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Abstract

In the double row layout problem, we wish to position n machines on two parallel rows in
order to minimize the cost of material flow among machines. The problem is NP-hard and
has applications in industry. Here, an algorithm is presented, which works in two phases:
(1) applying an improvement heuristic to optimize a random double row layout of a certain
type and, then, (2) adjusting the absolute position of each machine in the layout via Linear
Programming. Four variants of this two-phase algorithm are proposed and their efficiency is
demonstrated by computational tests on several instances from the literature with sizes up to
50 machines.

Keywords Facility layout - Double row layout problem - Heuristic

1 Introduction

Facility layout problems (FLPs) are generally NP-hard and have many practical applications
in industry (Drira et al. 2007). A class of FLPs called row layout problems consists of
arranging facilities (machines in the present context) along rows. When machines are located
on two parallel rows, we refer to this configuration as a double row layout (e.g. Zuo et al.
2014, 2016; Wang et al. 2015; Ahonen et al. 2014; Amaral 2012, 2013b). Given n machines
of known lengths and the flow cost between any two machines, the double row layout problem
(DRLP) is the problem of positioning machines on a double row layout so as to minimize
the total cost of material flow among machines.

Many applications of the DRLP are related to the layout of machines in flexible man-
ufacturing systems (FMS), where a material-handling device transports materials among
machines (Heragu and Kusiak 1988; Tubaileh and Siam 2017). Chung and Tanchoco (2010)
described an application of the DRLP within a fabrication line that produces liquid crystal
display (LCD). The problem also has relevant applications in semiconductor manufacturing
(Zuo et al. 2014; Wang et al. 2015).

Research on the DRLP may benefit from work done for the single row facility layout
problem (SRFLP), since the DRLP and SRFLP share some structure. In the SRFLP all of the
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facilities have to be arranged on a single row. Some studies on the SRFLP have presented exact
methods such as a branch-and-bound algorithm (Simmons 1969); dynamic programming
(Picard and Queyranne 1981); mixed integer programming (MIP) (Amaral 2006, 2008b;
Heragu and Kusiak 1991; Love and Wong 1976); a cutting plane algorithm (Amaral 2009);
a branch-and-cut algorithm (Amaral and Letchford 2013); and semidefinite programming
(SDP) (Anjos and Vannelli 2008; Anjos and Yen 2009; Anjos et al. 2005; Hungerldnder and
Rendl 2012).

Metaheuristics have also been utilized for the SRFLP. Heragu and Alfa (1992) developed
a simulated annealing approach; de Alvarenga et al. (2000) presented simulated annealing
and tabu search algorithms; Solimanpur et al. (2005) proposed an algorithm based on ant
colony optimization; Amaral (2008a) used enhanced local search; Samarghandi et al. (2010)
worked with particle swarm optimization; tabu search algorithms have been implemented in
(Samarghandi and Eshghi 2010; Kothari and Ghosh 2013b); genetic algorithms in Ozcelik
(2012); Datta et al. (2011), Kothari and Ghosh (2013a); scatter search algorithms in Kumar
et al. (2008), Kothari and Ghosh (2014); Palubeckis (2015) used variable neighborhood
search; Guan and Lin (2016) developed a hybrid algorithm based on variable neighborhood
search and ant colony optimization; Palubeckis (2017) developed a multi-start simulated
annealing algorithm; and Cravo and Amaral (2019) proposed a GRASP approach.

Problems such as the corridor allocation problem (CAP)(Amaral 2012; Ahonen et al.
2014) and the parallel row ordering problem (PROP) (Amaral 2013b; Yang et al. 2018) also
arrange facilities along two rows, as it is the case for the DRLP. However, in the CAP and the
PROP the left walls of the left-most facilities of each row must be aligned; and there must
not be any space between two adjacent facilities. The PROP has a further restriction in that
each facility is pre-assigned to a certain row. The CAP and the PROP are mostly applied to
the arrangement of rooms in office-buildings, schools, hospitals, etc.

Concerning the DRLP, Chung and Tanchoco (2010) presented a MIP model (See also,
Zhang and Murray 2012). Amaral (2013a, 2018) proposed more efficient models. Secchin
and Amaral (2018) proposed improvements for the model in Amaral (2013a). In these studies,
the largest DRLP instance that has been solved to optimality has size n = 15. This is due to
the hardness of the problem. Therefore, there is a quest for efficient heuristic methods that
can handle larger DRLP instances in an acceptable amount of time.

