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Abstract
The problem of computing the vertices of the convex hull of a given input set S = {vi ∈
R
m : i = 1, . . . , n} is a classic and fundamental problem, studied in the context of computa-

tional geometry, linear and convex programming, machine learning and more. In this article
we present All Vertex Triangle Algorithm (AVTA), a robust and efficient algorithm for this
problem. On the one hand, without any assumptions, AVTA computes approximation to the
subset S of all K vertices of the convex hull of S so that the convex hull of the approximate
subset of vertices is as close to conv(S) as desired. On the other hand, assuming a known
lower bound γ on the ratio Γ∗/R, where Γ∗ the minimum of the distances from each vertex
to the convex hull of the remaining vertices and R the diameter of S, AVTA can recover all
of S. Furthermore, assuming that instead of S the input is an ε-perturbation of S, Sε, where
‖vi −vε

i ‖ ≤ εR, AVTA can compute approximation to conv(Sε), to any prescribed accuracy.
Also, given a lower bound to the ratioΣ∗/R, whereΣ∗ is the minimum of the distances from
each vertex to the convex hull of the remaining point of S, AVTA can recover all of Sε . We
show Σ∗ ≥ ρ∗Γ∗/R, where ρ∗ is the minimum distance between distinct pair of points in S
and prove the following main results:

(1) Given any t ∈ (0, 1), AVTA computes a subset S
t
of S of cardinality K (t) in

O(nK (t)(m + t−2)) operations so that for any p ∈ conv(S) its Euclidean distance
to conv(S

t
) is at most t R.

(2) Given γ ≤ γ∗ = Γ∗/R, AVTA computes S in O(nK (m + γ −2)) operations.
(3) If K is known, the complexity of AVTA is O(nK (m + γ −2∗ ) log(γ −1∗ )).

Assuming instead of S, its ε-perturbation, Sε is given, we prove

(i) Given any t ∈ (0, 1), AVTA computes a subset S
t
ε ⊂ Sε of cardinality K (t)

ε in

O(nK (t)
ε (m + t−2)) operations so that for any p ∈ conv(S) its distance to conv(S

t
ε)

is at most (t + ε)R.
(ii) Given σ ∈ [4ε, σ∗ = Γ∗/R], AVTA computes Sε in O(nKε(m + σ−2)) operations,

where K ≤ Kε ≤ n.

A conference version of the article appeared in the Proceedings of AISTATS 2018.
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(iii) If γ ≤ γ∗ = Γ∗/R is known satisfying 4ε ≤ γρ∗/R, AV T A computes Sε in
O(nKε(m + (γρ∗)−2)) operations.

(iv) Given σ ∈ [4ε, σ∗], if K is known, AVTA computes Sε in O(nK (m +σ−2∗ ) log(σ−1∗ ))

operations.

We also consider the application ofAVTA in the recovery of vertices through the projection
of S or Sε under a Johnson–Lindenstrauss randomized linear projection L : Rm → R

m′
.

Denoting U = L(S) and Uε = L(Sε), by relating the robustness parameters of conv(U )

and conv(Uε) to those of conv(S) and conv(Sε), we derive analogous complexity bounds
for probabilistic computation of the vertex set of conv(U ) or those of conv(Uε), or an
approximation to them. Finally, we apply AVTA to design new practical algorithms for two
popular machine learning problems: topic modeling and non-negative matrix factorization.
For topic models, our new algorithm leads to significantly better reconstruction of the topic-
word matrix than state of the art approaches of Arora et al. (International conference on
machine learning, pp 280–288, 2013) and Bansal et al. (Advances in neural information
processing systems, pp 1997–2005, 2014). Additionally, we provide a robust analysis of
AVTA and empirically demonstrate that it can handle larger amounts of noise than existing
methods. For non-negative matrix factorization we show that AVTA is competitive with
existing methods that are specialized for this task in Arora et al. (Proceedings of the forty-
fourth annual ACM symposium on theory of computing, ACM, pp 145–162, 2012a). We
also contrast AVTAwith Blum et al. (Proceedings of the twenty-seventh annual ACM-SIAM
symposium on discrete algorithms, Society for Industrial and Applied Mathematics, pp 548–
557, 2016) Greedy Clustering coreset algorithm for computing approximation to the set of
vertices and argue that not only there are regimes where AVTA outperforms that algorithm
but it can also be used as a pre-processing step to their algorithm. Thus the two algorithms
in fact complement each other.

Keywords Convex hull membership · Approximation algorithms · Machine learning ·
Linear programming · Random projections

1 Introduction

In this article we present a robust and efficient algorithm called All Vertex Triangle Algorithm
(AVTA). Given input set S = {v1, . . . , vn} ⊂ R

m , on the one hand without any assumptions,
AVTA computes approximation to the subset S = {v1, . . . , vK } of all vertices of conv(S) so
that the convex hull of the approximate subset of vertices is as close to conv(S) as desired.
Specifically, given any t ∈ (0, 1), AVTA computes a subset S

t
of S so that the distance from

any point p ∈ conv(S) to conv(S
t
) is at t R, where R is the diameter of S. On the other hand,

under the assumption that we are given a constant γ ≤ Γ∗/R, where Γ∗ is the minimum of
the distances from each vertex to the convex hull of the remaining vertices, it can compute
all of S. Furthermore, assuming that instead of S the input is an ε-perturbation of S, Sε,
where ‖vi − vε

i ‖ ≤ εR, AVTA can compute approximation to the convex hull of Sε , to any
prescribed accuracy.

AVTA, a fully polynomial-time approximation scheme, builds upon theTriangle Algorithm
(Kalantari 2015), designed to solve the the convex hull membership problem. Specifically,
given S, the Triangle Algorithm tests if a distinguished point p lies in the conv(S), either
by computing a point pε ∈ conv(S) to within a prescribed distance to p, or a hyperplane
that separates p from conv(S). Before describing AVTA and its applications we wish to give
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an overview of the related problems and research, as well as their history, significance and
connections to our work.

The convex hull membership problem is a basic problem in computational geometry
and a very special case of the convex hull problem, see Toth et al. (2004). Besides being a
fundamental problem in computational geometry, it is a basic problem in linear programming
(LP). In fact LPwith integer coefficients can be reduced to a convex hullmembership problem.
Furthermore, the two most famous polynomial-time LP algorithms, the ellipsoid algorithm
of Khachiyan (1980) and the projective algorithm of Kalantari (1984), are in fact explicitly
or implicitly designed to solve the convex hull membership problem when p = 0, see Jin
and Kalantari (2006). Furthermore, using an approach suggested by Jin and Kalantari (2006)
shows a direct connection between a general LP feasibility and this homogeneous case of
the convex hull membership problem.

An important problem in computational geometry and machine learning is the irredun-
dancy problem, the problem of computing all the vertices of conv(S), see Toth et al. (2004).
Clearly, any algorithm for LP feasibility can be used to solve the irredundancy problem by
solving a sequence of O(n) convex hull membership problems. For results that reduce the
number of linear programming problems, see e.g. Clarkson (1994) and Chan (1996a, b).
Some applications require the description of conv(S) in terms of its vertices, facets and adja-
cencies, see Chazelle (1993). The complexity of many exact algorithms for irredundancy of
finite points set is exponential in terms of the dimension of the points, thus only practical in
very low dimensions. On the other hand, the convex hull membership problem by itself has
been studied in the context of large scale applications where simplex method or polynomial
time algorithms are too expensive to run. Thus approximation schemes have been studied for
the problem.

Not only is convex hull detection a fundamental problem in computational geometry,
state of the art algorithms for many machine learning problems rely on being able to solve
this problem efficiently. Consider for instance the problem of non-negative matrix factor-
ization (NMF) (Lee and Seung 2001). Here, given access to a data matrix A, we want to
compute non-negative, low rank matrices U and V such that A = UV . Although in general
this problem is intractable, recent results show that under a natural separability assumption,
see Donoho and Stodden (2003), such a factorization can be computed efficiently, see Arora
et al. (2012a). The key insight in these works is that under the separability assumption, the
rows of the matrix V will appear among the rows of A. Furthermore, the rows of V will be
the vertices of the convex hull of rows of A. Hence, a fast algorithm for detecting the vertices
will lead to a fast factorization algorithm as well.

The organization of the the article is as follows. In Sect. 2 we mention and review related
work on the irredundancy problem. In Sect. 3 we describe the high level idea of the algorithm
and introduce themain results. In Sect. 4, we describe the convex hull membership oracle Tri-
angle Algorithm. This will be used throughout the the article. The efficient implementation of
Triangle Algorithm is described in the “Appendix”. In Sect. 5, we describeAll Vertex Triangle
Algorithm (AVTA), a Algorithm, for computing all vertices of the convex hull of a given finite
set of points, S. We discuss several applications of this, in particular in solving the convex
hull membership problem itself. Other applications will be described in subsequent sections.
In Sect. 6, we consider the performance of AVTA under perturbation of data. In Sect. 7,
we consider AVTA with Johnson–Lindenstrauss projections. Furthermore, we consider the
performance of AVTA under perturbation of data with Johnson–Lindenstrauss projections.
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2 Related work

Convex hull membership query oracles The convex hull membership problem can be
formulated as the minimization of a convex quadratic function over the unit simplex. This
particular convex program finds applications in statistics, approximation theory, andmachine
learning, see e.g Clarkson (2010) and Zhang (2003) who consider the analysis of a greedy
algorithm for minimizing smooth convex functions over the unit simplex. The algorithm of
Frank and Wolfe (1956) is a classic greedy algorithm for convex programming. When the
the convex hull of a set of points does not contain the origin, the problem of computing
the point in the convex hull with least norm, known as polytope distance is also a problem
of interest. In some applications the polytope distance refers to the distance between two
convex hulls, a fundamental problem in machine learning, known as SVM, see e.g. Burges
(1998). The algorithm of Gilbert (1966) for the polytope distance problem is one of the
earliest known algorithms. Gärtner and Jaggi (2009) show Gilbert’s algorithm coincides
with Frank–Wolfe algorithmwhen applied to theminimization of a convex quadratic function
over a unit simplex. In this case the algorithm is known as sparse greedy approximation. For
many results regarding the applications of the minimization of a quadratic function over a
simplex, see Zhang (2003), Clarkson (2010) and Gärtner and Jaggi (2009). Clarkson (2010)
analyzes the Frank–Wolfe and its variations while studying the notion of coresets. While the
Triangle Algorithm has features that are very similar to those of Frank–Wolfe algorithm,
there are other features and properties that make it an algorithm distinct from Frank–Wolfe
or Gilbert’s algorithm. To describe these differences, consider the distance between p and
conv(S): Δ = min{d(p′, p) ≡ ‖p′ − p‖ : p′ ∈ conv(S)} = d(p∗, p).

Clearly, p /∈ conv(S), if and only if Δ > 0. The goal of the convex hull membership
problems (equivalently an LP feasibility) is to test feasibility, i.e. if p lies in conv(S). Solving
this does not require the computation of Δ when it is positive. Thus the goal of solving the
convex hull membership is different from that of computing this distance Δwhen positive.
When p ∈ conv(S), the analysis of complexity of the Triangle Algorithm is essentially
identical with Clarkson (2010) analysis of the basic Frank–Wolfe algorithm. Gärtner and
Jaggi (2009) on the other hand analyze the complexity of Gilbert’s algorithm for the polytope
distance problem, i.e. the approximation of Δ, however under the assumption that Δ > 0.
Gärtner and Jaggi (2009) do not address the case when Δ = 0.

