Heuristic_Domain_Sol(Ç; γ; D; searchSpace, L)
4 soldomaintOpt = Improvement_Local_Search_Heuristic (soldomain; llh-imp, accept_criteria)
5 cuckooeggSet = Create_Diverse_Set_Cuckoo_Eggs(llh-lévy, diverseStrategies, soldomainOpt)
6 foreach cuckooegg in cuckooeggSet do
7 cuckooegg = Evaluate_LévyFlight(cuckooegg, LévyFlightsEqu,soldomainOpt ,L, accept_criteria)
8 end foreach
9 nestSet = Create_Random_Nest_Eggs(llh-lévy, diverseStrategies, soldomainOpt)
10 foreach nestegg in nestSet do
11 nestegg = Evaluate_ LévyFlight(nestegg, LévyFlightsEqu, soldomainOpt , L, accept_criteria)
12 end foreach
13 while (stopping condition not satisfied) do
14 cuckooegg = Get_Random_Cuckoo_Egg(CuckooeggSet)
15 nestegg = Get_Random_Nest(nestSet)
16 cuckooegg = Modify_ llh-lévy(cuckooegg)
17 cuckooegg =Evaluate_ LévyFlight(cuckooegg,LévyFlightsEqu,soldomainOpt ,L, accept_criteria)
18 if (Fitness(cuckooegg) < Fitness(nestegg)) then
19 begin
20 nestegg = cuckooegg
21 best_ llh-lévy = cuckoo. llh-lévy
22 end if
23 soldomainOpt = Update_Optimal_Solution(cuckoo, nest, soldomainOpt)
24 nestSet = Replace_Worst_Nests(nestSet, Percent_eggDisc)
25 end while
26 return soldomainOpt
27 end

7 Experimental results

In this section, the results of a Cuckoo Search-based hyper-heuristic are presented and are
compared with those of the modified Clarke Wright algorithm. These algorithms are tested
on real and synthetic data. A set of eighteen synthetic test cases were generated based on
the methodology adopted by Tarhini et al. (2016); each of these test cases has different
numbers of customers and vehicles. Further, real data were collected from a distribution
company operating in Lebanon. The company distributes products to more than 200 cus-
tomers in several industries across Lebanon. This section will present the results of the
synthetic data first followed by the results of the real data.

7.1 Synthetic data

Each of the eighteen synthetic test cases is represented by four main components. They are
the distance matrices, the route time matrices, the demands of customers and the custom-
er’s priority. Table 3 summarizes the results of the modified Clarke Wright (CW) algorithm
and the Cuckoo Search-based hyper-heuristic (CsHh) applied on the eighteen test cases of

(9)
T(ms) = Min{max{�, nbofcustomers ∗ 1000}, nb of consecutive non-improved solutions}.

561Annals of Operations Research (2022) 308:549–570

1 3

TC1-TC18. The second column of Table 3 (Cn) represents the number of customers to be
visited and the third column (Vn) represents the number of vehicles used. The remaining
columns show the Objective function, traversed distance, and execution time in millisec-
onds for both the CW algorithm and the CS Hyper-heuristic. The CW algorithm and CsHh
were both implemented using VB.Net.1 Furthermore, the tests were carried on a PC with
an Intel core i3 CPU operating at 1.2 GHz, 4 GB of Ram, and Windows 10.

In Table 3, for each instance, several parameters are shown and compared: the objective
function value (best found cost), the distance of the best route, and the time taken to find
this best route. Figure 3 illustrates the results shown in Table 3 in which it is found that the
CSs hyper-heuristic outperformed the CW algorithm in terms of the Objective function
value and the route distance for the eighteen test cases.

Moreover, it is worth noticing from Table 3 that the magnitude of the performance
improvement of the CS over the CW algorithm incrementally increases as the problem size
gets larger; this is illustrated in Fig. 4. One explanation for these results is that for small
problem sizes, the CS hyper-heuristic was able to cover similar diverse solutions in the nar-
row solution space as the CW and thus it gave similar results. However, for large problem
sizes, the diversification method in the CS enabled this hyper-heuristic to find a better solu-
tion than the CW by covering all possible combinations.

