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Abstract
This paper proposes a new dynamic algorithm based on simulation approach and multi-
objective optimization to solve the FJSP with transportation assignment. The objectives
considered in scheduling jobs and transportation tasks in a flexible job shop manufacturing
system include makespan, robot travel distance, time difference with due date and critical
waiting time. The results obtained from the computational experiments have shown that the
proposed approach is efficient and competitive.

Keywords Flexible job shop scheduling · Multi-objective programming · Simulation ·
Multi-agent systems · Transportation

1 Introduction

Scheduling is a process of assigning sets of tasks, or jobs to different resources. The classic job
shop scheduling problem (JSP) has been considerably investigated by researchers (Adams
et al. 1988; Van Laarhoven et al. 1992). In the JSP, there are n jobs and m machines in
a manufacturing system. A job is comprised of j operations with a pre-defined order of
execution. Generally, the JSP strives to find a feasible schedule to execute all operations on
the machines available. However, jobs are independent of each others and can be processed
on machines in any sequence. Sotskov and Shakhlevich (1995) proved that a JSP with three
jobs and three machines J = 3 | M = 3 | Cmax is an NP-hard problem.
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The increasing variety of manufactured products helps customization service to satisfy
customers, while results in more and more complex manufacturing systems (Doganis and
Sarimveis 2008). The demand of intelligent data analytic tools and flexible manufacturing
systems (FMS) are increasing under the move to Industry 4.0 (Lee et al. 2014). The flexible
job shop scheduling extends the classic job shop, assuming that more than one machine is
able to run a specific operation (Brandimarte 1993). It allows a workshop to carry out more
operations without investing extra resources or machines. Since the JSP is considered as a
particular case of the flexible job shop problem (FJSP), the FJSP is also regarded as NP-hard
(De Giovanni and Pezzella 2010; Tay and Ho 2008).

In this paper, we employ simulation along with optimization techniques to solve the FJSP
with various uncertain parameters inherently existent in the manufacturing environment. Our
main contributions are as follows:

– Development of a novel algorithm to solve the FJSP with transportation assignment.
– Optimization of the FJSP with multiple objectives. Previous research hasn’t considered

robot transportation distance as an objective.
– Application of dynamic lexicographic order objectives to avoid issues with one absolute

importance order given by decision makers.
– Embedding the proposed method in a simulation model which reduces computational

time significantly while providing equivalent results.
– Obtaining a unique solution, as opposed to a set of Pareto solutions, to make decision-

making more effective.

The rest of the paper is organized as follows. Section 2 gives a review of the recent
research on the FJSP. In Sect. 3, the FJSP is redefined and our programming background
is presented. Section 4 describes the proposed simulation model and its input requirements,
whereas the dynamic scheduling algorithm is explained in Sect. 5. In Sect. 6, the test data
and computational results are shown. Finally, we provide our conclusions and suggestions
for future research in Sect. 7.

2 Related work

Brucker and Schlie (1990), among the first to deal with the FJSP, proposed a polynomial
algorithm to solve a two-job flexible job shop problem with one objective to minimize the
makespan. Since then, Makespan, the completion time of finishing all jobs, has been taken
as mono-objective to solve the FJSP by many researchers (Liouane et al. 2007; Pezzella
et al. 2008; Xing et al. 2010; Li et al. 2011; Yuan et al. 2013). Gambardella and Mastrolilli
(1996) introduced a tabu search (TS) based algorithm with two novel neighborhood func-
tions and demonstrated the effectiveness of his algorithm through a benchmark on five sets
of experiments. Zandieh et al. (2008) proposed a genetic algorithm (GA) with several initial
populations and several strategies for generating new populations. Nouiri et al. (2018) pro-
posed hybridmetaheuristics based on a clustered holonicmulti-agentmodel to solve the FJSP
with many robots. Buddala and Mahapatra (2019) incorporated a new local search technique
to teaching–learning-based optimization to solve the FJSP with one objective to minimize
makespan.

However,minimizingoneobjective is unsuitable in realmanufacturing systems as different
criteria are often considered simultaneously over the production flow (Thörnblad et al. 2013).
The multi-objective FJSP has gained the attention of some researchers (Kacem et al. 2002;
Gao et al. 2008; Moslehi and Mahnam 2011; Karthikeyan et al. 2015; Kumar and Pandey
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2015) over the last two decades. Brandimarte (1993) described a hierarchical algorithm
based on a tabu search metaheuristic and a two-way information flow, with makespan and
tardiness as separate objectives. Xia and Wu (2005) developed a hybridized particle swarm
optimization (PSO) and simulated annealing (SA) to minimize makespan, total machine
workload and maximum machine workload at the same time. Gao et al. (2016) proposed a
discrete harmony search algorithm (DHS) with a weighted combination of makespan, the
mean of earliness and tardiness. Li et al. (2019) introduced an elitist non-dominated sorting
hybrid algorithm to solve the FJSP by minimizing makespan and total setup costs.