What distinguishes the TriangleAlgorithm from the Frank–WolfeAlgorithm andGilbert’s
algorithms is the distance dualities which gives more flexibility to the algorithm. The algo-
rithm we will analyze in this article, namely AVTA, is designed to generate vertices of
conv(S). It makes repeated use of the distance dualities of the Triangle Algorithm, result-
ing in an over all efficient algorithm for computing the vertices of conv(S), or very good
approximation to these vertices, even under perturbation of the input set. Indeed AVTA is
testimonial to the uniqueness of the Triangle Algorithm while itself is a nontrivial extension
of the Triangle Algorithm. AVTA finds many applications in computational geometry and
machine learning. Some of these are demonstrated here theoretically and computationally.
We next describe AVTA in more detail.
Irredundancyproblem inmachine learningAproblem related to the irredundancy problem
is known as topic modeling (Blei 2012). Here one is given access to a large corpus of
documents, with each document represented as a long vector consisting of frequency in the
document of every word in the vocabulary. This is known as the bag-of-words representation.
Each document is assumed to represent a mixture of up to K hidden topics. A popular
generativemodel for suchdocuments is the following: For every documentd , a K dimensional
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vector θd is drawn from a distribution over the simplex. Typically this distribution is the
Dirichlet distribution. Then, for each word in the document, a topic is chosen according
to θd . Finally, given a chosen topic i , a word is output according to the topic distribution
vector βi . This is known as the Latent Dirichlet Allocation (LDA) model (Blei et al. 2003).
The parameters of this model consist of the topic-word matrix β so that βi defines the
distribution over words for topic i . Additionally, there are hyper parameters associated with
the Dirichlet distributions generating the topic distribution vector θd . The topic modeling
problem concerns learning the topic-wordmatrixβ and the parameters of the topic generating
distribution. Similar to NMF, the problem is intractable in the worst case but can be efficiently
solved under separability (Arora et al. 2012b). In this context, the separability assumption
requires that for each topic i , there exists an anchor word that has a non-zero probability of
occurring only under topic i . Separability is an assumption that is known to hold for real world
documents (Arora et al. 2012b). The key component towards learning the model parameters
is a fast algorithm for finding the anchor words. The algorithm of Arora et al. (2012b, 2013)
uses the word-word covariance matrix and shows that under separability, the vertices of the
convex hull of the rows of the matrix will correspond to the anchor words. Similarly, the
work of Ding et al. (2013) shows that finding the vertices of the convex hull of the document-
word matrix will also lead to detection of anchor words. Both approaches rely on the vertex
detection subroutine. Furthermore, in the case of topic models, the documents are limited in
size and this translates to the fact that one is given a perturbation of the set S. The goal is to
use this perturbed set to approximate the original vertices S. Hence in this application it is
crucial that the approach to finding the vertices be robust to noise. Following the setting of
Arora et al. (2013) we analyze AVTA under the setting of perturbed irredundancy problem.
We show AVTA is able to find the ’robust ’ vertices with guarantees that is related to the
geometric properties of given set.
Approximation version of irredundancy problem In addition to the perturbed irredun-
dancy problem, Blum et al. (2016) consider the approximation version of the irredundancy
problemwhere a bi-criterion algorithm is proposed based onNearest NeighborOracle, called
Greedy Clustering, for computing a subset of vertices T satisfying two properties: (i) the
Hausdorff distance between conv(T ) and conv(S) is bounded above by (8t + t2)R; (ii)
|T | = O(Kopt/t2) where Kopt is the cardinality of smallest set of points which attains t
approximation quality. Since T ⊂ S, this implies that t = Ω((Kopt/n)1/2). The running

time of the algorithm is O

(
nKopt

t2

(
m + Kopt

t8
+ K 2

opt

t4

))
. While there is a theoretical bound

on the size of T as a polynomial in 1/t , it is inefficient since it uses the Nearest Neighbor
Oracle. Indeed, in AVTA, the Triangle Algorithm works as an approximate oracle which
achieves great improvement in efficiency. Given that γ∗ = Γ∗/R is Ω(t), we cannot use
fewer than |S| vertices to give an t approximation. This argument shows that in Blum et al.
(2016) Kopt = |S|. In a general case where γ∗ is arbitrarily close to 0, AVTA will find all

vertices in O(nKt (m+ 1
t2

)) time where Kt = |St |. While we so far have no nontrivial bound

on Kt , it is known that Kt ≤ n. In this case the complexity of AVTA is O(n2m + n2/t2)
and Greedy Clustering requires at least O(nm/t2 + n/t10) to achieve the same accuracy. It
could be concluded that there exists regimes that AVTA outperforms Greedy Clustering. It
is interesting to observe that AVTA could be used as a pre-processing algorithm for Greedy
Clustering. By our analysis, AVTA only detects vertices and will not omit any of them. In
case n >> Kt , we can use AVTA to delete points inside the convex hull thus reduce the
size of the problem for Greedy Clustering. In summary, the two algorithms complement each
other.
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3 Main results

In this section we describe the high level idea and introduce the main result about AVTA. To
describes, AVTAwe need to define some parameters.We say conv(S) isΓ∗-robust, ifΓ∗ is the
minimumof the distances fromeachvi ∈ S to conv(S\{vi }). Set R = max{d(vi , v j ), vi , vi ∈
S}, the diameter of S. The AVTA works as follows:

AVTA (informal)

Step 0. Find one vertex in S(which is easy to do) and add such vertex to working
set Ŝ.
Step 1. Randomly select a point v ∈ S\Ŝ.
Step 2. Call membership oracle to test if v ∈ conv(Ŝ).
Step 3. If v /∈ conv(Ŝ), use the separation hyperplane that the oracle found to
capture a new vertex.
Step 4. If v ∈ conv(Ŝ), remove v from S.
Step 5. Repeat above step until S is empty.

(1) Given any t ∈ (0, 1), AVTA can compute a subset S
t
of S so that the distance of each

point in conv(S) to conv(S
t
) is at most t R. The corresponding number of operations

is
O(nK (t)(m + t−2)), K (t) = |St |. (1)

(2) If a number 0 < γ ≤ Γ∗/R is known, the number of operations of AVT A to computes
S is.

O(nK (m + γ −2)). (2)

(3) If only K is known, the number of operations of AV T A to compute S is

O(nK (m + γ −2∗ )) log γ −1∗ ). (3)

In practice the input set may be not S but a perturbation of it, Sε = {vε
1, . . . , v

ε
n}, where

‖vi − vε
i ‖ ≤ εR. The set of perturbed vertices, Sε = {vε

1, . . . , v
ε
K } may differ considerably

from the set of actual vertices of conv(Sε). Under a mild assumption on ε, AVTA computes
Sε = {vε

1, . . . , v
ε
K }. More generally, given any t ∈ (0, 1), AVTA computes a subset S

t
ε of Sε

so that the distance from any p ∈ conv(S) to conv(S
t
ε) is at most (t + ε)R. The complexity

of AVTA for this variation of the problem is analogous to the unperturbed case, however it
makes use a weaker parameter. We say conv(S) is Σ∗-weakly robust, if Σ∗ is the minimum
of the distances of each vertex in S to the convex hull of all the remaining points in S. In
Fig. 1 we show a simple example where Γ∗ and Σ∗ are shown for set of eight points.

We first provewhen σ∗ = Σ∗/R ≥ 4ε, Sε is a subset of vertices of conv(Sε) and conv(Sε)

is at least Σ∗/2-weakly robust. Using this, we prove

(i) Given any t ∈ (0, 1), AVTA can compute a subset S
t
ε of Sε so that the distance from

each p in conv(S) to conv(S
t
ε) is at most (t + ε)R. The corresponding number of

operations is
O(nK t

ε(m + t−2)), K t
ε = |Stε|. (4)

(ii) If σ ≤ σ∗ = Σ∗/R is known to satisfy 4ε ≤ σ , the number of operations of AV T A to
computes Sε, is.

O(nKε(m + σ−2)), (5)
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Fig. 1 Γ∗ = Γ1 and Σ∗ = Σ2

where Kε is at most the cardinality of the set of vertices of Sε.
Clearly Γ∗ ≥ Σ∗, however we prove

Σ∗ ≥ Γ∗
R

ρ∗, (6)

where ρ∗ is the minimum distance between distinct pair of points in S. This allows deriving
a lower bound to Σ∗ from a known lower bound on Γ∗. Thus we can alternatively write

(iii) If γ ≤ γ∗ = Γ∗/R is known satisfying 4ε ≤ γρ∗/R, the number of operations of
AV T A to compute Sε is.

O(nKε(m + (γρ∗)−2)). (7)

(iv) If only K is known, where 4ε ≤ σ∗ = Σ∗/R, the number of operations of AV T A to
computes Sε is.

O(nKε(m + σ−2∗ ) log(σ−1∗ )). (8)

We also consider the application ofAVTA in the recovery of vertices through the projection
of S or Sε under a Johnson–Lindenstrauss randomized linear projection L : Rm → R

m′
.

By relating the robustness parameters of conv(U ) and conv(Uε), where U = L(S) and
Uε = L(Sε), to those of conv(S) and conv(Sε), we derive analogous complexity bounds
for probabilistic computation of the vertex set of conv(U ) or those of conv(Uε), or an
approximation to these subsets for a given t ∈ (0, 1). Table 1 summarizes the complexities
of computing desired sets under various cases.

4 Triangle Algorithm: efficient membership oracle

The Triangle Algorithm described in Kalantari (2015) is a simple iterative algorithm for
solving the convex hull membership problem, a fundamental problem in linear programming
and computational geometry. Formally, the convex hull membership problem is as follows:
Given a set of point S = {v1, . . . , vn} ⊂ R

m and a distinguished point p ∈ R
m , test

if p ∈ conv(S). If p /∈ conv(S), find a hyperplane that separates p from conv(S). If
p ∈ conv(S), the Triangle Algorithm solves the problem to within prescribed precision by
generating a sequence of points inside of conv(S) that get sufficiently close to p.
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Definition 1 Given p, S and ε ∈ (0, 1), p′ ∈ conv(S) is an ε-approximate solution if for
some v ∈ S,

d(p′, p) ≤ εR, R = max{d(vi , v j ) : vi , v j ∈ S}. (9)

Given S, p and ε, Triangle Algorithm(S, p, ε) either computes an ε-approximate solution,
or it computes a hyperplane separating p from conv(S). AVTA to be described later will
make repeated use of the this procedure. AVTA may use any other membership oracle that is
capable of these tasks. Since the complexities for AVTA will be based on that of the Triangle
Algorithm, we briefly describe it and its basic complexities. In the “Appendix” we describe
a more efficient complexity. Given u, v ∈ R

m , we interchangeably use d(u, v) = ‖u − v‖.
Given a point in conv(S), the Triangle Algorithm searches for a pivot to get closer to p:

Definition 2 Given p′ ∈ conv(S), called iterate, we call v ∈ S a p-pivot (or simply pivot) if

d(p′, v) ≥ d(p, v) ⇐⇒ vT p − vT p′ ≥ 1

2
(‖p‖2 − ‖p′‖2). (10)

Definition 3 Given p, p′ ∈ conv(S) is a p-witness (or simply witness) if the orthogonal
bisecting hyperplane to the line segment pp′ separates p from conv(S). Equivalently, p′ ∈
conv(S) is a p-witness if and only if d(p′, vi ) < d(p, vi ), for all i = 1, . . . , n.

Given a point p′ ∈ conv(S) that is neither an ε-approximate solution nor a witness, the
Triangle Algorithm finds a p-pivot v ∈ S. Then on the line segment p′v it compute the
closest point to p, denoted by Nearest(p; p′v). It then replaces p′ with Nearest(p; p′v)

and repeats the process. It is easy to show the following,

Proposition 1 If an iterate p′ ∈ conv(S) satisfies d(p′, p) ≤ min{d(p, vi ) : i = 1, . . . , n},
and v j is a p-pivot, then the new iterate

p′′ = Nearest(p; p′v j ) = (1 − α)p′ + αv j , (11)

α = (p − p′)T (v j − p′)
d2(v j , p′)

= pT v j − p′T v j − pT p′ + ‖p′‖2
‖v j‖2 − 2p′T v j + ‖p′‖2 . (12)

If

p′ =
n∑

i=1

αivi ,

n∑
i=1

αi = 1, αi ≥ 0, ∀i, (13)

then

p′′ =
n∑

i=1

α′
ivi , α′

j = (1 − α)α j + α, α′
i = (1 − α)αi , ∀i �= j . (14)

The correctness of the iterative step of the Triangle Algorithm is due to the following:

Theorem 1 (Distance duality) Exclusively, either for each p′ ∈ conv(S) there exists v j ∈ S
that is p-pivot, or there exists p′ ∈ conv(S) that is p-witness, i.e. d(p′, vi ) < d(p, vi ). ��
Theorem 2 Given ε > 0, in O(1/ε2) iterations the Triangle Algorithm computes a ε-
approximate solution, or it computes a witness. In particular, if p /∈ conv(S) and Δ =
min{d(x, p) : x ∈ conv(S)}, the number of iterations to compute a witness is O(R2/Δ2). ��

The straightforward implementation of each iteration of the Triangle Algorithm is easily
seen to take O(mn) arithmetic operations. The algorithm can be described as follows:
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Triangle Algorithm (S, p, ε ∈ (0, 1))

Step 0. Set p′ = argmin{d(vi , p) : vi ∈ S}.
Step 1. If d(p′, p) ≤ εR, then output p′ as an ε-approximate solution, stop.
Step 2. If a p-pivot v ∈ S exists, set p′ ← Nearest(p; p′v). Goto Step 1.
Step 3. Output p′ as p-witness. Stop.