Further, although the CS algorithm outperformed the CW in large problem sizes with
the chance of obtaining a better diversified solution space, nevertheless, the execution time

Table 3 Comparison results of the modified Clarke Wright and the cuckoo search based hyper-heuristic

Problem Cn Vn Extended Clarke Wright Cuckoo search-based hyper-heuristic

O.F (cost) Distance Exe time (s) O.F. (cost) Distance Exe time (s)

Tc-1 8 3 150 556 0.59 150 556 0.72
Tc-2 8 4 198 716 0.74 183 701 0.78
Tc-3 10 4 211 691 0.74 191 671 0.92
Tc-4 10 6 211 859 0.89 199 841 0.99
Tc-5 10 7 453 1063 1.08 422 1032 1.04
Tc-6 11 5 201 701 0.75 196 683 1.00
Tc-7 20 5 265 760 0.80 242 744 2.00
Tc-8 25 5 298 783 1.00 281 771 2.01
Tc-9 30 5 314 802 1.01 287 792 2.11
Tc-10 40 5 342 821 1.03 313 801 4.80
Tc-11 40 7 328 811 1.08 302 797 4.90
Tc-12 50 5 389 877 1.11 344 823 5.00
Tc-13 50 7 372 862 1.12 322 808 6.70
Tc-14 75 10 413 895 1.18 388 870 7.80
Tc-15 100 12 453 916 1.32 413 890 10.47
Tc-16 100 20 429 899 1.40 389 871 15.36
Tc-17 150 25 530 1028 1.47 481 998 17.00
Tc-18 200 30 577 1103 1.67 512 1089 21.51

1 The code is found at the following link: https ://githu b.com/abbas tarhi ni/VRP.git.

https://github.com/abbastarhini/VRP.git

562 Annals of Operations Research (2022) 308:549–570

1 3

for the CS (21.5 s) was much longer than that of the CW (1.67 s), as shown in Fig. 5; how-
ever, this is still acceptable since such solutions are produced off-line. In Fig. 5, the x-axis
shows the test cases, the left y-axis is the execution time, and the right y-axis shows the
performance enhancement of the CS over the CW. In fact, one reason for the CS hyper-
heuristic having a higher computational time than the CW goes back to the fact that the
operations performed in any hyper-heuristic are more complex than those done in the CW’s
iterations. In the CS hyper-heuristic, all operations, ranging from the initial constructive
solutions to the local search improvement method and ending with the perturbation meth-
ods, take more time than what is done in the CW, which is based on the notion of saving
operations; thus, the CW scores very high on simplicity and speed. In fact, this is clearly
noticed as the problem size gets bigger where the diversified set of solutions needs more
computational efforts to be created than in small-sized problems where the computational
efforts are close to those in the CW.

150
200
250
300
350
400
450
500
550

CS and CW performance

O.F (CW) O.F. (CS)

Fig. 3 A comparison of the Cuckoo Search-based Hyper-heuristic results with the Clarke Wright algorithm
results

0

10

20

30

40

50

60

70

0

100

200

300

400

500

600

700
CS performance enhancement over CW

O.F (CW) O.F. (CS) CS enhancement over CW

Fig. 4 The magnitude of the CS performance enhancement over the CW

563Annals of Operations Research (2022) 308:549–570

1 3

In addition, we tuned the cuckoo-search hyper-heuristic performance by using three differ-
ent acceptance criteria. The first acceptance criterion is Naive Acceptance, which allows the
nonimproving solutions to be accepted with a probability of 0.5. The second adopted accept-
ance criterion is All Moves, which accepts the candidate solution regardless of its objective
function. As shown in Fig. 6, the CS hyper-heuristic is best tuned using the SA acceptance
criterion because it enables it not to be stuck in a local optimum.

In addition, further tuning is applied to the termination criteria to measure the effect on the
execution time and thus on the solution quality. There are two termination criteria: the execu-
tion time reaches a certain limit ɷ, as mentioned in Eq. 4, or the number of nonimproved solu-
tions reaches a predefined threshold (related to the number of customers). The second termi-
nation criterion is when the number of nonimproved solutions reaches a predefined threshold
(related to the number of customers):

(5)T(ms) = max{�, nbofcustomers ∗ 1000}.