In this context, this paper presents four variants of a two-phase algorithm for obtaining
good approximate solutions for the DRLP. In a first phase, a random double row layout is
optimized by an improvement heuristic. Then, in the following phase, the layout obtained
in the first phase may be further improved by solving a linear program that adjusts absolute
positions of machines. In the first phase, two perturbation schemes are employed for escaping
local minima: one, called Shuffle, has a large perturbation strength and favors diversification
of the search; the other, specialized for the DRLP, called Inversion, is less disruptive and
is meant to retain previous knowledge of the search. The four variants of the two-phase
algorithm were tested on DRLP instances with sizes up to n = 50 machines.

In the next section, the DRLP is presented in detail. In Sect. 3, four improvement heuristic
procedures are proposed for the first phase of the solution method. In Sect. 4, the two-phase
algorithms are presented. Section 5 discusses the computational experiments, followed by
conclusions.
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2 The double row layout problem

Let us consider the following notation: n is the given number of machines; N = {1, 2, ..., n}
is the set of machines; R = {Row 1, Row 2} is the set of rows; ¢;; is the amount of flow
between machines i and j; ¢; is the length of machine i.

Assumptions:

— The corridor is situated with its length along the x-axis on the interval [0, L];
— The width of the corridor is negligible;
— The distance between two machines is taken as the x-distance between their centers.

Then, the Double Row Layout Problem (DRLP) is the problem of assigning the n machines
to locations on either side of the corridor so that the total cost of transporting materials among
machines is minimized. This is:

. ¢
min E cijd;; (1)
peD, — J
I<i<j<n

where @, is the set of all double row layouts on the set N; and df - is the distance between
the centers of machines i and j with reference to a layout ¢ € @,,. Thereafter, we assume
that n > 4, otherwise the problem is trivial.

3 Improvement heuristics for the DRLP

Suppose that the required clearance between any two machines is a constant, whose value
is included in the lengths of the machines. On that account, the resulting problem can be
treated as a problem without clearances (e.g. Amaral 2018). Then, a feasible double row
layout might look like the one shown in Fig. 1. The quantity r denotes the leftmost point of
the arrangement at Row 1 (similarly, for the quantity s in relation to Row 2). The layouts of
the type shown in Fig. 1 can be represented by (7, ¢, r, s5), where 7 is a vector containing
the machine sequence at Row 1, followed by the machine sequence at Row 2; and 7 is an
integer, which indicates that the first # machines of 7 are at Row 1 (and, consequently, the
next (n — t) machines are at Row 2).

3.1 Auxiliary routines

Let the cost of a layout (7, ¢, r, s5) be given by f(x, ¢, r, ).

3.1.1 20PT_LS

The 2-opt local search presented here, called 20PT_LS, performs 2-opt moves in the vector
7 for fixed values of (¢, r, s) in order to improve the cost of an initial double row layout
(m, t, r, s) received as an input (See Algorithm 1). Note that a first improving 2-opt move is
sought at each iteration (Lines 4—13), which might take O (n?) in the worst case, but which
in practical terms is much faster.
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Fig. 1 A feasible double row B oad/unload point of the machine
layout and its representation by

means of parameters (m, ¢, r, §)
6 1 3
| |
r
\)
| | L
5 4 2
R

x-axis direction

7 =16,1,3,54,2}
t=13 (first  machines of 7 are at Row 1)

r=1.0;s=1.5
Algorithm 1: 20PT_LS
Input: 7,1, r,s
Output: 7, v
1y« f(m, t,r,s);
2 repeat
3 key < 1;
4 fori < lton—1do
5 for j < i+ 1tondo
6 if swapping the facilities at positions i and j of w under parameter values t, r, s, produces
alayout (7, t, r, s) such that, f(7, t, r, s) < v then
7 v f(m 1, )
8 T < T,
9 key < 0;
10 go to label _1;
1 end
12 end
13 end
14 label_1;

15 until key = 1;
16 return i, v;

3.1.2 Aroutine that shuffles the arrangement
A routine that shuffles the machine sequence vector 7 is shown in Algorithm 2. The Shuffle

routine uses the function Random(1, n), which randomly returns one value in {1, 2, ..., n}.
Note that by applying Shuffle, machines can change their location more than once.
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Algorithm 2: Shuffle
Input: 7
Output: 7

1 fori <~ 1tondo

2 j < Random(1, n);

3 Swap the machines at positions i and j of 7;
4 end

5 return ;

3.1.3 Aroutine that inverts portions of

A useful auxiliary routine called Inversion is proposed here. It randomly chooses a position
i of 7 and a number ¢ of elements of 7. From these choices, the inversion routine sets:

. i+qg—1, if i+qg—1<n;
B (i +qg — 1) —n, otherwise.

Then, the routine executes the following sequence of statements L%J times: swap the
machines at positions (i, j); increase i by one ( if i becomes greater than n, set i to 1);
decrease j by one (if j becomes less than 1, set j to n).