In general, the FJSP can be decomposed into two sub-tasks: assignment of an operation
to an appropriate machine, and sequencing the operations on each machine. For solving
the FJSP with more than two jobs, two basic approaches are available (Brandimarte 1993).
Concurrent/integrated approaches are proposed to solve assignment and sequencing problems
simultaneously (Hurink et al. 1994; Dauzère-Pérès and Paulli 1997; Gao et al. 2008; Yuan
and Xu 2013; Buddala and Mahapatra 2019), whereas hierarchical approaches addresses the
two sub-tasks separately with the aim to reduce complexity (Brandimarte 1993; Xia and Wu
2005; Gao et al. 2015; Karthikeyan et al. 2015; Wang et al. 2018). However, most the above
mentioned references assume that move times between different machines are negligible,
and transportation resources are unlimited during the production.

Langston (1987) and some other researcher (Boudhar andHaned 2009; Naderi et al. 2009,
2010) considered uniformly distributed or sequence-dependent transportation times between
different stages in the flow shop scheduling problem(FSP). In the classic job shop problem
(JSP), researchers (Hurink and Knust 2005; Zhang et al. 2014) introduced disjunctive graph
modelswithmachine-dependent transportation times as constraints. For the FJSP, researchers
(Rossi and Dini 2007; Zhang et al. 2012; Rossi 2014; Nouri et al. 2016; Karimi et al. 2017)
used transportation time matrices, including the times to move a job between two different
machines, as input data to develop mathematical models or metaheuristics to find optimal
schedules.

One disadvantage of considering transportation times between machines is the underesti-
mate of empty move times, the time a robot moves without a job between machines Mi . In
practice, a certain distance separates machine input and output buffers. Therefore, the empty
move time from Ml to Ml cannot be neglected. The extended shifting bottleneck heuris-
tic (SBH) developed by Drießel and Mönch (2012) considers transportation times between
machine buffers/stockers, rather than between machines to solve a JSP where a path to move
a job is static since each operation can only be executed on one machine (or one of a group
of identical machines). Nevertheless, to the best of our knowledge, none has considered
transportation times between buffers in the FJSP.

In this paper, we develop a multi-agent simulation model to solve the multi-objective
FJSP with transportation assignment of robots, a problem hasn’t been studied yet. Com-
pared to other simulation techniques such as discrete-event simulation and micro simulation,
agent-based simulation is more straight-forward and adequate to deal with heterogeneous
agents (Macal and North 2005; Siebers et al. 2010) and agents with geo-spatial movement
(Siebers et al. 2010). A novel dynamic scheduling algorithm is proposed and embedded in the
simulation model to lexicographic-optimize transportation operation schedules. All critical
real-time information, such as remaining jobs, robot positions and machine conditions, can
be obtained from the simulation model and inputted into the dynamic algorithm.
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3 Problem formulation

The FJSP has a set of n jobs J = {J1, J2, . . . , Jn} and a set of m machines M =
{M1,M2, . . . ,Mm}. Each job Ji has j operations Oi = {Oi1, Oi2, . . . , Oi j } with a prece-
dence constraint and each operation Oi j can be processed on any among a subset Mi j ⊆ M
of compatible machines.

In this paper, we address the FJSPwith transportation assignment of robots. Eachmachine
Mm is with an input buffer BI

m and an output buffer BO
m . Transfers between machines and

their own buffers are automatic. Additionally, there are a system input buffer BI
0 and a

system output buffer BO
0 to put raw jobs and completely finished jobs. A set of p robots

R = {R1, R2, . . . , Rp} transfers jobs between buffers, where the transportation time is
distance-dependent. The path and distance between two different buffers are predetermined
and fixed. In Fig. 1, we show the whole process of J1 production and transportation T1i . The
five transportation tasks T = {T1,1, . . . , T1,5} are possible to be operated by different robots.
The processing time of an operation Oi j on a machine Mi jm is operation-dependent and
machine-dependent , as shown in Table 1. Production and transportation can be processed
independently, which allows robots to transfer some jobs while machines are treating others.
The problem thus involves three sub-tasks: assignment of operations tomachines, assignment
of robots to operations and sequencing the operations on eachmachine. As we are not solving
these sub-problems separately, we integrate them and optimize the schedule dynamically at
each transportation assignment, step by step. The algorithm is detailed in Sect. 5.

The proposed model includes the following assumptions:

◦ All jobs, machines, buffers and robots are available at time 0.
◦ Machine breakdown and robot failure are ignored (but possible).
◦ Jobs:

– Jobs are independent of each other.
– Each job can be processed on one and only one machine at a time.
– Preemption of operations is not allowed.

T1,1 O1,1

T1,3

T1,2

System 
Input Buffer

Pick Up P1

Machine
Input Buffer

Machine
Input Buffer

Machine
Output Buffer

O1,2

Machine
Output Buffer

T1,4

Pick Up P1 T1,5

System 
Output Buffer

Fig. 1 Production process and transportation
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Table 1 Processing times of
operations

Jobs Operations Machines

M1 M2 M3 M4

J1 O1,1 15 20 18 –

O1,2 25 40 – 30

J2 O2,1 – 25 30 20

O2,2 30 – – 25

J3 O3,1 – 15 25 40

O3,2 60 – 45 –

◦ Machines:

– Machines are independent of each other.
– Each machine can process one and only one operation at a time.
– Machine setup times are ignored (but possible).