Fig. 5 Enhancement percentage of the CS algorithm over the CW across execution times

0

100

200

300

400

500

600

700

O.F (SA acceptance) O.F. (AM acceptance) O.F. (NA acceptance)

Fig. 6 Cuckoo search-based hyper-heuristic tuned on three acceptance criteria

564 Annals of Operations Research (2022) 308:549–570

1 3

Figure 7 shows the results of the CsHh for both termination criteria. The first crite-
rion (Eq. 4) provided more efficient solutions. This is because Eq. 5 is based only on the

700

50700

100700

150700
Tc

-2

Tc
-3

Tc
-9

Tc
-8

Tc
-7

Tc
-1

0

Tc
-1

1

Tc
-1

2

Tc
-1

3

Tc
-1

5

Tc
-1

6

Tc
-1

7

Tc
-1

8

Tc
-1

9

Tc
-2

2

Tc
-2

4

Tc
-2

6

Tc
-2

9

Comparing the CsHh on 2 termina�on criteria

Exe Time Eq. 4 Exe Time Eq. 5

Fig. 7 Cuckoo search-based hyper-heuristic execution time based on two different termination criteria

150

170

190

210

230

0 72 144 216 288 360 432 504 576 648

CSHH - TC1: devia	on trajectory of the 5 runs from the
average

Tc-1-1 Tc-1-2 Tc-1-3 Tc-1-4 Tc-1-5 Avg

500

520

540

560

580

600

620

0 2152 4303 6455 8606 10758 12909 15061 17212 19364

CSHH- TC18: devia	on trajectory of the 5 runs from the
average

Tc-18-1 Tc-18-2 Tc-18-3 Tc-18-4 Tc-18-5 Avg

(a)

(b)

Fig. 8 a TC1: Deviation trajectory of the five runs from the average for the CsHh algorithm. b TC18: Devi-
ation trajectory of the five runs from the average for the CsHh algorithm

565Annals of Operations Research (2022) 308:549–570

1 3

number of customers. When it grows, the termination criterion will grow exponentially and
will never stop, even if the solution is found.

Finally, in order to test the solution stability of our algorithm, we conducted 5 runs of
the algorithm for each test case. Figure 8a and b correspondingly show the results of exe-
cuting the 5 runs on the first test case (Tc-1) with a small number of customers (8 custom-
ers) and the last test case (Tc-18) with a large number of customers (200 customers). The
x-axis represents the execution time and the y-axis represents the value of the objective
function. Each of the dotted colored lines represents one run of the algorithm. The solid
red line represents the average of the 5 runs for the same test case. The results clearly show
that the algorithm’s execution is stable, where trajectory of the 5 runs are evenly distrib-
uted around the average of these runs with minimal deviation.

7.2 Case study: applying the algorithms on real data (Fueled application)

In this section, we compare the results of the CsHh and CW on real data collected from a
distribution company operating in Lebanon (IBC 2019). The company distributes prod-
ucts to more than 200 customers in several industries across Lebanon. We applied our
solution within the same time frame to a scenario with 12 customers distributed over an
area of 60 km2 shown in Fig. 9. The distance between the customers is determined via
the Google Maps API. The constraints placed by our client (the Distribution Company)
limit the tour to being completed within a maximum of 4 h using only three vehicles.
In addition, three customers had a higher priority than others (Ghobeiry, Chiyah, and
Mansourieh) and need to be served within the first hour. Further, the service times are

Fig. 9 Customers’ locations over an area of 60 km2

566 Annals of Operations Research (2022) 308:549–570

1 3

almost the same for all customers and will not exceed 10 min; thus, it is assumed that
service time is counted within the customer travel time.

The solution generated by the Clarke Wright algorithm is detailed in Table 4 and
shown in Fig. 10. The total distance needed to serve the 12 customers is 101.5 km and
the maximum time needed for the three tours is within 240 min.

