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Abstract
Supply chains with shorter lead times can bring their constituents cost reductions, flexibil-
ity, and speed. Since manufacturing is a prominent operation within the supply chain, the
reduction of its time duration can prove important in reducing the overall supply chain’s
lead-time. Some works in the area of supply chain network design (SCND) have looked at
the crashing of supply chain’s lead-time. However, the literature lacks works that explicitly
model a crashing cost in SCND. The work formulates a cost model that integrates produc-
tion, crashing, inventory, transportation, and plant selection. Given the complexity of these
elements, the model emerging is a nonlinear and binary in both the objective function and the
constraints. The paper introduces a gradient search method to solve the model coupled with
efficient search heuristics. The work presents seven search heuristics along with variants to
solve the difficult problem at hand. Further, the work looks at different parameters that affect
the crashing cost, presents the cost avoidances that can result from crashing, and discusses
the operational opportunities to be reaped.
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1 Introduction

Beamon (1998) suggests that a supply chain may be defined as an integrated process of
various business entities interacting with each other. Supply chain network design (SCND),
on the other hand, is a modeling module that aims at optimizing an organization’s resources.
In a classical SCND problem, attributes such as cost, location, and functionality are lumped
in an objective function to be optimized accompanied with operational constraints.

The aim of this work is to reduce the manufacturing or production time (Pt), which is an
important component of the overall supply chain lead-time. Lead-time in supply chain oper-
ations is an area receiving much attention with numerous works highlighting the importance
of its reduction. However, there is a gap in the research for works that look specifically at Pt
reduction. Thework of Towill (1996) discusses the importance of reducingPt as a competitive
weapon in supply chains. As mentioned, reducing Pt cuts the overall supply chain lead-time.
This, in turns, allows firms to be more flexible to demand changes. The advantages of reduc-
ing Pt are many. First, with shorter lead-time firms are able to order closer to selling season or
consumption point. In illustration, thework ofBlackburn (1991) shines light on the operations
of the retail giant, Wal-Mart. According to the investigation, if the retailer orders 16 weeks
instead of 26 weeks before the selling season, the error in forecasting market demand drops
from40 to 20% (Blackburn 1991). Secondly, reducing lead-time can prove important in indus-
tries, which are time sensitive. For instance, in the aerospace industry, aircraft manufacturers
payheavypenalties for late deliveries. Third, since thiswork looks specifically atPt, an impor-
tant benefit of reducingPt is the attainment of excess capacity. In elaboration, the reduction in
Pt frees production resources and hence creates excess capacity from which more output can
be produced. Hence, the objective of this work is the reduction of Pt by crashing production
time. In this work, crashing cost is the cost incurred for shortening production duration by
some time, S. However, crashing Pt requires a deeper understanding of the production cost.

Another important contribution of this work is the formulation of heuristics to search
the nonlinear and discrete solution space. Given the surge in papers that present nonlinear
and binary mathematical models (Table 1), works that analyze the accuracy of heuristics are
necessary. The literature shows a number of works that introduce nonlinear binary models
but the body of work lacks work that contests a set of heuristics to solve the corresponding
problems. In contrast, this paper devises seven heuristics and analyses the effectiveness and
accuracy of each.

The paper is organized in the following manner. Previous relevant works are presented
and reviewed in Sect. 2. Section 3 presents important definitions, a general description of
the model, and a discussion of the challenges present in it. Section 4 presents the model
assumptions and the model itself. Section 5 explains the challenges of solving the nonlinear
binary model at hand. It introduces all seven solution heuristics to be used (gradient and
binary search heuristics). Section 6 presents comparisons between the different heuristics,
validates the accuracy of each of the heuristics, and presents the overall results of the model.
At the end of the section, parameter analysis is performed to assess important variations of
the model. Section 7 discusses the benefits, limitations, and future prospect of the research.

2 Literature review

The field of SCND has seen a significant number of works. The earliest work in this area
can be traced to Geoffrion and Graves (1974). They introduce a multi-commodity logistics
networkmodel for optimizing the flowof finished products fromplants to distribution centers.
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Arntzen et al. (1995) provide a deterministic model for supply chain network designs. Table 1
gives a snapshot of the literature, with emphasis on recent publications in SCND.Most of the
papers in the table meet the general description of the supply chain with multiple echelons
focusing on suppliers, manufacturers, and/or distributors. Overall, the state-of-the-art tends
to be populated with models that look at transportation and inventory costs. However, few
papers look at the individual components of the production cost. Papers devising solutions
that search a discrete solution space are many. However, papers that deal with nonlinear and
binary variables are a minority.

Relevant to this work, Cakravastia et al. (2002) present a mixed integer programming
(MIP) model to analyze different production scenarios for ultimately performing supplier
selection. The work devises a crashing cost where suppliers have two choices: crash produc-
tion or normal production. Thework presents a crashing cost per unit, which can be analogous
to the crashing cost presented in this paper. However, the work of Cakravastia et al. (2002)
fails to dig into the relationship between crashing and normal costs. The work of Hoque and
Goyal (2006) deals with crashing lead-time; here, the crashing pertains to preparation to a
series of elements such as time, supplier lead-time, and other elements. This is quite different
from the objective of the paper, which looks specifically and exclusively at production time.
Jian et al. (2015) look at the crashing cost of production; however, their work focuses on
balancing the trade-off between demand forecasting risk and production cost. Yang (2010)
looks at crashing the lead-time and not specifically at production time. The work utilizes a
polynomial function tomodel crashing,which is nonlinear. Thiswork also utilizes a nonlinear
convex function to model crashing. The work of Diaby et al. (2013) looks at shortening cycle
time by reducing setup cost in a capacitated production setting. They present an exponential
function, which depicts the capital investment required to shorten production setup time.
However, the work looks at the shortening of setup time and not the whole production cycle.
Moving to other works, the trade-off between normal costs and crashing costs in the context
of SCND is absent. The work of Esmaeilikia et al. (2016) differentiates between regular time
and overtime costs. However, the work does not address the crashing of production time. The
work ofMizgier (2017) looks at direct and indirect costs. However, these costs are associated
with risk. For instance, his/her work defines the crashing cost as the cost of property damage
for a firm due to a given hazard.

In terms of solution procedures, Hammami and Frein (2013) present a model for a global
multi-echelon supply chains with lead-time constraints. They devise a mathematical model
with nonlinearity in the constraint. The authors linearize the constraints and solve the model
using CPLEX. Kaya and Urek (2016) present a closed-loop supply chain that integrates a
combination of three sub problems: location, pricing, and inventory. The modeling results
in a nonlinear problem. The authors utilize a gradient-based search method to solve the
model. Jayaraman and Ross (2003) introduce a global distribution system design that utilizes
simulated annealingmethodology.Merz and Freisleben (2002) present a greedy heuristic and
two local search algorithms, l-opt local search and k-opt local search. Their work is the basis
of the heuristic used in this paper with the incorporation of a feasibility check criteria. Many
works (Badria et al. 2017; Diabat and Al-Salem 2015; Diaby et al. 2013; Esmaeilikia et al.
2016; Fahimnia et al. 2015; Govindan et al. 2014; Govindan and Fattahi 2017; Hasani et al.
2015; Jayaraman and Ross 2003; Kaya and Urek 2016; Keyvanshokooh et al. 2016; Mangla
et al. 2016; Marti et al. 2015; Petridis 2015; Pan and Nagi 2013; Pishvaee and Torabi 2010;
Pham and Yenradee 2017; Rezapour et al. 2017; Sadjady and Davoudpour 2012; Santos et al.
2005; Sarrafha et al. 2015; Vahdani and Mohammadi 2015; Varsei and Polyakovskiy 2017;
Yildiz et al. 2016) utilize integer-based search heuristics (designed for binary variables).
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Fig. 1 Crashing and normal production costs

Historically in the SCND literature, components of the production cost have been lumped
into one cost. In Table 1, we summarize the literature review we’ve carried. Column five
illustrates a gap in works that look at production cost components. To remedy this, the work
looks at two very important components of the production cost: crashing and normal costs.
Crashing costs encompass variable costs that are geared towards the shortening of Pt. On
the other hand, normal production costs include classical costs such as rent, electricity, and
labor. Seeing the production cost in terms of crashing and normal costs allows one to infer a
relationship between the crashing of Pt and its consequential overall production cost (Fig. 1).
This nonlinear relation highlights the contribution of this work, since it is a novel way of
looking at Pt crashing. Figure 3 illustrates the classical crashing cost behavior coming from
the Project Management discipline (Stevenson et al. 2007). In the figure, we use the data
presented later in Table 3.