◦ Buffers:

– Machine buffers have an identical capacity limit.
– System buffers are unlimited.

◦ Robots:

– Robots are independent of each other.
– Each robot can transfer one and only one job at a time.
– Time required to load and unload jobs from buffers is included in processing time.
– Robot collisions are ignored.

Our objectives are to minimize the following:

◦ F1: makespan, the completion time of all jobs.
◦ F2: transportation distance, total distance passed by all robots.
◦ F3: time difference between job finishing time and due time (including both earliness
and tardiness).
◦ F4: critical waiting time, the longest time a job waits in a buffer.

Generally, the approaches focused on solving multi-objective optimization problems
(MOO) can be divided into two classes (Fonseca and Fleming 1998):

– Pareto-based approaches, optimizing all objectives concurrently.
– Non-Pareto approaches, treating objectives separately.

In this paper, our algorithm lies within the first group, Pareto-based approaches. We
optimize all objectives simultaneously with dynamic lexicographic orders. Lexicographic
ordering (Marchi and Oviedo 1992) requires decision makers to prioritize the objectives
according to their absolute importance before the solution process. A more important objec-
tive is infinitely more important than a less important objective (Branke et al. 2008). After
the ordering step is completed, the solution process starts working minimizing the most
important objective function. If a unique solution is found, the solution process will stop.
Otherwise, the second most important objective function will be considered and so on until a
unique solution is found. The solution of lexicographic ordering can be proven to be Pareto
optimal as it is a unique optimal solution of one of the objectives.
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However, it is not that easy to derive the importance order of all objectives in practice
and lexicographic orderings do not allow a small increment of a more important objective
function to be traded off with a great decrement of a less important objective, which can be
attractive to decision makers (Roy and Mousseau 1996).

To avoid these drawbacks, we use dynamic lexicographic orders based on two concepts,
entropy (Shannon 1948) and goal programming (Charnes et al. 1955), at all transportation
assignment steps. The importance orders of the objectives are dependent on their entropy
values. When considering a group of jobs based on one objective, the larger entropy value
the group has, the more similarity the jobs have, which leads to more difficulty in priori-
tizing members. At each assignment step, a robot obtains a new lexicographic order based
on updated objective entropy values from the real-time information, such as job next oper-
ations, robot positions, jobs already in machine input buffers and so on. Before using goal
programming to generate a solution, decision makers often need to specify aspiration levels
for the objective functions and then, deviations from these aspiration levels are minimized
in the solution process. An objective function combined with an aspiration level is regarded
as a goal. In our algorithm, instead of aspiration levels given by decision makers, we use
the best value of an objective and an acceptable deviation range to get the aspiration level of
this objective. The solution process starts with the most important objective function based
upon entropy calculation, all jobs better than the aspiration level of this objective are kept,
then turns to the next most important objective. The solution process stops once we find a
unique solution or the minimization of all objectives finishes. We provide a more detailed
description and explanation of the proposed algorithm in Sect. 5.

4 Simulationmodel

In this section, we describe the developed simulation model. First, we discuss the required
inputs and then move to present the simulation framework comprised of three main steps.

4.1 Inputs

To simulate different scenarios in the FJSP, we develop a multi-agent Netlogo model with
four interdependent agents: Job,Machine, Buffer andRobot. Operations of jobs are defined
as properties of Job Agents.

The following inputs are required to set up the model:

◦ Global Values

– objective list
– deviation space
– due time list
– simulation step (tick value)

◦ Job Agent:

– ID and initial location (X- and Y-coordinates)
– operations with a precedence constraint

◦ Machine Agent:

– ID and location (X- and Y-coordinates)
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– associated input buffer and output buffer
– processing times of compatible operations (a sample in Table. 1)

◦ Buffer Agent:

– ID and location (X- and Y-coordinates)
– buffer type (system input/output, machine input/output)
– associated machine if it is machine buffer
– capacity limit (no capacity limit for system buffers)

◦ Robot Agent:

– ID and initial location (X- and Y-coordinates)
– move speed.

4.2 Framework

The simulation model and the proposed method are coded in Netlogo 6.0.1. This software
allows modellers to define hundreds or even thousands of independent agents for modeling
complex systems, which could help us solve the FJSP at large scale. The provided interface
works as a desktop application, making the proposed model able to be used directly and
easily for industry users.

The proposed model is shown conceptually in Fig. 2. We list four agents and
three main model steps. Input is the first step and includes model setup, capture
and storage of all the required data. In the GO step, all agents work independently
and robots/agents perform transportation assignments and optimize schedules as fol-
lows: TransportationAssignment function (defined and described in Sect. 5). The
TransportationAssignment function gives each robot a task list, including job ID,
machine ID and machine input buffer ID. If no job in the feasible set satisfies constraints (for
example, all machine input buffers have reached their capacity limit), then no task is given to
robots. After assignment, a robot leaves its current position to the system input buffer or the
machine output buffer where the target job is in, then picks up the job and transfer it to the
assigned machine input buffer. Machines execute jobs according to the arrival sequence. The
GO process repeats until all jobs finish. Once all job operations complete,Output produces
the final result and provides the job–machine–robot schedule and all relevant objective values.

