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Abstract
This paper is concerned with a multiobjective convex polynomial problem, where the objec-
tive and constraint functions are first-order scaled diagonally dominant sums-of-squares
convex polynomials. We first establish necessary and sufficient optimality criteria in terms of
second-order cone (SOC) conditions for (weak) efficiencies of the underlying multiobjective
optimization problem.We then show that the obtained result provides us a way to find (weak)
efficient solutions of the multiobjective program by solving a scalar second-order cone pro-
gramming relaxation problem of a given weighted-sum optimization problem. In addition,
we propose a dual multiobjective problem by means of SOC conditions to the multiobjective
optimization problem and examine weak, strong and converse duality relations.

Keywords Multiobjective optimization · Duality · 1st-SDSOS-convex polynomial ·
Second-order cone condition · Slater condition

AMS subject classifications 49K99 · 65K10 · 90C29 · 90C46

1 Introduction

Multiobjective (or vector/multi-criteria) optimization problems aremathematical models that
can handle the real-world optimization problems and have been applied in various areas
of human life and work such as economics, engineering and industry (Ehrgott 2005; Jahn
2004; Sawaragi et al. 1985; Steuer 1986; Luc 1989). A multiobjective optimization model
usually satisfies several conflicting objectives from a set of feasible choices, and as a result,
finding efficient solutions or establishing optimality criteria for a multiobjective optimization
problem is generally hard by its nature (Chuong 2016; Boţ et al. 2009; Chuong andKim 2014;
Ehrgott et al. 2014; Lee and Lee 2015, 2018; Zamani et al. 2015; Chinchuluun and Pardalos
2007; Chuong 2019, 2020).
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A recent trend of attention has been focused on developing semidefinite programming
(SDP) (see e.g., Blekherman et al. (2012)) approaches for treating multiobjective convex
and nonconvex programming problems by exploiting special structures of the objective and
constraint functions such as linear or polynomials; see, e.g., (Georgiev et al. 2013; Chuong
2017, 2018; Chuong and Jeyakumar 2017; Goberna et al. 2014; Gorissen and den Hertog
2012; Lee and Jiao 2019a, b; Magron et al. 2014; Chieu et al. 2018). For example, the authors
in Goberna et al. (2014) or in Chuong (2017) studied robust solutions ofmultiobjective (semi-
infinite) linear optimization problems under constraint data uncertainty. By employing an
approximate scalarization technique, the authors inLee and Jiao (2019a, b) proposed amethod
to finding efficient solutions for (robust) multiobjective optimization problems, where the
objective and constraint functions are SOS-convex polynomials. Recall Ahmadi and Parrilo
(2013); Helton and Nie (2010) here that a polynomial f : Rn → R is called SOS-convex if
the polynomial h f : Rn ×R

n → R given by h f (x, y) := f (x)− f (y)−∇ f (y)T (x − y) is
a sums-of-squares polynomial in the variable of (x, y), where ∇ f (y) denotes the derivative
of f at y. The interested reader is referred to (Chuong 2018) for optimality conditions and
duality in terms of linearmatrix inequalities for a class of (robust)multiobjective SOS-convex
polynomial programs.

It is worth mentioning that the class of first-order scaled diagonally dominant sums-
of-squares convex (1st-SDSOS-convex) polynomials (see Definition 2.2 below), which is a
subclass of SOS-convex polynomials, is a numerically tractable subclass of convex polynomi-
als because checking a given real polynomial is 1st-SDSOS-convex or not can be equivalently
reformulated as a feasibility problem of a second-order cone programming (SOCP) problem
(Ahmadi andMajumdar 2016, 2019; Chuong et al. 2019). In particular, it is shown in Chuong
et al. (2019) that the class of (scalar) optimization problems involving 1st-SDSOS-convex
polynomials has strong SOCP duality in the sense that the optimal values of the primal
and dual programs are equal under a constraint qualification. This result allows us to find
the optimal value of a 1st-SDSOS-convex polynomial program by solving an SOCP dual
problem.

In this paper, inspired by Chuong et al. (2019), we consider a multiobjective convex
polynomial optimization problem of the form:

min
x∈Rn

{(
f1(x), . . . , f p(x)

) | gl(x) ≤ 0, l = 1, . . . , q
}
, (P)

where fk : Rn → R, k = 1, . . . , p and gl : Rn → R, l = 1, . . . , q are 1st-SDSOS-convex
polynomials.

The first main aim of the paper is to provide optimality characterizations for weak efficient
solutions of the multiobjective optimization problem (P) under a constraint qualification,
where the optimality characterizations are expressed in terms of second-order cone (SOC)
or Karush-Kuhn-Tucker (KKT) conditions. We also establish solution relationships between
the multiobjective program (P) and an SOCP dual problem or an SOCP relaxation of a
given weighted-sum optimization problem. This result provides us a way to find (weak)
efficient solutions of themultiobjective polynomial program (P) by solving the (scalar) SOCP
relaxation problem of the given weighted-sum optimization problem.

The second main aim of the paper is to propose a dual multiobjective problem in terms
of SOC conditions to the multiobjective optimization problem (P) and explore weak, strong
and converse duality relations between them. Interestingly, one of the dual results shows that
the existence of a weak efficient solution of the dual problem is equivalent to the validation
of the KKT condition at a given weak efficient solution of the primal problem and moreover,
the efficient values of both the problems are the same. In this way, we are able to find a weak
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efficient solution of the dual problem by verifying alternatively the KKT condition at a given
weak efficient solution of the primal problem.

The outline of the paper is as follows. In Sect. 2, we first present necessary and sufficient
optimality criteria for weak efficiencies of problem (P) and then establish solution rela-
tionships between the multiobjective program (P) and an SOCP dual problem or an SOCP
relaxation of a given weighted-sum optimization problem. Section 3 addresses a dual multi-
objective problem to the multiobjective optimization problem (P) and explores weak, strong
and converse duality relations. Section 4 summarises the obtained results and provides some
perspective studies.