3 Problem description

Before getting to the description of the problem at hand, it is important to introduce important
definitions. The shortening length (S) is the time a production run is shortened. Production
time (Pt) is the time required to produce the planned production quantity (Qo).Qo is the initial
quantity a plant produces during a production cycle if there is no shortening (S). Production
cycle (PC) is the original production run time before crashing. Whenever a production run
is shortened, the production cycle remains the same while an excess capacity forms. The
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Fig. 2 Pt before and after crashing

demand, D, is the quantity of units demanded during a production cycle. Here, the demand
remains constant for each time period regardless of crashing. Figure 2 visually illustrates the
production cycle before crashing, where a production cycle is exactly equal the production
time (Pto). After crashing, the production cycle remains the same but the production time is
shortened (Fig. 2). The demand rate remains the same and it is per production cycle. Notably,
the crashing creates an excess capacity, of which a plant can increase output as shown in
Fig. 2. In context of the overall supply chain, excess capacity at one plant might alter product
assignments. For instance, if a product is assigned to two different plants but one plant crashes
production, the output at the other plant might be reduced or even stopped altogether.

For the purpose of this study, normal costs include facility costs (property
rental/mortgage/financing costs), electricity costs, labor costs, machining costs (rental costs
or depreciation), and supervision costs. Crashing costs include the resources needed to shorten
Pt. It includes incremental labor costs due to additional hiring, part-time costs, overtime costs,
excess machine costs (additional machining), and acquisition costs of superior production
process technologies. Reducing the production time (Pt) results in additional production
costs but these costs are offset by a reduction in the overall production costs (crashing plus
normal) as the overhead costs is spread over larger production volumes (i.e., more lot sizes
per time period). Figure 1 illustrates this, where the total production cost (normal + crashing)
is convex and hence has a unique minimum.

The normal production cost (NC) is a function of Pt and is proportional to Pt. Normal
costs (NC) can be written as follows.

NC � CPt � C(Pto − S) (3.1)
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Fig. 3 Cumulative cost of crashing activities in Project Management (taken from Stevenson et al. 2007)

C is an overhead cost parameter that is dependent onworkforce costs, property costs, machine
rental costs, and production lot size. Pto is the length of the production time if no crashing
is applied.

The crashing cost of production (CC) is the cost of the additional resources (e.g., additional
machines, additional labor, and/or acquisition of superior production process technology)
required to shorten Pt by time S. CC is a function of S. This is analogous to other works in
the literature. We see a similar phenomenon in Project Management and in particular project
crashing (see Fig. 3). When we shorten (i.e., crash) a given activity within a project, the cost
of crashing increases exponentially. Elsewhere, the work of Diaby et al. (2013) presents an
exponential function to depict the capital investment required to shorten production setup
time. Based on their work, the CC can be written as follows.

CC � αeβS (3.2)

α is a costing parameter that is dependent on the production environment. It is a positive
number (α≥0). β is the exponential factor, which is a positive real number between zero and
one (β≥0). Both terms were necessary in the work of Diaby et al. (2013) and are used in
this work as they construct mathematical functions that mimic the classical behavior of the
crashing cost (Figs. 1, 3).

4 Model

The model is a multi-period and multiproduct system. The supply chain has assignable costs
(i.e., binary variables). The production at each plant is communicated in terms of lot sizes
while the production time, Pt, is a variable. The objective of the work is to reduce the overall
production lead-time which, in turn, can reduce the overall supply chain lead-time. The
following assumptions are necessary for the conceptualization of the model.
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Assumptions:

1. Inventory is held at suppliers and the cost of carrying inventory is visible to all supply
chain partners.

2. No inventory, or negligible inventory, is held at the plants.
3. Suppliers procure raw material or components at a procurement cost.
4. Parts arrive from the suppliers to the plants just before the start of each production cycle

so no inventory is needed to be held at plants.
5. Products are shipped from plants to distributors at the end of each production cycle.
6. Demand is a constant and is per production cycle for each period.
7. Plants with excess capacity (due to crashing) can increase output.
8. Distributors are the end customers for our network and hence operational parameters

(e.g. inventory) at the distributors are outside the boundaries of our model.
9. Before production cycle one, all initial condition are based on Pto.

10. This is a multiproduct supply chain model, which means if a product is not assigned to
a plant, the plant is still open for production on other products. This is quite common
practice for plants to work on more than one product.

11. The normal costs of production are incurred per a given time period for a set quantity of
units. The increase of production throughput (i.e., increase of production quantity), due
to the shortening of Pt, results in unitary cost reduction. This assumption is grounded
in most manufacturing settings where economy of scale brings unit production savings
(Alzaman et al. 2018; Stevenson et al. 2007).

12. More than one production run can occur in a production cycle, if Pt’s shortening is
achieved.

The model is as follows.
Sets:

I � Group of suppliers.
J � Group of Manufacturing Plants.
K � Set of Distributors.
P � Set of all product types.
R � Set of part types that are predecessors to P.
T � Set of production cycles.

Parameters:

Ptoj,p,t � Standard production run time at plant j, for product p, if no crashing is applied,
during production cycle t; j ∈J , p ∈P, t ∈T .
Qj,p,t � Production patch size (Lot size) given Ptoj,p,t , for product p at plant j during
production cycle t; j ∈J , p ∈P, t ∈T .
PCri,r,t � Procurement cost at supplier i, for one unit of part r, during production cycle t;
i ∈ I , r ∈R, t ∈T .
ICi,r,t � Inventory holding cost for holding inventory at supplier i, for one unit of part r,
per production cycle t; i ∈ I , r ∈R, t ∈T .
Fixj,p,t � Fixed cost for assigning product p to plant j, during production cycle t; j ∈J ,
p ∈P, t ∈T .
Tri,j,r,t � Unit transportation cost of transporting a part r from supplier i to plant j during
production cycle t; i ∈ I , j ∈J , r ∈R, t ∈T .
Tpj,k,p,t � Unit transportation cost of transporting a product p from plant j to distributor
k during production cycle t; j ∈J , k ∈K , p ∈P, t ∈T .
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SCapi,r,t � Allowable capacity of part r that can be held at supplier i, during production
cycle t; i ∈ I , r ∈R, t ∈T .
PCapj,p,t � Allowable capacity of product p that can be produced at plant j, during pro-
duction cycle t; j ∈J , p ∈P, t ∈T .
Dk,p,t � Number of lot sizes of product p demanded at distributor k during production
cycle t; k ∈K , p ∈P, t ∈T .
Ii,r,0 � Initial Inventory level of parts r, at supplier i, at the beginning of production cycle
1; i ∈ I , r ∈R.
nr,p � Number of parts r required to manufacture one unit of product p; r ∈R, p ∈P.
Cj,p � An overhead cost parameter for product p at plant j; j ∈J , p ∈P.
αj,p �A costing parameter that is dependent on the production setting at plant j for product
p. It is a positive number (α≥0); j ∈J , p ∈P.
β j,p � An exponential factor, which is a positive real number between zero and one at
plant j for product p; j ∈J , p ∈P.

