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Abstract
We investigate the propensity of evaluative voting (2, 1, 0) to fulfill Condorcet majority
conditions in a framework where preferences are supposed to be trichotomous and only three
candidates are in contention. In this framework, we also compare evaluative voting to other
voting rules, including Borda rule, plurality rule and approval voting.

Keywords Voting by evaluation · Three-valued scale · Approval voting · Scoring rules ·
Probability

1 Introduction andmotivation

The three-valued scale evaluative voting is a new voting rule recently considered by voting
theorists.1 It proceeds as follows: each voter evaluates each candidate and gives her a score
belonging to {0, 1, 2}. In other words, each voter is given the possibility to form three groups
of candidates: those she appreciates and all these candidates receive 2 points, those she does
not appreciate who receives 0 point and an intermediate group of candidates who obtain 1
point.2 The voters’ preferences are said to be trichotomous. Of course, one of these groups
can be empty (we ignore in what fallows the case where two groups are empty, i.e. the case
where all the candidates belong to the same group). The winner is the candidate obtaining
the highest number of points. Notice that what we call here Evaluative Voting (2, 1, 0) can
be considered as a particular case of Range Voting (where the set of ratings that a voter can
give is not limited to {0, 1, 2}) or an extension of approval voting (where the set of marks
is {0, 1}, which implies that preferences are dichotomous). According to Hillinger (2005),

1 This voting rule has been introduced by Felsenthal (1989) and Hillinger (2004, 2005).
2 Condorcet (1793) was the first to propose a voting rule in which voters were required to partition the
candidates into three groups according to their preferences.
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Fig. 1 The possible trichotomous preferences on three candidates

the motivation for advocating for a three-valued scale is twofold: (1) the two-valued range
of approval voting is not discriminating enough (in addition to feeling positive or negative
about candidates, onemay also feel neutral); (2) the electorate is generally poorly informed on
candidates and issues, and a finer division of the voting scale appears to be both unnecessary
and possibly confusing to the voters. Three-values scale evaluative voting will be simply
denoted by EV in the remainder of this paper.3

A number of studies have been recently conducted to analyze EV , both from an empirical
point of view (Baujard et al. 2013, 2014; Baujard and Igersheim 2009; Igersheim et al.
2015; Lebon et al. 2015) and a theoretical perspective (Smaoui and Lepelley 2013; Alcantud
and Laruelle 2014; see also Felsenthal 2012, Pivato 2014 and Macé 2015 who adopt the
more general perspective of range voting). Most of these studies have demonstrated that
EV has many good properties. However, Felsenthal (2012) and Smaoui and Lepelley (2013)
emphasize some possible difficulties with EV : this voting rule does not always choose the
Condorcet winner (CW ) when such a candidate exists (a Condorcet winner beats each of the
other candidates in pairwise majority comparisons) and is susceptible to select the Condorcet
loser (a candidate who loses each of her majority comparisons, denoted by CL). In other
words, EV violates both the CW condition (a CW should be selected when such a candidate
exists) and the CL condition (a CL should not be elected when such a candidate exists).
According to Smaoui and Lepelley (2013), these violations constitute the main flaw of EV
and Felsenthal (2012) considers the possibleCL election as “intolerable”. It is thus of interest
to try to evaluate the likelihood of these violations. Also, we would like to know how EV
performswhen compared to usual voting rules, such as Plurality Rule (PR) or approval voting
(AV ). The current paper, where we limit our investigation to three candidate elections, is a
first analytical step in this direction.4

We consider an appropriate framework where preferences are trichotomous and in which
the EV winner can be easily identified and compared to the CW (or the CL), when such a
candidate exists. With three candidates, the number of possible trichotomous preferences is
33 � 27 (number of ways to put three objects in three cells); as we ignore the case where all
the candidates are put in a same group, 27 − 3 � 24 possible preferences are left and we can
enumerate and number these preferences as indicated in Fig. 1.

3 The score vector (2, 1, 0) can be replaced with any positive linear transformation without changing the
election winner. Some authors consider the score vector (1, 0, −1); Alcantud and Laruelle (2014) refer to this
rule as Dis&approval Voting.
4 Smaoui and Lepelley (2013) have run simulations to obtain some information on this issue. We will go back
to their findings in the discussion of our results.
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We suppose that voters’ preferences are anonymous and we denote by ni (1≤ i ≤24) the
number of voters with preference Ri on the three candidates. Thus, n7 denotes the number of
voters who put A and B in the first group (with EV , each of them gives two points to A and
to B), C in the intermediate group (with EV , C receives 1 point from each of these n7 voters)
and no candidate in the third group. A (trichotomous) voting situation reports the value of
each ni and can be represented by a 24-tuple x� (n1, n2, …, n24) such that ni ≥0(1≤ i ≤24)
and