2 Second-order cone optimality conditions and solution relationships

Let us first start by fixing some notation and definitions. The notation R
n signifies the

Euclidean space whose norm is denoted by ‖ · ‖ for each n ∈ N := {1, 2, . . .}. The inner
product in R

n is defined by 〈x, y〉 := xT y for all x, y ∈ R
n . Let Rn+ be the nonnegative

orthant ofRn and intRn+ be the topological interior ofRn+. Denote byR[x] (orR[x1, . . . , xn])
the ring of polynomials in x := (x1, . . . , xn)with real coefficients. LetRd [x1, . . . , xn] be the
space consisting of all real polynomials on R

n with degree at most d ∈ N0 := N ∪ {0} and
let s(d, n) be the dimension of Rd [x1, . . . , xn]. Write the canonical basis of Rd [x1, . . . , xn]
by

x (d) := (1, x1, x2, . . . , xn, x
2
1 , x1x2, . . . , x

2
2 , . . . , x

2
n , . . . , x

d
1 , . . . , xdn )T .

For each 1 ≤ α ≤ s(d, n), we denote i(α) = (i1(α), . . . , in(α)) ∈ (N0)
n to be the multi-

index such that

x (d)
α = xi(α) := xi1(α)

1 . . . xin(α)
n .

Let the monomials mα(x) = x (d)
α be the αth coordinate of x (d), 1 ≤ α ≤ s(d, n). Thus, we

can write

f (x) =
s(d,n)∑

α=1

fαmα(x) =
s(d,n)∑

α=1

fαx
(d)
α ,

where fα is the corresponding coefficient of f at the αth coordinate in the canonical basis
of monomials of Rd [x1, . . . , xn].

Recall that (see e.g., Lasserre (2009)) for a given y := (yα) ∈ R
s(d,n), Ly : Rd [x] → R

is the Riesz functional given by

Ly( f ) :=
s(d,n)∑

α=1

fα yα for f (x) :=
s(d,n)∑

α=1

fαx
(d)
α . (2.1)

The notationMd(y) is the moment matrix with degree d generated by y := (yα) ∈ R
s(2d,n),

which is defined by

Md(y) :=
s(2d,n)∑

α=1

yαMα, (2.2)
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where Mα, α = 1, . . . , s(2d, n), are s(d, n) × s(d, n) symmetric matrices such that

x (d)(x (d))T =
s(2d,n)∑

α=1

x (d)
α Mα. (2.3)

Definition 2.1 (SDSOS polynomials ) Ahmadi and Majumdar (2016, 2019) We say that a
polynomial f on R

n with degree d := 2� is scaled diagonally dominant sums-of-squares
(SDSOS) if there exist k ∈ N with 1 ≤ k ≤ s(�, n) and scalars αi , β+

i j , γ
+
i j , β

−
i j , γ

−
i j with

αi ≥ 0 such that

f (x) =
k∑

i=1

αim
2
i (x) +

k∑

i, j=1

(β+
i j mi (x) + γ +

i j m j (x))
2 +

k∑

i, j=1

(β−
i j mi (x) − γ −

i j m j (x))
2,

where mi and m j are monomials in the variable x . We denote by SDSOSd [x] the set of all
scaled diagonally dominant sums-of-squares polynomials on Rn with degree at most d .

It is obvious by definition that any scaled diagonally dominant sums-of-squares polynomial
is nonnegative but the converse is not true in general Ahmadi and Majumdar (2016, 2019)
(see also, Chuong et al. 2019, Example 5.4 for a particular example). The next definition
classifies a subclass of convex polynomials that can be verified by solving a second-order
cone programming (SOCP) problem.

Definition 2.2 (1st-SDSOS-convex polynomials) Chuong et al. (2019) Let f be a polyno-
mial on Rn and let h f be a polynomial on Rn × R

n given by

h f (x, y) := f (x) − f (y) − ∇ f (y)T (x − y),

where ∇ f (y) denotes the derivative of f at y. We say that f is first-order scaled diag-
onally dominant sums-of-squares convex (1st-SDSOS-convex) whenever h f is an SDSOS
polynomial in the variable of (x, y).

Note from the definition that any 1st-SDSOS-convex polynomial is convex, and for any
1st-SDSOS-convex polynomials f , g and γ ≥ 0, f + g and γ f are also 1st-SDSOS-
convex. The class of 1st-SDSOS-convex polynomials is sufficiently large including separable
convex quadratic functions and any polynomial described as a sum of even powers with the
corresponding nonnegative coefficients, and many other functions important in polynomial
optimization (cf. Chuong et al. (2019)).

Fromnowon,we assume that fk : Rn → R, k = 1, . . . , p and gl : Rn → R, l = 1, . . . , q
are 1st-SDSOS-convex polynomialswith degree atmost d ∈ N0. For convenience,we assume
that d is an even number, because otherwise we will replace d by d + 1. In what follows, we
sometimes use the notation f := ( f1, . . . , f p) for brief and denote the set of feasible points
of problem (P) by

C := {x ∈ R
n | gl(x) ≤ 0, l = 1, . . . , q}. (2.4)

Definition 2.3 (i) We say that x̄ ∈ C is an efficient solution of problem (P) if there is no
x ∈ C such that fk(x) ≤ fk(x̄) for all k = 1, . . . , p and f (x) �= f (x̄).

(ii) A point x̄ ∈ C is called a weak efficient solution of problem (P) if there is no x ∈ C
such that fk(x) < fk(x̄) for all k = 1, . . . , p.
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The following theorem establishes necessary and sufficient optimality criteria for weak
efficiencies of problem (P) in terms of SOC condition and KKT condition. We say that the
Slater condition holds if there exists x̂ ∈ R

n such that

gl(x̂) < 0, l = 1, . . . , q. (2.5)

Theorem 2.4 (Characterizations for weak efficiency) Let x̄ ∈ R
n be a feasible point of

problem (P) and assume that the Slater condition (2.5) holds. The following conditions are
equivalent:

(i) (Efficiency) x̄ is a weak efficient solution of problem (P).
(ii) (SOC condition) There existα := (α1, . . . , αp) ∈ R

p
+\{0} andμ := (μ1, . . . , μq) ∈ R

q
+

such that
p∑

k=1

αk fk +
q∑

l=1

μl gl −
p∑

k=1

αk fk(x̄) ∈ SDSOSd [x]. (2.6)

(iii) (KKT condition) There existα := (α1, . . . , αp) ∈ R
p
+\{0} andμ := (μ1, . . . , μq) ∈ R

q
+

such that
p∑

k=1

αk∇ fk(x̄) +
q∑

l=1

μl∇gl(x̄) = 0, μl gl(x̄) = 0, l = 1, . . . , q. (2.7)

Proof [(i) �⇒ (ii)] Let x̄ be a weak efficient solution of problem (P). Then, it holds that

{x ∈ R
n | fk(x) − fk(x̄) < 0, k = 1, . . . , p, gl(x) < 0, l = 1, . . . , q} = ∅.