Decision variables:

Xj,p,t � Number of lots produced for product p at plant j, during production cycle t; j ∈J ,
p ∈P, t ∈T .
XPi,r,t � Number of parts r procured or produced at supplier i, during production cycle t;
i ∈ I , r ∈R, t ∈T .
Zj,p,t � Binary variable that takes the value of 1, when output is assigned for product p at
plant j, during production cycle t, or zero otherwise; j∈ J, p∈P, t∈T.
XTri,j,r,t � Number of parts transported from supplier i to plant j for part r, during pro-
duction cycle t; i∈ I, j∈ J, r∈R, t∈T.
XTpj,k,p,t � Number of products transported from plant j to distributor k for product p,
during production cycle t; j∈ J, k∈K, p∈P, t∈T.
XHi,r,t � Number of parts, r, held at supplier i, during production cycle t; i∈ I, r∈R, t∈T
Sj,p,t � Time shortened from original Ptoj,p,t for plant j, for product p, at production cycle
t; j ∈J , p ∈P, t ∈T
Ptj,p,t � Production run time at plant j, for product p, as a result of crashing the production
run by Sj,p,t in production cycle t; j ∈J , p ∈P, t ∈T .
PCFj,p,t � Production cost as a function of period shortened, S, for product p and lot size
Qj,p,t manufactured at plant j during production cycle t; j ∈J , p ∈P, t ∈T .

Model:

(4.1)

MinZ �
∑

i∈I

∑

r∈R

∑

t∈T
PCri,r ,t X Pi,r ,t +

∑

i∈I

∑

j∈J

∑

r∈R

∑

t∈T
Tri, j,r ,t XTri, j,r ,t

+
∑

i∈I

∑

r∈R

∑

t∈T
ICi,r ,t X Hi,r ,t

+
∑

j∈J

∑

p∈P

∑

t∈T
X j,p,t PCFj,p,t +

∑

j∈J

∑

p∈P

∑

t∈T
Z j,p,t Fi x j,p,t

+
∑

j∈J

∑

k∈K

∑

p∈P

∑

t∈T
T p j,k,p,t XT p j,k,p,t

The objective function (4.1) minimizes the total operational costs. It includes (order from
left to right) the procurement costs at suppliers, transportation costs from suppliers to plants,
sum of inventory holding costs at suppliers, production costs (crashing and normal) at plants,
transportation costs from plants to distributors for all product types. Importantly, the objective
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function minimizes the total of normal and crashing production costs and, in turn, optimizes
production time at a given plant.

The production time, Ptj,p,t , can be written as:

Pt j,p,t � Pto j,p,t − S j,p,t (4.2)

The production cost term in the function returns a lot-size production cost that is a function
of the shortening of production time, Sj,p,t . The PCF is the total production cost, encompassing
both the crashing and normal production costs.

PCFj,p,t � α j,pe
β j,p S j,p,t − C j,pS j,p,t + C j,p Pto j,p,t (4.3)

Subject to
Constraint (4.4) ensures that parts held at supplier i do not exceed the capacity limit.

XHi,r ,t ≤ SCapi,r ,t ∀i,∀r ,∀t (4.4)

Constraint (4.5) balances the parts procured, and held at supplier i, with the parts to be
transported to plants.

X Pi,r ,t −
∑

j∈J

XTri, j,r ,t − XHi,r ,t + XHi,r ,t−1 � 0 ∀i,∀r ,∀t : t�0→ XHi,r ,t � Ii,r ,0

(4.5)

Constraint (4.6) balances the outbound supply from suppliers with the demanded parts
required for production at plants (also ensures that no transportation is performed for plants
that are inactive).

∑

i∈I
XTri, j,r ,t � X j,p,t Z j,p,t Q j,p,t nr ,p ∀ j,∀p,∀r ,∀t (4.6)

Constraint (4.7) ensures that demanded products at a given distributor k are met.

∑

j

XT p j,k,p,t

Q j,p,t
� Dk,p,t ∀k,∀p,∀t (4.7)

Constraint (4.8) balances the number of products transported to distributors with the
number of products made at plants.

X j,p,t Q j,p,t Z j,p,t −
∑

k

XT p j,k,p,t � 0 ∀ j,∀p,∀t (4.8)

Constraint (4.9) restricts the number of products made at a given plant to the plant’s
capacity plus excess capacity resulting from crashing.

Q j,p,t X j,p,t ≤ Z j,p,t

(
PCap j,p,t + S j,p,t

Q j,p,t

Pt j,p,t

)
∀ j,∀p,∀t (4.9)

Constraint (4.10) ensures non-negativity and binary representations.

XTri, j,r ,t , XT p j,k,p,t , XHi,r ,t , X j,p,t , S j,p,t , Pt j,p,t ≥ 0;

Z j,p,t ∈ {0, 1} ∀i,∀r ,∀ j,∀p,∀t (4.10)
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Fig. 4 Problem P1

5 Methods

The contribution of this work is emphasized in the following:

• The inclusion of crashing/normal production costs and the conceptualization of the tradeoff
between production time crashing and production costs.

• The solving of a nonlinear binary model and the proving of convexity.
• The design of accurate solution heuristics (minimizing the solution gap with respect to the
lower bound).

To understand the contribution of this paper, close attention needs to be paid to the special
characteristics of the model. The work of Dua (2015) presents a generic formulation of a
binary nonlinear mathematical programming problem as P1 (Grossmann 2002).

As shown in Fig. 4, P1 is a function of x and y.Where x is a vector of continuous variables,
y is a vector of binary variables, h is an nh dimensional vector of equality constraints, g is
an ng dimensional vector of inequality constraints and f is the scalar objective function.
Solving P1 is NP-hard (Dua 2015). The objective function (4.1) in this work has similar
characteristics but is complicated in the fact that two of the decision variables (Xj,p,t and
Sj,p,t) are multiplied by each other. The production cost term present in Eq. (4.1) is nonlinear
as PCFj,p,t is a function of the decision variable Sj,p,t and is exponential. Moreover, the plant
assignments are represented by binary variables, Zi,p,t . Further, nonlinearities in constraints
(4.6), (4.8), and (4.9) are present. Given the complexity of the problem at hand, heuristics need
to be devised to solve the model. If the binary variables were fixed (i.e., assigned), then the
resulting objective function would only contain continuous variables, which can be solved
by a gradient search method. The near-optimal solution can then be found by iteratively
searching the solution space using search heuristics. This linearizes constraints (4.6), (4.8),
and (4.9). The remains of the section will highlight the convexity proof (Sect. 5.1), gradient
search (Sect. 5.2), local search procedures (Sect. 5.3), genetic search (Sect. 5.4), and finally
the simulated annealing search (Sect. 5.5).

5.1 Convexity proof

Proposition The objective function (4.1) is convex.
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The total cost, PCF, of normal and crashing costs is PCF � CC + NC. Using definitions
and equations introduced in Sect. 3, PCF can be written as:

PCF � αeβ∗S + C(Pto − S) (5.1)

For any function f(x) to be convex, then a secondderivative everywheremust be d2 f (x)
dx2

≥ 0,
for all values of x (Shah et al. 2007;Mohri et al. 2018). Therefore, taking the second derivative
of the function on the only variable in the equation, S, brings the following expression:

αβ2eβS ≥ 0

Since S, α, and β can only take positive values by definition (see Sect. 3), then the whole
expression must always be positive and hence the function is convex.

ThePCF term in the objective function is alsomultiplied byX which is a decision variable.

Both partial derivatives of d2 f (S)
dS2

and d2 f (X )
dX2 are greater or equal to zero rendering the overall

expression convex. Given that the sum of convex functions is also convex and the holding of
Z as constant for each iterate in the solution procedure (to be discussed in Sects. 5.3–5.5),
the whole objective function is convex.