∑24
i�1 ni � n, where n is the total number of voters. We denote by V (n) the set of all

voting situations with n voters.
To illustrate the violation of Condorcet conditions by the EV rule, consider the following

simple example with 5 voters and two voting situations: x (3 voters with preference R1 and 2
voters with preference R15) and y (2 voters with preference R15 and 3 voters with preference
R22):

3 2
A B
B −
C AC

x

2 3
B −
− AC
AC B

y

In x, candidate A is the CW . When EV is applied, the scores of A, B andC are respectively
6, 7 and 0 points. It is therefore B and not Awhowins the election. In y, candidate B is theCL.
It is, however, B who wins the election, the scores of A, B and C with EV being respectively
3, 4 and 3.

To calculate the likelihood of Condorcet condition violations, we will assume that all the
possible (trichotomous) voting situations in V (n) are equally likely to occur: it is an IAC-like
assumption, where IAC stands for Impartial Anonymous Culture, a model very often used
in this kind of investigation. We assume very large electorate (i.e. n →∞) and we define
the CW efficiency of a voting rule as the probability of electing the CW , given that such
a candidate exists. For a voting rule F, CWE(F) will denote this CW efficiency. Similarly,
CLE(F) denotes the CL efficiency of F, i.e. the probability of electing a candidate different
from the CL, given that a CL exists.

At this stage of our study, an important observation is worth mentioning. We will consider
in this paper that voters vote sincerely, and this assumption distinguishes our analysis from
some previous works. Felsenthal (1989) compared EV and AV and shows that, when voters
use their dominant strategies, the selected candidate under these two rules must be the same
in three-candidate elections. By contrast, in a framework where the preference revelation is
sincere, it is clear that EV and AV do not always lead to the same winner; as a consequence,
the CW efficiency and the CL efficiency under EV are different than that of AV .

In another work, Felsenthal et al. (1990) computed theCW efficiency of PR and AV . Their
study, which does not consider EV , differs from ours in three respects. First, they assume
sophisticated voting from the voters (who eliminate dominated strategies), whereas, as said
above, we consider sincere voting. Second, they resort in their paper to simulation methods,
while our computations are based on an analytical approach. Third, Felsenthal et al. (1990)
suppose that voters have linear preferences over the candidates; a special feature of our
contribution is to consider a framework where voters’ preferences are trichotomous.5

Our study is organized as follows. We start by extending the four rules we would like to
compare with EV to our trichotomous preference framework (Sect. 2). Then we present in
Sects. 3 and 4 the probabilistic results we have obtained for the CW efficiency and the CL

5 Note however that, in spite of these differences, both studies conclude that AV is more Condorcet efficient
than PR.
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efficiency of the voting rules under study, by considering the case of large electorates. Our
results are summarized and discussed in Sect. 5.

2 Extending scoring rules and approval voting to the trichotomous
framework

In addition to EV , four voting rules will be studied (and compared to EV ) in this paper:
plurality rule (PR), negative plurality rule (NPR), Borda rule (BR) and approval voting (AV ).
The first three rules belong to the class of (simple) scoring rules that are usually defined
in a context where each voter expresses his (her) preferences by a strict order on the set
of candidates. A scoring rule gives points to candidates according to their rank in voters’
preference orders. Each candidate obtains a score equal to the total of points she received
and the candidate with the highest score is selected. For elections with three candidates, a
scoring rule can be represented by a scoring vector (λ1, λ2, λ3), with λ3 ≤λ2 ≤λ1 and λ3
<λ1, indicating that every candidate receives λi points each time she is ranked in position
i in an individual preference (strict) ranking. PR, NPR and BR use respectively the scoring
vectors (1, 0, 0), (1, 1, 0) and (2, 1, 0). Approval voting (AV ) is defined in a different context
where all individual preferences are dichotomous. Each individual preference consists of
two groups, that of the approved candidates and that of the disapproved candidates. Each
candidate receives 1 point each time she is approved and 0 point whenever she is disapproved;
the winner is the candidate with the highest total number of points.