Remark 1 In each iteration of the Triangle Algorithm it suffices to have a representation
of the iterate p′ in terms of vi ’s, i.e. p′ = ∑n

i=1 αivi , where
∑n

i=1 αi = 1, αi ≥ 0 for
all i = 1, . . . , n. It is not necessary to know the coordinates of p′. Rather it is enough to
have an array of size n to store the vector of αi ’s. Then assuming that we have stored pT vi ,
i = 1, . . . , n, we can compute the step size α [see (12)] and p′′ (the new iterate) in O(n)

time.

5 All vertex triangle algorithm (AVTA)

Given S = {vi ∈ R
m : i = 1, . . . , n}, let R be its diameter, i.e. R = max{d(vi , v j ), vi , v j ∈

S}. Denote the set of vertices of conv(S) by

S = {v1, . . . , vK }. (15)

A straightforward but naive way to compute S is to test for each vi if it lies in conv(S\{vi }),
to within an ε precision. For each vi this is an LP-feasibility problem. As usual, given rational
inputs, there is an ε0 so that any ε ≤ ε0 gives desired precision. Thus it suffices to call n
times the convex hull membership oracle. However, this is inefficient. In what follows we
describe AVTAwhich leverages on Triangle Algorithm asmembership oracle. The advantage
of Triangle Algorithm is that its Distance Duality allows AVTA to capture extreme points
strategically which leads to a more efficient complexity than the straightforward algorithm.

Definition 4 We say conv(S) is Γ∗-robust if

Γ∗ = min{d(vi , conv(S\{vi })) : i = 1, . . . , K }. (16)

As an example, given a trianglewith vertices v1, v2, v3,Γ∗ is theminimumof the distances
from each vertex to the line segment determined by the other vertices. Thus if other points
are placed inside the triangle Γ∗ will not be affected.

The following is immediate from Definition 4.

Proposition 2 Let Ŝ = {̂v1, . . . , v̂N } be a subset of S. Suppose conv(S) is Γ∗-robust. Given
v ∈ S\Ŝ, if for some γ ≤ γ∗ ≡ Γ∗/R we have d(v, conv(Ŝ)) < γ R, then v /∈ S.

Theorem 3 Let Ŝ = {̂v1, . . . , v̂N } be a subset of S. Given γ ∈ (0, 1), consider testing if a
given v ∈ S\Ŝ satisfies d(v, conv(Ŝ)) ≤ γ R/2. Suppose we are given p′ ∈ conv(Ŝ) for
which ‖p′‖2 as well as p′T v̂i , i = 1, . . . , N are computed. Then the number of operations
to check if d(v, conv(Ŝ)) ≤ γ R/2 satisfies

O

(
mK 2 + K

γ 2

)
. (17)

Proof Proof is immediate from Theorem 14 and the fact that N ≤ K . ��
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We now describe a modification of the Triangle Algorithm for computing all vertices
of conv(S). We call this All Vertex Triangle Algorithm or simply AVTA. Assume conv(S)

is Γ∗-robust, where Γ∗ may or may not be available. However, assume we have a constant
γ ∈ (0, 1) known to satisfy γ ≤ γ∗ = Γ∗/R. AVTAworks as follows.Given aworking subset
Ŝ of S, initially of cardinality N = 1 (see Proposition 3), a single vertex of S, it arbitrarily
selects v ∈ S\Ŝ. It then tests via the Triangle Algorithm if d(v, conv(Ŝ)) ≤ γ R/2. If so,
it discards v since by definition of γ it cannot belong to S (see Proposition 2). Otherwise,
it computes a v-witness p′ ∈ conv(Ŝ). It then sets c′ = v − p′ and maximizes c′T x where
x ranges in conv(S\Ŝ). The maximum value coincides with the maximum of c′T vi where
vi ranges in S\Ŝ. If the set of optimal solutions is denoted by S′, then conv(S′) is a face of
conv(S). A vertex v′ of conv(S′) is a point in S′ and is necessarily a vertex of conv(S). Such
a vertex can be computed efficiently. Having computed a new vertex v′ of conv(S), AVTA
replaces Ŝ with Ŝ ∪ {v′} and the process is repeated. However, if v coincides with v′ AVTA
selects a new point in S\Ŝ. Otherwise, AVTA continues to test if the same v (for which a
witness was found) is within a distance of γ R/2 of the convex hull of the augmented set Ŝ.
Also, as an iterate AVTA uses the same witness p′ as a warm up initialization. In doing so
each selected v ∈ S is either determined to be a vertex itself, or it will continue to be tested
if it is lies to within a distance of γ R/2 of the growing set Ŝ. If within γ R/2 distance, it
will be discarded before AVTA tests another point. We will describe AVTA more precisely.
However, we first prove the necessary results. The following Lemma is trivial and we omit
the proof:

Lemma 1 Let Ŝ = {̂v1, . . . , v̂N } be a subset of S. For a given v ∈ S\Ŝ suppose p′ ∈ conv(Ŝ)

is a v-witness. Let c′ = v − p′. Then

max{c′T x : x ∈ conv(S\Ŝ)} = max{c′T vi : vi ∈ S\Ŝ}, (18)

thus solving this linear program gives a new vertex.

Corollary 1 Let c′ = v − p′ be as in Lemma 1, p′ ∈ conv(Ŝ) for which ‖p′‖2 as well as
p′T v̂i , i = 1, . . . , N are computed. Then, max{c′T x : x ∈ conv(S\Ŝ)} can be computed in
O(nK ) operations.

Proof Since N ≤ K , for each i , c′T vi can be computed in O(K ) operations. ��
The next theorem is trivial and we omit the proof.

Theorem 4 Let S′ be the set of optimal solutions of max{c′T x : x ∈ S\Ŝ}. Let v′ ∈ S′ be a
vertex of conv(S′). Then v′ is a vertex of conv(S), i.e. v ∈ S = {v1, . . . , vK }.
The following shows computing a single vertex of conv(S) is trivial.

Proposition 3 Given any v in S, let Farthest(v, S) return a point in S that is farthest from
v. Then Farthest(v, S) is a vertex of conv(S), hence a member of S.

Proof If Farthest(v, S) is not a vertex of conv(S) it can be written as a convex combination
of two other points v1, v2 ∈ conv(S). But then Farthest(v, S) is not a vertex of the triangle
formed by v, v1, v2, a contradiction.

��
While Farthest(v, S) is a simple procedure to capture a vertex, the set of farthest points
of all vertices, in the worst case, could generate at most two vertices. In AVTA, it suffices
to start with one vertex using the above procedure which takes O(nm) operations. Next we
describe AVTA for computing all vertices of conv(S).
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AVTA (S, γ ∈ (0, 1))

Step 0. Set Ŝ = {Farthest(v, S)} for some v ∈ S.
Step 1. Arbitrarily select v ∈ S\Ŝ.
Step 2. Call Triangle Algorithm (Ŝ, v, γ /2).
Step 3. If the output p′ of Step 2 is a v-witness then Goto Step 4. Otherwise, p′
is a γ /2-approximate solution to v. Set S ← S\{v}. If S = ∅, stop. Otherwise,
Goto Step 1.
Step 4. Let c′ = v − p′.
Compute S′, the set of optimal solutions of max{c′T x : x ∈ S\Ŝ}. Arbitrarily
select v′ ∈ S′. v′ ← Farthest(v′, S′), Ŝ ← Ŝ ∪ {v′}.
Step 5. If v = v′, Goto Step 1. Otherwise, Goto Step 2.

Remark 2 Here we make remarks about the steps of AVTA. In Step 0 AVTA selects the first
vertex. In Step 1 it randomly select a v in S\Ŝ. In Step 2 AVTA checks if the point v selected
in Step 1 is sufficiently close to the convex hull of the current set of vertices, Ŝ. If so, in Step
3 v is discarded from further considerations. Otherwise, a v-witness p′ is at hand. Step 4 then
uses this witness to compute a direction, c′ = v − p′, where the maximization of c′T x gives
a subset S′ of S consisting of the optimal solutions. Then a vertex conv(S′) will necessarily
be a vertex of conv(S). A vertex of conv(S′) is selected by choosing an arbitrary v′ ∈ S′
and computing its farthest point in S′. It maybe the case that the vertex v′ found in Step 4
coincides with v. Step 5 checks if v′ = v in which case it select a new v in the updated S\Ŝ
in Step 1 for consideration. Otherwise, when this new vertex v′ is not v itself, in Step 5 in
AVTA v is sent back to Step 2 to be reexamined if v is within γ R/2 distance of the convex
hull of augmented Ŝ.

Example 1 We consider an example of AVTA, see Fig. 2. In this example S = {v1, . . . , v11}.
Note that the set of vertices is S = {v4, v10, v6, v1, v9, v2, v5, v8}. Suppose the current
working subset of vertices S consists of Ŝ = {v1, v9, v2, v5} and v = v3 is randomly selected
to be tested if it lies in conv(Ŝ). A witness p′ ∈ conv(Ŝ) is computed and with c′ = p′ − v

maximum of c′T x over conv(S\Ŝ) is attained at S′ = {v4, v7, v10}. Subsequently one of the
two points v4 or v10 will become the next vertex to be placed in Ŝ.

The following theorem is one of the main results:

Theorem 5 Let S = {v1, . . . , vn} ⊂ R
m. Let R be the diameter of S. Let S = {v1, . . . , vK }

be the set of vertices of conv(S).