5.2 Gradient searchmethod

Since the objective function (4.1) is convex, a gradient search method can fetch the optimal
values of Sj,p,t and solve the model effectively. As discussed, the objective function, f , is
convex. Thus f is differentiable at x, and a vector d ∈ 	n is a descent direction for f at x if:

−∇ f (x)T d > 0

According to the definition of the derivative (Kolda et al. 2003):

f (x + αd) � f (x) + α∇ f (x)T d + o(α)

If d is a descent direction, and α>0 is sufficiently small, then xk+1 � xk + αkdk reduces
the value of the objective f . This observation forms the basis of line search methods. At the
iterate xk , a descent direction dk is chosen and a search is conducted along this direction
for a point xk+1 � xk + αkdk (with αk >0) that has a smaller objective value. Choosing the
correct α is important to guarantee faster convergence (Kolda et al. 2003).

Gradient methods are specified in the form:

yk+1 � yk + αk∇ f
(
yk

)

αk is the step size and has only a positive value that minimizes: f
(
yk + αk∇ f

(
yk

))
.

f
(
yk + αk∗∇ f

(
yk

))
� min

αk
f
(
yk + αk∇ f

(
yk

))

The expression ‘ f
(
yk + αk∇ f

(
yk

))
’ can be alternatively thought of as ‘ f (x)’ evaluated

at ‘yk + α
(

∂ f
∂yk

)
.’ The expression is a function of constants with the exception of: yki . When

the ‘yki ’ expressions are fixed at each iteration, the ‘ f (x)’ becomes a function of just a
single variable: ‘α’ (Hillier and Lieberman 1995). The gradient search procedure first starts
at y (pertaining to this work, y is S: Sj,p,t) equals zero and solves the model linearly to produce
‘f (y)’. Then the stepsize is calculated by finding a stepsize (α) that minimizes f (y + αd). As
the stepsize approaches zero, the value of f (y + αd) approaches that of f (y) and the minimum
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Fig. 5 Gradient-based solution methodology (y is Sj,p,t )

is intuitively achieved. This minimum is a global minimum, since the objective function
has been proven convex. Figure 5 illustrates the steps in the solution methodology where the
initial solution of f (y) is a zero vector. The procedure stops when the difference between f (y +
αd) and f (y) is very small and less than a tolerance (tolerance is set to 0.03% of objective
value).

5.3 Local search heuristics

The paper uses a number of local search heuristics to dealwith the set of binary variables in the
model, Zj,p,t . Starting with an initial solution, the procedure iteratively searches for the best
solution vector Zj,p,t . Then at each iteration, the gradient searchmethod is invoked to compute
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the cost of the solution. Local search (LS) procedures are improvement heuristics that search
in the neighborhood of the current solution for a better one until no further improvement can
be made.

Five local searches are contested:

1. 1-opt-first procedure
2. k-opt-first procedure
3. 1-opt-best procedure
4. k-opt-best procedure
5. Hybrid k-1-opt procedure.

The 1-opt-first (Merz and Freisleben 2002) procedure starts from a feasible solution and
searches the neighborhood for solutions with a hamming distance of l to the current solution
(i.e., by flipping a single bit) and the gain calculated as the difference between the objective
value prior to the move and post to the move. If no better neighbor solution can be found in a
predetermined set of tries, the search immediately stops and returns the best solution found.
The 1-opt-best procedure differs from the 1-opt-first procedure in that it contests a group of
flips and records the best move among them. The binary solution vector in our case is Zj,p,t as
defined previously. Similarly, there are two types of k-opt move strategies. The first strategy
is the first improvement move strategy, which scans solutions in the N(z) space according to
pre-specified order, and Z becomes incumbent if the solution Z improves the objective value.
The second strategy is a best improvement move strategy, where solution Z is chosen if it is
the best cost in the entire candidate set of N(z).

The hybrid solution procedure combines both the 1-opt-best and k-opt-best methodolo-
gies. The hybrid solution procedure is inspired by the results obtained from the 1-opt-best and
k-opt-best preliminary results. For the k-opt solution procedure, when a large number of bits
are flipped simultaneously, the chance of breaching feasibility becomes more imminent. We
see this in Table 2, where computational time can be really high even for small supply chain
networks. The 1-opt methodology only flips one bit at a time and hence has a lesser chance
of breaching feasibility. As shown in Fig. 6, the k-opt and 1-opt moving strategies are altered
and each respective gain is recorded. The best move that brings about the fittest solution,
among a group of k-opt and 1-opt, is then chosen. In this way, the best move could be a
k-opt or a 1-opt move, depending on the solution topography and the proximity of the infea-
sibility threshold, and would correspond to the highest gain while meeting the feasibility
criterion. nni is the stopping criteria for all the five searches, which counts the number of
non-improvement in the solution. This will be discussed in Sect. 6.

5.4 Genetic search

Along with the local search heuristics, the paper utilizes a genetic-based heuristic (GBH).
Holland (1975) originally developed the method over the course of the 1960s and 1970s. The
heuristic begins by defining the optimization variables and the cost function. GBH defines
a chromosome or an array of variables to be optimized. The chromosome has N variables
(an N-dimensional optimization problem) given by v1, v2, v3, …, vN, which is in our case
Zj,p,t . It is necessary to define the cost function which generates an output from a set of input
variables. The cost function is a function of the chromosomes. The heuristic starts with a
group of chromosomes known as the ‘population’; a matrix, Npop ×Nbits. This results in an
Npop chromosomes (i.e., population) and Nbits number of bits. The Npop ×Nbits matrix gets
filled with random ones and zeros. Natural Selection is then applied to improve the fitness
of the population of solutions. In a minimization problem as the current, survival of the
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Procedure of hybrid algorithm
1. Initialize: counter = 0, 

initiate a random seed x
2. Do following until counter > nni

2.1 if random number < 0.5 (perform 1-opt)
flip random element i for all i in {1,…,s} 
calculate gain, gi i for all i in {1,…,s} 

otherwise (perform k-opt)    
flip random k number of element simultaneously 
calculate gaini, 

fetch maximum gain, gainmax
2.2 if gainmax>0 & xi is feasible

update x, 
counter = 0;

otherwise
counter = counter + 1

3. Return x

Fig. 6 Hybrid solution procedure

Fig. 7 Genetic-based heuristic schematic

fittest translates into discarding the chromosomes with the highest cost. The overall solution
procedures are highlighted in Fig. 7.

As illustrated in Fig. 7, we start with a population of random feasible solutions (i.e.,
chromosomes). The number of chromosomes is set to 30. Figure 8 illustrates preliminary
runs where we increase the number of chromosomes from 10 to 200. The figure shows 30
chromosomes to be a good cutoff point (Df curve becomes less steep after 30 chromosomes).
Here, Df is the solution gap [see Eq. (6.1)].
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Fig. 9 Results from varying the number of generations in the genetic procedure

Next, the feasibility is insured in step 1.4 (see Fig. 7). Then, we sort chromosomes from
best to worst fit. Afterward, we introduce mutations to the population at a rate of 1% for each
generation.Theprocedure’s last step is the stopping criterion.Using anon-improvement count
as a stopping criterion is quite common in the literature, especially for local search methods.
However, for genetic search procedures, the number of generations is usually a stopping
criterion of choice (Michalewicz 1996). In our case, we have studied deeply the behavior of
the genetic procedure. We ran hundreds of iterations to identify the best stopping criterion
based on accuracy and computational time. In Fig. 9, we vary the number of generations in
the genetic search from 1 to 10 generations. At each generation iterate, we conduct 100 runs
to assure good representation. We find that the steepest decrease in the solution gap occurs
between one and four generations. After four generations, the decrease in DF is smaller
while the computational time is steadily higher. Hence, we choose four generations to be the
stopping criterion.