In our framework, the score of each candidate under EV for a voting situation x in V (n)
is easily calculated as follows:

SEV (A, x) � 2(n1 + n2 + n7 + n8 + n9 + n10 + n13 + n14)

+ (n3 + n5 + n11 + n15 + n17 + n19 + n22 + n24)

SEV (B, x) � 2(n3 + n4 + n7 + n8 + n11 + n12 + n15 + n16)

+ (n1 + n6 + n9 + n13 + n17 + n20 + n21 + n24)

SEV (C, x) � 2(n5 + n6 + n9 + n10 + n11 + n12 + n17 + n18)

+ (n2 + n4 + n7 + n13 + n15 + n20 + n22 + n23)

As our aim in this note is not only to compute the Condorcet efficiency of EV but also to
compare its performance to the one of other voting rules (PR, NPR, BR and AV ), and since
these rules are generally introduced in a context where voters’ preferences are (strict) linear
orders (with or without ties), we have to consider how these rules can be implemented in the
trichotomous framework.

In order to adapt PR, NPR and BR to our framework, we make use of a general method
that could be applied to any positional voting rule using a scoring vector (λ1, λ2, λ3). This
methodwasfirst proposed byBlack (1976) andhas been recently used byDiss et al. (2010) and
Gehrlein and Lepelley (2015) to extend positional voting rules to dichotomous preferences.
We start by reducing each trichotomous individual preference to a weak order on the three
candidates, ignoring the empty group when the trichotomous preference does not correspond
to a strict order. This way of doing is justified by the observation that the scoring (positional)
rules are based on the notion of an ordinal ranking and not on an evaluation (or rating)
principle: the only relevant information for applying these voting rules is the ranking of each
candidate in the voters’ preferences; the strength of preferences is only a consequence of this
ordinal ranking. After this reduction, we compute the number of points that each candidate
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receives fromeach voter in the followingway. If the order resulting from the reduction process
of the trichotomouspreference is a strict order, then the candidates receive, as explained above,
αi points for a i th position. If this order is a weak order like X � Y ∼ Z (X is preferred to Y
and Z , Y and Z are ex aequo), as for example in R13, then X receives λ1 points and Y and Z
receive an average (λ2 + λ3)/2 points each. If this order is a weak order like X ∼ Y � Z (X
and Y are ex aequo and both are preferred to Z), as for example in R7, then X and Y receive
an average (λ1 + λ2)/2 points each and Z receives λ3 points. Therefore, our extended scoring
rules treat all voters equally, since they consistently allocate the same λ1 + λ2 + λ3 points to
the candidates for each voter, and this extension allows to take into consideration the various
types of preferences we consider here.

With these assumptions, the scores of A, B and C under PR are:

SPR(A, x) � (n1 + n2 + n13 + n14 + n19) +
1

2
(n7 + n8 + n9 + n10 + n22 + n24)

SPR(B, x) � (n3 + n4 + n15 + n16 + n21) +
1

2
(n7 + n8 + n11 + n12 + n20 + n24)

SPR(C, x) � (n5 + n6 + n17 + n18 + n23) +
1

2
(n9 + n10 + n11 + n12 + n20 + n22)

Under the NPR, we easily obtain:

SN PR(A, x) � n − [(n4 + n6 + n11 + n12 + n20) +
1

2
(n15 + n16 + n17 + n18 + n21 + n23)]

SN PR(B, x) � n − [(n2 + n5 + n9 + n10 + n22) +
1

2
(n13 + n14 + n17 + n18 + n19 + n23)]

SN PR(C, x) � n − [(n1 + n3 + n7 + n8 + n24) +
1

2
(n13 + n14 + n15 + n16 + n19 + n21)]

The scores under the BR are given as:

SBR(A, x) � 2(n1 + n2 + n13 + n14 + n19) +
3

2
(n7 + n8 + n9 + n10 + n22 + n24)

+ (n3 + n5) +
1

2
(n15 + n16 + n17 + n18 + n21 + n23)

SBR(B, x) � 2(n3 + n4 + n15 + n16 + n21) +
3

2
(n7 + n8 + n11 + n12 + n20 + n24)

+ (n2 + n4) +
1

2
(n13 + n14 + n15 + n16 + n19 + n21)

SBR(C, x) � 2(n5 + n6 + n17 + n18 + n23) +
3

2
(n9 + n10 + n11 + n12 + n20 + n22)

+ (n2 + n4) +
1

2
(n13 + n14 + n15 + n16 + n19 + n21)

AV is easy to implement when the trichotomous preference is R7 to R24: in these cases, we
ignore the empty group and the preferences are actually dichotomous.When the trichotomous
preference corresponds to a strict order (R1 to R6), we assume that the voter will approve
the candidate ranked in first position (with certainty) and that she will approve the candidate
ranked in second position with probability 1/2 (We shall come back to that assumption in the
last Section). Thus, we obtain for approval voting (AV ) the following scores:
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SAV (A, x) � (n1 + n2 + n7 + n8 + n9 + n10 + n13 + n14 + n19 + n22 + n24) +
1

