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Abstract
We consider a sequencing problem with time windows, in which a subset of a given set of
jobs shall be scheduled. A scheduled job has to execute without preemption and during this
time, the job needs both a common resource for a part of the execution as well as a secondary
resource for the whole execution time. The common resource is shared by all jobs while a
secondary resource is shared only by a subset of the jobs. Each job has one or more time
windows and due to these, it is not possible to schedule all jobs. Instead, each job is associated
with a prize and the task is to select a subset of jobs which yields a feasible schedule with
a maximum sum of prizes. First, we argue that the problem is NP-hard. Then, we present
an exact A* algorithm and derive different upper bounds for the total prize; these bounds
are based on constraint and Lagrangian relaxations of a linear programming relaxation of
a multidimensional knapsack problem. For comparison, a compact mixed integer program-
ming (MIP) model and a constraint programming model are also presented. An extensive
experimental evaluation on three types of problem instances shows that the A* algorithm
outperforms the other approaches and is able to solve small to medium size instances with
up to about 40 jobs to proven optimality. In cases where A* does not prove that an optimal
solution is found, the obtained upper bounds are stronger than those of the MIP model.
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1 Introduction

Horn et al. (2017) introduced the Job Sequencing with One Common andMultiple Secondary
Resources (JSOCMSR) problem, which considers the scenario of scheduling a set of jobs
where each job, for part of its execution, requires a common resource and, for the whole
processing time, requires a secondary resource that is only shared with a subset of the other
jobs. The goal of the JSOCMSR is to find a feasible schedule minimizing the makespan.

Applications of this problem can be found, for example, in manufacturing when the com-
mon resource corresponds to a machine on which the jobs are to be processed and the
processing of each job also requires a certain accompanying resource like a casting mold,
template etc. The important aspect is that there is a setup time (e.g. a preparation of the
casting mold) at which the secondary resource is needed before the job can be executed at
the machine and also a postprocessing time during which the secondary resource is needed
afterwards (e.g. because the produced goods must be cooled in the casting mold). With
job-dependent setup, processing and postprocessing times and a limited number of shared
secondary resources, the JSOCMSR has been shown to be NP-hard (Horn et al. 2017).

A more specific application of this problem can be found in the daily scheduling of
cancer patients that are to receive particle therapy (Maschler et al. 2016). There, the common
resource corresponds to a sophisticated particle accelerator, which accelerates proton or
carbon particles to almost the speed of light. This particle beam is directed into one of a
small set of treatment rooms where one patient can be radiated at a time. The treatment
rooms are here the secondary resources. During the setup time, a patient is positioned and
possibly sedated and after the actual radiation with the particle beam, typically some medical
examinations are to be done before the patient can leave the room and it becomes available
for a next patient. In such particle therapy treatment centers, there is usually only a single
particle accelerator because of its huge cost and about two to three treatment rooms. Since
these treatment rooms are typically individually equipped for handling different kinds of
treatments, the assignment of patients to rooms is pre-specified. Ideally, patients are scheduled
in such a way that the particle beam is directly switched from one room to another so that
patients are radiated without any significant breaks in between.

However, the JSOCMSR is in most cases only a strongly simplified model of real-world
scenarios like the above patient scheduling. Most notably, the jobs start times are in practice
frequently constrained to certain time windows arising from the availability of the underlying
resources. Furthermore, in practice, it happens frequently that not all jobs can be scheduled
due to these time windows and instead, a best subset of jobs that can be feasibly scheduled
must be selected.

To also include such aspects is the focus of the current work: We extend the JSOCMSR
by considering job-specific time windows, and instead of minimizing the makespan we aim
at finding a feasible solution that maximizes the total prize of all scheduled jobs. To this
end, each job has an assigned prize, which can simply take the value one if we want to
maximize the number of scheduled jobs or it can take a value representing the priority of the
job. Another possibility is that these prizes are correlated to the processing times of the jobs
to avoid scheduling primarily short jobs.

These new aspects have a substantial impact on the structure of the problem and conse-
quently on the algorithmic side, and existing methods for the JSOCMSR cannot be extended
in efficient ways. Most importantly, the rather effective lower bound calculation for the
makespan in the JSOCMSRwe proposed in Horn et al. (2017) is useless for the new problem
variant due to the entirely different objective function and new decision variables. Therefore
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we propose here a new A* search to solve this prize-collecting variant of the JSOCMSR to
proven optimality. In particular, we investigate four different upper bound calculations for
partial solutions which are used as heuristic functions to estimate the costs-to-go within the
A* search. A further aspect of our A* search is that there is no specific target state known in
advance.

An early version of this approach was already presented in our conference paper (Horn
et al. 2018b). The current article extends this work by primarily considering an additional
application scenario and corresponding new benchmark instances: pre-runtime scheduling
of electronics within an aircraft, called avionics. The instances we include here are inspired
by a sub-structure of the problem introduced in Blikstad et al. (2018), and the focus here
is the part of the structure that coincides with that of the patient scheduling problem. We
further remark that we fixed a bug in our implementation after the publication of Horn et al.
(2018b) and consequently reran all experiments; while the general trends remain the very
same, detailed numbers have changed.

In Blikstad et al. (2018), the scheduling of an industrially relevant avionic system is
addressed. The considered system consists of a set of nodes and each of these contains a
set of modules (processors) with jobs to be scheduled. Each node consists of one commu-
nication module, corresponding to the common resource, and a set of application modules,
corresponding to the set of secondary resources. There are three types of jobs: partition jobs,
communication jobs and regular jobs. Partition jobs, which are executed on the application
modules run the system’s software applications. Each of these jobs has to communicate with
the communication module and we consider only the case where a partition job has to com-
municate either at the beginning or at the end of its execution. Typically, the processing time
of partition jobs is long compared to other jobs and its usage of the common resource is short
compared to the total processing time of the job.

The communication is handled by communication jobs and regular jobs, both executed
on the communication module. These have short processing times and in order to model that
they use the common resource only, an additional artificial secondary resource is included
for these jobs. The communication and regular jobs use both the common resource and the
artificial secondary resource for theirwhole processing time.Communication jobs and regular
jobs together handle different kinds of communication (system external, inter- and intranode)
and the communication jobs have the specific purpose of representing jobs used for sending
communication messages (Blikstad et al. 2018). For this reason, the communication jobs can
only be scheduled at specific time slots where communication messages can be sent and the
length of a communication job’s time window is equal to the job’s total processing time. This
distinguish them from the regular jobs which have time windows with similar characteristics
as those of the partition jobs.

To mimic the situation of creating a partial schedule for a node in the system, only a part
of the total length of a schedule is considered and the tasks available exceed what is possible
to include in the partial schedule. The prize of a job reflects the individual importance of
including this job in the partial schedule. Note that compared to Blikstad et al. (2018), some
simplifications aremadewith respect to the types of jobs included and by omitting precedence
relations between jobs. Furthermore, we do not explicitly and fully consider the scheduling
of the communication network used for communication between the nodes.

After a more formal problem definition in the next section and a survey of related work
in Sect. 3, we describe the A* search in Sect. 4. This method relies on a specific state
strengthening procedure and the use of a good heuristic guidance function corresponding
to an upper bound calculation for the total prize that may still be a achieved from a par-
tial solution onward. Concerning the latter, we investigate different possibilities based on
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linear programming and Lagrangian relaxations of a multidimensional knapsack problem
formulation. For comparison purposes, we further consider, in Sect. 5, an order-based Mixed
Integer Programming (MIP) model solved by Gurobi Optimizer Version 7.5.1 and, in Sect. 6,
a constraint programming model implemented inMiniZinc. Section 7 presents and compares
computational results for all these approaches on instances of the avionics scenario as well
as balanced and skewed instances of the particle therapy scenario. The results show that the
proposed A* search can solve substantially larger instances to optimality in shorter times
than the other methods. Section 8 concludes this work with an outline of promising future
research directions.