Since fk, k = 1, . . . , p and gl , l = 1, . . . , q are convex polynomials, invoking the classical
alternative theorem in convex analysis (cf. (Rockafellar 1970, Theorem 21.1)), we find αk ≥
0, k = 1, . . . , p, μl ≥ 0, l = 1, . . . , q , not all zero, such that

p∑

k=1

αk
(
fk(x) − fk(x̄)

) +
q∑

l=1

μl gl(x) ≥ 0, ∀x ∈ R
n .

This together with the Slater condition (2.5) ensures that α := (α1, . . . , αp) �= 0. Let
h : R

n → R be given by h(x) := ∑p
k=1 αk fk(x) + ∑q

l=1 μl gl(x) − ∑p
k=1 αk fk(x̄) for

x ∈ R
n . Under our assumption, h is a 1st-SDSOS-convex polynomial on R

n , and thus,
h ∈ SDSOSd [x] because of h(x) ≥ 0 for all x ∈ R

n (see Chuong et al. 2019, Proposition5.3
). So, (2.6) holds.
[(ii) �⇒ (iii)] Assume that there exist α := (α1, . . . , αp) ∈ R

p
+ \ {0} and μ :=

(μ1, . . . , μq) ∈ R
q
+ such that

p∑

k=1

αk fk +
q∑

l=1

μl gl −
p∑

k=1

αk fk(x̄) ∈ SDSOSd [x].

Then, we find σ ∈ SDSOSd [x] such that
p∑

k=1

αk fk(x) = σ(x) −
q∑

l=1

μl gl(x) +
p∑

k=1

αk fk(x̄), ∀x ∈ R
n . (2.8)

Substituting x := x̄ into (2.8), we arrive at σ(x̄) − ∑q
l=1 μl gl(x̄) = 0. Note in addition

that μl gl(x̄) ≤ 0, l = 1, . . . , q inasmuch as x̄ is a feasible point of problem (P), and that
σ(x̄) ≥ 0 as σ is a 1st-SDSOS polynomial and thus nonnegative. Therefore, it entails that
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μl gl(x̄) = 0, l = 1, . . . , q (2.9)

and that σ(x̄) = 0. So, σ(x) ≥ σ(x̄) for all x ∈ R
n; i.e., x̄ is a minimizer of σ on R

n . So,
∇σ(x̄) = 0, and moreover, by (2.8) and (2.9), we have

p∑

k=1

αk∇ fk(x̄) +
q∑

l=1

μl∇gl(x̄) = 0, μl gl(x̄) = 0, l = 1, . . . , q,

which shows that the KKT condition in (2.7) holds.
[(iii)�⇒ (i)]Assume that there existα := (α1, . . . , αp) ∈ R

p
+\{0} andμ := (μ1, . . . , μq) ∈

R
q
+ such that

p∑

k=1

αk∇ fk(x̄) +
q∑

l=1

μl∇gl(x̄) = 0, μl gl(x̄) = 0, l = 1, . . . , q. (2.10)

Consider as above the function h : Rn → R given by h(x) :=
p∑

k=1
αk fk(x) +

q∑

l=1
μl gl(x) −

p∑

k=1
αk fk(x̄) for x ∈ R

n . We assert by (2.10) that ∇h(x̄) = 0 and then, the convexity of h

entails that

h(x) ≥ h(x̄) = 0, ∀x ∈ R
n . (2.11)

Now, let x̃ ∈ R
n be an arbitrary feasible point of problem (P). By evaluating (2.11) at x̃ ,

we arrive at

p∑

k=1

αk fk(x̃) ≥
p∑

k=1

αk fk(x̃) +
q∑

l=1

μl gl(x̃) ≥
p∑

k=1

αk fk(x̄),

where the first inequality holds due to the fact that μl gl(x̃) ≤ 0, l = 1, . . . , q . Then,

f (x̃) − f (x̄) /∈ −intRp
+

by virtue of α ∈ R
p
+ \ {0}. So, x̄ is a weak efficient solution of problem (P). �

Remark 2.5 (SOC condition & KKT condition) A closer inspection of the proof of The-
orem 2.4 reveals that the equivalence between (ii) and (iii) holds that is independent of the
Slater condition (2.5). The following example shows that the equivalence between (i) and
(ii) may go awry if the Slater condition (2.5) fails.

Example 2.6 (The importance of the Slater condition) Consider the multiobjective convex
polynomial optimization problem

min
x∈R

{
(x8 − 2x + 1, x2 − 3x − 1) | x8 − 1 ≤ 0, x8 + x2 ≤ 0, 2x8 − 1 ≤ 0

}
. (EP1)

The problem (EP1) is in the form of problem (P), where the objective functions f1(x) :=
x8 − 2x + 1, f2(x) := x2 − 3x − 1, x ∈ R, and the constraint functions g1(x) := x8 −
1, g2(x) := x8 + x2, g3(x) := 2x8 − 1, x ∈ R, are 1st-SDSOS-convex polynomials.

It can be verified that x̄ := 0 is an efficient solution of problem (EP1), and that the Slater
condition fails. We claim that the SOC condition (2.6) does not hold for this problem. To see
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this, assume on the contrary that there exist α := (α1, α2) ∈ R
2+ \ {0}, μ := (μ1, μ2, μ3) ∈

R
3+ and σ ∈ SDSOS8[x], such that

2∑

k=1

αk fk +
3∑

l=1

μl gl −
2∑

k=1

αk fk(x̄) = σ.