Table 4 Solution generated by the Clarke Wright algorithm for the distribution company’s real data

Tour
1

Route Beirut Chiyah Ghobeiry Borj
Brajneh Baabda Dikwaneh Beirut Total

Distance 3.9 km 2.5 km 3.3 km 7.7 km 7.8 km 5.9 km 31.1 km

Route
time 9 min 5 min 8 min 42 min 16 min 12 min 92 min

Tour
2

Route Beirut Hadath Mansourieh Ain Saadeh Bsalim Beirut Total

Distance 6.2 km 6.8 km 6.1 km 8.5 km 12.8 km 40.4 km

Route
Time 96 min 105 min 8 min 14 min 17 min 240 min

Tour
3

Rout e Beirut Fanar Naqqache Zalka Beirut Total

Distance 9.5 km 6.9 km 3.6 km 10 km 30 km

Route
time 16 min 13 min 12 min 15 min 56 min

Total tour distance 101.5 km

Fig. 10 The solution generated by the Clarke Wright algorithm

567Annals of Operations Research (2022) 308:549–570

1 3

The solution generated by the Cuckoo search hyper-heuristic is shown in Fig. 11
and detailed in Table 5. The total distance needed to serve the 12 customers is 96.5 km
and the maximum time needed for the three tours is within 179 min.

It is clear from these results that the CsHh is able to get a better quality solution
than the CW in terms of the route distance and route time. Nevertheless, the CW
scored very high on simplicity and speed.

Fig. 11 The solution generated by the cuckoo search-based hyper-heuristic

Table 5 Solution generated by the cuckoo search-based hyper heuristic for the distribution company’s real
data

Tour
1

Route Beirut Ghobeiry Chiyah Borj
Brajneh Baabda Hadath Beirut Total

Distance 4 km 3 km 5 km 7.2 km 3 km 6.1 km 28.3 km

time 5 min 8 min 10 min 18 min 42 min 96 min 179 min

Tour
2

Route Beirut Dekwaneh Mansourieh Fanar Zalka Beirut Total

Distance 6.2 km 5.1 km 6.1 km 3.4 km 10 km 30.8 km

time 15 min 13 min 12 min 10 min 15 min 65 min

Tour
3

Route Beirut Ain Saadeh Bsalim Naqqache Beirut Total

Distance 14.1 km 8.1 km 4.2 km 11 km 37.4 km

time 25 min 14 min 11 min 15 min 65 min

Total tour distance 96.5 km

568 Annals of Operations Research (2022) 308:549–570

1 3

8 Conclusion

In this paper, we presented our vision to minimize the traveling distance of vehicles when
moving cargo to prioritized customers. The problem under study (the VRPC) is a combi-
natorial optimization management problem that seeks the optimal set of routes traversed
by a vehicle to deliver products to prioritized customers in the shortest possible time. We
presented a modified version of the Clarke Wright algorithm and a Cuckoo Search-based
Hyper-heuristic for the VRPC with the purpose of comparing the performances of these
competing methods.

The Clarke–Wright (CW) savings algorithm is one of the popular heuristics known to
efficiently solve the VRP. The Clarke–Wright proved to be very quick and simple to imple-
ment. However, in contexts where vehicle routes span long distances to cover a large num-
ber of customers, it is worthwhile to explore other methods that reduce the distance covered
and the needed time. The Cuckoo search is one of the latest nature-inspired metaheuristic
algorithms that belong to the swarm intelligence category. The proposed Cuckoo search-
based hyper-heuristic combines low-level heuristics such that a domain specific solution
would be guided towards the optimal or a near-optimal solution. In fact, the CW algorithm
has been enhanced to solve the VRPC. One contribution of this work is modifying the clas-
sical VRPC mathematical model to include prioritized customers. Another contribution is
enhancing the CW algorithm to solve the VRP with prioritized customers. A third con-
tribution is proposing and testing a unique hyper-heuristic (CsHh) that has not been used
before for solving the VRPC and comparing it with a modified version of the modified CW.