2 Problem formulation

The Prize-Collecting Job Sequencing with One Common and Multiple Secondary Resources
with TimeWindows (PC-JSOCMSR) considers the sequencing of a set of jobs where each job
needs to respect resource constraints and time windows. The resource constraints refer both
to a common resource that is used by all jobs and a set of secondary resources of which each
job uses exactly one. It is assumed that it is usually not possible to find a feasible schedule
that includes all jobs; instead each job is associated with a prize and the objective is to choose
a subset of the jobs such that the sum of prizes of the sequenced jobs is maximized.

Let the set of all jobs be denoted by J , with |J | = n, and let the prize of job j be z j > 0,
j ∈ J . The problem is to find a subset of jobs S ⊆ J that can be feasibly scheduled so that
the total prize of these jobs is maximized:

Z∗ = max
S⊆J

Z(S) = max
S⊆J

∑

j∈S
z j . (1)

The set of (renewable) resources is denoted by R0 = {0} ∪ R, with R = {1, . . . ,m}.
During its execution, job j uses resource 0, referred to as the common resource, and one of
the secondary resources q j ∈ R, j ∈ J . Let p j > 0 be the processing time of job j , during
which it fully requires the secondary resource q j , j ∈ J . Further, let Jr = { j ∈ J | q j = r}
be the set of jobs that require resource r , r ∈ R. For job j , j ∈ J , the use of the common
resource begins pprej ≥ 0 time units after the start of the job, has a duration of p0j , and ends

ppostj = p j − pprej − p0j ≥ 0 time units before the end of the job.
If a job j is scheduled, it must be performed without preemption and within one of its

ω j disjunctive time windows Wj = {Wjw | w = 0, . . . , ω j } with Wjw = [W start
jw ,W end

jw ],
where W end

jw − W start
j,w ≥ p j , j ∈ J . We assume that each job has at least one time window.

For job j , let the release time be T rel
j = minw=0,...,ω j W

start
jw and the deadline be T dead

j =
maxw=0,...,ω j W

end
jw . The overall time interval to consider is then

[
Tmin, Tmax

]
with Tmin =

min j∈J T rel
j and Tmax = max j∈J T dead

j . Note that the existence of unavailability periods of
resources is also covered by the above formulation since these can be translated into time
windows of the jobs.

To simplify the consideration of the time windows of a job, we define the function earliest
feasible time

eft( j, t) = min({t ′ ≥ t | ∃w : [
t ′, t ′ + p j

] ⊆ Wjw} ∪ {Tmax}), (2)
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Fig. 1 A PC-JSOCMSR instance with n = 4 jobs and m = 2 secondary resources. Each job has exactly
one time window in Wj . The optimal solution is given by the job sequence π = (2, 3, 4) and its normalized
schedule visualized on the right side. The white region in each job denotes the part where, in addition to the
job’s specific secondary resource, also the common resource is needed. Job 1 cannot be additionally scheduled
due to the time windows and resource requirements. The solution’s total prize is Z(π) = 9

that yields the earliest time not smaller than the provided time t ≤ Tmax at which job j can
be scheduled according to the time windows Wj , j ∈ J . Hereby, eft( j, t) = Tmax indicates
that job j cannot be feasibly included in the schedule anymore.

Since each job requires resource 0 and only one job can use this resource at a time, a
solution to PC-JSOCMSR implies a total ordering of the scheduled jobs S. Vice versa, a
permutation π = (πi )i=1,...,|S| of a subset of jobs S ⊆ J that can be feasibly scheduled can
be decoded into a feasible schedule in a straight-forward greedy way by, in the order given by
π , placing each job from S at its earliest feasible time with respect to when the resources are
available after being used by all its preceding jobs. A schedule derived from a job permutation
π in this way is referred to as a normalized schedule. Note that if this greedy approach is
applied to a permutation of jobs and some job cannot be feasibly scheduled in this way, this
permutation does not correspond to a feasible solution. Also, an optimal solution is either a
normalized schedule or the order of the jobs in this optimal solution can be used to derive
a normalized schedule with the same objective value. For this reason the notation Z(π) is
used for the total prize of the normalized solution given by the job permutation π . Figure 1
in Sect. 4.1 shows an example of an instance with four jobs and two secondary resources
where each job has exactly one time window and a corresponding optimal solution.

It is not difficult to see that the PC-JSOCMSR is NP-hard: The decision variant of the
JSOCMSR,which looks for a feasible schedulewith amakespan not exceeding a givenM , has
already been shown to beNP-hard inHorn et al. (2017). One can reduce this decision problem
to the PC-JSOCMSR in polynomial time by setting all time windows to Wj = {[0, M]} and
all prizes to z j = 1. A solution to the JSOCMSR decision problem exists if and only if a
solution to the PC-JSOCMSR can be found that has all jobs scheduled.

3 Related work

The JSOCMSR was originally proposed by Horn et al. (2017). There, a greedy heuristic,
an A* algorithm, and a position-based MIP model are described. A particular contribution
of that work is a method for calculating a relatively tight lower bound for the makespan,
given a partial solution and the still open jobs. Experimental results show that thanks to
this strong bound, already the greedy heuristic yields relatively good results by quickly
deriving solutions with optimality gaps of only a few percent. Further, the A* search is
capable of solving instances with up to 1000 jobs to proven optimality. In comparison, the
presented MIP approach was not competitive and can only solve instances with up to 20
jobs reasonably well and it then requires substantially longer computation times. The lower
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bound calculation from this previous work is of no use for our PC-JSOCMSR due to the
difference in objective function, the fact that usually not all jobs can be scheduled and the
time windows. Note further that it is also not efficiently possible or straightforward to adapt
the position based MIP model from Horn et al. (2017) to the PC-JSOCMSR due to the
time windows.

Concerning the PC-JSOCMSR,Maschler and Raidl (2018) investigated heuristic methods
based on multivalued decision diagrams (MDDs) and general variable neighborhood search
for addressing larger problem instances with up to 300 jobs, which are so far clearly out of
reach to be solved to proven optimality. Furthermore, Horn et al. (2018a) extends the works
of Horn et al. (2018b) and Maschler and Raidl (2018) by proposing a novel construction
method for relaxed MDDs. These relaxed MDDs are then further used to substantially speed
up a heuristic search. In this way, new state-of-the-art results could be obtained for instances
with up to 500 jobs. While all these works concentrated on heuristic solution approaches, the
current work focuses on solving small to medium-sized instances exactly.

To the best of our knowledge, there are only a few further publications dealing with
scenarios similar to the (PC-)JSOCMSR. Van der Veen et al. (1998) considers a setup com-
parable to JSOCMSR with jobs requiring one common resource and individual secondary
resources. However, in their case the postprocessing times are negligible compared to the
total processing times of the jobs. This implies that the start time of each job only depends on
its immediate predecessor. This simplifies the situation substantially, since a job j requiring
a different resource than its predecessor j ′ can always be started after a setup time only
depending on job j , while a job requiring the same resource can always be started after a
postprocessing time only depending on job j ′. Due to these properties, this problem can be
interpreted as a Traveling Salesman Problem (TSP) with a special cost structure. Van der
Veen et al. even show that their problem can be solved efficiently in time O(n log n).