(1) Given any prescribed t ∈ (0, 1) in

O

(
nK (t)(m + 1

t2
)

)
(19)

operations AVTA computes a subset S
t
of S of size K (t) so that the distance from each

p in conv(S) to conv(Ŝ) is at most t R.
(2) Furthermore, suppose that conv(S) isΓ∗-robust and letγ∗ = Γ∗/R.Givenγ ∈ (0, γ∗),

the arithmetic operations AVTA takes to computes S is:

O

(
nK (m + 1

γ 2 )

)
. (20)

123



Annals of Operations Research (2020) 295:37–73 49

v1
v2

v = v3

v9

v5

v7 v4v10

v6

p

v11

v8

Fig. 2 An example where Ŝ = {v1, v9, v2, v5}, then v = v3 is randomly selected from S\Ŝ and is tested if it
lies in conv(Ŝ). A witness p′ is found. Then using c′ − v − p′ the set S′ = {v4, v7, v10} is computed and one
of vertices of conv(S′), i.e. v4 or v10 is selected for inclusion in Ŝ

(3) If only K is known, the complexity of AVTA to compute S is

O

((
nK (m + 1

γ 2∗
)

)
log

1

γ∗

)
. (21)

Proof (1) For each input t ∈ (0, 1), AVTAcomputes a subset S
t
of Swith K (t) to approximate

conv(S) with t R precision. Initially in AVTA, the subset Ŝ consists of a single element of
S. It continues to grow and computes a subset S

t
of S with K (t) elements to ensure ∀v ∈ S

distance between v and conv(S) is at most t R. Since the number of vertices needed to
give a t R approximation is at most K (t), for each v ∈ S\Ŝ the cost of Step 2 in AVTA is
O(mK (t)2 + K (t)/γ 2). (Theorem 14 in “Appendix”). Here, (i i) in Theorem 2 is applied
with the fact that R/Δ ≤ 1/t . The needed inner products in Step 2 are v̂Ti v̂ j . However,
these inner products need to be computed only once and since there are at most K (t) of
v̂i ’s, these inner products can be computed at the cost of O(mK (t)2) operations. We can
store the values of the inner products in an array. Then we use them again as they arise
in subsequent iterations. This kind of storing can be done for other inner products that
may need to be computed in the course of the algorithm. When a selected v is within the
distance of t/2 to conv(Ŝ), Step 3 eliminates it from further considerations since v is well
approximated. If v is not eliminated, it either gives rise to a new vertex v′ ∈ S, or v is a
vertex itself. In either case, in order to identify a new vertex of S, after a witness has become
available, it requires the minimization of c′T vi as vi ranges over current set of vertices, S\Ŝ.
Since c′ = v − p′, p′ = ∑N

j=1 α j v̂ j , where N = |Ŝ|, the evaluation of c′T vi requires the

computation of vT vi , and vTi v̂ j , j = 1, . . . , N . This requires O(nm) operations. Since such
computation is only required of each vertex in S, over all the computation of all c′T vi requires
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O((n − K (t))mK (t)) = O(nmK (t)) operations. These together with Theorem 14 imply that
the over all complexity is O(mK (t)2+nmK (t)+nK (t)/γ 2)which is the claimed complexities
in (1). Next we prove for each p ∈ conv(S), the distance from p to conv(S) is at most t R.
To begin with, for the ‘missing vertices’, i.e. ∀vi ∈ S\St , we have d(v, conv(S

t
)) ≤ t R. For

and p ∈ conv(S), we have:

p =
K∑
i=1

αivi ,

K∑
i=1

αi = 1, αi ≥ 0. (22)

Thus

d(p, conv(S
t
)) ≤

K∑
i=1

αi d(vi , conv(St )) ≤
K∑
i=1

αi t R = t R (23)

(2) Since a value γ ≤ γ∗ is given, it suffices to apply proof of (1) with t = γ . Note that
in each time Step 3 eliminates v, v can not be a vertex as v is γ R/2 close to conv(Ŝ). By the
definition of γ∗, v can not be a vertex.

(3) When only K is known, we execute AVTA multiple times with different γ which
is initialized at 0.5. If we compute K vertices with this estimate of γ∗ = Γ∗/R, we stop.
Otherwise, we halve γ and repeat the process. Eventually in O(log(γ −1∗ )) calls to AVTA we
accumulate all K vertices in S. Note each call of AVTA takes O

(
nK (m + 1

γ 2∗
)
)
operations.

��
Remark 3 If neither K nor an estimate γ to γ∗ = Γ∗/R are known, initially we select t = 0.5
and with this value of t compute a subset of vertices with K (t) elements. We can then halve
t and repeat the process. Intuitively, if for two consecutive values of t no more vertices are
generated we can terminate the process, or decrease t by a factor of four. If Γ∗ is not too
small we will produce a reasonably good subset of S within a reasonable number of calls
to AVTA. In either case we are assured of an approximation of conv(S) according to (1) in
Theorem 5.

5.1 Application of AVTA in solving the convex hull membership

Suppose we wish to solve the convex hull membership problem: Test if a particular point
p lies in conv(S), S = {v1, . . . , vn}. This is equivalent to linear programming and thus
can be solved with variety of algorithms, including polynomial-time algorithms, the simplex
method, Frank–Wolfe, or triangle Algorithm. Whichever algorithm we use, the number n
plays a role in the complexity. Thus if we compute the set of vertices of conv(S), S, we can
then test if p lies in conv(S) with K instead of n. This approach may seem to be inefficient,
however depending upon the accuracy to which we wish to solve the problem and the size
of γ∗ it may result in a more efficient algorithm. The next theorem considers the application
of Theorem 5 in solving the convex hull membership problem.

Theorem 6 Let S = {v1, . . . , vn} ⊂ R
m. Let R be the diameter of S. Let S = {v1, . . . , vK }

be the set of vertices of conv(S). Suppose conv(S) is Γ∗-robust. Given any 0 < γ ≤ Γ∗/R,
the number of operations to test if for a given p ∈ R

m admits an ε-approximate solution is

O

(
nmK + nK

γ 2 + K

ε2

)
. (24)
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Proof To test if p admits an ε-approximate solution can be achieved by first computing the
vertices in S, followed by testing if p admits an ε-approximate solution in conv(S). From
Theorems 2 and 4 it follows that the total complexity is as claimed. ��
Remark 4 It is easy to check that for some values of ε < γ the computations of S followed by
testing if p lies in conv(S) could be more efficient than solving the convex hull membership
without computing S. This is especially true when K = o(n).

6 AVTA under input perturbation

As in the previous section, we assume S = {v1, . . . , vn} ⊂ R
m , R the diameter of S, and

S = {v1, . . . , vK } the set of vertices of conv(S). Assume conv(S) is Γ∗-robust.
As before we wish to compute S or a reasonable subset of it. However, in practice the

input set S may be not S but a perturbation of S. This changes the set of vertices, robust-
ness parameter and more. We wish to study perturbations under which we can recover the
corresponding perturbation of S and extend AVTA to computing this perturbation.

Definition 5 For a given ε ∈ (0, 1) the ε-perturbations of S is the set Sε defined as

Sε = {vε
1, . . . , v

ε
n}, ‖vi − vε

i ‖ ≤ εR. (25)

The ε-perturbations of S is the set Sε , denoted by

Sε = {vε
1, . . . , v

ε
K }, (26)

where vε
i is the perturbation of vi .

In practice we may be given Sε as opposed to S. The first question that arises is: What
is the relationship between the vertices of S and those of Sε? Without any assumptions, the
vertices of conv(Sε) could change drastically, even under small perturbations.

Example 2 Consider a triangle with three additional interior points, very close to its vertices.
It may be the case that even under small perturbation all six points become vertices, or that
the interior points become the new vertices while the vertices become the new interior points.
Thus there is a need to make some assumptions before we can say anything about the nature
of perturbed points.

We would hope that for appropriate range of values of ε, Sε would at least be a subset of
the set of vertices of Sε. First we need a definition.

Definition 6 We say conv(S) is Σ∗-weakly robust if

Σ∗ = min{d(v, conv(S\{v})) : v ∈ S}. (27)

Example 3 Suppose that S consists of the vertices of a non-degenerate triangle with vertices
v1, v2, v3. Suppose one additional point is placed inside the triangle. Then clearly Σ∗ < Γ∗.

More generally we have

Proposition 4 Given S = {v1, . . . , vn}, we have
Σ∗ ≤ Γ∗. (28)
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Other than the inequality in Proposition 4, Σ∗ and Γ∗ corresponding to the set S may
seem unrelated, however in the following theorem we establish a relationship between the
two that is useful in the analysis of AVTA for computing Sε.

Theorem 7 Let S and S be as before. Suppose conv(S) is Γ∗-robust, also Σ∗-weakly robust.
Let ρ∗ = min{d(vi , v j ) : vi , v j ∈ S, i �= j}. We have

Σ∗ ≥ ρ∗
R

Γ∗ = ρ∗γ∗. (29)

Proof For each vertex v ∈ conv(S), let Γv be the distance from v to the convex hull of the
remaining vertices in S. Specifically,

Γv = d(v, conv(S\{v})). (30)

Also let Σv be the distance from v to the convex hull of all other points in S. Specifically,

Σv = d(v, conv(S\{v})). (31)

Clearly we have,
Σv ≤ Γv. (32)

Assume v is a vertex for which Σv < Γv . If no such a vertex exists then Σ∗ = Γ∗ (see
Fig. 3). Let u be the closest point to v lying in the convex hull of the the other vertices of S.
Thus

Γv = d(v, u), u ∈ conv(S). (33)

Let Hu be the hyperplane orthogonal to the line segment vu, passing through u. By definition
of u and Carathéodorey’s theorem u is a convex combination of vertices of conv(S) lying on
Hu . Thus for some subset T of S lying on Hu

u =
∑

vi∈T⊂S

αivi ,
∑

vi∈T⊂S

αi = 1, αi ≥ 0. (34)

Figure 3 gives a depiction of this property for a simple example. In the example u is a con-
vex combination of v and v′, vertices of conv(S) lying in the intersection of Hu and conv(S).
Consider one of these vertices, say v. Moving the hyperplane Hu parallel to itself toward
v, it intersects the line segment uv at a unique point w that lies on a facet of conv(S\{v}).
Suchw exists becauseΣ∗ < Γ∗. In other words, if Hw is a hyperplane parallel to Hu passing
through w, then the region of conv(S) enclosed between the halfspace defined by Hw and v

contains no point of S in its interior (see shaded area in Fig. 3). This implies

Σv ≥ d(v,w). (35)

Now consider the intersection of Hw and each ray connecting v to vi ∈ T . Denote this
intersection by yi . In the figure the intersection of Hw and the ray connecting vv is denoted
by y. By definition of w and Carathéodorey’s theorem there must exist a point v j ∈ S lying
on Hw . Furthermore, v j can be written as a convex combination of all the yi ’s. Thus may
may write

v j =
∑

vi∈T⊂S

βi yi ,
∑

vi∈T⊂S

βi = 1, βi ≥ 0. (36)

Since by definition of ρ∗, d(v, v j ) ≥ ρ∗, at least for one yi we must have d(v, yi ) ≥ ρ∗. This
implies we could assume v was chosen so that the corresponding y satisfies

d(v, y) ≥ ρ∗. (37)
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Hu

v

vv
u

w yy
vj

Hw

Fig. 3 Given v ∈ S, u is its closet point in conv(S\{v}). v, v′ ∈ S are vertices of conv(S) lying on Hu ,
the orthogonal hyperplane to line segment uv at u. u is a convex combination of these vertices. Moving Hu
parallel to itself toward v, it intersects the line segment uv at a unique pointw lying on a facet of conv(S\{v}).
Thus interior of shaded region contains no point of S

From similarity of the triangles �vuv and �vwy we may write

d(v,w)

Γv

= d(v, y)

d(v, v)
. (38)

From the definition of R as the diameter of S, d(v, v) ≤ R. From (38), (35) and (37) it
follows that

Σv ≥ d(v,w) ≥ 1

R
d(v, y)Γv ≥ 1

R
ρ∗Γ∗. (39)

This means we have

Σ∗ ≥ 1

R
ρ∗Γ∗. (40)

��
In what follows we will derive complexity bounds for computing Sε. These complexities

will in particular depend on Σ∗ or any lower bound σ on σ∗ = Σ∗/R. Theorem 6 implies
that we can choose σ = ρ∗Γ∗/R.

The following theorem describes a simple condition under which the set of vertices of
conv(S) under perturbation remain to be vertices of the perturbed convex hull.

Theorem 8 Let S be as before, R diameter of S. Suppose conv(S) is Σ∗-weakly robust.
Suppose Sε is an ε-perturbation of S. Let σ be a positive number satisfying σ ≤ σ∗ = Σ∗/R.
Assume ε < σ/2. If v ∈ S is a vertex conv(S) and vε ∈ Sε its corresponding ε-perturbation,
then vε is a vertex of conv(Sε).

Proof Suppose vε is not a vertex of conv(Sε). Without loss of generality assume v = v1.
Hence, vε = vε

1. Thus vε ∈ conv(Sε\{vε}). We may write

vε =
n∑

i=2

αiv
ε
i ,

n∑
i=2

αi = 1, αi ≥ 0. (41)

Set

u =
n∑

i=2

αivi . (42)
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On the one hand we have

u − vε =
n∑

i=2

αi (vi − vε
i ). (43)

Then by the triangle inequality

‖u − vε‖ ≤
n∑

i=2

αi‖vi − vε
i ‖ ≤

n∑
i=2

αiεR = εR. (44)

On the other hand, v is in S. Without loss of generality assume v = v1. From this assumption
and since by (42) u ∈ conv(S\{v1}) we have

u =
K∑
i=2

γivi ,

K∑
i=2

γi = 1, γi ≥ 0. (45)

Since conv(S) is Σ∗-weakly robust on S and σ ≤ σ∗ = Σ∗/R we have,

‖u − v‖ ≥ σ R. (46)

However, from (44), the fact that ‖v − vε‖ ≤ εR and the triangle inequality we may write.