The results indicate that our proposed CsHh outperformed the modified CW algorithm.
Mainly, the focus in the CsHh was on the intensification and diversification generation
method and the acceptance criteria that guarantees escaping from a local optima. A unique
constructive method has been used to boost the quality of the initial population, and, con-
sequently, the quality of the solution space was improved in every generation using a local
search stimulated by a Lévy flight. Clearly, this process affected the final results since it
aided in yielding better solutions than the CW. An additional contribution is the practi-
cality of the proposed method. We applied this solution to a distribution company (IBC
2019) operating in Lebanon. The company distributes products to more than 200 clients
in several industries. The distribution company believes that our CsHh solution offers an
attractive alternative to their commercial solver since it is more flexible at handling the
company constraints regarding the customers’ priority, capacity, and number of trucks, and
the computation time is reasonable as long as it significantly reduced the time and cost of
the distribution process.

References

Abu-Khzam, F. N., Jahed, K. A., & Mouawad, A. E. (2014). A hybrid graph representation for exact graph
algorithms. arXiv preprint arXiv :1404.6399.

Ai, T. J., & Kachitvichyanukul, V. A. (2009). Particle swarm optimization and two solution representa-
tions for solving the capacitated vehicle routing problem. Computers & Industrial Engineering, 56(1),
380–387.

Akpinar, S. (2016). Hybrid large neighbourhood search algorithm for capacitated vehicle routing problem.
Expert Systems Applications, 61, 28–38.

Asta, S. & Ozcan, E. (2014). An apprenticeship learning ¨ hyper-heuristic for vehicle routing in hyflex. In
IEEE symposium on evolving and autonomous learning systems (EALS) (pp. 65–72).

http://arxiv.org/abs/1404.6399

569Annals of Operations Research (2022) 308:549–570

1 3

Baradaran, V., Shafaei, A., & Hosseinian, A. H. (2019). Stochastic vehicle routing problem with heterogene-
ous vehicles and multiple prioritized time windows: Mathematical modeling and solution approach.
Computers & Industrial Engineering, 131, 187–199.

Bhargava, V., Fateen, S. E. K., & Bonilla-Petriciolet, A. (2013). Cuckoo search: A new natureinspired opti-
mization method for phase equilibrium calculations. Fluid Phase Equilibria, 337, 191–200.

Bodin, L., Golden, B., Assad, A., & Ball, M. (1983). Routing and scheduling of vehicles and crews. The
state of the art. Computers & Operations Research, 10(2), 63–211.

Bulatović, R. R., Dordević, S. R., & Dordević, V. S. (2013). Cuckoo search algorithm: A metaheuristic
approach to solving the problem of optimum synthesis of a six-bar double dwell linkage. Mechanism
and Machine Theory, 61, 1–13.

Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., & Woodward, J. R. (2010). A Classification
of hyper-heuristic approaches. In M. Grendreau & J. Y. Potvin (Eds.), Handbook of metaheuristics,
international series in operations research and management science (Vol. 146, pp. 449–468). Cham:
Springer.

Burke, E. K., et al. (2013). Hyper-heuristics: A survey of the state of the art. Journal of the Operational
Research Society, 64, 1695–1724.

Burnwal, S., & Deb, S. (2013). Scheduling optimization of flexible manufacturing system using cuckoo
search-based approach. The International Journal of Advanced Manufacturing Technology, 64(5–8),
951–959.

Captivo, M., Clímaco, J., Figueira, J., Martins, E., & Santos, J. L. (2003). Solving multiple criteria 0-1
knapsack problems using a labeling algorithm. Computers & Operations Research, 30, 1865–1886.

Chen, A., Yang, G., & Wu, Z. (2006). Hybrid discrete particle swarm optimization algorithm for capacitated
vehicle routing problem. Journal of Zhejiang University Science A, 7(4), 607–614.

Chifu, V., Pop, C. B., Salomie, I., Suia, D. S., & Niculici, A. N. (2012). Optimizing the semantic web ser-
vice composition process using cuckoo search. In F. M. T. Brazier, et al. (Eds.), Intelligent distributed
computing (pp. 93–102). Berlin: Springer.

Clarke, G., & Wright, J. (1964). Scheduling of vehicles from a central depot to a number of delivery points.
Operations Research, 12(4), 568–581.

Comtois, C., Slack, B., & Rodrigue, J. P. (2013). The geography of transport systems (3rd ed.). London:
Routledge. ISBN 978-0-415-82254-1.