Somehow related to the JSOCMSR are no-wait flowshop problem variants, see Allahverdi
(2016) for a survey. Each job needs to be processed on each ofm machines in the same order
and the processing of the job on a successive machine always has to take place immediately
after its processing has finished on the precedingmachine. This problem can be solved in time
O(n log n) for two machines via a transformation to a specially structured TSP (Gilmore and
Gomory 1964). In contrast, for three and more machines the problem is NP-hard, although it
can still be transformed into a specially structured TSP. Röck (1984) proved that the problem
is strongly NP-hard for three machines by a reduction from the 3D-matching problem.

Furthermore, the JSOCMSR problem can be modeled as a more general Resource-
Constrained Project Scheduling Problem with maximal time lags by splitting each job
according to the resource usage into three sub-jobs that must be executed sequentially with-
out any time lags; see Hartmann and Briskorn (2010) for a survey. Such an indirect solution
approach, however, is unlikely to yield promising results in practice since problem-specific
aspects are not exploited.

Moreover the PC-JSOCMSR is to some extent related to the well studied Orienteering
Problem (OP), which essentially also combines the tasks of selecting a subset yielding a
maximum prize with finding a sequence of the selected elements that make the solution
feasible. Different variants of the OP have been studied, including OPs with time windows;
for a survey see Gunawan et al. (2016). In the OP, each node is associated with a prize and
travel times are known between all pairs of nodes. The task is to find a path from a given start
node to an end node within a given time budget such that the total prize of the visited nodes
is maximized. Due to the time budget not all nodes can be visited. In such an OP, the arrival
time at a visited node only depends on the immediate predecessor, possible time windows,
and the (constant) travel time between these two nodes. For PC-JSOCMSR, the situation is
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more complicated due to the secondary resources: A much earlier scheduled job requiring
the same secondary resource may impact the earliest starting time of the job to be scheduled
next. The PC-JSOCMSR, however, also does not generalize the OP with time windows as
pairwise travel times are not covered by the PC-JSOCMSR.

Concerning particle therapy patient scheduling, the PC-JSOCMSR is a practically rel-
evant improvement over the simpler JSOCMSR model, but it still is a strongly simplified
formulation addressing only certain properties of the real-life problem. In the full practi-
cal scenario, many more aspects must be considered such as large time horizons of several
weeks, sequences of therapies for patients to be treated, additionally needed resources includ-
ing medical staff and their availability time windows, and a combination of more advanced
objectives and diverse soft constraints. Maschler et al. (2016) proposed a greedy construction
heuristic which is extended towards an Iterated Greedymetaheuristic and aGreedy Random-
ized Adaptive Search Procedure (GRASP), which consider more of these advanced aspects.
These approaches treat the whole problem as a bi-level optimization problem in which the
upper level is concerned with the assignment of treatments to days and the lower level corre-
sponds to the detailed scheduling of the treatments assigned at each day. The Iterated Greedy
metaheuristic was further refined by including an improvedmakespan estimation for the daily
scheduling problems and by considering additional soft constraints for unwanted deviations
of start times of the individual treatments for each therapy (Maschler et al. 2017, 2018).

Concerning A*, we point out that it is a well-known and prominent method for finding
shortest paths in possibly huge graphs and more generally an informed search method for
problem-solving, see Hart et al. (1968), Rios and Chaimowicz (2010). Whereas the classical
A* algorithm follows a best-first-search strategy with the goal to find a proven optimal
solution as quickly as possible, anytime A* algorithms also producing promising heuristic
solutions on a more regular basis from the beginning on; see, for example, the Anytime
Weighted A* algorithm (Hansen and Zhou 2007), the Anytime Repairing A* (Likhachev
et al. 2004), Anytime Pack Search (Vadlamudi et al. 2016), and the A*/Beam Search hybrid
described for the JSOCMSR (Horn et al. 2017).

4 An A* Algorithm for the PC-JSOCMSR

The A* algorithm is a classic search algorithm from the field of path planning on possibly
huge graphs (Hart et al. 1968; Rios and Chaimowicz 2010). In this section, we describe our
A* search approach to solve the PC-JSOCMSR problem. The method either yields a proven
optimal solution or, in case of an early termination, a heuristic solution together with an
upper bound to the optimal solution value. We start by describing the state graph on which
the search is performed, continue with the framework of our A* algorithm, and focus in
Sects. 4.3 and 4.4 on the strengthening of obtained states and propose different possibilities
to determine upper bounds for the achievable total prizes of partial solutions, respectively.

4.1 State graph

We consider a weighted directed acyclic state graph G = (V , A) where each node in V
represents a unique state (P, t) consisting of

– the set P ⊆ J of jobs that are still available to be scheduled in further steps, and
– the vector t = (tr )r∈R0 of the earliest times fromwhich each of the resources are available

for performing a next job.
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The initial (root) state is r = (J , (Tmin, . . . , Tmin)) and represents the original PC-
JSOCMSR problem instance with no jobs scheduled or excluded yet.

An arc (u, v) ∈ A represents a transition from a state u = (P, t) to a state v = (P ′, t ′)
that is achieved by scheduling a job j , j ∈ P , at its earliest possible time w.r.t. vector t . More
precisely, the start time of job j , j ∈ P , w.r.t. state (P, t) is

s((P, t), j) = eft( j,max(t0 − pprej , tq j )). (3)

The transition function to obtain the successor state (P ′, t ′) of state (P, t) when scheduling
job j , j ∈ P , next is

τ((P, t), j) =
{

(P \ { j}, t ′), if s((P, t), j) < Tmax,

0̂, else,
(4)

with

t ′0 = s((P, t), j) + pprej + p0j , (5)

t ′r = s((P, t), j) + p j , for r = q j , (6)

t ′r = tr , for r ∈ R \ {q j }, (7)

where 0̂ represents the infeasible state. The prize associated with a state transition is the
prize z j of the scheduled job j . Thus, each path in this state graph originating in the initial
state r and ending in some other state than 0̂ corresponds to a feasible solution in which
the jobs associated with the arcs are greedily scheduled in the order in which they appear
in the path. Note that a feasible state (P, t) ∈ V may, in general, be reached via multiple
different paths, i.e., by including different sets of jobs S and/or by different orderings of
these jobs. Therefore, a feasible state does, in general, not represent a unique solution. As we
want to find a solution with maximum total prize, we are primarily interested in a path from
r to (P, t) with maximum total prize. Let Z lp(P, t) be this maximum total prize to reach a
feasible state (P, t). In order to solve the PC-JSOCMSR we are looking for a feasible state
with the maximum Z lp(P, t). To find such a state we perform the A* search detailed in the
following subsection. Figure 2 shows as example the state graph for the problem instance in
Fig. 1.

4.2 A* algorithm framework

In order to solve the PC-JSOCMSR we have to find a feasible state (P, t) with maxi-
mum Z lp(P, t). Such a state cannot have any feasible successor, hence, either P = ∅ or
τ((P, t), j) = 0̂, j ∈ P , and otherwise Z lp(P, t) is not the maximum achievable prize.