5 Dynamic multi-objective scheduling algorithm

Most previous algorithmswere applied to solve the FJSPwith predetermined conditions, such
as fixed numbers of jobs, job release times (Kacem et al. 2002) and machine breakdowns
(Al-Hinai and ElMekkawy 2011). Ahmadi et al. (2016) addresses the stable scheduling of
the FJSP with randommachine breakdown, where the interval between every two breakdown
occurrences follows an exponential distribution. They evaluated the change before and after
machine breakdown to find optimal solutions with the maximal stability. Unlike the existing
approaches, our dynamic algorithmmakes it possible to adjust the remaining solution process
whenever extra information are inputted into the system. For example, when neworders arrive
or resources change unpredictably (machine breakdown or robot failure), robots (which are
still working) will make decisions based on the updated information, whereas the finished
operations are kept as a part of the final feasible solution.

123



906 Annals of Operations Research (2022) 311:899–920
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-- EntropyCalcula�on
-- Selec�on

Fig. 2 Proposed model with key agents and steps

In this section, we describe the proposed TransportationAssignment function
in Fig. 2. As mentioned in Sect. 3, we apply dynamic lexicographic ordering based on
entropy and use goal programming at transportation assignment steps. We extend the com-
bination of entropy and lexicographic ordering introduced by Eloundou (2016). For the
FJSP at large scale, the values regarding one objective are rarely identical. That means the
optimization process very likely stops after minimizing the first objective, since a unique
solution is found. In order to avoid this problem, we modify the procedure of obtaining lexi-
cographic orders and introduce objective aspiration levels to allow a trade-off between a small
decrement for a more important objective and a substantial increment for a less important
objective.

Before transferring the last job to the system output buffer, Transportation
Assignment function is called by different robots repeatedly. It contains three phases,
namely the decision matrix formation phase, the lexicographic ordering phase and the job
selection phase. We describe in detail as follows:

Phase I: The decision matrix formation phase
During this phase, the decision matrix, including all feasible jobs waiting for transfer

and their corresponding objective values, is formatted according to the real-time information
derived from the model.

When a robot is available, it checks the system input buffer and all machine output buffers
to find feasible jobs. If no job is found (for example, the production of jobs is almost done
and only one or two jobs are being processed in machines), the robot skips all remaining
steps and waits on the spot. If only one job is feasible, the robot chooses this job directly
without going through the algorithm. When two or more jobs (n ≥ 2) are feasible, the robot
builds a decision matrix (Table 2) with n rows and 7 columns (3 columns job information
and 4 columns relevant objective values).

The operations of a job Ji follow a precedence constraint, therefore the next operation Oi j

of this job is easy to acquire. To select feasible machinesMm from a subsetMi j of compatible
machines which can process Oi j , we need to respect the machine buffer capacity constraint.
If none of the buffers allow the transportation of Ji due to previous transferred jobs, then
Ji is deleted from the feasible job set. Otherwise, we list all input buffers Bim of feasible
machines in the matrix. For the right part of the decision matrix, recall that we optimize
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Table 2 Decision matrix Job information Objective values

Job Next operation Next buffer F1 F2 F3 F4

J1 O1 j B1m f11 f21 f31 f41
J2 O2 j B2m f12 f22 f32 f42
… … … … … … …

Ji Oi j Bim f1i f2i f3i f4i
… … … … … … …

Jn Onj Bnm f1n f2n f3n f4n

makespan (F1), transportation distance (F2), time difference between job finishing time and
due time (F3), and critical waiting time (F4). Since we schedule transportation assignments
dynamically based on real-time information, the objectives listed in the matrix do not mean
the total results, but basic values. For example, the makespan value f1i of Ji is the finishing
time of Oi j on selected Mm . The critical waiting time value f4i is the maximal waiting time
in the system after the robot puts Ji into Bim . Once all jobs and objective values are inserted
in the decision matrix, the formation phase ends.

Phase II: The lexicographic ordering phase
In this phase,we calculate entropyvalues and sort objectives in decreasing order of entropy.

First, we normalize the objective values, because the value range and unit of objectives we
consider in this model have large differences. Then we perform entropy calculation of each
normalized value and sum entropy values in the same column to get objective entropy (Ek).
The applied formulas are as followed:

Nki = fki
n∑

i=1

fki

(1)

Eki = −Nki × ln Nki (2)

Ek =
n∑

i=1

Eki (3)

The interval of Nki is (0,1) and ln Nk,i is a negative value with an interval (−∞, 0),
therefore Ek,i is always positive. From 0 to 1

e , Eki increases while from 1
e to 1, Eki decreases.

The decision matrix with entropy values is shown in Table 3.
The value of an objective entropy shows the level of difficulty in choosing jobs regarding

this objective. If Ek > El , it means, compared to objective k, robots have more difficulties
in distinguishing jobs at minimizing objective l, because the jobs have more similarities
with each other in their objective l values. To avoid rejecting potential good solutions, the job
selection starts from the objectivewith the largest entropy.We sort all objectives in decreasing
order of entropy and relist these objectives in the matrix according to the order.