‖u − v‖ = ‖u − vε + vε − v‖ ≤ ‖u − vε‖ + ‖vε − v‖ ≤ εR + εR = 2εR. (47)

This contradicts the assumption that 2ε < σ . Hence vε is a vertex of conv(Sε). ��
Remark 5 The theorem implies that if the input to AVTA is Sε instead of S, AVTA will still
return at least K vertices. However, the set of vertices of conv(Sε) may have more elements
than K , possibly all of Sε. Moreover, the weakly robustness parameter Σ∗ will change. We
thus need to revise AVTA if we wish to extract the subset Sε = {vε

1, . . . , v
ε
K } from the set of

vertices of conv(Sε).

In what follows we will first show how under a mild assumptions on the relationship
between Σ∗/R and ε, AVTA can compute a subset Ŝε of the vertices of conv(Sε) containing
Sε (Theorem 9). We then show how AVTA can efficiently extract from Ŝε the desired set,
namely Sε . The next lemma establishes a lower bound on the week-robustness of conv(Sε).
It also shows how spurious vertices of conv(Sε) are situated with respect to the convex hull
of the remaining vertices. This will be used in Theorem 9 in pruning such vertices.

Lemma 2 Suppose conv(S) is Σ∗-weakly robust. Suppose ε < Σ∗/2R. Let vε be any point
in Sε. Let Ŝε) be any subset of vertices of conv(Sε) containing Sε). Then,

d(vε, conv(Ŝε)) ≥ (Σ∗ − 2εR). (48)

Moreover let v̂ε be any (spurious) point in Ŝε\Sε . Then

d (̂vε, conv(Ŝε\{̂vε})) ≤ εR. (49)

Proof By Theorem 8, Sε is a subset of vertices of conv(Sε). Given vε ∈ Sε , let v be the
corresponding vertex in S. Given wε in conv(Sε\{vε}), let w in conv(S\{v}) be the corre-
sponding point, i.e. defined with respect to the same convex combination of corresponding
vertices. Then

‖v − vε‖ ≤ εR, ‖w − wε‖ ≤ εR. (50)
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From the above it is easy to show

|d(v,w) − d(vε, wε)| ≤ 2εR. (51)

But this implies
d(v,w) − d(vε, wε) ≤ 2εR. (52)

Equivalently,
d(v,w) − 2εR ≤ d(vε, wε). (53)

But d(v,w) ≥ σ∗R = Σ∗. This proves (48).
To prove (49), let v̂ be the point in S corresponding to v̂ε . We have

v̂ =
K∑
i=1

αivi ,

K∑
i=1

αi = 1, αi ≥ 0. (54)

Define

ŵ =
K∑
i=1

αiv
ε
i ,

K∑
i=1

αi = 1, αi ≥ 0. (55)

It is now easy to show

‖̂vε − ŵ‖ ≤ ‖̂vε − v̂‖ + ‖̂v − ŵ‖ ≤ 2εR. (56)

This proves (49). ��
Theorem 9 Let S = {v1, . . . , vn} ⊂ R

m. Assume conv(S) is Σ∗-weakly robust. Suppose
ε ≤ Σ∗/4R.

(i)Given any t ∈ (0, 1), AVTA can be modified to compute a subset S
t
ε of the set of vertices

of conv(Sε) of cardinality K
(t)
ε so that the distance from each point in conv(Sε) to conv(S

t
ε)

is at most t . In particular, the distance from each point in conv(S) to conv(Stε) is at most

(t + ε)R. The complexity of the computation of S
t
ε is

O

(
nK (t)

ε

(
m + 1

t2

))
. (57)

(ii)Given σ satisfying, 4ε ≤ σ ≤ σ∗ = Σ∗/R, AVTA can be modified to compute a subset
Ŝε of the set of vertices of Sε containing Sε , then compute from this subset Sε itself. If Kε is
the cardinality of Ŝε, the total number of operations satisfies

O

(
nKε

(
m + 1

σ 2

))
. (58)

(iii) Given γ , satisfying 4ε ≤ γρ∗ ≤ Γ∗ρ∗/R = γ∗ρ∗, AVTA can be modified to compute
a subset Ŝε of the set of vertices of Sε containing Sε , then compute from this subset Sε itself.
If Kε is the cardinality of Ŝε the total number of operations satisfies

O

(
nKε

(
m + 1

(ρ∗γ )2

))
. (59)

(iv) Given only K , where 4ε ≤ Σ∗/R, the number of operations of AV T A to computes
Sε is.

O

(
nKε

(
m + 1

σ 2∗

))
log

(
1

σ∗

)
. (60)
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Proof By Theorem 8, Sε is a subset of vertices of conv(Sε). Let σ◦ = (Σ∗ − 2εR)/R. Then
since ε ≤ Σ∗/4R, σ◦ ≥ Σ∗/2R. Then by Lemma 2, for each vε ∈ Sε, we have

d(vε, conv(Sε\{vε}) ≥ Σ∗/2R. (61)

Now consider a modification of AVTA that replaces γ /2, by σ/2. Such modified AVTA will
compute a subset Sε of vertices of conv(Sε) that must necessarily contain Sε . Analogous to
Theorem 5, (2), the complexity of this part is as stated in part (ii) of the present theorem.

Now consider conv(Ŝε) and assume vε is a vertex of it within a distance of less than σ/2,
say σ/4. Then by Lemma 2, vε /∈ S

ε
. We can thus apply the Triangle Algorithm to remove

any vertex of conv(Ŝε) that is within a distance of less than σ/2 of the convex hull of the
other vertices in conv(Ŝε). Again analogous to Theorem 5 the over all complexity of this
step is bounded by

O

(
mK 2

ε + K 2
ε

σ 2◦

)
= O

(
mK 2

ε + K 2
ε

σ 2

)
. (62)

This is dominated by the complexity of the first part. This proves (i). Proof of (ii) follows
from Theorem 7, (29), that γρ∗ ≤ σ∗.

To prove (iv), we start by σ = 1/2 and run AVTA. Then as previous case prune unwanted
vertices. If we end up with Sε , we are done. If not, we repeat the process with σ = 1/4 and
so on. Eventually we will recover Sε .

The proof of (i) is analogous to the proof of Theorem 8, part (3). ��

Remark 6 Ideally, Kε is within a constant multiple of K , in which case the complexities are
analogous to those of Theorem 5. In the worst-case Ŝε = Sε, i.e. Kε = n. On the other
hand, ignoring the size of Kε , suppose σ◦ ≥ (

√
n/K )ε, then the complexity of generating

the vertices of conv(Sε) is

O

(
nmKε + nK

ε2

)
. (63)

7 Triangle Algorithmwith Johnson–Lindenstrauss projections

Consider again S = {v1, . . . , vn} ⊂ R
m . We wish to compute the subset S = {v1, . . . , vK }

of all vertices of conv(S). Johnson–Lindenstrauss lemma (Johnson and Lindenstrauss 1984)
allows embedding the n points of S in an m′-dimensional Euclidean space, where R

m′
,

m′ < m, via a randomized linear map so that the distances between every pair of points in
S and those of their images in R

m′
remain approximately the same, with high probability.

More specifically, there is a universal constant c such if ε′ satisfies,

c log n

m
≤ ε′2 < 1, (64)

and m′ < m is an integer satisfying

m′ ≈ c log n

ε′2 , (65)

then there exists a randomized linear map L : Rm → R
m′

so that if ui = L(vi ), and

U = L(S) = {u1, . . . , un} ⊂ R
m′

, (66)
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then for for each i, j ∈ {1, . . . , n} we have

Pr

(
d(vi , v j )(1 − ε′) ≤ d(ui , u j ) ≤ d(vi , v j )(1 + ε′)

)
> 1 − 2

n
. (67)

The projection of each point takes O(m log n) operations so that the overall number of
operations to project all the n points is

O(nm log n). (68)

In this section we consider computing S, the set of vertices of conv(S) by using the
Johnson–Lindenstrauss projections and then computing the set of vertices of conv(U ) via
AVTA. Let U denote the set of vertices of conv(U ) and let its cardinality be K ′. First we
state some properties of conv(U ).

Lemma 3 Given v ∈ S, L : Rm → R
m′
, a randomized linear map, suppose u = L(v) is a

vertex of conv(U ). Then v is a vertex of conv(S).

Proof Suppose v is not a vertex of conv(S). Then v = ∑n
i=1 αivi ,

∑n
i=1 αi = 1, αi ≥ 0,

i = 1, . . . , n, with some 0 < α j < 1. By linearity of L we have

u = L(v) =
n∑

i=1

αi L(vi ) =
n∑

i=1

αi ui . (69)

This implies u is not a vertex of conv(U ), a contradiction. ��
The next theorem gives an estimate of the robustness parameters of conv(U ) in terms of

those conv(S).

Theorem 10 Suppose conv(S) is Γ∗-robust and Σ∗-weakly robust. Let U = L(S), L a
randomized linear map, L : Rm → R

m′
. Let m′ and ε′ be related as in (65). If conv(U ) is

Γ ′∗-robust, Σ ′∗-weakly robust, then with probability at least (1 − 2/n), we have

Γ ′∗ ≥ Γ∗(1 − ε′), Σ ′∗ ≥ Σ∗(1 − ε′). (70)

Proof Suppose u is a vertex of conv(U ) and Û a subset of its vertices not containing u. Let v
and Ŝ be the preimages of u and Û under the linear map L . By Lemma 3 v and the elements
of Ŝ are all vertices of conv(S). From (67) it is easy to argue that with probability at least
(1 − 2/n) we have

d(u, conv(Û )) ≥ d(v, conv(Ŝ))(1 − ε′). (71)

The claimed inequalities follow. ��
From Theorem 10 and Theorem 5 we can state the following:

Theorem 11 Given S = {v1, . . . , vn} ⊂ R
m let U = L(S) = {u1, . . . , un} ⊂ R

m′
, L a

randomized linear map, m′, ε′ as before. Let U = {u1, . . . , uKε′ } be the set of vertices of
conv(U ). Suppose conv(S) is Γ∗-robust and conv(U ) is Γ ′∗-robust. Then with probability at
least (1 − 2/n),

(1) The number of arithmetic operations of AVTA to compute U is

O

(
nKε′(m′ + nKε′ R2

Γ ′2∗
)

)
= O

(
n log nKε′

ε′2 + nKε′

γ 2∗ (1 − ε′)2

)
. (72)
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(2) Given any prescribed positive t ∈ (0, 1), AVTA in

O

(
nK t

ε′(m′ + 1

t2
)

)
= O

(
n log nK t

ε′
ε′2 + nK t

ε′
t2

)
(73)

operations can compute a subset U
t
of U of size K t

ε′ so that the distance from each

point in conv(U ) to conv(U
t
) is at most t . �

Remark 7 The results in this section and the above theorem suggest a heuristic approach
as an alternative to using AVTA directly to compute all the vertices of conv(S): Compute
U = L(S), the Johnson–Lindenstrauss projection of S under a randomized linear map L .
Then apply AVTA to compute all the vertices of conv(U ), U . This identifies |U | ≤ K
vertices of conv(S). Next move up to the full dimension and continue with AVTA to recover
the remaining vertices of conv(S). Alternatively, we can repeat randomized projections and
compute the corresponding vertices. We would have to delete duplications which is not
difficult, given that we store the computed vertices via their vector of representation of convex
combination coefficients. We would expect that when sufficient number of projections are
applied all vertices of conv(S) can be recovered. However, in the remaining of the section we
analyze the probability that under a random projection, the projection of a vertex of conv(S)

is a vertex of the projection.

In what follows we first state a result on Johnson–Lindenstrauss random projections on the
convex hull membership problem from Vu et al. (2017). Next we state an alternative result.