A* search belongs to the class of informed search strategies that make use of a heuristic
estimate for guidance in order to return a proven optimal solution possibly faster than a
more naive uninformed search like breadth- or depth-first-search. Within our A* search,
each encountered feasible state (P, t) of the state graph is evaluated by a priority function
f (P, t) = Z lp(P, t) + Zub(P, t) in which Z lp(P, t) corresponds to the prize of the so
far best (i.e., longest) known path from r to state (P, t) and Zub(P, t) is the A* search’s
heuristic function estimating the “costs to go”. The latter is in our case an upper bound on
the still achievable prize by extending the path from state (P, t) onward. The value of the
priority function f (P, t) is thus an upper bound on the total prize that a solution may achieve
by considering state (P, t). Different options for how to compute this upper bound will be
investigated in Sect. 4.4.
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Fig. 2 State graph for the problem instance from Fig. 1 with n = 4 jobs and m = 2 secondary resources.
Node labels denote the corresponding states (P, t), arc labels the scheduled jobs j . The path that represents
the optimal solution is highlighted. Note that for the shown state graph the strengthening of states as described
in Sect. 4.3 has been applied

Our A* search is shown in pseudo-code in Algorithm 1. It maintains the set W of all so
far encountered states, implemented by a hash table; for each contained state (P, t), this data
structure also stores the values Z lp(P, t) and Zub(P, t) as well as a reference pred(P, t)
to the predecessor state of a currently longest path from r to (P, t), and the last scheduled
job j(P, t). Furthermore, the algorithm maintains the open list Q, which contains all states
queued for further expansion. It is realized by a priority queue data structure that considers
the states’ priority values f (P, t). Last but not least, our A* search maintains a reference
xmaxlp to the encountered state (P, t) with the so far largest Z lp(P, t) value. Both W and Q,
as well as xmaxlp, are initialized with the initial state r.

At each major iteration, a state (P, t) with maximum priority value f (P, t) is taken from
Q. This state (P, t) is then expanded, which means that each job in P is considered as next
job to be scheduled by calculating the respective successor state obtained by the transition
(P ′, t ′) = τ((P, t), j). If a job yields the infeasible state 0̂, it is skipped. Similarly, if the
obtained state has been encountered before and the new path via state (P, t) is not longer
than the previously identified path to (P ′, t ′), we skip job j . Otherwise, if a new feasible state
is reached, it is added to set W . Since a new longest path to state (P ′, t ′) via (P, t) has been
found, line 20 sets Z lp(P ′, t ′) = Z lp(P, t) + z j and stores (P, t) as predecessor of (P ′, t ′)
and job j as the last scheduled job. The upper bound Zub(P ′, t ′) is then also calculated, and
if there is potential for further improvement, i.e., Zub(P ′, t ′) > 0, state (P ′, t ′) is added to
the open list Q for a possible future expansion. Finally, reference xmaxlp is updated if a new
overall longest path is obtained.

A special aspect of our A* search therefore is that we do not have a specific target state that
is known in advance, andwe only add states that may yield further successor states to the open
list. Lines 6 to 10 make sure that we nevertheless recognize when a proven optimal solution
has been reached: This is the case when either the open list Q becomes empty or the priority
value f (P, t) of Q’s top element (P, t) (i.e., the maximum priority value) is not larger than
the length Z lp(xmaxlp) of the so far longest identified path. Note that the priority value of Q’s
top element always is a valid overall upper bound for the total achievable prize. This follows
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Algorithm 1: A* Algorithm for PC-JSOCMSR

1 Input: Initial state r;
2 set of encountered states W ← {r}, Z lp(r) ← 0;

3 open list Q← {(r, f (r) = Zub(r))};
4 state with maximum Z lp so far xmaxlp ← r;
5 do
6 if Q = ∅ then
7 return opt. solution given by xmaxlp and its predecessor chain

8 (P, t) ← pop state with maximum f (P, t) from Q;

9 if f (P, t) ≤ Z lp(xmaxlp) then
10 return opt. solution given by xmaxlp and its predecessor chain

11 // expand state (P, t):
12 foreach j ∈ P do
13 (P ′, t ′) ← τ((P, t), j); strengthen state (P ′, t ′);
14 if (P ′, t ′) = 0̂ ∨ (P ′, t ′) ∈ W ∧ Z lp(P, t) + z j ≤ Z lp(P ′, t ′) then
15 // infeasible or existing state reached in no better way, skip
16 continue

17 if (P ′, t ′) /∈ W then
18 // new state reached
19 W ← W ∪ {(P ′, t ′)};
20 Z lp(P ′, t ′) ← Z lp(P, t) + z j , pred(P ′, t ′) ← (P, t), j(P ′, t ′) = j ;

21 if Zub(P ′, t ′) �= 0 then
22 Q ← Q ∪ ((P ′, t ′), f (P ′, t ′) = Z lp(P ′, t ′) + Zub(P ′, t ′))
23 if Z lp(xmaxlp) < Z lp(P ′, t ′) then
24 xmaxlp ← (P ′, t ′);

25 while time or memory limit not reached;
26 // terminate early:
27 (P, t) ← state with maximum f (P, t) from Q;
28 derive solution π from xmaxlp following predecessors;
29 π ← greedily augment π with jobs from P;
30 return heuristic solution π and upper bound f (P, t);

from the fact that Zub(P, t) is an admissible heuristic according to Hart et al. (1968), i.e., it
never underestimates the real prize that can still be achieved from (P, t) onward. Further, an
optimal solution is derived from state xmaxlp by following its chain of predecessor states and
respectively scheduled jobs, and the corresponding solution is returned.

A particular feature of our A* search is that it can also be terminated early by providing a
time or memory limit for the execution and it still yields a heuristic solution together with an
upper bound on the optimal solution value in this case. This heuristic solution is derived from
the so far best state xmaxlp by following its chain of predecessors and additionally considering
all remaining jobs in P in their natural order (i.e., as given in the instance specification) for
further addition in a greedy way. The returned upper bound is the priority value of Q’s top
element.

4.3 Strengthening of states

Frequently, we can safely replace a state (P, t) by a strengthened state (P ′, t ′), with P ′ ⊆ P
and t ′r ≥ tr , r ∈ R0, where either P ′ ⊂ P or t ′r > tr for one or more r , r ∈ R0, without
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losing possible solutions. This state strengthening is applied in Algorithm 1 at line 13 to any
state that is obtained from the transition function τ .

By considering the earliest start time s((P, t), j) for job j , j ∈ P , we can first remove all
jobs from P that actually cannot be scheduled anymore, i.e., P ′ = { j ∈ P | s((P, t), j) �=
Tmax}. Then, time t ′r , r ∈ R0, is set to the earliest possible time when resource r can be used
considering all remaining jobs P ′, i.e.,

t ′0 = min
j∈P ′ (s((P, t), j) + pprej ), (8)

t ′r =
{
min j∈Jr∩P ′ s((P, t), j), if Jr ∩ P ′ �= ∅,

Tmax, else,
r ∈ R. (9)

here t ′r is set to Tmax if no job that requires resource r remains in P ′.