Phase III: The job selection phase
During this phase, we optimize objectives in the matrix from left to right sequentially

based on their corresponding aspiration levels (AL). Recall that we use the best value of
an objective and a corresponding acceptable deviation range to get the aspiration level of
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Table 3 Decision matrix with
entropy value

Job information Objective values

Job Next operation Next buffer F1 F2 F3 F4

J1 O1 j B1m E11 E21 E31 E41
J2 O2 j B2m E12 E22 E32 E42
… … … … … … …

Ji Oi j Bim E1i E2i E3i E4i
… … … … … … …

Jn Onj Bnm E1n E2n E3n E4n
E1 E2 E3 E4

the objective. Once a unique solution is found or all objectives are optimized, the selection
process stops. If more than one job remains in the matrix after all objectives are optimized,
robots choose the job with the minimal value of the last optimized objective. For a dynamic
feasible job set, the solution obtained by the decision matrix is efficient. We call this set
‘partwise’ efficient, which can be proven as follows:

For the optimization problem:

min
j∈J

f ( f1, . . . , fk)

Proposition let ĵ be the final solution from the matrix such that for at least one k ∈ K, we
have fk( ĵ) ≤ fk( j) for all j ∈ J . Then ĵ ∈ JE , where JE is the set of partwise efficient
solutions.

Proof Suppose that ĵ is not efficient. Then there is a j ∈ J such that f ( j) < f ( ĵ). Let
K ∗ := {k ∈ K : fk( j) < fk( ĵ)}. So we have fk( j) < fk( ĵ) for k ∈ K ∗, and fk( j) = fk( ĵ)
for k ∈ K and k /∈ K ∗, which is contradicting the assumption that fk( ĵ) ≤ fk( j) for at least
one k ∈ K . 	


The selection starts with the first left objective column. First, we sort all jobs in increasing
order of objective values (the decision matrix used here is the original one (Table 2), not
the matrix with entropy (Table 3)). Then we screen out jobs based on the minimal objec-
tive value in the matrix and the objective aspiration level. The process stops when we find
a unique solution. Otherwise, the process goes to the next objective. We depict the three
phases of our dynamic scheduling algorithm in Fig. 3 and present a simple example in
Table 4.

Assume we have five feasible jobs. The objective with the maximal entropy is F3, namely
time difference between due time and finishing time, and its aspiration level is 120% of the
best value. Therefore, the aspiration level here is 1368s, then J4 and J5 are screened out. For
the second objective F2, if the aspiration level is the same as that of F3, then only J3 is left
in the matrix. In this case, the selection process stops and J3 is assigned to the robot as its
transportation task. When a jobs is assigned, even if it still resides in a buffer, other robots
are no longer able to consider it as feasible.

We display a detailed description of how a robot uses the proposed algorithm to find a
proper job to transfer in Algorithm. 1.
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Decision matrix 
forma�on
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AL = {ALk}

Selec�on of kth 
objec�ve

Unique solu�on?

No

≤  

Yes

No

At least two feasible 
jobs are found

Assign first row 
job to robot

Yes

Fig. 3 Dynamic scheduling algorithm

Table 4 A job selection example Job information Objective values

Job Next operation Next buffer F3 F2 F1 F4

J1 O11 B13 1140 620 f11 f41
J2 O22 B22 1230 590 f12 f42
J3 O31 B22 1298 450 f13 f43
J4 O43 B41 1567 490 f14 f44
J5 O52 B53 1800 700 f15 f45
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Algorithm 1 Transportation Assignment Procedure
Require:

– Robot is available for transportation assignment.
– At least one feasible job exists in the system.

Feasible jobs checking
1: if only one feasible job then
2: assign this job to robot
3: end the procedure
4: else
5: let J be the set of feasible jobs
6: go to the next step
7: end if

Decision matrix formation
8: for all Ji ∈ J do
9: get the next operation Oi j
10: let Mi j be the set of machines which are able to process Oi j
11: for all Mm ∈ Mi j do
12: if the input buffer BI

m of Mm has sufficient capacity to accept Ji then
13: calculate corresponding objective values, f1i , f2i , f3i , f4i
14: insert (list Ji , Oi j , B

I
m , f1i , f2i , f3i , f4i ) in the matrix

15: end if
16: end for
17: if no BI

m of Mm ∈ Mi j has sufficient capacity then
18: delete Ji from J
19: end if
20: end for
21: if the decision matrix is not empty then
22: go to the next step
23: else
24: end the procedure
25: end if

Lexicographic ordering
26: let K be the set of objectives
27: for all k ∈ K do
28: calculate the objective entropy Ek
29: end for
30: sort objective k ∈ K in decreasing order of entropy Ek
31: relist objectives in the matrix based on the order
32: go to the next step

Job selection
33: for all k ∈ K do
34: sort jobs Ji ∈ J in increasing order of objective value fki
35: calculate objective aspiration level ALk
36: screen out all jobs with fki > ALk
37: if a unique solution is found then
38: assign this job to robot
39: end the procedure
40: end if
41: end for
42: if no unique solution then
43: assign first row job in the matrix to robot
44: end if
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6 Computational results and comparisons

In this section, we study the performance of our dynamic scheduling algorithm by exper-
iments. First, we show some simulation results to illustrate that our model significantly
reduces the computational time required to solve the FJSP at large scale. Since no existing
method has been introduced to solve the same problem with the same objectives, we carry
out some experiments to compare our method with another algorithm proposed for the FJSP
without transportation. Finally, we introduce a novel genetic algorithm in order to compare
our proposed method with the results of the metaheuristic.