By rearranging this, we obtain that

(α1 + μ1 + μ2 + 2μ3)x
8 + (α2 + μ2)x

2 − (2α1 + 3α2)x − μ1 − μ3 = σ(x) ≥ 0

for each x ∈ R. It follows that, for each x ∈ R,

(α1 + μ1 + μ2 + 2μ3)x
8 ≥ (2α1 + 3α2)x − (α2 + μ2)x

2. (2.12)

Considering xk := 1
k , where k ∈ N, we assert by (2.12) that

α1 + μ1 + μ2 + 2μ3 ≥ k6[(2α1 + 3α2)k − (α2 + μ2)] ≥ (2α1 + 3α2)k − (α2 + μ2)

for k large enough. Thus,

α1 + μ1 + μ2 + 2μ3 ≥ (2α1 + 3α2)k − (α2 + μ2) (2.13)

for such large k. Now, letting k → ∞ in (2.13), we arrive at a contradiction. Consequently,
the implication of [(i) �⇒ (ii)] in Theorem 2.4 is no longer valid for this setting.

The next example illustrates that the equivalence between (i) and (ii) in Theorem 2.4
may fail for a multiobjective convex (but not 1st-SDSOS-convex) polynomial optimization
problem under the validation of the Slater condition.

Example 2.7 (The importance of the 1st-SDSOS-convexity)Consider amultiobjective con-
vex polynomial optimization problem

min
x∈R2

{(
(x1 + x2 − 1)2 + 1, (x1 + x2 − 1)2 + 2

) |x1 ≤ 2, x2 ≤ 1
}
. (EP2)

The problem (EP2) is a type of problem (P), where the objective functions f1(x) := (x1 +
x2 − 1)2 + 1, f2(x) := (x1 + x2 − 1)2 + 2, x ∈ R

2, are convex (but not 1st-SDSOS-
convex) polynomials (Chuong et al. 2019, Example 5.4) and the constraint functions g1(x) :=
x1 − 2, g2(x) := x2 − 1, x ∈ R

2, are linear polynomials.
It is easy to see that the Slater condition holds, and we can verify that x̄ := (1, 0) is a weak

efficient solution of problem (EP2). We now show that the SOC condition (2.6) does not hold
for this problem. Assume on the contrary that there exist α := (α1, α2) ∈ R

2+ \ {0}, μ :=
(μ1, μ2) ∈ R

2+ and σ ∈ SDSOS2[x], such that
2∑

k=1

αk fk +
2∑

l=1

μl gl −
2∑

k=1

αk fk(x̄) = σ.

By rearranging this, we obtain that
(
α1 + α2

)
(x1 + x2 − 1)2 + μ1(x1 − 2) + μ2(x2 − 1) = σ(x) ≥ 0 for all x ∈ R

2.

(2.14)

This entails that
(
α1 + α2

)
(x1 + x2 − 1)2 ≥ −μ1(x1 − 2) − μ2(x2 − 1) for all x ∈ R

2, (2.15)
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which ensures that μ1 = μ2 = 0. Assume on the contrary that μ1 �= 0 or μ2 �= 0. By taking
x1 := 1 − t, x2 := t , where t ∈ R, we get by (2.15) that

0 ≥ (μ1 − μ2)t + μ1 + μ2 for all t ∈ R,

which results in a contradiction. So, μ1 = μ2 = 0. Then, we deduce from (2.14) that
h = 1

α1+α2
σ ∈ SDSOS2[x], where h(x) := (x1 + x2 − 1)2, x ∈ R

2. This is impossible
because h is not an SDSOS polynomial as said in (Chuong et al. 2019, Example 5.4). In
conclusion, the equivalence between (i) and (ii) in Theorem 2.4 fails for this setting. The
reason is that fk, k = 1, 2 are not 1st-SDSOS-convex polynomials.

Let λ := (λ1, . . . , λp) ∈ R
p
+ \ {0}, and consider the corresponding weighted-sum opti-

mization problem of (P) as follows:

min
x∈C

p∑

k=1

λk fk(x), (Pλ)

where C := {x ∈ R
n | gl(x) ≤ 0, l = 1, . . . , q} is defined as in (2.4).

A second-order cone programming (SOCP) dual for the weighted-sum optimization prob-
lem (Pλ) is given by

sup
(μ,μ1,...,μq )

{
μ |

p∑

k=1

λk fk +
q∑

l=1

μl gl − μ ∈ SDSOSd [x], μ ∈ R, μl ∈ R+, l = 1, . . . , q

}
.

(Dλ)

We also consider a second-order cone programming (SOCP) relaxation for theweighted-sum
optimization problem (Pλ) that is defined as follows:

inf
y:=(yα)∈Rs(d,n)

{ s(d,n)∑

α=1

(

p∑

k=1

λk fk)α yα | y1 = 1,
s(d,n)∑

α=1

(gl)α yα ≤ 0, l = 1, . . . , q, (Rλ)

‖
( 2(M d

2
(y))i j

(M d
2
(y))i i − (M d

2
(y)) j j

)
‖ ≤ (M d

2
(y))i i + (M d

2
(y)) j j , 1 ≤ i, j ≤ s

(
d

2
, n

)}
.

To prove the next theorem, we recall from (cf. Chuong et al. 2019, Proposition 6.1) a
Jensen’s inequality for 1st-SDSOS-convex polynomials.

Lemma 2.8 (Jensen’s inequality) Let f be a 1st-SDSOS-convex polynomial on R
n with

degree d := 2�, � ∈ N0. Let y := (yα) ∈ R
s(d,n) with y1 = 1 and

‖
(

2(M�(y))i j
(M�(y))i i − (M�(y)) j j

)
‖ ≤ (M�(y))i i + (M�(y)) j j , 1 ≤ i, j ≤ s(�, n). (2.16)

Then, we have

L y( f ) ≥ f
(
Ly(x1), . . . , Ly(xn)

)
,

where L y is given as in (2.1) and xi denotes the polynomial which maps a vector x in Rn to
its i th coordinate.