4.4 Upper bounds for the total prize of remaining jobs

For a given state (P, t), an upper bound for the still achievable total prize for the remaining
jobs in P can be calculated by solving a linear programming (LP) relaxation of a multi-
constrained 0–1 knapsack problem

Zub
MKP-LP(P, t) = max

∑

j∈P

z j x j (10)

s.t
∑

j∈P

p0j x j ≤ W0(P, t), (11)

∑

j∈P∩Jr

p j x j ≤ Wr (P, t), r ∈ R, (12)

x j ∈ [0, 1] , j ∈ P, (13)

where x j is a continuous relaxation of a binary variable that indicates if job j is included
(=1) or not (=0), j ∈ P . The right-hand-sides of the knapsack constraints are

W0(P, t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

⋃

j∈P,
w=1,...,ω j |

W end
jw −ppostj ≥t0+p0j

[
max

(
t0,W

start
jw + pprej

)
,W end

jw − ppostj

]

∣∣∣∣∣∣∣∣∣∣∣∣∣

(14)

and

Wr (P, t) =

∣∣∣∣∣∣∣∣∣∣∣∣

⋃

j∈P∩Jr ,
w=1,...,ω j |
W end

jw ≥tr+p j

[
max

(
tr ,W

start
jw

)
,W end

jw

]

∣∣∣∣∣∣∣∣∣∣∣∣

, (15)

where the union of intervals is defined as
⋃

i=1,...,k[αi , βi ] = {γ ∈ R | ∃i : γ ∈ [αi , βi ]},
and function | · | denotes the sum of the lengths of the resulting disjoint continuous intervals
of this union. Thus, W0(P, t) and Wr (P, t) represent the total amount of still available time
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for resource 0 and resource r , r ∈ R, respectively, considering the current state and the time
windows.

To solve this upper bound calculation problem for each state with an LP solver is com-
putationally rather expensive, as our experiments in the next section will document. As
alternatives, we therefore consider the computation of upper bounds by solving two types of
further relaxations. The first one

Zub
0 (P, t) = max

∑

j∈P

z j x j (16)

s.t
∑

j∈P

p0j x j ≤ W0(P, t), (17)

x j ∈ [0, 1] , j ∈ P, (18)

is obtained by removing inequalities (12); the second one

hub(P, t, u) = max
∑

j∈P

z j x j + u

⎛

⎝W0(P, t) −
∑

j∈P

p0j x j

⎞

⎠ (19)

s.t
∑

j∈P∩Jr

p j x j ≤ Wr (P, t), r ∈ R, (20)

x j ∈ [0, 1] , j ∈ P, (21)

is obtained by performing a Lagrangian relaxation of inequality (11), where u ≥ 0 is the
Lagrangian dual multiplier associated with inequality (11).

Both Zub
0 (P, t) and hub(P, t, u) are computed by solving LP relaxations of knapsack

problems. In the latter case, this is possible since the problem separates over the resources
and for each resource, the resulting problem is an LP relaxation of a knapsack problem. An
LP relaxation of a knapsack problem can be efficiently solved by a greedy algorithm that
packs items in decreasing prize/time-ratio order; the first item that does not completely fit is
packed partially so that the capacity is exploited as far as possible, see Kellerer et al. (2004).

It follows from weak duality (see e.g. Nemhauser and Wolsey (1988), Prop. 6.1) that
hub(P, t, u) yields an upper bound on Zub

MKP-LP(P, t) for all u ≥ 0, but the quality of this
upper bound depends on the choice of u. We have chosen to consider hub(P, t, u) for the
values u = 0 and u = z j̄/p

0
j̄
, where j̄ is the last, and typically partially, packed item in an

optimal solution to the problem solved to obtain Zub
0 (P, t). The value u = z j̄/p

0
j̄
is chosen

since it is an optimal LP dual solution associated with inequality (17) and therefore has a
chance to be a good estimate of a value for u that gives a strong upper bound.

By solving the relaxations introduced above, the strongest bound on Zub
MKP-LP(P, t) we

can obtain is

Zub∗ (P, t) = min
(
Zub
0 (P, t), hub(P, t, 0), hub(P, t, z j̄/p

0
j̄
)
)

. (22)

In our experimental comparisons in Sect. 7, we will illustrate the practical strengths of the
bounds

Zub
MKP-LP(P, t), (23)

Zub
0 (P, t), (24)

Zub
00(P, t) = min

(
Zub
0 (P, t), hub(P, t, 0)

)
, and (25)
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Zub
0 j̄

(P, t) = min
(
Zub
0 (P, t), hub(P, t, z j̄/p

0
j̄
)
)

, (26)

and study which compromise of strength and computational effort pays off the most in the
context of our A* search.

5 Amixed integer programmingmodel

We use the binary variable t j to indicate if job j , j ∈ J , is included in the schedule (=1) or
not (=0) and the binary variable t jw to indicate if job j is assigned to time window w (=1)
or not (=0), w = 1, . . . , ω j , j ∈ J . Let the continuous variable s j be the start time of job
j . Binary variable y j j ′ is further used to indicate if job j is scheduled before j ′ w.r.t. the
common resource (=1) or not (=0), if both jobs are scheduled, j, j ′ ∈ J , j �= j ′.

Let

δ j j ′ =
{
p j , if q j = q j ′ ,

pprej + p0j − pprej ′ , if q j �= q j ′ ,
(27)

be the minimum time between the start of job j and the start of job j ′ if job j is scheduled
before job j ′, which depends on whether both jobs use the same resource or not.

A solution to PC-JSOCMSR can be obtained by solving the MIP model

max
∑

j∈J

z j t j (28)

s.t t j =
∑

w=1,...,ω j

t jw, j ∈ J , (29)

y j j ′ + y j ′ j ≥ t j + t j ′ − 1, j, j ′ ∈ J , j �= j ′, (30)

s j ′ ≥ s j + δ j j ′ − (T dead
j − p j − T rel

j ′ + δ j j ′)(1 − y j j ′),

j, j ′ ∈ J , j �= j ′ (31)

s j ≥ T rel
j +

∑

w=1,...,ω j

(
W start

jw − T rel
j

)
t jw, j ∈ J , (32)

s j ≤ T dead
j − p j +

∑

w=1,...,ω j

(W end
jw − T dead

j )t jw, j ∈ J , (33)

t j ∈ {0, 1}, j ∈ J , (34)

t jw ∈ {0, 1}, w = 1, . . . , ω j , j ∈ J , (35)

s j ∈ [T rel
j , T dead

j − p j ], j ∈ J , (36)

y j j ′ ∈ {0, 1}, j, j ′ ∈ J , j �= j ′. (37)

Equations (29) state that each scheduled job must be assigned to a time window and inequal-
ities (30) ensure that if two jobs j and j ′ are scheduled, either y j j ′ or y j ′ j must be set to one,
i.e., one of them needs to precede the other. If a job is to precede another one, inequalities (31)
ensure this w.r.t. the jobs’ start times. If a job is assigned to a time window, inequalities (32)
and (33) make its start time comply with this time window, and otherwise the job only
complies with its release time and deadline.

In the previous work (Horn et al. 2017), a MIP model with position based variables was
introduced for JSOCMSR since this model showed better computational performance than a

123



490 Annals of Operations Research (2021) 302:477–505

MIP model with order based variables. Such position based model does, however, not extend
well to the current settingwithmultiple timewindows since the timewindows require explicit
knowledge of the start time of each job, and the position based model only has explicit times
for the start time of a certain position.

6 A constraint programmingmodel

Wefurther propose the followingConstraint Programming (CP)model for thePC-JSOCMSR,
which we implemented in the constraint modeling language MiniZinc.1 The model makes
use of so-called option type variables. Such a variable may either have a value of a certain
domain assigned or set to the special value � that indicates the absence of a value. For job
j ∈ J we use the option type variable s j for the job’s start time. An absent start time, i.e.,
s j = �, indicates that the job is not scheduled. The CP model is given by

max
∑

j∈J |occurs(s j )
z j (38)

disjunctive_strict({(s j + pprej , p0j ) | j ∈ J }), (39)

disjunctive_strict({(s j , p j ) | j ∈ J ∧ q j = r}), r ∈ R, (40)

occurs(s j ) → min
ω=1,...,ω j

W start
jω ≤ s j ≤ max

ω=1,...,ω j
(W end

jω − p j ), j ∈ J , (41)

s j ∈ [T rel
j , . . . , T dead

j − p j ] ∪ {�}, j ∈ J , (42)

where for job j ∈ J the predicate occurs(s j ) yields true if the option type variable s j is not
absent, i.e., job j is scheduled. The strict disjunctive constraints (39) and (40) ensure that all
scheduled jobs do not overlap w.r.t. their usage of the common resource and the secondary
resource r ∈ R, respectively. Absent jobs are hereby ignored. Constraints (41) state that if
job j ∈ J is scheduled, it must be performed within one of the job’s time windows.