6.1 Simulation results

In this section, we present test instances that we have simulated to validate the efficiency of
the suggested approach. To ease the simulation, we assume that:

– The workshop has a fixed number of machines. It is possible to shut off some machines
for small size productions, but not possible to add more machines since in practice it is
difficult to get additional capital investments.

– In instances with different numbers of machines, the setting of machines, such as oper-
ation processing times or locations, remains the same. The distance between different
buffers is fixed.

In Fig. 4, we show theworkshop environment for all instances. The system has 4machines,
8 machine buffers and 2 system buffers. The number of jobs and the number of robots can
vary.

InTable 5,wepresent the results of different test.We showCPU times in seconds. Instances
at really large scale (i.e., 200–500 jobs) not previously considered by other researchers, appear
to be solvable in acceptable time frames by utilizing our algorithm.

6.2 Comparisons in the FJSP without transportation

To show the flexibility of our simulation model and evaluate the efficiency of the proposed
scheduling method, we carry out some experiments to compare our algorithm with another
Pareto-based method proposed for solving the FJSP without transportation.

Kacem et al. (2002) applied a hybrid evolutionary algorithm with fuzzy logic (FL+EA)
based on the Pareto concept to solve the multi-objective FJSP where move times between

Fig. 4 Workshop layout
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Table 5 Simulation results

Instances Objectives∗ CPU (s)

Problem size J × M × R F1 F2 F3 F4

Small 2 × 2 × 1 719 116 570 300 0.721

2 × 3 × 2 369 117 253 60 0.649

3 × 3 × 2 389 186 147 143 0.867

Middle 9 × 3 × 2 1034 617 742 602 0.857

15 × 3 × 3 1579 1023 348 921 1.051

15 × 4 × 3 1398 1058 458 863 0.997

Large 30 × 4 × 3 2429 2100 691 1384 2.686

48 × 4 × 3 4402 3437 1180 2775 1.824

100 × 4 × 3 9016 7215 989 2519 16.778

200 × 4 × 4 17,917 14,343 8061 2397 251.546

500 × 4 × 4 43,567 36,298 7490 2399 5029.476

∗F1: makespan; F2: transportation distance; F3: time difference; F4: critical waiting time.
All objective values are in seconds

Table 6 Comparison results of FL+EA and our method

Problem size Objectives FL+EA Our CPU (s)

J × M 1 2 3 4 5 Method

4 × 5 Makespan 18 18 16 16 – 16 0.563

Critical workload 8 7 9 10 – 9

Total workload 32 33 35 34 – 32

10 × 7 Makespan 15 17 18 16 16 16 0.707

Critical workload 11 10 10 10 12 12

Total workload 61 64 63 66 60 65

10 × 10 Makespan 8 8 7 – – 8 1.070

Critical workload 7 5 5 – – 7

Total workload 41 42 45 – – 41

machines (buffers) are ignored. The objectives optimized are makespan, critical workload
and total workload. They also considered the release times of jobs (some jobs are not available
at time 0).

The comparison results are shown in Table 6 andwe present the detailed solutions obtained
by our model in Tables 7 and 8. The values of computational time are not provided in their
paper. However, based on their algorithm, we can conclude that our proposed method is more
effective as it generates efficient solutions with much less computational times.

6.3 Comparisons with genetic algorithm

GA methods are inspired by Darwin’s principle of natural evolution. Starting with a set of
candidate solutions, the best candidates in each generation are selected to form offspring as
new candidates through crossover and mutation operations. These offspring are inserted into
the population by replacing some of the weaker individuals in the previous generation.
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Table 7 Our solution of instance
4 × 5

Ji Oi j Mi j ti j , t fi j

J1 O11 4 3, 4

O12 2 4, 8

O13 4 8, 12

J2 O21 1 5, 7

O22 5 7, 12

O23 1 12, 16

J3 O31 3 1, 7

O32 2 8, 9

O33 1 9, 11

O34 4 12, 13

J4 O41 1 7, 8

O42 2 9, 10

Table 8 Our solutions of instance
10 × 7 and of instance 10 × 10

Instance 10 × 7 Instance 10 × 10

Ji Oi j Mi j ti j , t f
∗
i j Ji Oi j Mi j ti j , t fi j

J1 O11 5 2, 5 J1 O11 1 0, 1

O12 6 5, 6 O12 3 1, 2

O13 1 6, 10 O13 4 3, 4

J2 O21 7 4, 7 J2 O21 1 2, 4

O22 1 10, 12 O22 10 4, 5

O23 3 5, 7

J3 O31 7 11, 12

O32 3 12, 13 J3 O31 10 0, 1

O33 5 13, 15 O32 4 2, 3

O33 7 5, 6

J4 O41 6 6, 10

O42 4 13, 14 J4 O41 7 0, 1

O43 1 14, 15 O42 2 1, 3

O43 4 6, 7

J5 O51 2 7, 8

O52 1 12, 14 J5 O51 9 0, 2

O53 2 15, 16 O52 9 2, 3

O53 4 5, 6

J6 O61 3 5, 9

O62 3 9, 10 J6 O61 6 2, 4

O63 3 10, 12 O62 9 4, 6

O63 9 6, 7
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Table 8 continued Instance 10 × 7 Instance 10 × 10