2
(n3 + n5)

SAV (B, x) � (n3 + n4 + n7 + n8 + n11 + n12 + n15 + n16 + n20 + n21 + n24) +
1

2
(n1 + n6)

SAV (C, x) � (n5 + n6 + n9 + n10 + n11 + n12 + n17 + n18 + n20 + n22 + n23) +
1

2
(n2 + n4)

3 Results on the Condorcet winner efficiency with trichotomous
preferences

LetCWE(F,n) be theCW efficiency of the voting ruleF, when all considered voting situations
are in V (n). According to the definition given in Sect. 2, we have: CWE(F) � lim

n→∞CWE

(F, n). To compute this limiting probability for the different rules under consideration in
this paper, we will use a method based on Ehrhart theory and on algorithms for counting
integer points in rational polytopes. This method, which is partly original, will be explained
and illustrated in the following subsection;6 it will then be applied throughout the rest of
the paper. We first recall in the following paragraph some definitions related to the notions
of polytope and quasi-polynomial and we give a brief overview of Ehrhart theory. These
mathematical tools are now well known and widely used in probability calculations in voting
theory.7

A rational polytope P in R
d is a bounded subset of Rd defined by a system of integer

linear (in)equalities. Note that P could be not full-dimensional (this is the case when the
linear system describing P contains some equalities) and could be semi-open (this is the
case when some of the inequalities describing P are strict). A parametric polytope (with a
single parameter n) of dimension d is a sequence of (possibly empty) d-dimensional rational
polytopes Pn (n ∈ N) of the form Pn � {

x ∈ R
d : Mx ≤ bn + c

}
, where M is an m ×d

integer matrix and b and c are two integer vectors withm components. An important instance
of parametric polytopes is obtained when the constant term c is equal to the zero vector. In
this case, Pn is denoted nP and corresponds to the dilatation, by the positive integer factor
n, of the rational polytope P defined by P � {

x ∈ R
d : Mx ≤ b

}
. Calculating the number

of integer solutions of a parametric linear system (Mx ≤bn + c) amounts to calculating the
number of integer coordinate points belonging to the parametric polytope Pn defined by this
system. By Ehrhart theory, we know that this number is a quasi-polynomial in n, of degree d,
i.e. a polynomial expression f (n) of the form f (n) � ∑d

k�0 ck(n)nk , where the coefficients
ck(n) are rational periodic numbers in n. A rational periodic number of period q on the integer
variable n is a function u : Z → Q such that u(n) � u(n′) whenever n ≡n′ (mod q). Each
coefficient ck(n) can have its own period, but we can always write f (n) in a form where the
coefficients have a common period called the period of the quasi-polynomial f (n) and defined
as the least common multiple (lcm) of the periods of all coefficients.

6 The reader is referred to El Ouafdi et al. (2020) for further details on this method.
7 For a general background on Ehrhart theory and on the general problem of counting integer points in rational
polytopes, see for example Beck and Robins (2015). We refer also to Lepelley et al. (2008) and Wilson and
Pritchard (2007) for more details on the use of these tools in probability calculations under IAC hypothesis in
voting theory..
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3.1 Existence of a Condorcet winner

For a voting situation x in V (n) and two different candidates w, w′, we denote by Px(w, w′)
the number of voters that prefer w to w′ (i.e. the number of voters who put w in a group
higher than the group in which they putw′). The numbers involved in the binary comparisons
between A and B and between A and C are:

Px (A, B) � n1 + n2 + n5 + n9 + n10 + n13 + n14 + n19 + n22

Px (B, A) � n3 + n4 + n6 + n11 + n12 + n15 + n16 + n20 + n21

Px (A,C) � n1 + n2 + n5 + n9 + n10 + n13 + n14 + n19 + n22

Px (C, A) � n3 + n4 + n6 + n11 + n12 + n15 + n16 + n20 + n21

With this notation, A is the CW if and only if Px(A, B)>Px(B, A) and Px(A, C)>Px(C,
A). We denote by CW (A, n) the event “A is the CW”, when the number of voters is equal to
n. Let Pr(CW (A, n)) and Pr(CW (A)) be the probability and the limiting probability (when n
→∞) of this event. We have:

Pr(CW (A, n)) � |CW (A, n)|
|V (n)|

In this identity, |V (n)| and |CW (A, n)| denote the cardinalities of sets V (n) and CW (A,

n) respectively. The number |V (n)| is well known and is given by |V (n)| �
(
n + 23
23

)

.