For problem instances with size n > 20, the routine sets ¢ to a random number in
(1 + LgJ, LF])- This is intended not to move more than | 7 | elements of 7, in order not to
perturb too much the arrangement . For problem instances with size n < 20, the routine
sets ¢ to arandom number in (3, 4) (this assumes n > 4 ). The Inversion routine is presented
in Algorithm 3.

As an example, a vector  given by (1, 2, 3,4, 5, 6, 7, 8) would become (1, 2, 6, 5, 4, 3,
7,8)ifi = 3,q =4, j = 6. Another example is a vector 7 given by (1, 2, 3,4,5,6,7,8,9,
10)andi =9,9 =4.Then, j =i +¢q — 1 =12 > n = 10. Thus, the following adjustment
ismade: j < j —n =12 — 10 = 2 and & would become (10, 9, 3,4,5,6,7, 8,2, 1).

3.2 Heuristic1

A heuristic called Heuristicl is presented in Algorithm 4, which repeatedly calls 20PT_LS
with input arguments (7, ¢, r, s), while adjusting values of (¢, r, s) so as to try to find the
best layout among all layouts of the type shown in Fig. 1. Heuristic1 uses the operator Shuffle,
which disarranges the current machine sequence in 7, thus creating a new random sequence
in 7r; and the function Random(-1,+1), which randomly returns one value in {—1, 0, 4+1}.

For each value of t (T; < t < T»), a number ITER of iterations is carried out, each of
which starts by shuffling the machine sequence in 7 and setting (r, s) to (0, 0). Next, for
Max_k iterations, 20PT_LS is called with input argument (7, ¢, r, s) and, then, the values
(r, s) are modified. Thus, Max_k adjustments of (r, s) are tried for each random 7.

Note that in lines 14-15 of Algorithm 4, the values of r and s could become negative. This
is acceptable, because a layout having negative values for r and/or s is equivalent to a layout
having nonnegative values for » and s (obtained as a result of a translation in the positive
x-axis direction).

Whenever a call to 20PT_LS produces an improved layout, the corresponding layout data
is stored to be returned at the end of Heuristicl.
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Algorithm 3: Inversion

Input: 7

Output: 7

i < Random(1, n);
if n > 20 then

q = Random(1 + | %, 2 );
/* this does not move more than L%J elements

else

q = Random(3, 4);
/* this assumes n >4

end
J=itq—1
if j > n then
| j«<Jj—m
end

for k < 110 %] do

Swap the machines at positions i and j of 7 ;
i <—i+1;
if i =n+ 1 then
| i< 1;
end
J<i—L
if j = 0 then
‘ j<m
end

end
return r;

*/

*/

Algorithm 4: Heuristicl for the DRLP

Input: 77, T, ITER, MAX _k
Output: 7, tx, r*, s*
V¥ <— 00;
fori < 1tondo
| wli] < is
end
fort < Ty to T» do

for iter < 1to ITER do
Shuffle(rt, n);r < 0; s < 0;
fork < 1to MAX_k do
[, v] <~ 20PT_LS(m, t, r, s);
if v < v* then
vk < U
(%, t*, rx, sx) < (7w, t, r, s);
end
r < r +(0.5) x Random(—1, +1);
s <5+ (0.5) x Random(—1, +1) ;

end
end

end
return 7, 1%, 1k, $%k;
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3.3 Heuristic2

A heuristic called Heuristic2 is presented in Algorithm 5. It differs from Heuristicl because,
within the loop 7-18 of Heuristic2, the less disruptive Inversion operator is called in place of
the Shuffle operator. The Shuffle operator is now called just before loop 7-18. Thus, within
loop 7-18 each new configuration 7 will be obtained from a small perturbation on a previous
configuration . The idea is to preserve some past knowledge of the search.

Algorithm 5: Heuristic2 for the DRLP

Input: 7, 7>, ITER, MAX k
Output: 7, 1%, r*, $%

1 V¥ < 00;
2 fori < 1tondo
3 | #l] <

4 end

fort < Ty to T» do

5
6 Shuffle(r, n);

7 for iter < 1to ITER do

8 Inversion(w, n);r < 0;s5 < 0;

9 fork < 1to MAX_k do

10 [, v] < 20PT_LS(m, t, r, s);

11 if v < v* then

12 vk <V ;

13 (7%, t*, r*, s%) < (w, t, 1, 5);
14 end

15 r <—r +(0.5) x Random(—1, +1);
16 s < s+ (0.5) x Random(—1, +1);
17 end

18 end

19 end

20 return 7, tx, 1k, $%;

3.4 Heuristic3

Algorithm 6 presents a heuristic called Heuristic3, which is attained by removing the outer
loop of Heuristic2 and introducing some structure to adjust ¢ after adjusting (r, s).