7 Experimental results

The proposed A* algorithm from Sect. 4 was implemented in C++ using GNUG++ 5.4.1 for
compilation. The MIP model from Sect. 5 was solved with Gurobi2 Optimizer Version 7.5.1.
All tests were performed on a cluster of machines with Intel Xeon E5-2640 v4 processors
with 2.40 GHz in single-threaded mode with a CPU time limit of 900 seconds and a memory
limit of 15GB per run.

We created three non-trivial benchmark instance sets in order to test our solution
approaches. The first two instance sets, called B and S, are, with respect to their basic
characteristics, inspired from the particle therapy patient scheduling application, while the
third set, called A, exhibits characteristics from the avionic system application. All these
instances are available online.3 Each set consists of 30 instances for each combination of
n ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90} jobs and m ∈ {2, 3} secondary resources for the par-

1 https://www.minizinc.org.
2 http://www.gurobi.com.
3 https://www.ac.tuwien.ac.at/research/problem-instances.
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ticle therapy based scenario andm ∈ {3, 4} secondary resources for the avionic system based
scenario.

The difference between sets B and S lies in the distributions of the secondary resources
and each job’s pre-processing, post-processing and p0 times. Set B consists of instances
in which all secondary resources are used by the jobs equally likely and the distribution
of processing times is balanced. This was achieved by sampling for job j , j ∈ J : (1) the
secondary resource q j from the discrete uniform distribution U{1,m}, (2) the pre-processing
times pprej and the post-processing times ppostj from U{0, 8} and (3) the times p0j from the

random variable p0B ∼ U{1, 8}. In contrast, instances of set S exhibit a skewed workload
such that the secondary resource m is chosen with a probability of 0.5 and all remaining
secondary resources with a probability of 1/(2m − 2). Furthermore the time to claim the
common resource 0 is more dominant by sampling pprej and ppostj from U{0, 5} and p0j from

the random variable p0S ∼ U{1, 13}. For both instance sets, the prize z j is determined in a way
to correlate to the usage of the common resource of job j by sampling it from U{p0j , 2p0j },
j ∈ J . The time windows are chosen such that, on average about, 30% of the jobs can
be scheduled. For this purpose let Ti = �0.3 n E(p0i )� be the expected maximum resource
usage regarding instance type i , i ∈ {B,S}. First, the number of time windows ω j of job
j is sampled from U{1, 3}, i.e., a job can have up to three time windows. Second, for time
windoww,w = 1, . . . , ω j , we sample its start timeW start

jw fromU{0, Ti − p j } and its end time

W end
jw from W start

jw + max(p j ,U{�0.1 Ti/ω j�, �0.4 Ti/ω j�}) for instance type i , i ∈ {B,S}.
Overlapping time windows are merged, and all time windows of a job are sorted according
to increasing start times.

For the third instance set A, based on the avionic system scenario, a fixed time horizon
T = 1000 is considered and the number of jobs of each type is distributed such that 20% are
communication jobs, 40% are partition jobs and 40% are regular jobs. For communication
jobs the time p0j is set to p0j = 40 and for partition jobs and regular jobs the time is sampled

from U{36, 44}. For partition jobs, the total processing time p j is sampled from U{5p0j , 8p0j }
and then, with equal probability, pprej or ppostj is set to 0 and the respective other value is

set to p j − p0j . Each partition job is assigned to a secondary resource and each secondary
resource has the same probability to be selected.

Since the communication jobs and regular jobs do not use a secondary resource in the real
scenario, an artificial secondary resource is introduced and assigned to all of these jobs. This
means that the number of secondary resources for an instance is always one more than the
number of application modules in the system and that for both the communication jobs and
regular jobs p j = p0j .

For partition and regular jobs, the number of time windows and the length of the time
windows are computed as in the particle therapy case, but for the communication jobs the
structure is rather different. The communication jobs can only be scheduled at certain points
in time when the communication can be performed, and here these time points occur at
0, 80, 160, . . . , 880. Each time window of a communication job corresponds to one such
time point and a job’s total set of time windows corresponds to a number of consecutive such
time points. The number of time windows for a communication job is obtained by sampling
a value from the uniform distribution U{1, 3} and multiply it by three.

The prize z j is for five of the partition jobs and ten of the communication jobs set to
the high value 70 to give these jobs a higher priority, while for remaining partition jobs
and communication jobs, the prize is sampled from U{10, 50}. For regular jobs, the prize is
sampled from U{10, 25}.

123



492 Annals of Operations Research (2021) 302:477–505

100 100

100 100

100 100

#
[%

]

#
[%

]

#
[%

]

#
[%

]

#
[%

]

#
[%

]

nn

nn

nn

#-Zub
0 (P, t) #-hub(P, t, 0) #-hub(P, t, zj̄/p

0
j̄
)

1010

1010

1010

2020

2020

2020

3030

3030

3030

4040

4040

4040

50

50

50

50

50

50

50

50

50

50

50

50

6060

6060

6060

7070

7070

7070

8080

8080

8080

9090

9090

9090

00

00

00

Instance set B, m = 2 Instance set B, m = 3

Instance set S, m = 2 Instance set S, m = 3

Instance set A, m = 3 Instance set A, m = 4

Fig. 3 Success rates of upper bound subfunctions Zub
0 (P, t), hub(P, t, 0) and hub(P, t, z j̄ /p

0
j̄
) to yield the

smallest value, i.e., to determine Zub∗ (P, t)

Note that since we only use integral time windows and processing times, all start times
can also safely be assumed to be integral. In our implementation, we therefore round down
any fractional upper bound to the closest integer value. Note that due to this rounding it is
even possible that Zub∗ (P, t) yields occasionally tighter bounds than Zub

MKP−LP(P, t).

7.1 Comparison of upper bound functions

We start by experimentally evaluating the impact of the individual components of our com-
bined upper bound function Zub∗ (P, t) = min(Zub

0 (P, t), hub(P, t, 0), hub(P, t, z j̄/p
0
j̄
))

from Sect. 4.1. To this end, we performed the A* search on all benchmark instances using
Zub∗ (P, t) to evaluate all states and count for the sub-functions Zub

0 (P, t), hub(P, t, 0), and
hub(P, t, z j̄/p

0
j̄
) how often each one of them yields theminimum, i.e., determines Zub∗ (P, t).

Figure 3 shows the obtained average success rates grouped according to the instance type,
the number of jobs n, and the number of secondary resources m for all three upper bounds.

Most importantly we can see that in most cases not a single sub-function is dominating,
i.e., it makes sense to calculate all three functions and to combine their results by taking the
minimum in order to get a generally tighter bound. More specifically, the success of each
sub-function obviously also depends on the specific characteristics of the problem instances.
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For instances of type B with two secondary resources, hub(P, t, 0) is for each instance
class on average more than 50% of the times the strongest upper bound. In all other cases
hub(P, t, z j̄/p

0
j̄
) is on average most successful, and for the instances of type S it is clear that

both the bounds hub(P, t, z j̄/p
0
j̄
) and Zub

0 (P, t) are of importance.