Cordeau, J. F., Gendreau, M., Hertz, A., Laporte, G., & Sormany, J. S. (2005). New heuristics for the vehi-
cle routing problem. In A. Langevin & D. Riopel (Eds.), Logistics systems: Design and optimization.
Boston: Springer.

Côté, J., Potvin, J., & Gendreau, M. (2020). The vehicle routing problem with stochastic two-dimensional
items. Transportation Science, 54, 299–564.

Du, L., & He, R. (2012). Combining nearest neighbor search with Tabu search for large-scale vehicle rout-
ing problem. Physics Procedia, 25, 1536–1546.

El Khoury, J., Akle, B., Katicha, S., Ghaddar, A., & Daou, M. (2014). A microscale evaluation of pave-
ment roughness effects for asset management. International Journal of Pavement Engineering, 15(4),
323–333.

Fink, M., Desaulniers, G., Frey, M., Kiermaier, F., Kolisch, R., & Soumis, F. (2019). Column generation
for vehicle routing problems with multiple synchronization constraints. European Journal Operation
Research, 272, 699–711.

Gandomi, A., Yang, X. S., & Alavi, A. (2013). Cuckoo search algorithm: A metaheuristic approach to solve
structural optimization problems. Engineering with Computers, 29(1), 17–35.

Garrido, P. & Castro, C. (2009). Stable solving of cvrps using hyper-heuristics. In Proceedings of the 11th
annual conference on genetic and evolutionary computation, GECCO’09 (pp. 255–262), New York,
NY, USA, ACM.

Gomez, A. & Salhi, S. (2014). Solving capacitated vehicle routing problem by artificial bee colony algo-
rithm. In 2014 IEEE symposium on computational intelligence in production and logistics systems
(CIPLS).

Gounaris, C., Repoussis, P., Tarantilis, C., Wiesemann, W., & Floudas, C. (2014). An adaptive memory
programming framework for the robust capacitated vehicle routing problem. Transportation Science,
50(4), 141223041352002. https ://doi.org/10.1287/trsc.2014.0559.

Haraty, R. A., Mansour, N., & Zeitunlian, H. (2018). Metaheuristic algorithm for state-based software test-
ing. Applied Artificial Intelligence, 32(2), 197–213.

IBC. (2019). International Business Corporation. Retrieved May 2019 from http://ibcle b.com/.
Jin, J., Crainic, T. G., & Løkketangen, A. (2012). A parallel multi-neighborhood cooperative tabu search for

capacitated vehicle routing problems. European Journal of Operational Research, 222(3), 441–451.

https://doi.org/10.1287/trsc.2014.0559
http://ibcleb.com/

570 Annals of Operations Research (2022) 308:549–570

1 3

Jin, J., Crainic, T. G., & Løkketangen, A. (2014). A cooperative parallel metaheuristic for the capacitated
vehicle routing problem. Computers & Operations Research, 44, 33–41.

Khoury, J., Amine, K., & Abi Saad, R. (2019). An initial investigation of the effects of a fully automated
vehicle fleet on geometric design. Journal of Advanced Transportation. https ://doi.org/10.1155/
2019/61264 08.

Kim, B.-I., & Son, S.-J. (2012). A probability matrix based particle swarm optimization for the capacitated
vehicle routing problem. Journal of Intelligent Manufacturing, 23(4), 1119–1126.

Layeb, A. (2011). A novel quantum inspired cuckoo search for knapsack problems. International Journal of
Bio-Inspired Computations, 3(5), 297–305.

Lenstra, J. K., & Rinnooy Kan, A. H. G. (1981). Complexity of vehicle routing and scheduling problems.
Networks, 11, 221–227.

Marinaki, M., Marinakis, Y., & Zopounidis, C. (2010). Honey bees mating optimization algorithm for finan-
cial classification problems. Applied Soft Computing, 10(3), 806–812.

Marshall, R., Johnston, M., & Zhang, M. (2014). Hyper-heuristics, grammatical evolution and the capaci-
tated vehicle routing problem. In Proceedings of the companion publication of the 2014 annual confer-
ence on genetic and evolutionary computation, GECCO Comp’14 (pp. 71–72), New York, NY, USA:
ACM.