3.5 Heuristic4
A heuristic called Heuristic4 is presented in Algorithm 7, which differs from Heuristic3

because Heuristic4 does not adjust the pair (r, s). It adjusts r, always keeping s fixed at
some value (here, we fixed s = 0).
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Algorithm 6: Heuristic3 for the DRLP

Input: 71, 7>, ITER, MAX k
Output: 7, 1%, r*, s

1 V¥ < 00;
2 fori < 1tondo
3| wli] < i

4 end

n.
st 5

6 Shuffle(w, n);
7 for iter < 1to ITER do

8 Inversion(w, n);r < 0;s < 0;

9 for k < 1to MAX_k do

10 [, v] <~ 20PT_LS(m, t, r, s);

11 if v < v* then

12 V¥ <V

13 (7T, t*, r*, sx) < (w, t, 1, 5);
14 end

15 r < r+(0.5) x Random(—1, +1);
16 s < 5+ (0.5) x Random(—1, +1);
17 t <t + Random(—1, +1);

18 if 1 < Ty ort > T then

19 \ 1<%

20 end

21 end

22 end

23 return T, 1%, r*, $k;

4 Two-phase algorithms

A layout such as that produced by each of the four heuristics presented in Sects. 3.2-3.5 may
be further improved by using the values (7, t) to fix the integer variables of a mixed-integer
programming (MIP) formulation of the DRLP and, then, solving the resulting linear program
(e.g. Chung and Tanchoco 2010; Murray et al. 2013).

The MIP model given in Amaral (2018) has continuous variables x; (abscissa of machine
i) and d;; (distance between machines i and j) and 0-1 integer variables ( u;;, t;;). Using
the values (7, t), the 0-1 integer variables can be fixed in the following way. For each i, j
(1 <i < j < n)in the layout:

— if machines i and j are in the same row, set u;;=1 and then set #;; (if i is to the left of j,
set#;; = 1;elseifi is to the right of j, sett;; = 0);

— Otherwise, if machines i and j are not in the same row, set u;; to zero and, then it is
indifferent to set #;; to either 1 or 0; we set #;; to zero for that matter.

For example, fixing the integer variables according to the values (7, ) corresponding to the
layout in Fig. 1, we have: machines 2 and 6 are in different rows, then the integer variables
U6 and g are set to zero; machines 1 and 3 are in the same row, then u3 is set to 1 and
113 is set to 1 because machine 1 is to the left of machine 3; etc. A linear program on the
continuous variables x; and d;; is then solved, which might give us an improved layout.
The two-phase algorithm called Heuristicl + LP operates by finding a layout via
Heuristicl and trying to improve it via linear programming. The two-phase algorithms
Heuristic2+ LP, Heuristic3 + LP and Heuristic4 4+ L P are analogously defined.
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Algorithm 7: Heuristic4 for the DRLP

Input: 71, 7>, ITER, MAX k
Output: 7, 1%, r*, s

1 V¥ < 00;
2 fori < 1tondo

3| wli] < i

4 end

55 <051 <« %;

6 Shuffle(w, n);

7 for iter < 1to ITER do

8 Inversion(m, n);r < 0;

9 for k < 1to MAX_k do

10 [, v] <~ 20PT_LS(m, t, r, s);

11 if v < v* then

12 Uk <V ;

13 (7T, t*, r*, sx) < (w, t, 1, 5);
14 end

15 r < r+(0.5) x Random(—1, +1);
16 t <t + Random(—1, +1);

17 if 1t < T)ort > T, then

18 ‘ t <« %;

19 end

20 end

21 end

22 return 7w, t, 1k, $%;

5 Computational results

The experiments with the two-phase algorithms presented in Sect. 4 were carried out on an
Intel® Core™ i7-3770 CPU 3.40 GHZ with 8 GB of RAM with the Windows 8 operating
system. The linear programs were solved by the CPLEX 12.7.1.0 solver.

5.1 Experiments with two-phase algorithms on instances having implicit clearances
and symmetric flow matrices

In this subsection, we consider instances, which have implicit clearances (Amaral 2018) and
symmetric flow matrices. The instances of sizesn € {9, 10, 11} are from Simmons (1969);
of sizes n € {11, 12, 13} from Amaral (2018); of size n = 14 from Secchin and Amaral
(2018); of size n = 15 from Amaral (2006); and of size n = 17 from Amaral (2008b).

Large instances of sizes n = 30 given in Anjos and Vannelli (2008) are also tested.
Additionally, seven larger random instances with size n = 40, introduced here, are tested.
Data for all of the instances tested in this paper is available from the author.

For each problem instance, the two-phase algorithms were run ten times in order to deter-
mine the minimum, average, and standard deviation solution value among the 10 runs. The
average, and standard deviation time was also calculated.