The strongest upper bound function, however, does not necessarily yield the best per-
forming A* search, since the time for calculating the bound also plays a major role. As
already stated in Sect. 4.1, we consider the upper bound functions Zub

MKP−LP(P, t), Zub
0 (P, t),

Zub
00(P, t), Zub

0 j̄
(P, t), and Zub∗ (P, t). The former is solved by the CPLEX 12.7 LP solver in

single threaded mode whereas the other upper bound functions make use of the sub-functions
hub(P, t, u), u ≥ 0 and Zub

0 (P, t) in different ways as stated in Eqs. (22)–(26).
Table 1 presents the aggregated results for each combination of instance type, numbers

of jobs, and secondary resources for our A* search using these different upper bound calcu-
lations. Columns %-opt show the percentage of instances which could be solved to proven
optimality. Columns Zub state the average final upper bounds and columns %-gap list the
average optimality gaps which are calculated by 100% · (Zub − Z(π))/Zub, where π is the
final solution and Zub the final upper bound. Columns t[s] list the median computation times
in seconds, whereas columns |W | state the average number of encountered states during the
A* search. Best values are printed bold.

In almost all cases, A* search with the combined bound Zub∗ (P, t) provides the tightest
final bounds. There are onlyfive exceptionswhere Zub

00(P, t)or Zub
0 j̄

(P, t)yield tighter bounds

on average, but Zub∗ (P, t) is not far behind. Using the original LP relaxation Zub
MKP−LP(P, t)

yields in almost all cases where not all instances could be solved to optimality worse final
upper bounds than using Zub

0 (P, t), Zub
00(P, t), Zub

0 j̄
(P, t) or Zub∗ (P, t). The reason for this

is that, although the full LP relaxation Zub
MKP−LP(P, t) may provide the tightest upper bound

for a single state, substantially less nodes could be processed due to the higher computational
effort to solve each LP, cf. columns |W |.

When considering instance sets B and S, in cases where not all instances could be solved to
optimality, the A* search with Zub

0 (P, t) was able to provide the smallest average optimality
gaps in most cases. For instances of set A the smallest average optimality gaps could be
obtained from the A* search with Zub

0 j̄
(P, t) or Zub∗ (P, t) and for instances of set S with two

secondary resources the smallest average gaps could be obtained from the A* algorithm with
Zub
00(P, t) or Zub∗ (P, t). This observation is in accordance with our previous observation

concerning Fig. 3, where hub(P, t, 0) provides more often the strongest upper bound for
instances of type S with two secondary resources and where Zub

0 j̄
(P, t) provides frequently

more often the strongest upper bounds for instances of type A. We conclude that Zub
0 (P, t)

might be a slightly better guidance for instances in sets B and S for our simple greedy heuristic
used to find solutions when terminating early.

Considering only instance classes where all instances could be solved to optimality, the
A* algorithm with upper bound function Zub

MKP−LP(P, t) encounters less states than A*
with Zub∗ (P, t) which in turn encounters less states than A* with one of the other func-
tions Zub

0 (P, t), Zub
00(P, t), or Zub

0 j̄
(P, t), respectively. This is not surprising since function

Zub
MKP−LP(P, t) solves the full LP relaxation which provides frequently the strongest upper

bounds and Zub∗ (P, t) dominates the other functions Zub
0 (P, t), Zub

00(P, t), and Zub
0 j̄

(P, t).

However, again we see that providing the strongest upper bounds cannot outweigh the dis-
advantage of the longer computation times such that A* with Zub∗ (P, t) terminates in almost
all cases substantially earlier than A* with Zub

MKP−LP(P, t).
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Last but not least, we point out that the memory limit of 16GB was the termination reason
in several runs for the largest instances. Thus, memory consumption plays a significant role
in our A* algorithm. One way to save memory would be to adopt the technique applied in
(Horn et al. 2017) where states with the same P are stored in an aggregated fashion. This can
be done by storing P only once and include the individual vectors t and further information
in an attached list of so-called non-dominated time records.

7.2 Comparison of A* search, MIP, and CP

We finally compare our A* search using the generally dominating upper bound function
Zub∗ (P, t) to solving the MIP model from Sect. 5 using Gurobi and the CP model from
Sect. 6 using MiniZinc 2.1.7 with the backend solver Chuffed. Note that we considered
besides Chuffed also the backend solvers Gecode and G12 LazyFD, but Chuffed clearly
dominated these alternatives concerning the number of instances solved to proven optimality,
as it is documented in more detail in our conference paper Horn et al. (2018b). Table 2 shows
the aggregated results. Regarding the number of instances that could be solved to proven
optimality, the A* search consistently outperforms Gurobi and Chuffed. For particle therapy
based instances of type B and S, A* search could solve all instances with up to 50 jobs to
proven optimality, except one skewed instance with three secondary resources. The avionic
system based instances of type A are harder to solve. Here, A* search was only able to solve
all instances with up to 30 jobs to proven optimality.

The largest instancewhichA*could solve to provenoptimality consists of 80 jobs,whereas
the largest instances that Gurobi and Chuffed could solve to proven optimality have 50 and
60 jobs, respectively. Gurobi could solve all avionic based instances with up to 20 jobs, all
balanced instances with up to 40 jobs, and all skewed instances with up to 30 jobs to proven
optimality. Computation times for those are, however, significantly larger than for A*. In
particular for small instances with up to n = 30 jobs, A* only required median computation
times of no more than 0.1 seconds for instances of type B and S. The CP solver Chuffed
could solve all instances of type B and S up to n = 40 jobs to optimality and all instances
of type A up to n = 30 jobs to optimality. The A* algorithm was able to provide equally
good or better final solutions than Gurobi and Chuffed in almost all cases for instances of
type B and S. Exceptions occurred only for some of the largest instances with 90 jobs, where
Gurobi’s heuristic performance proved to be superior.

For instances of type A, Gurobi’s heuristic performance is also superior for instances
of smaller sizes. Note, however, that the derivation of just heuristic solutions is not in the
foreground of our research here. Concerning obtained upper bounds, the A* search again
clearly outperforms the MIP approach by a large margin, especially on the largest instances.
Chuffed is not able to return any upper bounds.

8 Conclusions and future work

We introduced the PC-JSOCMSR as a practically relevant extended variant of the formerly
considered JSOCMSR (Horn et al. 2017). The essential differences are that now the consid-
ered jobs have prizes, not all jobs can, in general, be scheduled due the time windows, and
that we therefore have to select a subset of the jobs to schedule. Instead of the makespan, we
maximize the total prize of the scheduled jobs. This changes in the problem statement sub-
stantially affect the structure of the problem and make it in practice much more challenging
to solve.
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For all our experiments we considered benchmark instances inspired from two practically
relevant application scenarios: daily particle therapy scheduling of cancer treatments and the
pre-runtime scheduling of avionic systems. We showed that small to medium sized instances
of up to about 40 jobs can almost consistently be solved to proven optimality by ourA* search.
The state graph plays a fundamental role in achieving the reported computational efficiency.
Our state graph follows a natural node representation and features a state strengthening,
which reduces the number of nodes that must in general be considered. A particularity of our
approach is that we only add states that are known to have successor states to the open list
and we do not have a single dedicated target node. This also reduces the size of the open list.