5.5 Simulated annealing search procedure

Last of the heuristics is the simulated annealing (SA) procedure, which is based on multi-
ple annealing processes starting from an initial annealing temperature. The first annealing
temperature starts at a higher temperature and then is gradually lowered (Kattayama and
Narihisa 2001). Each iteration of the search process moves from a current trial solution to
an immediate neighbor in the local neighborhood of the solution. The immediate neighbor is
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Fig. 10 Simulated annealing
search procedure

Procedure of simulated annealing
1. Initialize: counter = 0

initiate a random seed x
2. Do following until counter > nni

flip random element i for all i in {1,…,s} 
calculate gain, gi i for all i in {1,…,s} 
fetch maximum gain, gainmax
if gainmax> 0 & xi is feasible

update x, xi = 1- xi
counter = 0;

if gainmax<0 & xi is feasible
if random number < probability & xi is 

feasible
update x, 
counter = 0;

otherwise
counter = counter+1

3. Return x

then selected to be the next trial solution. Now among all immediate neighbors of the current
trial solution, a solution is accepted if it improves the objective function. If the solution does
not improve the objective function, it will be compared to a probability criterion. Here, a
random number is compared to the probability; if the probability is greater than the random
number, the solution will be accepted or rejected if otherwise. The SA procedure is shown
in Fig. 10. Like the other solution procedures, the search converges if nni reaches four.

6 Results

In order to measure the accuracy and the performance of each of the heuristics, a lower bound
is constructed on the objective function (4.1). It is obtained by relaxing the binary variables,
Zj,p,t’s, associated with the assignable costs, to become continuous variables with a lower
bound of zero and an upper bound of one (0<Z<1). Once the binary variables are relaxed,
the model is solved using the gradient procedure and the solution becomes the lower bound
to the objective function (4.1). Then, the original model is solved using all seven heuristics
discussed and the solutions are then contrasted against the lower bound. The gap difference
between the solution of the heuristic and the lower bound, Df , is calculated as follows.

Df � Hv − Lv

Lv
× 100 (6.1)

Hv � Objective value of respective heuristic.
Lv � Objective value of lower bound.

To introduce the results, we first discuss the stopping criterion (Sect. 6.1), and then we
vary the supply chain configurations (Sect. 6.2).We analyze the effect of crashing in Sect. 6.3
and we contest larger runs in Sect. 6.4.
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Fig. 11 Effect of non-improvement limits on the solution

6.1 Stopping criterion

The input data for the supply chain is simulated to give a higher number of instances and the
results are shown in Table 2. The stopping criterion, nni, for all seven solution procedures
is the same, where nni is the maximum number of consecutive non-improvement moves
allowed (except for the genetic search where it’s four generations). An infeasible move is
considered a non-improving move as it does not improve the solution. Therefore, the time
duration till the stopping criterion is a measurement of how efficient and successful the
solution procedure is in reaching the solution without breaching feasibility. It’s important
to note that the stopping criterion for all the heuristics (except for the genetic search: see
Sect. 5.4) is the maximum number of non-improvements, nni. nni is a limit set by the user to
signal the arrival at the minimum solution. This constructs a fair comparison between all the
heuristics since arriving at the solution is tied to nni. To set the limit value of nni, we carried
numerous runs over different nni values. We ran over 200 runs. In the runs, we varied the
value of nni from 1 to 14. Figure 11 shows the corresponding solution gaps (averaged over 20
runs each) when varying the limits (nni). Initially, when we increase the limits (from 1 to 3),
the solution gaps (Df ) drastically drop. The drop then stabilizes above three. To elaborate,
increasing the value of the limits will initially produce high gains then stagnate. In addition,
we see higher computational times at higher limits (see Fig. 12). In all, at nni � 4, the benefits
(accuracy and efficiency) of increasing nni diminishes. For this, we chose to run the model
at nni � 4.

6.2 Varying supply chain configuration

In Table 2,we note the time duration of convergence for each of the seven solution procedures.
To assure consistency and fair representation, the coding, compilation, and execution are
done using a MATLAB platform on a fixed computational system (Intel R, Core TM, i5-
2400 CPU@3.10 GHz). Table 2 presents the simulation of twenty-four runs. The runs are for
a small supply chain, medium supply chain, and large supply chain networks to ensure better
representation of practical implications. Local search heuristics, specifically K-opt (first and
best), tend to do well and outperform the simulated annealing and genetic heuristics for small
supply chain networks. However, for larger networks, the genetic heuristic tends to do best in
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Fig. 12 Computational times for the six different heuristics

terms of accuracy. In terms of computational times, both hybrid and K-opt tend to be faster
than the genetic search but at two points lower than the genetic in terms of accuracy (Table 2).

6.3 Effect of crashing

Aside from the heuristics, we start with a network of two suppliers, seven potential plants for
product assignments, and two distributors (Fig. 13) to infer the monetary impact of crashing
the production time (Pt). A leading firm in the Aerospace industry has provided us with data.
However, the data has been masked to assure the privacy of the operations as per the request
of the firm (Table 3). The production cost parameters α, β, and C are extrapolated from the
crashing data in Table 4, using exponential data fitting where the error of fitting is very small
and negligible (0.001). Notably, the scaling does not affect the results especially given the
fact that our aim is for comparative analysis.

All the results, presented in this paper, are comparative between the crashing of Pt case
and the null case (where no crashing is allowed). This is to answer the main question of this
work: Does the crashing of Pt minimize the overall production costs, reduce supply chain
costs, and/or increase supply chain throughput? To answer this question, two models are
contested: one where crashing Pt is not possible and one where it is. If there is no crashing
of Pt, the problem becomes linear as the Sj,p,t terms in the model becomes zero. Hence,
no gradient search is required to solve the model. Solving the model produces an objective
function value, which we should call: Objvnull. While the objective value of the model where
crashing is possible is termed, Objvcrash. Accordingly, the percent difference or objective
function reduction can be expressed as Acc.

Acc � 100 × Objvnull − Objvcrash
Objvnull

Based on the costing parameters (α, β, and C) shown in Fig. 13, the reduction in the
objective function, Acc, is approximately 25%. This validates the model since the two plants
with the lower cost parameters (α, β, and C) are chosen in the model.

In Table 5, the values of the costing parameters are varied (using MATLAB simulations)
to produce eight different instances. Here, the Acc’s range is between 12 and 27%. Further,
the work devises a measure for supply chain throughput, which is the total time a product (or
components to be assembled to be part of a given product) spends in inventory and production,
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Fig. 13 Example of a supply chain network solved by the model

PDT . Given this definition, the percent increase of throughput, due to the allowance of
crashing, is approximately 24% on average.Moreover, savings in inventory costs result, since
products are moving faster through the supply chain and spending less time in inventory. The
average percent savings in inventory cost, PDI , is approximately 23%. The average time
shortened at the plants, which are open for production, is reported in Table 5 as PTS. PTS
hovers around 58 h on average. It’s important to note that the time shortened provides a plant
with excess capacity and opens up the plant for more output. To elaborate, the allowance
for crashing enables plants with advantageous cost structure to fulfill more of the requested
demand. For instance, in a three plants network, each plant might fulfill one-third of the
overall demand. Due to the allowance of crashing, a plant that has an advantageous cost
structure (α, β, C) would get higher than a third of the demand and hence brings the overall
supply chain production cost.