5.1.1 Parameter setting

The parameters used for the heuristics in Sects. 3.2-3.5 were set as follows. Assuming that
in a good layout (of the type shown in Fig. 1) the length of the machine sequence at either
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row tends to be distributed around half the sum of all machine lengths, the parameter ¢ was
varied in the range [T, T>] = [L%J, L%J + 4]. This may be a plausible assumption as the
instances have machine lengths uniformly distributed on a certain interval.

It was decided that the parameters /7 ER and M AX _k would be set to the same value.
Then, preliminary tests with the largest instances (n = 40) were carried out in which the
value of I T E R was increased from 50 in steps of 25 and the times taken by Heuristicl4+LP
were recorded. Then, ITER = MAX_k =200 was chosen, because it was verified that with
that setting, the computing time required by Heuristicl + L P on the largest instances was
about one hour. This value of 200 was also adopted for the other two-phase algorithms.

5.1.2 Experiments with two-phase algorithms on instances of sizes9 < n < 17

First, the two-phase algorithms were tested on instances of sizes 9 < n < 17. In these tests,
it was observed that the best solution value out of 10 runs found by each two-phase algo-
rithm equals the known optimal value for all considered instances. The optimal value for the
instance with n = 17 is not known and for this instance the four two-phase algorithms give
the same best value (4655).

Table 1 shows that for the instances with9 < n < 15 each two-phase algorithm reaches the
known optimal solution in all runs, with just a few exceptions. Therefore, for each two-phase
algorithm the best and average solution values are equal or very close.

Table 2 shows a comparison of average and standard deviation times in seconds required
by each algorithm on the instances with 9 < n < 17. It can be seen that, for every instance,
Heuristic4 + L P was the fastest algorithm, followed by Heuristic3 + L P, Heuristic2 + L P
and Heuristicl 4+ L P. For the largest instance in this table (n = 17), the fastest algorithm,
Heuristic4+ L P, requires an average time of 63.15 s, while the slowest one, Heuristicl+L P,
requires 89.28 s.

5.1.3 Experiments with two-phase algorithms on instances of sizes n € {30, 40}

Table 3 compares the best solution values out of 10 runs given by each two-phase algorithm
on the instances with n € {30, 40}. The minimum value in each row of Table 3 is identified
in boldface and will be used later on as a reference value for its corresponding instance. It is
noted that Heuristic1+ L P provides the minimum value among the algorithms for 7 instances;
Heuristic2 + L P for 8 instances; Heuristic3 + L P for 3 instances and Heuristic4 + L P for 4
instances. Moreover, only Heuristic3 + L P provides the minimum value among those values
shown in the row of Instance 40-6; and only Heuristic4 + L P provides the minimum value
in the row of Instance 40-3.

Denote by v the reference value for an instance (this is taken as a value in boldface in
Table 3). In order to see how consistent the convergence of an algorithm to a good solution
is, the following quantities are determined. The percent deviation of the average value from
the reference value:

Avg — vk
Avgdev = 100 X ———

2)
V¥
And the relative standard deviation (of ten solution values):
SD
rSD =100 x — 3)
Avg
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Table2 Average (Avg.) and standard deviation (SD) time out of 10 runs required by each two-phase algorithm

Instance  Time (s)

Heuristicl + LP Heuristic2 + LP Heuristic3 + LP HeuristicA + LP
Avg. SD Avg. SD Avg. SD Avg. SD
S9 6.41  0.09 594  0.02 324 0.03 321 0.02
S9H 6.23  0.05 582  0.01 2.87 001 2.84 0.01
S10 9.55  0.09 9.06 0.02 5.02  0.05 495 0.03
S11 1427  0.26 13.50 0.04 6.97 0.02 6.92 0.06
1la 13.57  0.12 13.27  0.02 7.58 0.07 7.51  0.10
11b 13.97  0.05 13.79  0.05 7.15  0.05 7.11  0.06
llc 13.62  0.07 13.39  0.03 7.16  0.04 7.12  0.04
11d 13.63  0.11 13.40  0.07 7.17  0.04 7.11 0.04
1le 13.66  0.07 13.48  0.07 6.89  0.02 6.92 0.04
11f 13.60 0.11 1341  0.04 743 0.05 739  0.05
12a 19.95 0.04 19.64  0.12 11.18  0.07 11.07  0.05
12b 19.89  0.13 19.58  0.06 10.33  0.10 10.28  0.12
12¢ 20.01  0.13 19.67  0.17 10.36  0.08 10.13  0.12
12d 20.16  0.15 18.60  0.05 941 0.08 9.27  0.07
12e 19.84  0.50 19.10  0.05 10.47  0.09 10.29  0.05
12f 19.70  0.14 19.39  0.15 1091 0.10 10.84  0.06
13a 27.80  0.05 2723 017 17.55 0.10 17.34  0.10
13b 27.87 0.18 27.15  0.17 18.26  0.09 18.07  0.09
13c 26.88  0.05 26.24  0.13 16.75  0.13 16.69  0.11
13d 27.17  0.09 26.65 0.16 16.87  0.20 16.58  0.13
13e 27.47  0.18 26.79  0.27 14.13  0.09 14.03  0.15
13f 27.16  0.10 26.52  0.05 15.99  0.15 15.84  0.12
14a 3833  0.20 37.09 024 2381 0.20 2288 0.16
14b 38.01 0.10 37.04 0.10 2320 0.20 2285 021
15 51.50  0.12 49.86  0.22 3496 0.25 3459 047
17 89.28 0.11 87.03 0.70 6390 0.33 63.15 056