Indeed, with n voters and 24 possible (trichotomous) individual preferences, the number of
voting situations is equal to the number of ways n objects can be chosen from a set of 24
objects, where repetition is allowed. Note that |V (n)| is a polynomial of degree 23 and that
the coefficient of the leading term of this polynomial is equal to 1/23!. The computation of
|CW (A, n)| as a function of n is more involved. By definition,CW (A, n) is the set of all integer
solutions, x � (ni )24i�1, of the following system:

Sn :

⎧
⎪⎪⎨

⎪⎪⎩

ni ≥ 0, i � 1, . . . , 24
n1 + n2 + · · · + n24 � n
Px (A, B) − Px (B, A) > 0
Px (A,C) − Px (C, A) > 0

All (in)equalities in this system are linear and have integer coefficients on the variables ni
and on the integer parameter n. This defines, for each value of yn, a parametric (semi-open)
rational polytope (of dimension 23), Pn, which is the dilatation, by the factor n, of the (semi-
open) rational polytope P1. To obtain |CW (A, n)|, we have to compute the quasi-polynomial
describing the number of integer points belonging toPn. In voting theory, to perform this type
of calculation, we usually resort to a computer program based on (parameterized) Barvinok
algorithm (see [barvinok]). This program performs very well when the calculations concern
voting events with three candidates and individual preferences are expressed by strict orders.
In this case there are only 6 variables and the quasi-polynomials are generally of degree
5. With 24 variables and a degree 23, as in the case we are studying, the use of Barvinok
algorithm does not make it possible to obtain the desired results. Other software such as LattE
with its new version Latte integrale (see [latte]) and Normaliz ([normaliz]) allow, in some
cases, to calculate quasi-polynomials corresponding to polytopes of dimension 23. However,
as our goal is to calculate the limit value of Pr(CW (A, n)), we do not need to know the
exact expression of |CW (A, n)|. Indeed, Pr(CW (A, n)) is the quotient of a quasi-polynomial
(|CW (A, n)|) by a polynomial (|V (n)|). Since these two polynomial expressions are of the same
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degree (23) and since we already know the expression of |V (n)|, we have only to calculate
the coefficient of the leading term of |CW (A, n)|. We know, again by Ehrhart theory, that this
coefficient is independent of n and is equal to the volume8 of P1. So we have:

Pr(CW (A)) � lim
n→+∞

|CW (A, n)|
|V (n)| � Vol(P1)

1/23!
� 23!Vol(P1) (1)

Now, it only remains to calculate Vol(P1). In general, algorithms that compute the volume
of polytopes are not very efficient when, as in all the cases studied in this paper, the number
of variables is equal to 24. However, recent improvements in algorithms such as LattE and
Normaliz have made it possible to obtain some results describing the probability of voting
events with four candidates, requiring the calculation of the volumes of certain polytopes of
dimension 24 (see Schürmann 2013; Bruns and Söger 2015; Brandt et al. 2016). To compute
Vol(P1) and all the other volumes involved in the calculations developed in the remainder
of this paper, we will not use any algorithm of direct volume computation. Instead, we will
apply a new method based on the Ehrhart theory and on the combined use of two software,
LattE integrale and lrs ([lrs]).

The command (count –ehrhart-polynomial) in the first programmakes it possible to calcu-
late in a reasonable time (from a few seconds to a few hours) the quasi-polynomial describing
the number of integer points belonging to the dilatation nP of a polytopeP by an integer factor
n. With LattE integrale, this computation is possible only when P is an integral polytope (i.e.
when all its vertices have integer coordinates). In this case, the quasi-polynomial associated
with nP has period equal to 1 and hence is simply a polynomial. The second program, lrs,
allows to obtain (usually within seconds) the coordinates of all vertices of a rational polytope.
To calculate Vol(P1), the idea is then the following. We start by dilating P1 by a positive
integer factor k such that the obtained polytope kP1 is integral; for this, k must be a multiple
of the period of P1. Now, we know by Ehrhart that the period of P1 is a divisor of the lcm
of the denominators of the vertices of P1. It suffices then to take k equal to this number that
we can easily obtain by applying lrs. After this step, we apply LattE integrale to the integral
polytope kP1 and we obtain the polynomial associated with the dilated polytope nkP1. It is
obvious that if δ is the coefficient of the leading term of this polynomial, then δ � Vol(kP1)
� k24Vol(P1). Finally, we have:

Vol(P1) � δ

k24

Applying this method, we obtained:

Vol(P1) � 6914641

550632520243029171744276480000

Multiplying this number by 23!, as indicated in (1), we obtain the probability of having
candidate A as CW :