Vitally, the runs show that the model is highly sensitive to the values of the production
cost parameters (α, β,C), and inventory cost parameter (IC). Hence, it is imperative to carry
a large volume of runs to represent different variations of those parameters. Notably, these
parameters are user dependent and reflect the costing structure of the operational environment
at hand. Therefore, higher number of runs would allow us to cover a variety of implications.
The runs should simulate the high and low production parameter values presented in Table 6.
In Table 4, real production data is used to infer realistic cost parameters. Feasible variations
are conducted on the values in Table 4 and extrapolated to form limits on the high and lows
(Table 6) while remaining feasible. Table 7 illustrates the parameters’ variant of each run
where the first column designates the magnitude of the parameters. Each parameter is tested
at two instances: One at a high value and another at a low value. For α (designated as A in the
first column of Table 7), the high value is 700 while the low value is 600 (See Table 6). For
instance, if the run is contesting a high value, then a value of one is placed next to A, while a
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Table 3 Example of base data for the production cost parameters (α, β, K)

Pt (h) Normal
costs ($)

S (h) Crashing
cost ($)

Total cost
(crashing
cost +
normal
produc-
tion
costs) ($)

Pt (h) Normal
costs ($)

S (h) Crashing
costs ($)

Total cost
(crashing
cost +
normal
produc-
tion
costs) ($)

239 4302 1 708 5010 215 3870 25 945 4815

238 4284 2 717 5001 214 3852 26 956 4808

237 4266 3 726 4992 213 3834 27 968 4802

236 4248 4 734 4982 212 3816 28 980 4796

235 4230 5 743 4973 211 3798 29 991 4789

234 4212 6 752 4964 210 3780 30 1003 4783

233 4194 7 761 4955 209 3762 31 1015 4777

232 4176 8 771 4947 208 3744 32 1028 4772

231 4158 9 780 4938 207 3726 33 1040 4766

230 4140 10 789 4929 206 3708 34 1053 4761

229 4122 11 799 4921 205 3690 35 1065 4755

228 4104 12 808 4912 204 3672 36 1078 4750

227 4086 13 818 4904 203 3654 37 1091 4745

226 4068 14 828 4896 202 3636 38 1104 4740

225 4050 15 838 4888 201 3618 39 1118 4736

224 4032 16 848 4880 200 3600 40 1131 4731

223 4014 17 858 4872 199 3582 41 1145 4727

222 3996 18 869 4865 198 3564 42 1159 4723

221 3978 19 879 4857 197 3546 43 1173 4719

220 3960 20 890 4850 196 3528 44 1187 4715

219 3942 21 901 4843 195 3510 45 1201 4711

218 3924 22 911 4835 194 3492 46 1216 4708

217 3906 23 922 4828 193 3474 47 1230 4704

216 3888 24 934 4822 192 3456 48 1245 4701

value of zero is placed if a low value is used. Similarly, B represents the β, C represents the
C, and H represents the inventory cost (ICi,r,t) parameter.

Analyzing Table 7, one can infer the impact of having a lower crashing production cost
structure on the overall objective function’s cost reduction.With lower crashing cost structure,
the objective function reductions are more magnified. Hence, lower values of α, β, and C
result in higher production cost savings when crashing. However, β tends to be the most
influential of the three. This is quite logical since β is an exponential term. With higher
production cost parameters (α, β, C), the cost reductions shrink due to the high costs of
additional resources required to crashing Pt. However, the numbers still show around 10%
overall supply chain cost savings, which is still quite significant. With favorable values of
the production cost parameters, the cost reductions in the objective function reach 29%. It’s
important to note that these cost avoidances are open to interpretation since the size of the
supply chain network and the magnitude of the production costs are relative to overall supply
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Table 4 Production settings

S Pt (h) Regular
costs ($)

Crashing
costs ($)

Total cost
($)

S Pt (h) Regular
cost ($)

Crashing
costs as a
function
of Pt ($)

Total cost
($)

1 239 4302 708.45 5010.45 17 222 3996 868.77 4864.77

2 238 4284 717.00 5001.00 18 221 3978 879.26 4857.26

3 237 4266 725.66 4991.66 19 220 3960 889.87 4849.87

4 236 4248 734.42 4982.42 20 219 3942 900.62 4842.62

5 235 4230 743.29 4973.29 21 218 3924 911.49 4835.49

6 234 4212 752.26 4964.26 22 217 3906 922.49 4828.49

7 233 4194 761.34 4955.34 23 216 3888 933.63 4821.63

8 232 4176 770.53 4946.53 24 215 3870 944.90 4814.90

9 231 4158 779.83 4937.83 25 214 3852 956.31 4808.31

10 230 4140 789.25 4929.25 26 213 3834 967.85 4801.85

11 229 4122 798.78 4920.78 27 212 3816 979.54 4795.54

12 228 4104 808.42 4912.42 28 211 3798 991.36 4789.36

13 227 4086 818.18 4904.18 29 210 3780 1003.33 4783.33

14 226 4068 828.06 4896.06 30 209 3762 1015.44 4777.44

15 225 4050 838.05 4888.05 31 208 3744 1027.70 4771.70

16 224 4032 848.17 4880.17 32 207 3726 1040.11 4766.11

17 223 4014 858.41 4872.41 33 206 3708 1052.67 4760.67

Table 5 Eight instances of two inventory locations, seven plants, and two distributors

Acc (%) PTS (h) Average Pt (with
crashing) (h)

Average Pt (without
crashing) (h)

PDT (%) PDI (%)

11.79 38.84 230.54 240 19.42 3.94

29.50 83.76 156.24 240 27.81 34.90

15.60 49.75 190.25 240 26.60 20.73

26.89 77.96 162.04 240 26.18 32.48

14.89 47.72 192.28 240 23.00 19.88

20.53 62.66 177.34 240 21.66 26.11

12.59 41.29 198.71 240 21.45 17.20

20.09 61.67 178.33 240 24.16 25.70

Average 18.99 57.96 185.72 240 23.79 22.62

Table 6 High and low values of
production and inventory cost
parameters

High (1) Low (0)

α 700 600

β 0.015 0.012

C 20 16

H 9 1
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Table 7 Runs for variant production cost parameters

Description Acc (%) Average S
(h)

Average Pt Pto PDT (%) PDI (%) PDH (%) PDL (%)