Ji Oi j Mi j ti j , t f
∗
i j Ji Oi j Mi j ti j , t fi j

J7 O71 7 7, 9

O72 7 12, 15 J7 O71 1 1, 2

O73 6 15, 16 O72 3 2, 3

O73 4 4, 5

J8 O81 2 4, 5

O82 4 5, 13 J8 O81 5 0, 2

O83 2 13, 15 O82 2 3, 6

O83 2 6, 8

J9 O91 3 1, 5

O92 2 5, 7 J9 O91 6 1, 2

O93 7 9, 11 O92 7 2, 3

O93 6 4, 5

J10 O101 2 0, 4

O102 6 4, 5 J10 O101 6 0, 1

O103 1 5, 6 O102 4 1, 2

O103 7 3, 5

*ti j , t fi j : starting time and finishing time of operation Oi j

The proposed GAmethod follows the following general steps of evolutionary algorithms:

1. Initialization: The aim here is to obtain some feasible solutions with a given population
size.

2. Fitness evaluation:We employ NSGA-II to find non-dominated solutions with the same
four objectives as we optimize in our dynamic algorithm. We explain the details of this
in Sect. 6.3.2.

3. Generation of offspring:Based on the results of the fitness evaluation, some of individuals
are randomly selected as parents to generate offspring through crossover and mutation
operations.

4. The second and third steps are repeated until a set of solutions satisfies decision maker or
until reaching the stopping criterion. In our case, we use a given number of generations
as the stopping criterion.

6.3.1 Chromosome presentation

In existing GA research work to solve the FJSP (Pezzella et al. 2008; Zandieh et al. 2008;
Chaudhry et al. 2013), researchers built their chromosomes with triples, namely operation,
job and machine (Fig. 5). In order to implement our GA to solve the FJSP with transportation
assignment, we form adapted triples (Ji , Bm, Rp), one for each transportation task, where:
Ji is the job to transfer;
Bm is the buffer where the robot transfers Ji to;
Rp is the robot which executes this transportation task.

The length of the chromosome corresponds to the total number of transportation tasks.
Recall that for each job, transportation tasks include transferring the job to machines which
execute its operations and transferring it to system output system. Therefore, the number of
transportation tasks for a job equals the number of operations belonging to this job added by 1.
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11 21 22 12 31 32 23 13 1 2 3 2 1 3 2 1
M1 M2 M3 M2 M1 M3 M2 M1

Machine assigned

J1 J2 J2 J1 J3 J3 J2 J1

Opera�ons

(1,1,1) (3,1,3) (2,1,2) (3,2,1) (2,2,2) (1,2,2)

(Job,Opera�on,Machine)

(a) (b)

Fig. 5 Chromosomes proposed by Chaudhry et al. (2013) (a) and Zandieh et al. (2008) (b)

However, for the FJSP with partial flexibility, not all machines can process all operations
resulting in the generation of offspring naturally deemed infeasible when the crossover and
mutation operations execute. In that case, we have to regenerate offspring to manage the
population size. Therefore, we think it is better to use a triple string of indexes between
0 and 1 to code chromosomes and interpret the string depending on actual transportation
assignment circumstances. To articulate the coding and interpretation process, we give a
simple example here.

Assume we have 2 jobs (J1, J2) each with two operations (Oi1, Oi2), two machines
(M1,M2) both able to process all operations, and two robots (R1, R2). The length of chro-
mosomes is the total number of transportation tasks, which equals 6. Then we generate a
random initial chromosome as

Job 0.23 0.53 0.32 0.35 0.75 0.67
Buffer 0.81 0.83 0.25 0.62 0.96 0.27
Robot 0.07 0.43 0.82 0.13 0.32 0.29

To interpret, we follow these steps:
Step 1: List all feasible jobs, J = {J1, J2}. Use the function

I (x) = �x × N + 1�
where

– I (x):the item position in the list
– N : the number of items in the list
– ��: floor function, taking as input a real number and gives as output the greatest integer

less than or equal to

to interpret the index 0.23 in the first gen, then the corresponding job is J1, the first item
(I (0.23) = �0.23 × 2 + 1� = 1) in J .
Step 2: Find a subset of compatible machines for the next operation of J1, M = {M1,M2}.
By the same function, we can get M2, the second item (I (0.81) = �0.81 × 2 + 1� = 2) in
M .
Step 3: With the robot list R = {R1, R2}, we get R1, the first item in R.
After obtaining the first transportation task, the process is repeated with new feasible lists
until we process all indexes. Therefore, the chromosome has the schedule as below:

Job J1 J2 J1 J1 J2 J2
Buffer BI

2 BI
2 BI

1 BO
0 BI

2 BO
0

Robot R1 R1 R2 R1 R1 R1
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6.3.2 Fitness evaluation

In NSGA-II methods, no objective is regarded as having priority over others. All individuals
are sorted based on non-domination into each front. The individuals in the first front do not
have any individual who dominates them in the current population, and the individuals in the
second front are only dominated by the individuals in the first front. Individuals in different
fronts are assigned different fitness values according to the rank of their front, for example,
1 for the first front and 2 for the second front.