Pr(CW (A)) � 2233429043

6879707136
� 0.3246401

Since each of the three candidates A, B and C can be a CW , multiplying Pr(CW (A)) by 3
gives the probability Pr (CW ) that a CW exists:

Pr(CW ) � 2233429043

2293235712
� 0.9739204

8 Here, by the volume of P1 we mean its relative volume, i.e. the volume of P1 relative to its affine span.
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Remark Candidate A is the CL if and only if Px(A, B)<Px(B, A) and Px(A, C)<Px(C, A).
Given the symmetry of the notions of Condorcet winner and Condorcet loser, it can be

noticed that

|CW (A, n)| � |CL(A, n)|
and this implies that:

Pr(CL) � Pr(CW ).

3.2 Condorcet winner efficiency of voting rules

LetCWE(F,n) be theCW efficiency of the voting ruleF, when all considered voting situations
are in V (n) and recall that CWE(F) � lim

n→∞CWE(F, n). By definition, CWE(F, n) is the

conditional probability to have the CW elected under F, given that a CW exists. We denote
by CW (F, A, n) the event “A is the CW and A is elected under F” and, as in the previous
subsection, we denote byCW (A, n) the event “A is aCW”. As the three candidates A, B andC
are symmetric in our probabilistic model, it is possible to assume without loss of generality
that A is the CW , and we have:

CWE(F, n) � Pr(CW (F, A, n))

Pr(CW (A, n))

Since Pr(CW (F, A, n)) � |CW (F, A, n)|/|V (n)| and Pr(CW (A, n)) � |CW (A, n)|/
|V (n)|, we obtain:

CWE(F, n) � |CW (F, A, n)|
|CW (A, n)| (2)

Voting situations belonging toCW (F,A, n) are the integer solutions of the following linear
system:

SFn

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ni ≥ 0, i � 1, . . . , 24
n1 + n2 + · · · n24 � n
Px (A, B) − Px (B, A) > 0
Px (A,C) − Px (C, A) > 0
Sx (F, A) − Sx (F, B) > 0
Sx (F, A) − Sx (F,C) > 0

Let PF
1 be the (semi-open) polytope defined by SF1 (the system obtained when n � 1) and

let P1 be the polytope defined in the previous subsection. Taking the limit in equality (2) and
reasoning as in the previous subsection, we obtain:

CWE(F) � Vol
(
PF
1

)

Vol(P1)
(3)

We have already calculated Vol(P1). To calculate Vol
(
PF
1

)
for the five rules under con-

sideration, we replace successively, in system SFn , the voting rule F by EV , PR, NPR, BR
and AV (by referring to the scores defined in Sect. 2) and then we apply, as in the previous
subsection, the calculation method based on the LattE and lrs algorithms. We then apply
formula (3). The results we have obtained are summarized in the Table 1 which gives, for
each F, the exact values of CWE(F) and Pr (CW (F, A)), the limiting probability of the event
“A is the CW and A is elected under F.
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Table 1 Condorcet winner efficiencies of five voting rules

Pr(CW (F, A)) � 23!Vol
(
PF
1

)

CWE(F)

EV
14202256426752049
50565847449600000

747487180355371
863984392950000 ≈ 0.8651628

PR
6188893189678377041
22463437455746924544

6188893189678377041
7292533334267676672 ≈ 0.8486616

NPR
21756141802346747501
85691213438976000000

43512283604693495002
55637613939420140625 ≈ 0.7820660

BR
609912099396357654321671
2011623085859143680000000

49402880051104970000055351
52897340557040627821250000 ≈ 0.9339388

AV
721524879167199418097
2428171994529792000000

721524879167199418097
788282080439721000000 ≈ 0.9153131

Table 2 Condorcet loser efficiencies of four voting rules

Pr (CL(F, A)) CLE(F)

EV
161266847754571

50565847449600000
16254436618295429
16415703466050000 ≈ 0.99017606

PR
63431612518594165392461

8774780256151142400000000
2785214221179717034607539
2848645833698311200000000 ≈ 0.97773271

NPR
38536640041404497909

5484237660094464000000
16254436618295429

1780403646061444500000 ≈ 0.9783551

AV
371518918953857

1011316948992000000
327942550402046143
328314069321000000 ≈ 0.99886840

4 Condorcet loser election and other results with trichotomous
preferences

4.1 Condorcet loser efficiency

The computations are very similar to those we have conducted in Sect. 3: denoting the CL
efficiency of rule F by CLE(F, n), the event “A is the CL and A is elected under F” by CL(F,
A, n) and the event “A is a CL” by CL(A, n), we have just to replace (2) with

CLE(F, n) � 1 − |CL(F, A, n)|
|CL(A, n)|

and

Px (A, B) − Px (B, A) > 0

Px (A,C) − Px (C, A) > 0

with,

Px (A, B) − Px (B, A) < 0

Px (A,C) − Px (C, A) < 0

in the definition of SFn .
As BR never selects theCL (Fishburn and Gehrlein 1976), we only consider EV , PR,NPR

and AV in this subsection. The results are displayed in Table 2.