Table 4 presents the quantities Avgdev and r S D. It can be seen that for each algorithm, the
average values are very close to the reference values (the maximum Avg dev observed was
0.147%). For each algorithm, the value of Avg dev averaged over all instances are 0.038%,
0.032%, 0.033%, and 0.029%, respectively, as shown in the last row of Table 4. The relative
standard deviations are also very small. These results indicate that all of the algorithms con-
sistently converge to a high-quality solution, with a slightly advantage for Heuristic4 + LP.

Table 5 shows a comparison of the times (in seconds) required by the two-phase algorithms
for the instances with n € {30, 40}. It is seen that Heuristic4 + L P performs faster than the
other algorithms for the three first instances of the table; and Heuristic2 4+ L P is the fastest
for all other instances. The last row of this table (averages over all instances) indicates that for
the instances with n € {30, 40}, Heuristic2 + L P would be the fastest algorithm (2310.9 s),
followed by Heuristicl + L P (2663.8 s), HeuristicA+ L P (2,897.4 s) and Heuristic3 + L P
(2,925.5 ).

@ Springer



850 Annals of Operations Research (2022) 316:837-872

Table 3 Minimum solution value out of 10 runs obtained by each two-phase algorithm

Instance Solution value

Heuristicl + LP Heuristic2 + LP Heuristic3 + LP Heuristicd + LP

Min Min Min Min
N30-1 4115.0 4115.0 4115.0 4115.0
N30-2 10,771.0 10,771.0 10,773.5 10,771.0
N30-3 22,692.0 22,697.0 22,692.0 22,692.0
N30-4 28,390.0 28,390.0 28,393.5 28,393.0
N30-5 57,400.0 57,393.5 57,395.5 57,410.5
40-1 99,525.5 99,543.0 99,537.0 99,531.5
40-2 301,002.0 300,973.5 300,992.5 300,976.0
40-3 416,271.5 416,277.0 416,264.0 416,257.0
40-4 207,510.0 207,510.0 207,511.0 207,528.0
40-5 193,748.0 193,748.0 193,778.0 193,783.0
40-6 1,881,366.5 1,881,351.5 1,881,277.0 1,881,281.5
40-7 545,474.5 545,239.0 545,358.5 545,271.0

The minimum value in each row appears in boldface

Table 4 Percent deviation of the average value from the reference value (Avgdev) and relative standard
deviation (rSD) solution value for each two-phase algorithm

Instance  Solution value

Heuristicl + LP Heuristic2 + LP Heuristic3 + LP Heuristic4 + LP

Avgdev  rSD Avgdev  rSD Avgdev  rSD Avgdev  rSD
N30-1 0 0 0 0 0 0 0 0
N30-2 0.005 0.005 0.009 0.011 0.045 0.019 0.038 0.022
N30-3 0.033 0.016 0.036 0.007 0.039 0.019 0.033 0.015
N30-4 0.029 0.030 0.018 0.021 0.041 0.026 0.049 0.033
N30-5 0.057 0.025 0.050 0.026 0.068 0.032 0.065 0.028
40-1 0.077 0.066 0.059 0.034 0.039 0.026 0.024 0.025
40-2 0.027 0.008 0.022 0.013 0.021 0.013 0.019 0.009
40-3 0.016 0.005 0.014 0.008 0.008 0.005 0.006 0.003
40-4 0.029 0.026 0.027 0.013 0.014 0.008 0.016 0.007
40-5 0.019 0.019 0.008 0.017 0.038 0.019 0.044 0.013
40-6 0.014 0.004 0.011 0.004 0.007 0.005 0.005 0.004
40-7 0.147 0.067 0.134 0.074 0.079 0.045 0.051 0.034
Average  0.038 0.023 0.032 0.019 0.033 0.018 0.029 0.016

5.2 Experiments with two-phase algorithms on instances having explicit clearances
and asymmetric flow

In this subsection, we consider five of the largest instances presented by Murray et al. (2013),
which have size n = 50. These instances have explicit clearances (Amaral 2018) and asym-
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Table5 Average (Avg.) and standard deviation (SD) time out of 10 runs required by each two-phase algorithm