A0B0C0H0 11.79 38.84 230.54 240.00 19.60 3.94 24.48 7.88

A1B1C0H0 6.44 22.37 217.63 240.00 15.02 9.32 9.59 9.59

A1B0C1H1 30.48 84.60 155.40 240.00 33.06 35.25 36.15 36.15

A0B0C0H0 15.60 49.75 190.25 240.00 20.31 20.73 24.44 24.44

A1B0C0H1 25.71 74.08 165.92 240.00 17.73 30.87 32.30 32.30

A0B0C0H0 14.89 47.72 192.28 240.00 11.26 19.88 22.87 22.87

A1B0C0H0 11.77 38.87 228.99 240.00 16.71 4.59 23.22 9.17

A0B1C0H0 5.65 19.75 233.67 240.00 4.39 2.64 11.18 5.28

A1B0C0H0 23.07 69.18 170.82 240.00 17.76 28.83 28.96 28.96

A0B1C0H0 9.10 30.80 225.25 240.00 7.69 6.14 13.38 12.29

A1B0C0H0 4.54 16.05 223.95 240.00 11.36 6.69 11.55 11.55

A1B1C0H1 6.51 22.14 217.86 240.00 5.61 9.23 9.23 9.23

A1B1C1H1 11.88 38.50 201.50 240.00 25.40 16.04 16.23 16.23

A1B0C0H0 7.22 25.00 235.21 240.00 21.73 1.99 16.85 3.99

A0B0C1H0 29.32 83.43 156.57 240.00 22.17 34.76 38.82 38.82

A0B1C0H0 13.65 99.51 140.49 240.00 24.07 41.46 76.60 76.60

A1B1C0H1 6.77 22.97 217.03 240.00 22.02 9.57 9.84 9.84

A1B0C0H0 8.09 27.65 223.97 240.00 23.20 6.68 13.36 13.36

A0B0C1H0 28.98 82.74 157.26 240.00 24.54 34.48 35.46 35.46

A0B0C1H0 34.94 95.33 144.67 240.00 31.45 39.72 41.04 41.04

A1B1C1H0 10.47 35.03 204.97 240.00 20.86 14.60 15.01 15.01

A1B0C0H0 17.77 55.64 184.36 240.00 21.13 23.18 31.07 31.07

A0B0C0H1 21.89 65.07 174.93 240.00 30.54 27.11 29.62 29.62

A0B0C1H0 40.53 105.98 194.23 240.00 59.54 19.07 50.17 38.14

A0B0C0H1 29.05 81.53 158.47 240.00 66.99 33.97 40.30 40.30

chain costs and are highly variable. Nevertheless, these reductions are significant from the
perspective of plant owners/managers and more importantly would bring other benefits to the
supply chain such as lead-time reduction, excess capacity, increased throughput, and higher
inventory turnover. For instance, percent reduction in the production lead-time can reach
38% (Table 7), which implies that products are moving faster through the supply chain. This
can be quite important in cases where lead-time is vital or even more important in the case
when customers might penalize producers for late deliveries. In addition, the cost savings
in inventory become quite pronounced when the value of ICi,p,t is set at a high value. This
could be the case when dealing with products with high holding cost characteristics (i.e.,
space costs, opportunity cost, and obsolescence costs). For this case, the cost reductions in
inventory can reach as high as 35%. To demonstrate other benefits of crashing Pt, Table 7
devises new measures. The percent difference between the average time a product spends
in production, at the plant with highest crashing duration (S), when crashing is allowed,
to the average time when crashing is not allowed is termed, PDH. The same measure is
applied but for the plant with the lowest crashing duration and is termed, PDL. These two
measures exemplify the competition between plants in terms of crashing opportunities. PDH
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Fig. 14 Heuristic performance for a (7-15-7) supply chain network (Df is to the left)

demonstrates the ability of plants that have advantageous costing parameters (or have access
to superior manufacturing processes that can bring the cost of crashing down) to aggressively
reduce Pt. Importantly, these plants are able to win more production quota. Moreover, these
two measures show the benefits of crashing from the plants’ owner/manager point of view,
regardless of the magnitude of the supply chain operations.

6.4 Large scale runs

Given the complexity of thework andmore importantly the vulnerability to variation,we need
to compare the heuristics at more instances. To assure consistency and fair representation,
the coding, compilation, and execution are done using a MATLAB platform on a fixed
computational system (Intel R, Core TM, i5-2400 CPU @3.10 GHz). In Fig. 14, we contest
one hundred runs for a supply chain network of medium size (7-15-17). The figure presents
a box plot of the 100 runs. Here, the genetic search tends to give the lowest Df average of
approximately 6.5%, followed by theK-opt-best, Hybrid, andK-opt-first. The genetic search
also gives the lowest variation and least outliers (i.e., no outliers). However, the computational
times average at around 65 s which is the highest among the heuristics. The 1-opt procedures
tend to give the lowest time. The Hybrid heuristic shows a good performance in terms of
solution gap and computational time.

7 Conclusion

The main contribution of this paper is the inclusion of crashing cost in supply chain network
design (SCND). The vastmajority of papers in SCNDdonot attempt to look at the opportunity
of crashing production time (Pt). There is a gap in the research for works that minimize the
overall supply chain costs via the crashing of Pt. This work integrates the cost of crashing
among other prominent supply chain costs such as inventory, production, and transportation.
The practical implications of this paper are the ability to shorten Pt in a manner that would
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reduce the overall production costs and to increase the throughput of the supply chain.
However, the benefits of reducing the overall production cost and decreasing lead-time are
highly dependent on the characteristics of the production cost parameters discussed. It is also
dependent on the topography of the supply chain. Conversely, regardless of the topography of
the supply chain or the production environment, the work brings many benefits such as lead-
time shortening, throughput improvement, and capacity enhancements. Alternatively, other
practical implications such as penalties (for late deliveries)might have companies investmore
aggressively in optimizing their production resources by crashing Pt. Further, shortening Pt
might prove important for companies that are adopting new process technologies or are still
in route to optimality.

Importantly, the work’s strong contribution is in the heuristics used to solve the model.
Nonlinear binary models are difficult to solve (Dua 2015; Katayama and Narihisa 2001).
Binary quadratic programming is said to be NP-Hard (Katayama and Narihisa 2001). Given
the complexity of the model, near-optimal solution are obtainted within small tolerance of
the lower bound. This work pushes the envelope in terms of complexity as the objective
function has mathematical terms that include the multiplication of two different decision
variables and nonlinearity in the constraints. To solve the model, a combination of gradient
and search heuristics are supplied. The work presents seven different heuristics to solve the
model. From the results presented,we can sense the complexity of the solution especiallywith
larger networks. The work contests the seven solution heuristics and shows the effectiveness
of a genetic-based heuristic in arriving at the solution. This is especially true in the case
where supply chain networks are large.

This work paves the road ahead for other works to follow. For instance, future works can
integrate a penalty cost where companies incurring charges for late deliveries can lessen the
financial impact by crashing Pt. In addition, companies in highly competitive environments
where arriving first to the market is pivotal might benefit from a model that integrates the
opportunity cost of time. Pt in this work has been shortened without attaching a dollar value
for the time saved. For instance, the time reduction of producing a given product can be seen
as an opportunity to beat a competitor to market and hence can have a dollar value attached
to it. This can be the subject of future research.

References

Alzaman, C., Zhang, Z. H., & Diabat, A. (2018). Supply chain network design with direct and indirect
production costs: Hybrid gradient and local search based heuristics. International Journal of Production
Economics, 203, 203–215.

Arntzen, B. C., Brown, G. G., Harrison, T. P., & Trafton, L. L. (1995). Global supply chain management at
digital equipment corporation. Interfaces, 25(1), 69–93.

Babazadeh, R., Razmi, J., Rabbani, M., & Pishvaee, M. S. (2017). An integrated data envelopment analy-
sis–mathematical programming approach to strategic biodiesel supply chain network design problem.
Journal of Cleaner Production, 147, 694–707.

Badria, H., Ghomia, S. F., & Hejazib, T. H. (2017). A two-stage stochastic programming approach for value-
based closed-loop supply chain network design. Transportation Research Part E, 105, 1–17.

Beamon, B. M. (1998). Supply chain design and analysis: Models and methods. International Journal of
Production Economics, 55, 281–294.

Blackburn, J. D. (1991).Time-based competition: The next battle ground in Americanmanufacturing (p. 1991).
Homewood: Business One Irwin.

Cakravastia, A., Toha, I. S., & Nakamura, N. (2002). A two-stage model for the design of supply chain
networks. International Journal of Production Economics, 80(3), 231–248.

Coskun, S., Ozgur, L., Polat, O., & Gungor, A. (2016). A model proposal for green supply chain network
design based on consumer segmentation. Journal of Cleaner Production, 110, 149–157.

123



360 Annals of Operations Research (2020) 288:331–361

Diabat, A. (2016). A capacitated facility location and inventory management problem with single sourcing.
Optimization Letters, 10(7), 1577–1592.

Diabat, A., & Al-Salem, M. (2015). An integrated supply chain problem with environmental considerations.
International Journal of Production Economics, 164, 330–338.

Diaby, M., Cruz, J. M., & Nsakanda, A. L. (2013). Shortening cycle times in multi-product, capacitated
production environments through quality level improvements and setup reduction. European Journal of
Operational Research, 228(3), 526–535.

Dua, V. (2015). Mixed integer polynomial programming. Computers & Chemical Engineering, 72, 387–394.
Esmaeilikia, M., Fahimnia, B., Sarkis, J., Govindan, K., Kumar, A., & Mo, J. (2016). A tactical supply

chain planning model with multiple flexibility options: An empirical evaluation. Annals of Operations
Research, 244(2), 429–454.

Fahimnia, B., Sarkis, J., & Eshragh, A. (2015). A tradeoff model for green supply chain planning: A leanness-
versus-greenness analysis. Omega, 54, 173–190.