Proposition 5 (Vu et al. 2017, Proposition 3.3) Given S = {v1, . . . , vn} ⊂ R
m, p ∈ R

m

such that p /∈ conv(S), let d = min{d(p, x) : x ∈ conv(S)} and D = max{d(p, vi ) : i =
1, . . . , n}. Let T : Rm → R

k be a random linear map. Then

Prob

(
T (p) /∈ T (conv(S))

)
≥ 1 − 2n2e−c(ε2−ε3)k (74)

for some constant c (independent of m, n, k, d, D) and ε < d2/D2.

Remark 8 Note that k = O(ln n/ε2) = O(ln nD4/d4).

The following is an alternative to Proposition 5 based on the Distance Duality theorem
(1) and generally gives a better estimate of ε, hence a smaller k than Proposition 5.

Theorem 12 Given S = {v1, . . . , vn} ⊂ R
m, p ∈ R

m such that p /∈ conv(S), let
d = min{d(p, x) : x ∈ conv(S)}, p∗ = argmin{d(p, x) : x ∈ conv(S)} and
D = max{d(p, vi ) : i = 1, . . . , n}. Let

E = min

{
d(p, vi )

d(p∗, vi )
: i = 1, . . . , n

}
. (75)

Let T : Rm → R
k be a random linear map. Then

Prob

(
T (p) /∈ T (conv(S))

)
≥ 1 − 2n2e−cε2k, (76)

for some constant c (independent of m, n, k, d, D) and ε < (E − 1)/(E + 1). Furthermore,
(E − 1)/(E + 1) > d2/4D2.
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Proof Since p∗ is the closest point to p in conv(S), it is easy to show that it is a p-witness,
i.e.

d(p∗, vi ) < d(p, vi ), ∀i = 1, . . . , n. (77)

Let p = T (p), p∗ = T (p∗), and for i = 1, . . . , n, vi = T (vi ). We now consider the
set of n + 1 points {v0 = p, v1, . . . , vn} and their random projections and find condition
on ε such that p∗ will be an p-pivot with respect to T (conv(S)), probabilistically. By the
Johnson–Lindenstrauss Lemma we have,

Prob

(
(1 − ε)d(vi , v j ) ≤ d(vi , v j ) ≤ (1 + ε)d(vi , v j )

)
≥ 1 − 2(n + 1)2e−cε2k, (78)

for some constant c (independent of m, n, k). From (78) and definition of E , for each i =
1, . . . , n with probability at least 1 − 2(n + 1)2e−cε2k we have,

d(p∗, vi ) ≤ (1 + ε)d(p∗, vi ) ≤ (1 + ε)

E
d(p, vi ) ≤ (1 + ε)

(1 − ε)

1

E
d(p, vi ). (79)

Note that assuming n ≥ 2, 1 < E < ∞. We thus restrict ε to satisfy

(1 + ε)

(1 − ε)

1

E
< 1. (80)

Equivalently,

ε <
E − 1

E + 1
. (81)

Thus with ε satisfying the above, p∗ is a witness with high probability.
Next we find a lower bound on the right-hand-side of the above. Since E is finite,

E = d(p, v j )/d(p∗, v j ) for some j , i.e. p∗ �= v j . Consider the triangle with vertices
p, v j and p∗. With d(p, p∗) and d(p, v j ) fixed, the maximum value of d(p∗, v j ) is√
d2(p, vi ) − d2(p, p∗). Using this we may write

E = d(p, v j )

d(p∗, v j )
≥ d(p, v j )√

d2(p, vi ) − d2(p, p∗)
= 1√

1 − d2(p, p∗)/d2(p, v j )

. (82)

But d(p, p∗) = d and d(p, v j ) ≤ D. Thus

E ≥ 1√
1 − d2/D2

= D√
D2 − d2

. (83)

The function (x − 1)/(x + 1) is monotonically increasing. Thus from (84) we have

E − 1

E + 1
≥ D − √

D2 − d2

D + √
D2 + d2

= d2

(D + √
D2 − d2)2

≥ d2

4D2 . (84)

��
Remark 9 We would expect that (E −1)/(E +1) is generally a larger number than d2/4D2.
Thus Theorem 12 gives generally a better estimate of ε and k than those of Proposition 5.
An additional advantage of Theorem 12 is that it shows the applicability of the Triangle
Algorithm in solving the convex hull membership problem using random projections.

We now state a corollary of the theorem on computation of all vertices of conv(S).
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Corollary 2 Given S = {v1, . . . , vn} ⊂ R
m, suppose conv(S) is Γ∗-robust. Let R be the

diameter of S. Suppose v j is a vertex of conv(S). Let T : Rm → R
k be a random linear

map. Then the probability that T (v j ) is a vertex of T (conv(S)) is at least 1− 2n2e−cε2k , for
some constant c (independent of m, n, k) and ε < γ 2∗ /4.

Proof We apply the previous theorem with v j as b and considering the probability that under
a random projection of v j lies in projection of the convex hull of the remaining points.
Note that d(v j , conv(S\{v j }) ≥ Γ∗ and max{d(v j , vi ) : vi ∈ S\{v j } ≤ R. Thus we
can replace for b/D in (84) in the previous theorem by γ∗ = Γ∗/R. Thus we can write
(E − 1)/(E + 1) ≥ γ 2∗ /4. This gives the upper bound on ε. ��

7.1 AVTA under perturbation and Johnson–Lindenstrass projection

Let Sε be as before andUε, a subset ofRm′
the perturbation ofU . LetU ε be the perturbation

of U . Based on the results in this section and previous complexity bounds we have

Theorem 13 Let S = {v1, . . . , vn} ⊂ R
m. Assume conv(S) is Σ∗-weakly robust. Suppose

ε < Σ∗/4R. Let σ◦ = (Σ∗ − 2εR)/R = σ∗ − 2ε. Then with probability at least (1 − 2/n),

(i) AVTA can be modified to compute a subset Ûε of Uε, of cardinality Kεε′ such that it
containsU ε . Then AVTA can compute from this subset U ε itself, where the total number
of operations satisfies

O

(
nm′Kεε′ + nKεε′

σ 2◦ (1 − ε′)2

)
= O

(
n log nKεε′

ε2
+ nKεε′

σ 2◦ (1 − ε′)2

)
. (85)

(ii) Given any prescribed positive t ∈ (0, 1), in

O

(
n log nK (t)

εε′
ε2

+ nK (t)εε′

σ 2◦(1 − ε′)2

)
(86)

operations the modified AVTA can compute a subset U t
ε of U ε of size K (t)

εε′ so that the
distance from each point in conv(Uε) to conv(Ut

ε) is at most t .

8 Applications

While the modified AVTA algorithm comes with theoretical guarantees, in certain cases the
algorithm might output many more vertices, Kε, than desired. Here we present a practical
implementation that always outputs exactly K vertices, provided K is known. When K is
unknown, our experiments in the next section reveal that the algorithm can automatically
detect a slightly larger set that contains a good approximation to the K vertices of interest.
Notice that we want a fast way to detect good approximations to the original vertices of the
set S and prune out spurious points, i.e., additional vertices of the set Sε. The key insight
on top of the AVTA algorithm is the following: If the perturbed set is randomly projected
onto a lower dimensional space, it is more likely for an original vertex to still be a vertex
than for a spurious vertex. Using this insight the algorithm outlined below runs the modified
AVTA algorithm over several random projections and outputs the set of points that appear as
vertices in many random projections.
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AVTA with multiple random projections (S = {v1, . . . , vn}, K , γ , M)

Step 0. Set Freq ← 0|S|.
Step 1. For i = 1 to M :

S′ ← S: Project data on to randomly chosen 4log(n)

ε2
dimensions.

– Ŝ ← AVTA(S′, γ )

– For each d j ∈ Ŝ, Freq[ j] = Freq[ j] + 1.

Step 2. Output top K frequent vertices.

WenowshowhowAVTAcanbe used to solve various problems in computational geometry
and machine learning.

Application of AVTA in linear programming Consider linear programming feasibility
problem of testing if P = {x ∈ R

n : Ax = b, x ≥ 0} is nonempty, where A is m × n,
b ∈ R

n . Suppose n is much larger than m. If we reduce the size of A the problem would be
more efficiently solvable, no matter what algorithm we use to solve it.

Proposition 6 Given P = {x ∈ R
n : Ax = b, x ≥ 0}, let conv(A) denote the convex hull

of columns of A. Let A′ denote the m × n′ submatrix A whose columns form the set of all
vertices of conv(A). Let

P ′ = {x ′ ∈ R
n′ : A′x ′ = b, x ′ ≥ 0}. (87)

Then P is feasible if and only P ′ is feasible.

Proof Clearly, if P ′ is feasible then P is feasible. Assume P is feasible. Thus for some
x ∈ R

n , x ≥ 0, Ax = b. Denote the columns of A by a(i). Then each a(i) is a convex
combination of columns of A′. That is, for each i = 1, . . . , n, there exists

α(i) ∈ Sn′ = {s ∈ R
n′ :

n′∑
i=1

si = 1, s ≥ 0}, (88)

where
a(i) = A′α(i). (89)

Thus

Ax =
n∑

i=1

xia
(i) =

n∑
i=1

xi A
′α(i) = A′

n∑
i=1

xiα
(i). (90)

Letting

x ′ =
n∑

i=1

xiα
(i), (91)

A′x ′ = b, x ′ ≥ 0. ��
Proposition 7 Assume P = {x ∈ R

n : Ax = b, x ≥ 0} is nonempty. Consider the linear
program min{cT x : x ∈ P}. Let B be the (m + 1) × n matrix whose first row is cT and the
remaining rows are A. Let B ′ be the (m + 1) × n′ matrix whose columns form the vertices
of the convex hull of the columns of B. Let c′T be the first row of B ′ and A′ the remaining
m × n′ submatrix of B ′. Then

min{cT x : Ax = b, x ≥ 0} = min{c′T x : A′x ′ = b, x ′ ≥ 0}. (92)
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Proof Consider any feasible solution x0 of original LP. Then by Proposition 6 the set {c′T x ′ =
cT x0, A′x ′ = b, x ′ ≥ 0} is feasible. This implies the original LP has a finite optimal value if
and only if the restricted problem does. In particular, the optimal objective values of the two
problems coincide. ��

The above propositions imply that AVTA has potential applications in the reduction of the
LP feasibility or optimization, whether we solve the problem via simplex method or other
methods.

AVTA for topic modeling in the presence of anchor words Arora et al. (2013) provide
a practical algorithm for topic modeling with provable guarantees. Their algorithm works
under the assumptions that the topic-word matrix is separable. In particular, they assume that
corresponding to each topic i , there exists an anchor word wi that has a non zero probability
of appearing only under topic i . Under this assumption, the algorithm of Arora et al. (2013)
consists of two stages: a) find the anchor words, and b) use the anchor words to learn the
topic word matrix. The problem of finding anchor words corresponds to finding the vertices
of the convex hull of the word-word covariance matrix. They propose an algorithm named
fast anchor words in order to find the vertices. Since AVTA works in general setting, we can
instead use AVTA to find the anchor words. Additionally, the fast anchor words algorithm
needs to know the value of the number of anchor words, as an input. On the other hand,
from the statements of Theorems 5 and 9 it is easy to see that AVTA can work in a variety
of settings when other properties of the data are known such as the robustness. We argue
that robustness is a parameter that can be tuned in a better manner than trying different
values of the number of anchor words. In fact, one can artificially add random noise to the
data and make it robust up to certain value. One can then run AVTA with the lower bound
on robustness as input and let the algorithm automatically discover the number of anchor
words. This is much more desirable in practical settings. Our first implementation of AVTA
is named AVTA+RecoverL2 that uses AVTA to detect anchor words and then uses the anchor
words to learn the topic word matrix using the approach from Arora et al. (2013). AVTA is
also theoretically superior than fast anchor words and achieves slightly better run times in
the regime when the number of topics is o(log n), where n is the number of words in the
vocabulary. This is usually the case in most practical scenarios.