The following theorem establishes solution relationships among the multiobjective pro-
gram (P), the SOCP dual problem (Dλ) and the SOCP relaxation problem (Rλ) of the
correspondingweighted-sum optimization problem (Pλ). This result provides us away to find
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(weak) efficient solutions of the multiobjective program (P) by solving the SOCP relaxation
problem (Rλ).

Theorem 2.9 Assume that the Slater condition (2.5) holds. Then, the following assertions
are valid:

(i) If x̄ := (x̄1, . . . , x̄n) is a weak efficient solution of problem (P), then there exists λ ∈
R

p
+ \ {0} such that

min(Pλ) = max (Dλ) = min(Rλ) (2.17)

and ȳ := (1, x̄1, . . . , x̄n, x̄21 , x̄1 x̄2, . . . , x̄
2
2 , . . . , x̄

2
n , . . . , x̄

d
1 , . . . , x̄dn ) is an optimal solu-

tion of problem (Rλ).
(ii) Let λ ∈ R

p
+ \{0} be such that the problem (Pλ) admits an optimal solution. If ŷ ∈ R

s(d,n)

is an optimal solution of problem (Rλ), then x̂ := (L ŷ(x1), . . . , L ŷ(xn)) ∈ R
n is a

weak efficient solution of problem (P), where L ŷ is given as in (2.1) and xi denotes the
polynomial which maps a vector x in R

n to its i th coordinate. Moreover, if λ ∈ intRp
+,

then x̂ is an efficient solution of problem (P).

Proof (i) Let x̄ := (x̄1, . . . , x̄n) be a weak efficient solution of problem (P). By Theorem 2.4,
we find λ := (λ1, . . . , λp) ∈ R

p
+ \ {0} and μ := (μ1, . . . , μq) ∈ R

q
+ such that

p∑

k=1

λk fk +
q∑

l=1

μl gl −
p∑

k=1

λk fk(x̄) ∈ SDSOSd [x]. (2.18)

Thus, there exists σ ∈ SDSOSd [x] such that

p∑

k=1

λk fk(x) = σ(x) −
q∑

l=1

μl gl(x) +
p∑

k=1

λk fk(x̄), ∀x ∈ R
n . (2.19)

For any x ∈ C := {x ∈ R
n | gl(x) ≤ 0, l = 1, . . . , q}, we get by (2.19) that

p∑

k=1

λk fk(x) ≥
p∑

k=1

λk fk(x̄)

due to the fact that μl gl(x) ≤ 0, l = 1, . . . , q and σ(x) ≥ 0. So, x̄ is an optimal solution of
problem (Pλ) and then,

min(Pλ) =
p∑

k=1

λk fk(x̄).

Now, denote

λ∗ := sup
(μ,μ1,...,μq )

{

μ |
p∑

k=1

λk fk +
q∑

l=1

μl gl − μ ∈ SDSOSd [x], μ ∈ R, μl ∈ R+, l = 1, . . . , q

}

.

By letting μ̄ := ∑p
k=1 λk fk(x̄), we observe first by (2.18) that (μ̄, μ1, . . . , μq) is a feasible

point of problem (Dλ) and thus, μ̄ ≤ λ∗. We assert that

λ∗ ≤ min(Pλ). (2.20)
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To see this, let (μ,μ1, . . . , μq) be an arbitrary feasible point of problem (Dλ). Then, we have
μ ∈ R, μl ∈ R+, l = 1, . . . , q and

p∑

k=1

λk fk +
q∑

l=1

μl gl − μ ∈ SDSOSd [x].

Arguing similarly as in (2.19), we arrive at
∑p

k=1 λk fk(x̄) ≥ μ, which proves that (2.20) is
valid. Consequently,

min (Pλ) = max (Dλ). (2.21)

Next, we show that min (Pλ) ≤ inf (Rλ). To see this, let y := (yα) ∈ R
s(d,n) be a feasible

point of problem (Rλ) and denote x̃ := (Ly(x1), . . . , Ly(xn)). Then,

s(d,n)∑

α=1

(gl)α yα ≤ 0, l = 1, . . . , q, (2.22)

y1 = 1, (2.23)

‖
(
2(M d

2
(y))i j (M d

2
(y))i i − (M d

2
(y)) j j

)
‖ ≤ (M d

2
(y))i i

+
(
M d

2
(y)

)

j j
, 1 ≤ i, j ≤ s

(
d

2
, n

)
. (2.24)

Note that gl , l = 1, . . . , q are 1st-SDSOS-convex polynomials. Under the validation of
(2.23) and (2.24), applying Jensen’s inequality for 1st-SDSOS-convex polynomials (see
Lemma 2.8), we get by (2.22) that

0 ≥ Ly(gl) ≥ gl(Ly(x1), . . . , Ly(xn)) = gl(x̃), l = 1, . . . , q,

which shows that x̃ is a feasible point of problem (Pλ) and thus,

min (Pλ) ≤
p∑

k=1

λk fk(x̃). (2.25)

Similarly, we derive from the 1st-SDSOS-convex polynomials fk, k = 1, . . . , p and the
Jensen’s inequality that

s(d,n)∑

α=1

(

p∑

k=1

λk fk)α yα =
p∑

k=1

λk L y( fk) ≥
p∑

k=1

λk fk(Ly(x1), . . . , Ly(xn)) =
p∑

k=1

λk fk(x̃),

which together with (2.25) guarantees that

inf (Rλ) ≥ min (Pλ). (2.26)

Let us denote ȳ := x̄ (d) = (1, x̄1, . . . , x̄n, x̄21 , x̄1 x̄2, . . . , x̄
2
2 , . . . , x̄

2
n , . . . , x̄

d
1 , . . . , x̄dn ). Then,

ȳ1 := 1 and

L ȳ(gl) =
s(d,n)∑

α=1

(gl)α ȳα =
s(d,n)∑

α=1

(gl)α x̄
(d)
α = gl(x̄) ≤ 0, l = 1, . . . , q.