Geoffrion, A. M., & Graves, G. (1974). Multi-commodity distribution system design by Benders decomposi-
tion. Management Science, 29(5), 822–844.

Govindan, K., & Fattahi, M. (2017). Investigating risk and robustness measures for supply chain network
design under demand uncertainty: A case study of glass supply chain. International Journal of Production
Economics, 183, 680–699.

Govindan, K., Jafarian, A., Khodaverdi, R., &Devika, K. (2014). Two-echelonmultiple-vehicle location–rout-
ing problem with time windows for optimization of sustainable supply chain network of perishable food.
International Journal of Production Economics, 152, 9–28.

Grossmann, I. E. (2002). Review of nonlinear mixed-integer and disjunctive programming techniques. Opti-
mization and engineering, 3(3), 227–252.

Hammami, R., & Frein, Y. (2013). An optimisation model for the design of global multi-echelon supply chains
under lead time constraints. International Journal of Production Research, 51(9), 2760–2775.

Hasani, A., Zegordi, S. H., & Nikbakhsh, E. (2015). Robust closed-loop global supply chain network design
under uncertainty: The case of themedical device industry. International Journal of Production Research,
53(5), 1596–1624.

Hillier, F. S., & Lieberman, G. J. (1995). Introduction to mathematical programming. McGraw-Hill.
Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press.
Hoque, M. A., & Goyal, S. K. (2006). A heuristic solution procedure for an integrated inventory system

under controllable lead-time with equal or unequal sized batch shipments between a vendor and a buyer.
International Journal of Production Economics, 102(2), 217–225.

Jayaraman, V., & Ross, A. (2003). A simulated annealing methodology to distribution network design and
management. European Journal of Operational Research, 144(3), 629–645.

Jian, M., Fang, X., Jin, L. Q., & Rajapov, A. (2015). The impact of lead time compression on demand
forecasting risk and production cost: A newsvendor model. Transportation Research Part E: Logistics
and Transportation Review, 84, 61–72.

Katayama, K., & Narihisa, H. (2001). On fundamental design of parthenogenetic algorithm for the binary
quadratic programming problem. In Proceedings of the 2001 Congress on evolutionary computation
(Vol. 1, pp. 356–363). IEEE.

Kattayama, K., & Narihisa, H. (2001). Performance of simulated annealing-based heuristic for the uncon-
strained binary quadratic programming problem. European Journal of Operational Research, 134,
103–119.

Kaya, O., & Urek, B. (2016). A mixed integer nonlinear programming model and heuristic solutions for loca-
tion, inventory and pricing decisions in a closed loop supply chain. Computers & Operations Research,
65, 93–103.

Keyvanshokooh, E., Ryan, S.M.,&Kabir, E. (2016). Hybrid robust and stochastic optimization for closed-loop
supply chain network design using accelerated Benders decomposition.European Journal of Operational
Research, 249(1), 76–92.

Kolda, T. G., Lewis, R. M., & Torczon, V. (2003). Optimization by direct search: New perspectives on some
classical and modern methods. SIAM Review, 45(3), 385–482.

Lim, M. K., Mak, H. Y., & Shen, Z. J. M. (2016). Agility and proximity considerations in supply chain design.
Management Science, 63(4), 1026–1041.

Longinidis, P., Georgiadis,M.C.,&Kozanidis, G. (2015). Integrating operational hedging of exchange rate risk
in the optimal design of global supply chain networks. Industrial and Engineering Chemistry Research,
54(24), 6311–6325.

Mangla, S. K., Kumar, P., & Barua, M. K. (2016). An integrated methodology of FTA and fuzzy AHP for risk
assessment in green supply chain. International Journal of Operational Research, 25(1), 77–99.

123



Annals of Operations Research (2020) 288:331–361 361

Marti, J. M. C., Tancrez, J. S., & Seifert, R. W. (2015). Carbon footprint and responsiveness trade-offs in
supply chain network design. International Journal of Production Economics, 166, 129–142.

Merz, P., & Freisleben, B. (2002). Greedy and local search heuristics for unconstrained binary quadratic
programming. Journal of Heuristics, 8, 197–213.

Michalewicz, Z. (1996). Genetic algorithms + data structures � evolution programs. New York: Springer.
Mizgier, K. J. (2017). Global sensitivity analysis and aggregation of risk in multi-product supply chain net-

works. International Journal of Production Research, 55(1), 130–144.
Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2018). Foundations of machine learning. MIT Press.
Pan, F., & Nagi, R. (2013). Multi-echelon supply chain network design in agile manufacturing.Omega, 41(6),

969–983.
Petridis,K. (2015).Optimal design ofmulti-echelon supply chain networks under normally distributed demand.

Annals of Operations Research, 227(1), 63–91.
Pham, T., & Yenradee, P. (2017). Optimal supply chain network design with process network and BOM under

uncertainties: A case study in toothbrush industry. Computers & Industrial Engineering, 108, 177–191.
Pishvaee, M. S., & Torabi, S. A. (2010). A possibilistic programming approach for closed-loop supply chain

network design under uncertainty. Fuzzy Sets and Systems, 161(20), 2668–2683.
Ramudhin, A., Alzaman, C., & Bulgak, A. (2008). Incorporating the cost of quality in supply chain design.

Journal of Quality in Maintenance Engineering, 14, 71–86.
Rezapour, S., Farahani, R. Z., & Pourakbar, M. (2017). Resilient supply chain network design under compe-

tition: A case study. European Journal of Operational Research, 259(3), 1017–1035.
Sadjady, H., & Davoudpour, H. (2012). Two-echelon, multi-commodity supply chain network design with

mode selection, lead-times and inventory costs. Computers & Operations Research, 39(7), 1345–1354.
Santos, T., Ahmed, S., Goetschalckx,M.,&Shapiro, A. (2005). A stochastic programming approach for supply

chain network design under uncertainty. European Journal of Operational Research, 167(1), 96–115.
Sarrafha, K., Rahmati, S. H. A., Niaki, S. T. A., & Zaretalab, A. (2015). A bi-objective integrated procurement,

production, and distribution problem of a multi-echelon supply chain network design: A new tuned
MOEA. Computers & Operations Research, 54, 35–51.

Shah, N. H., Gor, R. M., & Soni, H. (2007). Operations research. New Delhi: PHI Learning Pvt. Ltd.
Stevenson, W. J., Hojati, M., & Cao, J. (2007). Operations management. McGraw-Hill Irwin.
Towill, D. R. (1996). Time compression and supply chain management—A guided tour. Supply Chain Man-

agement: An International Journal, 1(1), 15–27.
Vahdani, B., & Mohammadi, M. (2015). A bi-objective interval-stochastic robust optimization model for

designing closed loop supply chain network with multi-priority queuing system. International Journal
of Production Economics, 170, 67–87.

Varsei, M., & Polyakovskiy, S. (2017). Sustainable supply chain network design: A case of the wine industry
in Australia. Omega, 66, 236–247.

Yang, M. F. (2010). Supply chain integrated inventory model with present value and dependent crashing cost
is polynomial. Mathematical and Computer Modelling, 51(5), 802–809.

Yildiz, H., Yoon, J., Talluri, S., & Ho, W. (2016). Reliable supply chain network design. Decision Sciences,
47(4), 661–698.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Modeling and heuristics for production time crashing in supply chain network design
	Abstract
	1 Introduction
	2 Literature review
	3 Problem description
	4 Model
	5 Methods
	5.1 Convexity proof
	5.2 Gradient search method
	5.3 Local search heuristics
	5.4 Genetic search
	5.5 Simulated annealing search procedure

	6 Results
	6.1 Stopping criterion
	6.2 Varying supply chain configuration
	6.3 Effect of crashing
	6.4 Large scale runs

	7 Conclusion
	References