Nazif, H., & Lee, L. S. (2012). Optimised crossover genetic algorithm for capacitated vehicle routing prob-
lem. Applied Mathematical Modelling, 36(5), 2110–2117.

Niu, Y., Wang, S., He, J., & Xiao, J. (2015). A novel membrane algorithm for capacitated vehicle routing
problem. Soft Computing, 19(2), 471–482.

Ouaarab, A., Ahiod, B., & Yang, X. S. (2014). Discrete cuckoo search algorithm for the travelling salesman
problem. Neural Computational Applications, 24, 1659–1669.

Payne, R. B., & Sorensen, M. D. (2005). The cuckoos. Oxford: Oxford University Press.
Shour, A., Danash, K., & Tarhini, A. (2015). Modified clarke wright algorithms for solving the realistic

vehicle routing problem. In 2015 3rd international conference on technological advances in electrical,
electronics and computer engineering, TAEECE 2015 7113606 (pp. 89–93).

Szeto, W. Y., Wu, Y., & Ho, S. C. (2011). An artificial bee colony algorithm for the capacitated vehicle rout-
ing problem. European Journal of Operational Research, 215(1), 126–135.

Tarhini, A., Makki, J., & Chamsiddine, M. (2014). Scatter search algorithm for the cross-dock door
assignment problem. In Proceedings of the mediterranean electrotechnical conference—MELECON
6820575 (pp. 444–450).

Tarhini, A., Yunis, M., & Chamseddine, M. (2016). Natural optimization algorithms for the cross-dock door
assignment problem. IEEE Transactions on Intelligent Transportation Systems, 17(8), 2324–2333.

Vazquez, R. A. (2011). Training spiking neural models using cuckoo search algorithm. In Evolutionary
computation (CEC), IEEE congress.

Yang, X.-S., Deb, S. (2009). Cuckoo search via Lévy flights. In Proceedings of the world congress on
nature and biologically inspired computing (NaBIC), Coimbatore, India, 9–11 December 2009 (pp.
210–214).

Yang, X. S., & Deb, S. (2010). Engineering optimisation by cuckoo search. International Journal of Math-
ematical Modeling and Numerical Optimization, 1, 330–343.

Yang, X. S. & Deb, S., (2013). Multiobjective cuckoo search for design optimization. Computers & Opera-
tions Research, 40(6), 1616–1624.

Yang, X., Deb, S., Karamanoglu, M., & He, X., (2012). Cuckoo search for business optimization applica-
tions. In National conference on computing and communication systems, Durgapur (pp. 1–5).

Yildiz, A. R. (2013). Cuckoo search algorithm for the selection of optimal machining parameters in milling
operations. International Journal of Advanced Manufacturing and Technology, 64, 55–61.

Zainudin, S., Kerwad, M., & Othman, Z. A. (2015). A water flow-like algorithm for capacitated vehicle
routing problem. Journal of Theoretical and Applied Information Technology, 77(1), 125–135.

Zhen, L. (2016). Modeling of yard congestion and optimization of yard template in container ports. Trans-
portation Research Part B, 90, 80–104.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1155/2019/6126408
https://doi.org/10.1155/2019/6126408

	Swarm intelligence-based hyper-heuristic for the vehicle routing problem with prioritized customers
	Abstract
	1 Introduction
	2 Literature review
	3 Vehicle routing problem description
	3.1 Preliminary
	3.2 Mathematical formulation

	4 Clarke–Wright algorithm
	4.1 The classical Clarke–Wright algorithm
	4.2 The modified Clarke–Wright algorithm

	5 A classical cuckoo search algorithm
	6 Proposed swarm intelligence cuckoo search based hyper-heuristic for the VRPC
	6.1 Egg representation
	6.2 Host nest initialization
	6.3 Local search (intensification and diversification) and levy flight
	6.4 Termination criterion

	7 Experimental results
	7.1 Synthetic data
	7.2 Case study: applying the algorithms on real data (Fueled application)

	8 Conclusion
	References