4.2 Other Results

A strengthening of the Condorcet winner condition sometimes used in the literature is based
on the notion of an Absolute CW (ACW ): a candidate is an ACW when more than one half
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of the voters rank this candidate (and only this candidate) in first position. In our framework,
A is a ACW iff:

n1 + n2 + n13 + n14 + n19 > n/2.

One can define in the same way the notion of Absolute CL (ACL): a candidate is an ACL
when more than one half of the voters rank this candidate (and only this candidate) in last
position. Thus, A is an ACL when:

n4 + n5 + n11 + n12 + n20 > n/2.

Of course, when such candidates exist, the ACW should be elected and the ACL should
not.

Felsenthal (2012) and Smaoui and Lepelley (2013) observe that EV violates these two
conditions9 and we are interested in this subsection in the computation of the likelihood of
such violations. It is of interest to notice that AV also violates both the ACW and the ACL
conditions; and among the scoring rules, PR is the only rule verifying the ACW condition
(Lepelley 1992), whereas BR and NPR verifies the ACL condition.

Given the symmetry of our model, the probability of having an ACW is equal to the
probability of having an ACL and it turns out that this probability is very low. Using the same
technique as above, we obtain:

Pr(ACW ) � Pr(ACL) � 32709/8388608 � 0.0038992.

Denoting by ACWE(F) the probability of having the ACW elected under F, given that
such a candidate exists, we obtain the following results:

ACWE(EV ) � 20508589358593657/20510395637760000 � 0.9999119.

ACWE(N PR) � 13945016265602573/14598301564455552 � 0.9552492.

ACWE(BR) � 20450740328214773603501/20450812337541810000000 � 0.9999965.

ACWE(AV ) � 12863582803932107/12864120144003072 � 0.9999582.

Regarding the election of the ACL, the probabilities we obtain are close to 0 and, conse-
quently, the ACL efficiencies are close to 1:

Pr(ACL, EV ) � 7414393657/20510395637760000 � 0.0000004

and

ACLE(EV ) � 20510388223366343/20510395637760000 � 0.99999964.

Pr(ACL, PR) � 42835450539276625/119589286416019881894 � 0.0003582

and

ACLE(PR) � 119546450965480605359/119589286416019881984 � 0.99964181.

Pr(ACL, AV ) � 292081/8576080096002048 � 3.405763 . . . × 10−11

and

ACLE(AV ) � 8576080095709967/8576080096002048 � 0.999999999.

9 As the CL election, the ACL election and the ACW non election are qualified as "intolerable" by Felsenthal
(2012).
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Table 3 Condorcet efficiencies of five voting rules with trichotomous preferences

EV PR NPR BR AV

CW eff. 0.8651628 0.8486616 0.7820660 0.9339388 0.9153131

CL eff. 0.9901761 0.9777327 0.9783551 1 0.9988684

ACW eff. 0.9999119 1 0.9552492 0.9999965 0.9999582

ACL eff. 0.9999996 0.9996418 1 1 0.9999999

5 Conclusions and final remark

All the results we have obtained in this study are summarized in Table 3.
The following conclusions emerge from the examination of these figures:

• The hierarchy ofPR,NPR andBR regardingCW efficiency is consistentwithwhatwe could
expect from previous studies (Gehrlein and Lepelley 2011); in other words, moving from
linear orders to trichotomous preferences does not modify the ranking of the scoring rules:
BR is better than PR, itself better than NPR. Moreover, our study confirms the superiority
of BR over all the other (one-stage) voting rules in terms of Condorcet efficiency in three-
candidate elections.

• The Condorcet winner efficiency of EV holds a middle position between the CW effi-
ciencies of PR and NPR on the one hand, and the CW efficiencies of AV and BR on the
other hand.10

• Compared to PR and NPR, EV reduces the risk of electing the CL and the performance
of AV on this issue is even better. This observation, added to the preceding one, gives a
strong argument for using EV or AV instead of PR in political elections.

• The probability of not electing the absolute Condorcet winner when such a candidate exists
appears to be very low, except for NPR; and it turns out that, if the election of an absolute
Condorcet loser can occur under EV , PR and AV , such an event is highly unlikely in our
framework. Consequently, we should not worry about these possibilities as such.