Instance  Time (s)

Heuristicl + LP Heuristic2 + LP Heuristic3 + LP HeuristicA + LP

Avg. SD Avg. SD Avg. SD Avg. SD
N30-1 2029.62 1891 1982.90 8.83 1159.78 14.38 1114.04 7.60
N30-2 1284.22  10.04 1177.95 8.47 888.96 6.98 867.92 10.37
N30-3 1080.51 5.14 965.66  10.48 923.12 6.83 905.94 5.45
N30-4 1072.62 6.69 971.29  11.78 1015.46 4.33 1005.11 11.29
N30-5 952.97 1.83 847.95 3.33 895.22 7.32 893.55 9.83
40-1 3694.04  20.70 3151.17  22.05 3769.79  110.23 3741.39  145.56
40-2 3635.16 24.92 3078.41  21.36 4777.06 84.80 4750.29 83.58
40-3 3671.05  15.37 3129.13 3098 5336.61 22.72 5298.88 50.77
40-4 3783.26  10.47 3249.23  19.46 4315.26 30.74 4268.88 34.21
40-5 3624.90 11.12 3112.11  29.44 3259.93 50.35 3200.44 72.45
40-6 3591.99  33.74 3057.98  18.18 4944.62 45.14 4931.80 54.59
40-7 354581  15.41 3006.99  22.35 3820.22 28.97 3791.50 30.04
Average  2663.85  14.53 231090 17.23 2925.50 34.40 2897.48 42.98

metric flow. The use of these instances allows a comparison with the best method in Murray
et al. (2013), which is called LS-minFFasym.

As in the previous section, the parameter ¢ was allowed to vary in the range [T1, T3] =
[L%J, [%J + 4] and the parameters ITER and M A X _k were set to the same value. However,
since a comparison is intended with the LS-minFFasym method (Murray et al. 2013), which
was run in a short runtime, in order to permit a fair comparison, we should allow to our
algorithms a similar amount of time. Therefore, we had to recalculate the value of ITER.

Murray et al. (2013) used a HP 8100 Elite desktop PC with a quad-core Intel i7-860
processor. For one of the instances withn = 50 (i.e., 50-1-1D322), the LS-minF Fasym method
of Murray et al. (2013) runs in 356 seconds on their machine, which corresponds to 293
seconds on ours. Taking this into account, Heuristic1+ L P was run on that instance, each time
with the value of ITER increased in steps of 5 from 10. Then, it was observed that, for ITER =
MAX_k = 30, the computing time required by Heuristicl + L P was about 286 seconds
(which is close to 293). Thus, the setting ITER = MAX_k = 30 was chosen for Heuristicl +
LP.The setting ITER = MAX_k = 30 was also used for the other two-phase algorithms.

In Table 6, the best solution values out of 10 runs given by each two-phase algorithm on
the instances with n = 50 is compared with the solution value of the LS-minF Fasym method.
The minimum value in each row of Table 6 is identified in boldface. It can be seen that
Heuristic3 4+ L P provides the minimum value among the algorithms for all of the instances.

A value in boldface in Table 6 will be now used as a reference solution value v for the
corresponding instance, allowing the determination of Avg dev and rSD for the two-phase
algorithms (via Equations (2)—(3)). Also, letting v be the solution value of LS-minFFasym,
we compute the percent deviation dev of v from v as dev = 100 x *=*. These quantities
are presented in Table 7, which shows that the two-phase algorithms produce significantly
better solutions than the LS-minFFasym method for all of the instances. For each two-phase
algorithm, the average values and the reference values are in close proximity (the maximum
Avgdev observed was 0.5 % for Heuristicl1+ L P). The last row of Table 7 shows that the value
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Table 6 Minimum solution value out of 10 runs obtained by each two-phase algorithm and solution values
obtained by the LS-minFFasym method in Murray et al. (2013) on the instances with n = 50

Instance LS-minFFasym Solution value
Murray et al. (2013)

Heuristicl + L P Heuristic2 + L P Heuristic3 + L P Heuristic4 + LP

Min Min Min Min
50-1-ID322 5,039,125.5 4,027,097.4 4,026,101.1 4,018,716.2 4,021,387.4
50-2-ID324 6,014,836.6 4,792,781.8 4,795,690.2 4,786,649.1 4,792,090.2
50-3-ID325 6,011,132.0 4,021,001.8 4,015,670.6 4,006,421.4 4,009,275.3
50-4-1D327 4,962,286.5 4,240,675.7 4,239,464.8 4,237,417.9 4,237,068.0
50-5-ID328 6,879,494.3 5,282,605.0 5,278,781.7 5,273,616.5 5,274,015.6