Most crucial for the performance of the A* search clearly is the choice of the heuristic
function, which in our case is an upper bound for the total prize thatmay still be achieved from
a state. To this end, we considered a relaxation of the PC-JSOCMSR that corresponds to an
LP relaxation of a multidimensional knapsack problem. Solving this relaxation for each node
under consideration turned out not to be the most effective choice. Instead, further simpli-
fications based on constraint and Lagrangian relaxation, respectively, yield fast-to-calculate
upper bound functions Zub

0 (P, t), Zub
00(P, t), Zub

0 j̄
(P, t), and Zub∗ (P, t). While Zub∗ (P, t) is

the strongest of these four, Zub
0 (P, t) is fastest to compute. In our experiments in the context

of the A* search, using Zub∗ (P, t) showed to pay off by usually being the best choice. It yields
proven optimal solutions more frequently within the allowed time and memory limits and
requires less states to be considered. Not requiring a state-of-the-art LP solver might also be
a further advantage in some commercial applications.

We further compared the proposed A* search to an order-based MIP model as well as a
MiniZinc CP formulation that was solved with Chuffed. These other approaches, however,
are clearly inferior concerning the computation times for proven optimal solutions or obtained
upper bounds (actually, the CP approaches are not able to provide any upper bounds in case of
early termination).An explanation for the better performance of theA* search besides thewell
working heuristic function seems to be that it can effectively exploit dynamic programming
aspects: Frequently, a state can be reached via multiple different job sequences, and the
corresponding subproblem is then only solved once.

In cases where the limits have been reached, slightly better final upper bounds could
frequently be achieved by the A* search than from the CP andMIP approaches. However, we
remark that our A* search should not be considered for just heuristically solving significantly
larger PC-JSOCMSR instances, where it is obvious from the beginning that the search must
be terminated much earlier than optimality can be proven: Complete solutions (in the sense
that no further jobs can be scheduled) are usually only found very late during the whole
search. The approach that we use, that is, to augment the most promising partial solution in
a greedy way, was just implemented to ensure that we always return at least one complete
solution.

Classical A* search is targeted towards exact solving, which was our focus here. To
address substantially larger instances heuristically, other methods like metaheuristics are
more appropriate, see Sect. 3. An interesting research direction is also anytime A* search
variants,which trade longer runtimes to achieve proven optimality for the benefit of producing
promising complete solutions already early.

If our A* terminates before a proven optimal solution could be found then this frequently
happens due to exceeding the memory limit. In further research, it may thus be worth to
think about even stronger upper bounds for the still achievable prizes of states to reduce
the number of state expansions and consequently also the memory usage. A possible way
to achieve this could be to use relaxed decision diagrams, which represent discrete relax-
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ations of combinatorial optimization problems and can be seen as alternative to LP-based
relaxations.

References

Allahverdi, A. (2016). A survey of scheduling problems with no-wait in process. European Journal of Oper-
ational Research, 255(3), 665–686.

Blikstad, M., Karlsson, E., Lööw, T., & Rönnberg, E. (2018). An optimisation approach for pre-runtime
scheduling of tasks and communication in an integrated modular avionic system. Optimization and
Engineering, 19(4), 977–1004.

Gilmore, P. C., & Gomory, R. E. (1964). Sequencing a one-state variable machine: A solvable case of the
traveling salesman problem. Operations Research, 12(5), 655–679.

Gunawan, A., Lau, H. C., & Vansteenwegen, P. (2016). Orienteering problem: A survey of recent variants,
solution approaches and applications. European Journal of Operational Research, 255(2), 315–332.

Hansen, E. A., & Zhou, R. (2007). Anytime heuristic search. Journal of Artificial Intelligence Research, 28,
267–297.

Hart, P., Nilsson, N., & Raphael, B. (1968). A formal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100–107.

Hartmann, S., & Briskorn, D. (2010). A survey of variants and extensions of the resource-constrained project
scheduling problem. European Journal of Operational Research, 207, 1–14.

Horn, M., Raidl, G., & Blum C. (2017). Job sequencing with one common and multiple secondary resources:
A problem motivated from particle therapy for cancer treatment. In The third international conference
on machine learning, optimization and big data, MOD 2017 (Vol. 10710, pp 506–518). Springer, LNCS.

Horn, M., Maschler, J., Raidl, G.,& Rönnberg, E. (2018a). A*-based construction of decision diagrams for
a prize-collecting scheduling problem. Tech. Rep. AC-TR-18-011, Algorithms and Complexity Group,
TU Wien.

Horn, M., Raidl, G. R., & Rönnberg, E. (2018b). An A∗ algorithm for solving a prize-collecting sequenc-
ing problem with one common and multiple secondary resources and time windows. In PATAT 2018:
proceedings of the 12th international conference of the practice and theory of automated timetabling,
Vienna, Austria, (pp. 235–256).

Kellerer, H., Pferschy, U., & Pisinger, D. (2004). Knapsack problems. Berlin: Springer.
Likhachev,M.,Gordon,G. J.,&Thrun, S. (2004). ARA*:AnytimeA*with provable bounds on sub-optimality.

In Advances in neural information processing systems 16: proceedings of the 2003 conference (NIPS-03)
(pp. 767–774). MIT Press.

Maschler, J., Hackl, T., Riedler, M., & Raidl, G. R. (2017). An enhanced iterated greedy metaheuristic for
the particle therapy patient scheduling problem. In Proceedings of the 12th metaheuristics international
conference (pp. 465–474).

Maschler, J., & Raidl, G. R. (2018). Multivalued decision diagrams for a prize-collecting sequencing problem.
In:PATAT 2018: Proceedings of the 12th international conference of the practice and theory of automated
timetabling, Vienna, Austria (pp. 375–397).

Maschler, J., Riedler, M., & Raidl, G. R. (2018). Particle therapy patient scheduling: Time estimation for
scheduling sets of treatments. In R. Moreno-Díaz, F. Pichler, & A. Quesada-Arencibia (Eds.) Computer
aided systems theory—EUROCAST 2017, Part I (Vol. 10671, pp. 364–372). Springer, LNCS.

Maschler, J., Riedler, M., Stock, M., & Raidl, G. R. (2016). Particle therapy patient scheduling: First heuristic
approaches. In PATAT 2016: Proceedings of the 11th international conference of the practice and theory
of automated timetabling, Udine, Italy (pp. 223–244).

Nemhauser, G. L., & Wolsey, L. A. (1988). Integer and combinatorial optimization. Interscience series in
discrete mathematics and optimization. Hoboken: Wiley.

Rios, L. H. O., & Chaimowicz, L. (2010). A survey and classification of A* based best-first heuristic search
algorithms (pp. 253–262). Berlin: Springer.

Röck, H. (1984). The three-machine no-wait flow shop is NP-complete. Journal of the ACM, 31(2), 336–345.
Vadlamudi, S. G., Aine, S., & Chakrabarti, P. P. (2016). Anytime pack search. Natural Computing, 15(3),

395–414.
Van der Veen, J. A. A., Wöginger, G. J., & Zhang, S. (1998). Sequencing jobs that require common resources

on a single machine: A solvable case of the TSP. Mathematical Programming, 82(1–2), 235–254.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	A* Search for Prize-Collecting Job Sequencing with One Common and Multiple Secondary Resources
	Abstract
	1 Introduction
	2 Problem formulation
	3 Related work
	4 An A* Algorithm for the PC-JSOCMSR
	4.1 State graph
	4.2 A* algorithm framework
	4.3 Strengthening of states
	4.4 Upper bounds for the total prize of remaining jobs

	5 A mixed integer programming model
	6 A constraint programming model
	7 Experimental results
	7.1 Comparison of upper bound functions
	7.2 Comparison of A* search, MIP, and CP

	8 Conclusions and future work
	References