AVTA for topic modeling in the absence of anchor words The presence of anchor words
is a strong assumption that often does not hold in practice. Recently, the work of Bansal
et al. (2014) designed a new practical algorithm for topic models under the presence of
catch words. Catch words for topic i correspond to set Si such that its total probability
of appearing under topic i is significantly higher than in any other topic. Their algorithm
called TSVD recovers much better reconstruction of the topic-word matrix in terms of the
�1 error. They also assume that for each topic i , there are a few dominant documents that
mostly contain words from topic i . The TSVD algorithm works in two stages. In stage 1,
the (thresholded) word-document data matrix is projected onto a K -SVD space to compute
a different embedding of the documents. Then, the documents are clustered into K clusters.
Under the assumptions mentioned above, one can show that the dominant documents for
each topic will be clustered correctly. In stage 2, a simple post processing algorithm can
approximate the topic-word matrix from the clustering.

We improve onTSVDby asking the following question: is K -SVD the right representation
of the data?. Our key insight is that if dominant documents are present in the topic, it is easy
to show that most other documents will be approximated by a convex combination of the
dominant topics. Furthermore, the coefficients in the convex combinations will provide a
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much more faithful low dimensional embedding of the data. Using this insight, we propose a
new algorithm that runs AVTA on the data matrix to detect vertices and to approximate each
point using a convex combination of the vertices.We then use the coefficientmatrix as the new
representation of the data that needs to be clustered. Once the clustering is obtained, the same
post processing step from Bansal et al. (2014) can be used to recover the topic-word matrix.
Our results show that the embedding produced by AVTA leads to much better reconstruction
error than of that produced by TSVD. Furthermore, K -SVD is an expensive procedure and
very sensitive to the presence of outliers in the data. In contrast, our new algorithm called
AVTA+CatchWord is much more stable to noise in the data.

AVTA+CatchWord (S = {v1, . . . , vn}, γ , K , ε)

Step 0. Randomly project S onto 2K dimensions to get Ŝ.
Step 1. Compute a a super set of vertices V̄ by AVT A(Ŝ, γ ).
Step 2. Prune V̄ into V̂ (of size K ) by iteratively picking v̄ ∈ {V̄ }/{V̂ } which
has the maximum distance to conv(V̂ ).
Step 3. For each projected point v̂i ∈ Ŝ\V̂ , compute a vector αi such that
‖V̂αi − v̂i‖ ≤ ε.
Step 4. Initialize cluster assignment for each point by majority weight:
argmax
j∈[K ]

α j .

Step 5. Perform clustering using Lloyds algorithm on the embedding provided
by the α vectors.
Step 6. Use the post processing as described in Bansal et al. (2014) to recover
the topic-word matrix from the clustering.

AVTA for NMF The work of Arora et al. (2012a) showed that convex hull detection can be
used to solve the non-negative matrix factorization problem under the separability assump-
tion. We show that by using the more general AVTA algorithm for solving the convex hull
problem results in comparable performance guarantee.

9 Applications and experiments1

9.1 Feasibility problem

In this section, we present experimental results which empirically show when the problem
is ’over complete’, AVTA can be a ’shortcut’ solution. In another word, given an m × n
matrix A as data, where the convex hull of the columns of A, denoted by conv(A), has K
vertices, K � n. We apply the AVTA to solve 2 classical problems which appear in many
applications.

Convex hull membership problem In the experiments, vertices of the convex hull are
generated by the Gaussian distribution, i.e. vi ∼ N (0, Im), i ∈ [K ]. Having generated
the vertices, the ’redundant’ points d j where d j ∈ conv(S), j ∈ [n − K ] are produced
using random convex combination d j = ∑K

i=1 αivi . Here αi are scaled standard uniform
random variable where αi are scaled so that

∑K
i=1 αi = 1. Specifically, comparison is by

fixing K = 100, m = 50 and n varying from 5000 ∼ 500,000. We compare the efficiency

1 Resources: https://github.com/yikaizhang/AVTA.
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Table 2 Running time of convex
hull membership (s)

# of redundant pts AVTA TA FW Simplex

5000 1.75 0.21 0.52 0.9

20,000 1.49 0.66 1.94 2.76

45,000 2.94 1.84 5.51 6.16

80,000 2.71 3.22 10.87 10.63

125,000 3.83 4.28 17.67 15.95

180,000 4.15 5.38 23.14 24.13

245,000 6.95 9.56 33.42 36.96

320,000 8.09 13.24 44.99 44.26

405,000 10.01 14.75 56.35 59.5

500,000 14.12 15.69 70.7 90.41

of 4 algorithms on solving this problem: the Simplex method (Chvatal 1983), the Frank
Wolfe Algorithm (FW) (Jaggi 2013), the Triangle Algorithm (TA) (Kalantari 2015), and
our algorithm on solving the convex hull membership query problem.

Results on convex hull membership query Table 2 shows when n � K , AVTA is more
efficient than other algorithms solving the convex hull membership problem. This result
supports the output sensitivity property of AVTA.

Linearprogramming feasibilityLinear programming feasibility problem is tofind a feasible
solution of :

Aα = p, α ≥ 0. (93)

In another word, to test if p ∈ cone(A j ) where A j are columns of A. In case when A is
over complete, any feasible p can be represented using only the generators of cone(A) the
set Ā ⊂ A. By scaling A so that columns of AD (Dii = b

a·Ai
) are in a m − 1 dimensional

hyperplane 〈a, α〉 = b, one can find the generators of cone(A) by finding the vertices of the
convex hull of the projected points. This could be done efficiently by AVTA. Suppose we
have a linear system A and series of query points p , it is sufficient to run AVTA once for
dimension reduction and solve the subproblem Āα′ = p, α′ ≥ 0 using simplex method.
We compare the running time of Simplex Method with AVTA+Simplex Method. The gener-
ator Ā is entrywise independent uni f orm(0, 1) random matrix and the ’overcomplete’ part
of the matrix Āc = A/ Ā are generated by Āc = ĀB where B ∈ R

K×(n−K ) is entrywise
independent uni f orm(0, 10) random matrix. We set the number of generators K = 100,
the dimension m = 50, and the number of ’redundant’ columns n = 50,000. We simply
set half of the query points feasible and rest infeasible. The feasible points p are generated
as p = Ax where x ∈ R

n is entrywise independent uni f orm(0, 1) random vector and the
infeasible points are generated in the same way as generators.

It can be observed from Fig. 4a and Table 3 that the running time of AVTA+Simplex
doesn’t have obvious increasewhile Simplex increases drastically. This suggests the potential
applications of AVTA in linear programming feasibility problem.

9.2 Computing all vertices

Compute vertices of convex hull In this section, we compare the efficiency of AVTA with
another popular algorithm for finding vertices Quickhull (Barber et al. 1996). We generate
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Fig. 4 a Running time for algorithms to find a feasible solution b Running time for algorithms to find all
vertices

Table 3 Running time of linear programming feasibility (s)

# of query AVTA + simplex Simplex # of query AVTA + simplex Simplex

1.00 241.24 152.09 11.00 241.94 1810.72

2.00 241.36 303.86 12.00 242.01 1967.93

3.00 241.41 477.89 13.00 242.07 2125.62

4.00 241.45 660.95 14.00 242.16 2289.91

5.00 241.54 853.91 15.00 242.23 2490.52

6.00 241.61 1016.77 16.00 242.29 2680.61

7.00 241.69 1177.30 17.00 242.32 2866.23

8.00 241.72 1336.38 18.00 242.41 3065.50

9.00 241.83 1495.70 19.00 242.44 3245.78

10.00 241.91 1652.84 20.00 242.47 3412.39

vertices according to a Gaussian distribution N (0, 10)m . Having generated K such points,
n interior points are generated as convex combination of the vertices, where the weights are
generated scaled i.i.d uniform distribution.

Experiment and results In the experiment, we set K = 100, n = 500 and m varying from
2 ∼ 12. 2

The computational results is shown in Table 4. In high dimension m ≥ 9, when conv(S) is
γ robust for some γ > 0, the AVTA algorithm successfully find all vertices of the convex
hull efficiently while the Quick hull algorithm is stuck by its explosion of complexity in
dimension m.

Compute vertices of simplex in high dimension The Fast Anchor Word can be used to
detect the vertices of a simplex. In this section, we compare the efficiency of AVTA with
Fast Anchor Word when convex hull is a simplex with K = 50 and m = 100. The number
of points in the convex hull n varies from 100∼100,000.

2 The maximum of dimension is 12 in the experiment because of the explosion of running time of the Quick
hull algorithm
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Table 4 Running time (s) Dim Qhull AVTA Dim Qhull AVTA

2 0.13 14.82 7 2.92 41.51

3 0.02 16.62 8 16.48 39.63

4 0.04 24.49 9 82.09 44.21

5 0.12 32.76 10 391.36 45.79

6 0.59 37.66 11 1479.51 51.19

Results of running time in simplex case The running of efficiency comparison between
AVTA and Fast Anchor Word in simplex case is presented in Fig. 5c. In regime n ≥ 30,000,
AVTA has less running time.
Compute vertices with perturbation In this section, we compare the robustness of AVTA
with multiple random projections presented in Sect. 8 with Fast Anchor Word (Arora et al.
2013). Instead of actual set of points S as input, the algorithm is given a perturbed set S◦,
i.e. S is corrupted by some noise. Having fixed K = 100, n = 500, m = 100 , we choose
a Gaussian perturbation from N (0, τ )m where τ varies from 0.3 to 3. In case of general
convex hull, a failure of Fast Anchor Word on computing vertices of general convex hull is
presented. The data is generated by setting τ = 0.3, m = 50, n = 500 and let K varies from
10 ∼ 100.We do an error analysis and evaluate the output of the algorithms bymeasuring the
l2 distance between true vertices and the convex hull of output vertices of the two algorithms.
More precisely, given a true vertex vi ∈ S and Ŝ, the output of an algorithm, the error in
recovering vi is defined to be minu∈conv(Ŝ) ||u − vi ||2. We add up all the errors to get the
total accumulated error.

Results on computing perturbed vertices
The recovery error in robustness comparison is shown in Table 5. The AVTA with multiple
random projection has a better recovery error in the simplex case.

It can also be observed from Fig. 5b that in general case, as number of vertices exceeds
the number of dimensions, Fast Anchor Word fails to recover more vertices and its error
explodes.

9.3 Topic modeling

Wecompare our algorithmswith the Fast Anchor +Recoverl2 algorithm ofArora et al. (2013)
and the TSVD algorithm of Bansal et al. (2014) on two types of data sets: semi-synthetic
data and real world data. We next describe our methodology and empirical results in detail.

Semi synthetic data For Semi-Synthetic data set, we use similar methodology as in Arora
et al. (2013). We first train the model on real data set using Gibbs sampling with 1000 iter-
ations. We choose 50 as the number of topics which follows Bansal et al. (2014). Given
the parameters learned from dataset, we generate documents with α set to be 0.01. The
average document length is 1000. Then the reconstruction error is measured by the l1 dis-
tance of bipartite matched pairs between the true word-topic distribution and the word-topic
distribution (Arora et al. 2013). We then average the errors to compute the final mean error.

Real data We use the NIPS data set with 1500 documents , and a pruned vocabulary of
2K words, and the NYTimes Corpus with sub sampled 30,000 documents, and a pruned
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Fig. 5 a Recovery error-computing vertices (simplex case) b Recovery error-computing vertices (eneral con-
vexhull) c Running time (secs) of computing vertices of simplex d �1 error in the semi-synthetic dataset e �1
error in the perturbed semi-synthetic dataset f Range of the �1 error over 10 runs on the noisy semi-synthetic
dataset

vocabulary of 5k words.3 For the real world data set, as in prior works (Arora et al. 2013;
Bansal et al. 2014), we evaluate the coherence to measure topic quality (Yao et al. 2009).
Given a set of words W associated with a learned topic, the coherence is computed as:
Coherence(W) = ∑

w1,w2∈W log D(w1,w2)+ε
D(w2)

, where D(w1) and D(w1, w2) are the number
of documents where w1 appears and (w1, w2) appear together respectively (Arora et al.