• Generally speaking, the comparison of EV and AV in terms of Condorcet efficiency is
to the advantage of AV . Notice that our framework and our probabilistic assumption play
an important role in this conclusion: among the 24 possible trichotomous preferences, 18
are actually dichotomous preferences; as we consider every possible preference as equally
likely, this peculiarity is in favor of AV since we know that when all the preferences are
dichotomous, AV always selects the CW (Brams and Fishburn, 1983). Let α� (n1 + n2 +
···+n6)/n be the proportion of voters having strict preference orders (or linear orders) in the
electorate (our study assumes that α is on average equal to 6/24 � 1/4). It can be expected
that the CW efficiency of EV increases when α increases. To check this conjecture, we
have computed the CW efficiency of EV for various values of α, assuming that for each
specific value under consideration, the corresponding voting situations are equally likely
to occur. For comparison, we have also computed the CW efficiency of AV under the same
assumptions. The results are shown in Table 4 (exact fractions are here omitted).

We observe the expected increase for the Condorcet efficiency of EV with an upper limit
at 41

45 � 0.911111, which corresponds to the CW efficiency of BR with strict preferences.

10 The CW Efficiency ranking of these five voting rules obtained from the simulations conducted by Smaoui
and Lepelley (2013) is similar with however one exception: they obtain that EV stands before AV . Their
simulations are based on a framework completely different from the one used in the current study.
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Table 4 CW efficiency of EV and AV as function of the proportion of voters with linear orders

α 0 1/4 1/3 1/2 2/3 3/4 1

CWEα(EV ) 0.854666 0.863551 0.873434 0.894253 0.905886 0.908669 0.911111

CWEα(AV ) 1 0.910172 0.893512 0.890087 0.901906 0.906364 0.911111

For AV , the Condorcet efficiency decreases when α moves from 0 to 1/2 and then increases
when α moves from 1/2 to 1. We note that for 1/2≤α <1, EV performs slightly better than
AV .

The good performance of AV could also be due to our assumption that voters with R1

to R6 (strict) preferences approve their candidate ranked in second position with probability
1/2. If, following Gehrlein and Lepelley (2015), we reject this assumption,11 the AV scores
become:

S
′
AV (A, x) � (n1 + n2 + n7 + n8 + n9 + n10 + n13 + n14 + n19 + n22 + n24)

S
′
AV (B, x) � (n3 + n4 + n7 + n8 + n11 + n12 + n15 + n16 + n20 + n21 + n24)

S
′
AV (C, x) � (n5 + n6 + n9 + n10 + n11 + n12 + n17 + n18 + n20 + n22 + n23)

and we obtain:

CWE ′(AV ) � 21895717301068657

25126076733750000
� 0.87143399.

The CW efficiency of AV is reduced but remains slightly higher than the CW efficiency
of EV (0.8651628), leading to the conclusion that, in our framework, the superiority of AV
on EV seems to be rather robust.

Finally, it is of interest to notice that one can easily compute from our results the CW
efficiency of PER and NPER, where PER stands for Plurality Elimination Rule and NPER
for negative plurality elimination rule. PER and NPER are two-stage voting rules where
the candidate with the lowest score under PR and NPER (respectively) is eliminated at the
first stage. While never electing the CL, PER and NPER are susceptible to elect a candidate
different from the CW and NPER can even elect a candidate different from the ACW . To
obtainCWE(PER), it is easily observed that (1) starting from a voting situation in which aCL
exists and is elected under NPR, if we inverse the preference orders of every voter, then we
obtain a voting situation in which a CW exists and is ranked first by the smallest number of
voters and hence is eliminated under PER; (2) similarly, if we inverse the voters’ preferences
in a voting situation where the CW gets the minimum number of first ranks (and hence is
eliminated under PER), then we obtain a voting situation in which the CL is elected under
NPR. Using these symmetry arguments, it can be concluded that:

CWE(PER) � CLE(N PR) � 0.9783551.

And from similar arguments, we obtain:

CWE(N PER) � CLE(PR) � 0.9777327

and

ACWE(N PER) � ACLE(PR) � 0.9996418.

11 This assumption is tantamount to consider that AV works as BR in presence of linear orders, whereas
Gehrlein and Lepelley (2015) consider that, in this context, AV works as PR.
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We conclude that, in our trichotomous framework as well as in the usual framework where
only linear orders are considered (see Gehrlein and Lepelley 2011), two-stage voting rules
perform better than one-stage rules in electing the CW in three-alternative elections.
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