Moreover, from the definition of the moment matrix (see (2.2) and (2.3)), we have

M d
2
(ȳ) =

s(d,n)∑

α=1

ȳαMα =
s(d,n)∑

α=1

x̄
( d2 )
α Mα = x̄ ( d2 )(x̄ ( d2 ))T � 0,
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which guarantees that

‖
( 2(M d

2
(ȳ))i j

(M d
2
(ȳ))i i − (M d

2
(ȳ)) j j

)
‖ ≤ (M d

2
(ȳ))i i + (M d

2
(ȳ)) j j , 1 ≤ i, j ≤ s

(
d

2
, n

)
.

Therefore, ȳ is a feasible point of problem (Rλ) and it in turn entails that

inf (Rλ) ≤
s(d,n)∑

α=1

(

p∑

k=1

λk fk)α ȳα =
p∑

k=1

λk L ȳ( fk) =
p∑

k=1

λk(

s(d,n)∑

α=1

( fk)α ȳα)

=
p∑

k=1

λk(

s(d,n)∑

α=1

( fk)α x̄
(d)
α =

p∑

k=1

λk fk(x̄) = min (Pλ).

This together with (2.26) entails that

min (Pλ) = max (Rλ) =
s(d,n)∑

α=1

(

p∑

k=1

λk fk)α ȳα,

which shows, in particular, that ȳ is an optimal solution of problem (Rλ).
(ii) Let λ ∈ R

p
+ \ {0} be such that the problem (Pλ) admits an optimal solution and

assume that x̄ is an optimal solution of problem (Pλ). Then, x̄ is a weakly efficient solution
of problem (P). In view of (i), we obtain that

min (Pλ) = max (Dλ) = min (Rλ). (2.27)

Now, let ŷ := (ŷα) ∈ R
s(d,n) be an optimal solution of problem (Rλ). Then,

min (Rλ) =
s(d,n)∑

α=1

(

p∑

k=1

λk fk)α ŷα, (2.28)

s(d,n)∑

α=1

(gl)α ŷα ≤ 0, l = 1, . . . , q, (2.29)

ŷ1 = 1, (2.30)

‖
( 2(M d

2
(ŷ))i j

(M d
2
(ŷ))i i − (M d

2
(ŷ)) j j

)
‖ ≤ (M d

2
(ŷ))i i + (M d

2
(ŷ)) j j , 1 ≤ i, j ≤ s

(
d

2
, n

)
.

(2.31)

As above, under the validation of (2.30) and (2.31), applying Jensen’s inequality for 1st-
SDSOS-convex polynomials, we obtain from (2.28) that

0 ≥ L ŷ(gl) ≥ gl(L ŷ(x1), . . . , L ŷ(xn)) = gl(x̂), l = 1, . . . , q,

which shows that x̂ := (L ŷ(x1), . . . , L ŷ(xn)) is a feasible point of problem (Pλ) and thus,

min (Pλ) ≤
p∑

k=1

λk fk(x̂).

Similarly, we derive from (2.27), (2.29) and the Jensen’s inequality that

min (Pλ) =
p∑

k=1

λk L ŷ( fk) ≥
p∑

k=1

λk fk(L ŷ(x1), . . . , L ŷ(xn)) =
p∑

k=1

λk fk(x̂).
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Therefore, min (Pλ) = ∑p
k=1 λk fk(x̂) and x̂ is an optimal solution of problem (Pλ). The

latter assertion entails that x̂ is a weak efficient solution of problem (P). Assume in addition
that λ ∈ intRp

+. Then, x̂ is an efficient solution of problem (P), which completes the proof
of the theorem. �

3 Duality via second-order cone conditions

This section is devoted to the study of duality for themultiobjective optimization problem (P).
Aswe see below, dual results justify the fulfilment of the KKT condition and show us efficient
values of the primal multiobjective optimization problem (P) by solving a corresponding dual
multiobjective problem,which is formulated in terms of second-order cone (SOC) conditions.

We consider a dualmultiobjective problem to themultiobjective optimization problem (P)
as follows:

max
(tk ,λk ,μl )

{
(t1, . . . , tp) ∈ R

p |
p∑

k=1

λk fk +
q∑

l=1

μl gl −
p∑

k=1

λk tk ∈ SDSOSd [x], (D)

tk ∈ R, k = 1, . . . , p, μl ∈ R+, l = 1, . . . , q, (λ1, . . . , λp) ∈ R
p
+ \ {0}

}
.

Note here that an efficient solution (resp., a weak efficient solution) of a “max” problem like
the dual problem (D) is defined similarly as in Definition 2.3 by replacing ≤ (resp., <) by ≥
(resp., >).

The first theorem in this section describes weak and strong duality relations between the
primal problem (P) and the dual problem (D).

Theorem 3.1 (i) (Weak duality) Let x̃ be a feasible point of problem (P) and let
(t1, . . . , tp, λ1, . . . , λp, μ1, . . . , μq) be a feasible point of problem (D). It holds that

f (x̃) − (t1, . . . , tp) /∈ −intRp
+, (3.1)

where f := ( f1, . . . , f p).
(ii) (Strong dual characterization) Let x̄ be a weak efficient solution of problem (P). Then,

the KKT condition holds at x̄ if and only if there exists a weak efficient solution of
problem (D), say (t̄1, . . . , t̄ p, λ̄1, . . . , λ̄p, μ̄1, . . . , μ̄q), such that

f (x̄) = (t̄1, . . . , t̄ p).

Proof (i) Since (t1, . . . , tp, λ1, . . . , λp, μ1, . . . , μq) is a feasible point of problem (D), there
exists σ ∈ SDSOSd [x] such that

p∑

k=1

λk fk(x) +
q∑

l=1

μl gl(x) −
p∑

k=1

λk tk = σ(x), ∀x ∈ R
n, (3.2)

where tk ∈ R, k = 1, . . . , p, μl ∈ R+, l = 1, . . . , q and (λ1, . . . , λp) ∈ R
p
+ \ {0}.