3 https://archive.ics.uci.edu/ml/datasets/bag+of+words.
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Table 5 Recovery error (simplex)

Var AVTA + multiple Rp Fast anchor Variance AVTA + multiple Rp Fast anchor

0.3 2.96 2.96 1.8 16.60 17.98

0.6 5.79 5.79 2.1 19.40 20.58

0.9 8.61 9.36 2.4 21.93 23.77

1.2 11.34 12.00 2.7 23.69 24.90

1.5 14.16 15.44 3 26.72 28.78

2013), and ε is set to 0.01 to avoidw1, w2 that never co-occur (Stevens et al. 2012). The total
coherence is the sum of the coherence of each topic. In the NIPS dataset, 1000 out of the
1500 documents were selected as the training set to learn the word-topic distributions. The
rest of the documents were used as the testing set.

Implementation details We compare 4 algorithms, AVTA + CatchWord, TSVD, the Fast
Anchor + Recoverl2 and the AVTA + Recoverl2. We implement our own version of Fast
Anchor + Recoverl2 as described in Arora et al. (2013). TSVD is implemented using the
code provided by the authors in Bansal et al. (2014). AVTA+Recoverl2 corresponds to using
AVTA to detect anchor words from the word-word covariance matrix and then using the
Recoverl2 procedure from Arora et al. (2013) to get the topic-word matrix. AVTA + Catch-
Word corresponds to finding the low dimensional embedding of each document in terms of
the coefficient vector of its representation in the convex hull of the vertices. The next step is
to cluster these points. In practice, one could use the Lloyd’s algorithm for this step which
could be sensitive to initialization. To remedy this, we use similar heuristic as Bansal et al.
(2014) of the initialization step. We repeat AVTA for 3 times and pick the set of vertices with
highest quality where the quality is measured by sum of distances of each vertex to convex
hull of other vertices. We set the number of output vertices K = 50 which is the same as the
number of topics. i.e. each vertex corresponds to a topic. We found that initializing by simply
assigning clusters using neighborhoods of highest degree vertices works effectively. As a
final step, we use the post processing step from Bansal et al. (2014) to recover the topic-word
matrix from the clustering.

Robustness We also generate perturbed version of the semi synthetic data. We generate a
random matrix with i.i.d. entries uniformly distributed with different scales varying from
0.005–0.05. We test all the algorithms with the document-word matrix added with the noise
matrix.

Results on semi synthetic data Figure 5d and e show the �1 reconstruction of all the four
algorithms under both clean and noisy versions of the semi synthetic data set. For topic i , let
Ai be the ground truth topic vector and Âi be the topic vector recovered by the algorithm.
Then the �1 error is defined as 1

K

∑K
i=1 ‖Ai − Âi‖1. The plots show that AVTA+CatchWord is

consistently better than both TSVD and Fast Anchor + Recoverl2 and produces significantly
more accurate topic vectors. In order to further test the robustness of our approach, we plot
in Fig. 5f the range of the �1 error obtained across multiple runs of the algorithms on the
same data set. The range is defined to be the difference between the maximum and the mini-
mum error recovered by the algorithm across different runs. We see that AVTA+CatchWord
produces solutions that are much more stable to the effect of the noise as compared to other
algorithms. Table 6 shows the running time of the experiments of 4 algorithms. As can be

123



Annals of Operations Research (2020) 295:37–73 69

Table 6 Running time of
algorithms on semi synthetic data
(secs)

Num of documents 5000 15, 000 30, 000 50, 000

Fast anchor + Recoverl2 5.49 6.00 10.30 13.60

AVTA + Recoverl2 7.82 7.68 12.84 16.40

TSVD 17.02 43.27 81.24 112.80

AVTA + Catch word 29.89 120.04 372.17 864.30

Table 7 Topic coherence on real data

Fast anchor + RecoverL2 AVTA + RecoverL2 TSVD AVTA + catch word

NIPS − 15.8 ± 2.24 − 16.04 ± 2.09 − 16.86 ± 1.66 − 18.65 ± 1.78

NYTimes − 32.15 ± 2.7 − 32.13 ± 2.43 − 29.39 ± 1.43 − 30.13 ± 1.98

Table 8 Running time on real data experiments (s)

Fast anchor + RecoverL2 AVTA + RecoverL2 TSVD AVTA + catch word

NIPS 3.22 4.41 56.58 22.78

NYTimes 26.05 27.79 237.6 101.07

seen, when using AVTA to learn topic models via the anchor words approach, our algorithm
has comparable run time to Fast Anchor + Recoverl2. In CatchWord based learning, comput-
ing vertices is expensive compared to K-SVD step of TSVD thus AVTA has longer running
time.

Results on real data Table 7 shows the topic coherence obtained by the algorithms. One
can see that in both the approaches, either via anchor words or the clustering approach,
AVTA based algorithms perform comparably to state of the art methods.4 The running time
is presented in Table 8. The AVTA+CathchWord has less running time in the real data
experiments. Per our observation, the convex hull of word-document vectors in real data set
has more vertices than K , the number of topics. The AVTA catches K vertices efficiently due
to its small number of iterations on line search for γ . In semi-synthetic data set, the number
of ’robust’ vertices is approximately the same as number of topics K thus AVTA needs to
find almost all vertices. To catch enough vertices, AVTA needs several iterations decreasing
γ which is computationally expensive.

9.4 Non-negativematrix factorization

AVTA for NMF For our experiments on NMF we use the Swimmer data set (Donoho and
Stodden 2003) that consists of 256 swimmer figures with each a 32×32 binary pixel images.
One can interpret each image as a document and pixels as a word in the document (Ding et al.
2013). All swimmers consist of 4 limbs with each limb having 4 different possible poses. One
can then consider the different poses of limbs as the true underlying topics (Donoho and Stod-
den 2003).We compare the algorithmproposed inArora et al. (2012a)withAVTA+Recoverl2

4 The topic coherence results for TSVD do not match the ones presented in Bansal et al. (2014) since in their
experiments, the authors look at top 10 most frequent words in each topic. In our experiments we compute
coherence for the top 5 most frequent words in each topic.
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Fig. 6 a An example of swimmer images b An example of spurious actions in swimmer images c Output of
NMF + RecoverL2 d Output of AVTA + RecoverL2

on the swimmer data set. We construct a noisy version by adding spurious poses to original
swimmer data set. Let Ω(A) be a function that outputs a randomly chosen 32 × 8 block of
an image. We generate a ’spurious pose’ of size 32 × 8 by Ω(Mi ) where Mi is a randomly
chosen swimmer image. Then we take another randomly chosen image Mj and compute the
corrupted image as M ′

j = Mj + c · Ω(Mi ) where we simply set c = 0.1. An illustration of
the noise data set is shown in Fig. 6b. Since the true underlying topics are known, we will
plot the output of the algorithms and compare it with the underlying truth.

Results on NMFWe compare the performance of AVTA on these data sets with the perfor-
mance of the Separable NMF algorithm proposed in Arora et al. (2012a). Figure 6c and d
show the output of the Separable NMF algorithm and that of our algorithm respectively on
the noisy data set. Our approach produces competitive results as compared to the Separable
NMF algorithm.

10 Conclusion

In this work we have presented a fast and robust algorithm for computing the vertices of
the convex hull of a set of points. Our algorithm efficiently computes the vertices of convex
hulls in high dimensions and even in the special case of the simplex is competitive with the
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state of the art approaches in terms of running time (Arora et al. 2013). Furthermore, our
algorithm leads to an improved algorithm for topicmodeling that is more robust and produces
better approximations to the topic-word matrix. It will be interesting to provide theoretical
claims supporting this observation in the context of specific applications. Furthermore, we
believe that our algorithm will have more applications in machine learning problems beyond
the ones investigated here as well as applications in computational geometry and in linear
programming.

Acknowledgements We wish to thank an anonymous reviewer for very constructive comments and sugges-
tions.

Appendix

Efficient implementation of Triangle Algorithm

The worst-case complexity of each iteration in the Triangle Algorithm is O(mn). Assuming
that all the inner products vTi v j are computed the iteration complexity of Triangle Algorithm
can be shown to reduce to O(n). The cost of pre-computing the inner products is O(mn2).
The algorithm can be made more efficient. To do so it suffices to compute the inner products
vTi v j progressively rather than pre-computing them all. Ignoring this complexity, the iteration
complexity of the Triangle Algorithm reduces to O(N )where N ≤ n is the number of points
of S considered in the Triangle Algorithm. The following shows how to achieve this.

Proposition 8 Let Ŝ = {̂v1, . . . , v̂N } be a subset of Rm. Consider testing if a given p ∈ R
m

lies in conv(Ŝ). Suppose we have computed ‖p‖2, as well as pT v̂i , i = 1, . . . , N. Suppose
we have available p′ = ∑N

i=1 αi v̂i ∈ conv(Ŝ) satisfying d(p′, p) ≤ min{d(p, v̂i ) : i =
1, . . . , N }. Suppose ‖p′‖2 is also computed. Also, suppose p′T v̂i is computed for each i =
1, . . . , N. Then excluding the cost of computing the entries of the N×N matrix M̂ = (̂vTi v̂ j ),
each iteration of the Triangle Algorithm can be implemented in O(N ) operations. More
precisely,

(i) Computation of a p-pivot v̂ j at p′, if one exists, takes O(N ) operations.
(ii) Given a pivot v̂ j , the computation of step size α takes O(1) operations.
(iii) Computation of Nearest(p; p′v) = p′′ = (1−α)p′ +αv̂ j = ∑N

i=1 α′
i v̂i takes O(N )

operations.
(iv) Computation of ‖p′′‖2 takes O(1) operations.
(v) Computation of p′′T v̂i , i = 1, . . . , N takes O(N ) operations.

Proof The Triangle Algorithm needs to use the entries of the N × N matrix M̂ = (̂vTi v̂ j ).
However, not all entries may be needed, nor do all entries of M̂ need to be computed in
advance. Putting aside the complexity of computing M̂ , in the following we justify the
claimed complexities.

(i) From (10) and the given assumptions, to check if a particular v̂i is a pivot takes O(1)
operations. Thus to check if there exists a pivot takes O(N ) time.

(ii) From (12) and the assumptions, it suffices to compute pT p′ and p′T v̂ j which takesO(1)
operations. (Note that p′ is convex combination of v̂i and pT v̂i , v̂i

T v̂ j are computed.)
(iii) From equations (14) the computation of p′′ and its representation as p′′ = ∑N

i=1 α′
i v̂i

takes O(N ) operations.
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(iv) Since p′′ = (1 − α)p′ + αv̂ j , we have

‖p′′‖2 = p′′T p′′ = (1 − α)2‖p′‖2 + 2α(1 − α)p′T v̂ j + α2‖̂v j‖2. (94)

It follows that computing ‖p′′‖2 takes O(1) operations.
(v) Using that p′′ = (1−α)p′ +αv̂ j , the computation of p′′T v̂i takes O(1) computations.

Hence to compute all inner products p′′T v̂i , i = 1, . . . , N takes O(N ) computations.

��
The following theorem combines Theorem 2 and Proposition 8 giving an improved com-

plexity for the Triangle Algorithm.

Theorem 14 Let Ŝ = {̂v1, . . . , v̂N } be a subset of S = {v1, . . . , vn}. Given p ∈ R
m, consider

testing if p ∈ conv(Ŝ). Suppose ‖p‖2 as well as pT v̂i , i = 1, . . . , N are computed. Given
ε ∈ (0, 1), assume the Triangle Algorithm starts with p′ = argmin{d (̂vi , p) : i = 1, . . . , N }.
Then the complexity of testing if there exists an ε-approximate solution is

O

(
mN 2 + N

ε2

)
. (95)

In particular, suppose in testing if p ∈ conv(S), S = {v1, . . . , vn}, the Triangle Algorithm
computes an ε-approximate solution pε by examining only the elements of a subset Ŝ =
{̂v1, . . . , v̂N }of S. Then the number of operations to determine if there exists an ε-approximate
solution pε ∈ conv(S), is as stated in (95). ��
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