The concept of crowding distance is introduced to rank individuals in the same front. It
calculates how close an individual is to its neighbors. Fitness value and crowding distance
are double standards to select elitist individuals from the population. Individuals are selected
when their fitness value are minimal. If two individuals have the same fitness value the one
with the greater crowding distance is preferential. The adoptedmethod to take non-dominated
sort and to calculate crowding distance follows the one proposed by Deb et al. (2002).

Note thatwe use theNetlogo simulator to calculate values of objectives for each individual.
Rather than estimating the distance between different buffers, using the simulator to simulate
how robotswork and obtain the distance directly from themodel could producemore accurate
results and get closer to practical applications.

In our NSGA-II method, we sort the population with the same four objectives: makespan,
transportation distance, timedifference and criticalwaiting time. In the end, it offers users a set
of Pareto solutions, rather than a single solution. Thismethod requires decisionmakers to pick
their preferred solution after seeing all Pareto solutions. In the case study, we show feasible
solutions without bias and compare the results from the dynamic scheduling algorithm we
discussed in Sect. 5.

6.3.3 Genetic operators

TheNSGA-IImethoduses crossover andmutationoperators to generate offspring.Weassume
that it is possible to generate good children even if the parents are relatively bad in the popu-
lation. In each iteration, we generate children with the population size by randomly selecting
parents from the population. The crossover operator divides the two parent chromosomes
in the middle, and the second parts of the parent chromosomes are swapped to get new off-
springs. The chromosome structure avoids generating infeasible off-springs and legalizing
after. Themutation operator simulates themutation observed in nature.With a givenmutation
rate, each point on a gen can be changed randomly.

The offspring and the parent populations are combined and sorted together based on
non-domination. The new generation is filled by each front subsequently until it reaches the
population size. If it needs to pick some individuals from a front, individuals are selected by
the crowding distance in descending order. These processes repeat until reaching the stopping
criterion.

6.4 Comparison results of GA and our method

To obtain potential efficient solutions, the population size and the number of generation
are 50 and 1000, respectively. Table 9 indicates the comparison of the solutions by the two
approaches. We have observed that the solutions from our method dominate most of GA
solutions.
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Table 9 Comparison results of GA and our method

Problem size Obj.∗ GA Our CPU

J × M × R 1 2 3 4 5 6 CPU method

2 × 2 × 1 F1 730 743 800 – – – 996.657 719 0.721

F2 179 177 209 – – – 116

F3 543 616 588 – – – 570

F4 347 354 287 – – – 300

3 × 3 × 2 F1 391 461 407 390 – – 1040.235 389 0.867

F2 192 217 204 210 – – 186

F3 352 110 341 278 – – 147

F4 194 171 131 117 – – 143

6 × 4 × 2 F1 618 638 710 684 – – 1468.847 581 0.867

F2 459 423 415 435 – – 440

F3 166 174 425 520 – – 128

F4 230 242 300 301 – – 283

9 × 3 × 2 F1 1045 1010 1045 1173 1125 – 3080.132 1034 0.857

F2 618 645 654 651 662 – 617

F3 746 759 673 872 733 – 742

F4 675 590 649 605 585 – 602

15 × 4 × 3 F1 1319 1413 1425 1419 1440 – 2651.562 1398 0.997

F2 1085 1078 1212 1103 1066 – 1058

F3 504 866 493 870 862 – 458

F4 1017 1013 1239 940 1185 – 863

52 × 4 × 3 F1 4960 5162 5191 5290 4659 5012 37,890.129 4873 5.728

F2 3993 4131 3941 4032 4231 4057 4048

F3 1491 1322 1531 1127 1052 1601 1041

F4 2773 2427 2646 2557 2457 2005 2109

∗F1: makespan; F2: transportation distance; F3: time difference; F4: critical waiting time

7 Conclusion and future work

Research on the FJSP with transportation assignment is relatively rare. In this work, we
develop a novel scheduling algorithm to solve the multi-objective flexible job shop problem
with transportation assignment. A simulation model with 4 agents is proposed to simulate the
whole production process.Whenever a robot agent is available, it employs the algorithmwith
all real-time data derived from the simulation model to generate partwise efficient dynamic
feasible solutions.

We test the proposed algorithm by using several benchmarks. The comparative results
show that our algorithm outperforms all the benchmarked algorithms. One of the major
advantages of our method is the reduction of computational time required while providing
equivalent or better results. Additionally, the single solution provided by the proposedmethod
makes it easier for decision makers to execute production plans. For automatic manufactur-
ing workshops, this model can be implemented directly to help robots execute transportation
tasks. We recognize that the assumption constraints of our model impose limitations that
would benefit from additional work. Some future research directions can be recommended.
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Additional machine conditions could be considered, such as setup time, maintenance, or
breakdown situations, which makes the assumptions more realistic and more complete. The
insertion or withdrawal of robots during production peak or slack period also can be inter-
esting to investigate.
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