Keeping in mind the nonnegativity of SDSOS polynomials, estimating (3.2) at x̃ , we
obtain that

p∑

k=1

λk fk(x̃) ≥
p∑

k=1

λk tk, (3.3)
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where we recall that gl(x̃) ≤ 0, l = 1, . . . , q inasmuch as x̃ is a feasible point of
problem (P). Since (λ1, . . . , λp) ∈ R

p
+ \ {0}, (3.3) guarantees that

f (x̃) − (t1, . . . , tp) /∈ −intRp
+,

which shows that (3.1) is valid.
(ii) Let x̄ be a weak efficient solution of problem (P). Assume that the KKT condition

holds at x̄ . By Theorem 2.4 and Remark 2.5, the SOC condition holds; i.e., there exist
(λ̄1, . . . , λ̄p) ∈ R

p
+ \ {0} and (μ̄1, . . . , μ̄q) ∈ R

q
+, such that

p∑

k=1

λ̄k fk +
q∑

l=1

μ̄l gl −
p∑

k=1

λ̄k t̄k ∈ SDSOSd [x], (3.4)

where t̄k := fk(x̄), k = 1, . . . , p. It shows that f (x̄) = (t̄1, . . . , t̄ p) and that
(t̄1, . . . , t̄ p, λ̄1, . . . , λ̄p, μ̄1, . . . , μ̄q) is a feasible point of problem (D). We assert that
(t̄1, . . . , t̄ p, λ̄1, . . . , λ̄p, μ̄1, . . . , μ̄q) is a weak efficient solution of problem (D). Indeed,
if this is not the case, then there exists another feasible point of problem (D), say
(t̂1, . . . , t̂ p, λ̂1, . . . , λ̂p, μ̂1, . . . , μ̂q), such that (t̂1, . . . , t̂ p) − (t̄1, . . . , t̄ p) ∈ intRp

+, or
equivalently,

f (x̄) − (t̂1, . . . , t̂ p) ∈ −intRp
+,

which contradicts the weak duality relation given in (i).
Conversely, assume that there exists a weak efficient solution of problem (D), say

(t̄1, . . . , t̄ p, λ̄1, . . . , λ̄p, μ̄1, . . . , μ̄q), such that f (x̄) = (t̄1, . . . , t̄ p). Then, we have

p∑

k=1

λ̄k fk +
q∑

l=1

μ̄l gl −
p∑

k=1

λ̄k fk(x̄) ∈ SDSOSd [x],

where (λ̄1, . . . , λ̄p) ∈ R
p
+ \ {0} and (μ̄1, . . . , μ̄q) ∈ R

q
+. It means that the SOC condition

given in Theorem 2.4 holds, and so the KKT condition holds at x̄ due to Remark 2.5. The
proof of the theorem is complete. �
The following corollary provides a strong duality result under the fulfilment of the Slater
condition.

Corollary 3.2 (Strong duality under the Slater condition) Assume that the Slater condi-
tion (2.5) holds. Let x̄ be a weak efficient solution of problem (P). Then, there exists a weak
efficient solution of problem (D), say (t̄1, . . . , t̄ p, λ̄1, . . . , λ̄p, μ̄1, . . . , μ̄q), such that

f (x̄) = (t̄1, . . . , t̄ p).

Proof Since the Slater condition (2.5) holds and x̄ is a weak efficient solution of problem (P),
we conclude by Theorem 2.4 that the KKT condition holds at x̄ . So, the conclusion is now
followed by Theorem 3.1(ii). �

The next theorem establishes a converse duality relation between the primal problem (P)
and the dual problem (D).

Theorem 3.3 (Converse duality relation) Assume that the Slater condition (2.5) holds and
that the feasible set C in (2.4) is compact. If (t̄1, . . . , t̄ p, λ̄1, . . . , λ̄p, μ̄1, . . . , μ̄q) is a weak
efficient solution of problem (D), then there exists a weak efficient solution of problem (P),
say x̄ , such that

f (x̄) − (t̄1, . . . , t̄ p) ∈ −R
p
+. (3.5)
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Proof Let (t̄1, . . . , t̄ p, λ̄1, . . . , λ̄p, μ̄1, . . . , μ̄q) be a weak efficient solution of problem (D),
and let W := { f (x) + v | x ∈ C, v ∈ R

p
+}. It is easy to see that W is a closed convex set,

and we assert that

(t̄1, . . . , t̄ p) ∈ W . (3.6)

To see this, assume on the contrary that (t̄1, . . . , t̄ p) /∈ W . Invoking the classical strong
separation theorem in convex analysis (see e.g.,Mordukhovich andNam2014, Theorem 2.2),
one can find α := (α1, . . . , αp) ∈ R

p
+ \ {0} such that

p∑

k=1

αk t̄k < inf
{
〈α, ω〉 | ω ∈ W

}
.

This guarantees that

p∑

k=1

αk t̄k < min
x∈C

p∑

k=1

αk fk(x). (3.7)

Since the feasible set C is compact, the (scalar) optimization problem on the right hand-
side of (3.7) admits an optimal solution. Namely, there exists an optimal solution x0 ∈ C
such that

∑p
k=1 αk t̄k <

∑p
k=1 αk fk(x0). Under the fulfilment of the Slater condition (2.5),

applying Theorem 2.4 to the (scalar) optimization problem on the right hand-side of (3.7)
(i.e., f := ∑p

k=1 αk fk), we find μl ∈ R+, l = 1, . . . , q, such that

p∑

k=1

αk fk +
q∑

l=1

μl gl −
p∑

k=1

αk fk(x
0) ∈ SDSOSd [x]. (3.8)

Denoting ε := 1∑p
k=1 αk

(∑p
k=1 αk fk(x0) − ∑p

k=1 αk t̄k
)
, it holds that ε > 0 and, by (3.8),

p∑

k=1

αk fk +
q∑

l=1

μl gl −
p∑

k=1

αk
(
t̄k + ε

) ∈ SDSOSd [x].

Then, we conclude that (t̄1 + ε, . . . , t̄ p + ε, α1, . . . , αp, μ1, . . . , μq) is a feasible point of
problem (D), and

(t̄1 + ε, . . . , t̄ p + ε) − (t̄1, . . . , t̄ p) = (ε, . . . , ε) ∈ intRp
+,

which contradicts the fact that (t̄1, . . . , t̄ p, λ̄1, . . . , λ̄p, μ̄1, . . . , μ̄q) is a weak efficient solu-
tion of problem (D). Consequently, (3.6) holds.