The minimum value in each row appears in boldface

Table 7 Percent deviation of the average value from the reference value (Avgdev) and relative standard
deviation (rSD) solution value for each two-phase algorithm; and percent deviation of the solution value of
LS-minFFasym from the reference value (dev)

Instance Solution value

LS-minFFasym Heuristicl + LP Heuristic2 + L P Heuristic3 + LP Heuristic4 + LP

Murray et al. (2013)

dev Avg dev rSD  Avgdev rSD  Avgdev rSD  Avgdev rSD
50-1-ID322 25.39 0.41 0.14  0.33 0.10 0.22 0.09 0.20 0.11
50-2-1D324 25.66 0.37 0.14 0.32 0.10 0.14 0.10 0.18 0.04
50-3-ID325 50.04 0.50 0.10 040 0.09 021 0.11  0.20 0.10
50-4-1D327 17.11 0.36 0.17 0.27 0.12  0.12 0.12  0.08 0.06
50-5-ID328 30.45 0.31 0.09 0.24 0.10 0.14 0.10  0.12 0.07
Average 29.73 0.39 0.13 031 0.10 0.16 0.10  0.16 0.07

of r § D averaged over all instances is 0.13%, 0.10%, 0.10% and 0.07%, respectively, for each
two-phase algorithm. These outcomes indicate that the two-phase algorithms reliably con-
verge to a very good solution, with some, albeit only marginal, advantage for HeuristicA+L P.
Table 8 presents the runtimes of the two-phase algorithms and of the LS-minFFasym
method on the instances with n = 50. It can be noted that the runtimes of Heuristic2 + L P,
Heuristic3 + L P and Heuristic4 4+ L P are shorter than those of the LS-minFFasym method.
The runtimes of Heuristicl + L P are (by construction) similar to LS-minFFasym runtimes.
Among the two-phase algorithms, Heuristic3 + L P and Heuristic4 + L P are the fastest.

5.3 Assessing the usefulness of LP

It is interesting to assess the usefulness of LP within the two-phase algorithms. In this regard,
we compare Heuristicl + L P with Heuristicl, and so on, looking at their average and stan-
dard deviation times; and best, average and standard deviation solution values out of ten runs.
We will refer to Tables 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20 in the Appendix.
Tables 9, 10, 11 and 12 show that, for the majority of the instances with size 9 < n < 15,
the heuristic procedures without LP reach the known optimal solutions in every run and, thus,
for these instances, the heuristic procedures present an average solution value out of ten runs
equal to the optimal solution value. In the few cases, when the heuristic procedures do not
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reach the optimal solutions, calling LP may reduce average solution values. Tables 13, 14,
15, and 16 show that, for the instances with size n € {30, 40}, there are more cases in which
LP reduces average solution values.

From Tables 9, 10, 11, 12, 13, 14, 15 and 16, it is noted that for the instances with n < 40,
the improvement on average solution values was not substantial. The maximum improvement
observed was 0.020% (see Row 4 of Table 15). However, using LP requires only very small
extra computational time.

Finally, it is interesting to assess the usefulness of LP within the two-phase algorithms on
the largest instances with size n = 50. Tables 17, 18, 19 and 20 show that, for the the largest
instances, using LP improves average solution values, while requiring only negligible extra
computational time. Again, the improvement on average solution values is not substantial (the
maximum improvement observed was 0.028%—see Row 3 of Table 17). This might be due to
the way in which LP is used here, i.e., it is used to refine the solution of the heuristic, perhaps
correcting a possibly bad decision made by the heuristic, if any. When the solution of the
heuristic is already good there is not much room for LP to work. If an LP solver is available, it
is recommended to use Heuristic+ LP, because the time required by LP is negligible anyway.

6 Conclusions

Four variants of a two-phase algorithm have been presented in this paper. For instances of
sizes 9 < n < 15, each two-phase algorithm produces an average solution value (out of ten
runs) that is equal in most cases to the known optimal solution value. Experiments with larger
instances of sizes n € {30, 40} showed that the two-phase algorithms consistently converged
to high-quality solutions within reasonable time. Moreover, for even larger instances of size
n = 50, the two-phase algorithms have been able to improve on their best-known solutions.

In the literature, the largest DRLP that has been solved exactly has size n = 15. Therefore,
the two-phase algorithms presented here should be a very useful heuristic approach to deal
with larger problems.

Acknowledgements This study was financed in part by Coordenagao de Aperfeicoamento de Pessoal de Nivel
Superior - Brasil (CAPES) - Finance Code 001; and in part by Funda¢do de Amparo a Pesquisa e Inovagio
do Espirito Santo (FAPES).

Appendix A

See Tables 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20
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