Now, we find x̄ ∈ C and v̄ := (v̄1, . . . , v̄p) ∈ R
p
+ such that

(t̄1, . . . , t̄ p) = f (x̄) + v̄, (3.9)

which shows that (3.5) is valid. Since (t̄1, . . . , t̄ p, λ̄1, . . . , λ̄p, μ̄1, . . . , μ̄q) is a feasible point
of problem (D), we have (λ̄1, . . . , λ̄p) ∈ R

p
+ \ {0} and (μ̄1, . . . , μ̄q) ∈ R

q
+ such that

p∑

k=1

λ̄k fk +
q∑

l=1

μ̄l gl −
p∑

k=1

λ̄k t̄k ∈ SDSOSd [x]. (3.10)

From (3.9) and (3.10), we find σ0 ∈ SDSOSd [x] such that
p∑

k=1

λ̄k fk +
q∑

l=1

μ̄l gl −
p∑

k=1

λ̄k
(
fk(x̄) + v̄k

) = σ0,
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and, due to
∑p

k=1 λ̄k v̄k ≥ 0, we obtain

p∑

k=1

λ̄k fk +
q∑

l=1

μ̄l gl −
p∑

k=1

λ̄k fk(x̄) =
p∑

k=1

λ̄k v̄k + σ0 ∈ SDSOSd [x].

So, by Theorem 2.4, we conclude that x̄ is a weak efficient solution of problem (P), which
completes the proof of the theorem. �

We finish this section with an example that illustrates the main results of Theorems 2.4
and 3.1.

Example 3.4 Consider a multiobjective convex polynomial optimization problem

min
x∈R2

{(
x61 + x42 + 1, x41 + 2x22 − 1

) |x1 + x42 − 2 ≤ 0, x41 + x2 ≤ 0
}
. (EP3)

The problem (EP3) is in the form of problem (P), where the objective functions f1(x) :=
x61 + x42 + 1, f2(x) := x41 + 2x22 − 1, x ∈ R

2, and the constraint functions g1(x) :=
x1 + x42 − 2, g2(x) := x41 + x2, x ∈ R

2, are 1st-SDSOS-convex polynomials.
Observe first that the Slater condition holds and we can verify directly that x̄ := (0, 0) is

an efficient solution (and hence, a weak efficient solution) of problem (EP3). Let us now show
that the SOC condition (2.6) holds for this problem. To see this, just take α := (α1, α2) ∈
R
2+ \ {0} and μ := (μ1, μ2) := (0, 0). Then, it holds that

2∑

k=1

αk fk +
2∑

l=1

μl gl −
2∑

k=1

αk fk(x̄) = α1(x
3
1 )

2

+ α1(x
2
2 )

2 + α2(x
2
1 )

2 + 2α2x
2
2 ∈ SDSOS6[x],

showing that (2.6) is valid. Moreover, we see that

2∑

k=1

αk∇ fk(x̄) +
2∑

l=1

μl∇gl(x̄) = 0, μl gl(x̄) = 0, l = 1, 2, (3.11)

which means that the KKT condition (2.7) is also valid. So, the conclusion of Theorem 2.4
holds.

Next, we consider a dual multiobjective problem to the multiobjective optimization prob-
lem (EP3) as follows:

max
(tk ,λk ,μl )

{
(t1, t2) ∈ R

2 |
2∑

k=1

λk fk +
2∑

l=1

μl gl −
2∑

k=1

λk tk ∈ SDSOS6[x], (DE3)

tk ∈ R, k = 1, 2, μl ∈ R+, l = 1, 2, (λ1, λ2) ∈ R
2+ \ {0}

}
.

Let x̃ := (x̃1, x̃2) be a feasible point of problem (EP3) and let (t1, t2, λ1, λ2, μ1, μ2) be a
feasible point of problem (DE3). Then, there exists σ ∈ SDSOS6[x] such that

2∑

k=1

λk fk(x̃) +
2∑

l=1

μl gl(x̃) −
2∑

k=1

λk tk = σ(x̃),

gl(x̃) ≤ 0, l = 1, 2,

which implies that
2∑

k=1
λk fk(x̃) ≥

2∑

k=1
λk tk . By (λ1, λ2) ∈ R

2+ \ {0}, we arrive at
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f (x̃) − (t1, t2) /∈ −intR2+,

where f := ( f1, f2). This means that the weak duality in Theorem 3.1 is valid. Moreover,
we can verify that the KKT condition holds at x̄ (cf. (3.11)) if and only if there exists a weak
efficient solution of problem (DE3), say (t̄1, t̄2, λ̄1, λ̄2, μ̄1, μ̄2), such that

(t̄1, t̄2) = f (x̄) = (1,−1).

So, the conclusion of Theorem 3.1 holds.

4 Conclusion and further work

In this paper, we have presented necessary and sufficient optimality conditions in terms of
second-order cone conditions for a subclass of multiobjective convex optimization problems,
where the objective and constraint functions are first-order scaled diagonally dominant sums-
of-squares convex (1st-SDSOS-convex) polynomials. It has been shown that the second-order
cone condition is equivalent to the Karush-Kuhn-Tucker (KKT) condition at a given weak
efficient solution of the underlying multiobjective program. We have also addressed a dual
multiobjective problem to the considered multiobjective convex polynomial optimization
problem and examined weak, strong and converse duality relations between them. In this
way, we have obtained a strong dual characterization via the KKT condition.

The obtained results are conceptual schemes for solvingmultiobjective optimization prob-
lems involving 1st-SDSOS-convex polynomials. Relationships between these results and
some other existing multiobjective algorithms (see e.g., Ehrgott 2005; Gorissen and den
Hertog 2012; Magron et al. 2014; Jahn 2004; Steuer 1986) need to be investigated in order
to produce efficient methods and perform numerical tests for some concrete multiobjective
optimization problems with 1st-SDSOS-convex polynomial data. Furthermore, it would be
of interest to see how the proposed approach can be deployed to multiobjective optimization
problems, where the objective and constraint functions are diagonally dominant sums-of-
squares convex (DSOS-convex) polynomials (cf. Ahmadi and Majumdar (2016, 2019)).
This would form an interesting topic and will be carried out in a forthcoming paper.
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