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Abstract
In this articlewe propose a novelmeasure of systemic risk in the context of financial networks.
To this aim,we provide a definition of systemic riskwhich is based on the structure, developed
at different levels, of clustered neighbours around the nodes of the network. The proposed
measure incorporates the generalized concept of clustering coefficient of order l of a node i
introduced in Cerqueti et al. (2018). Its properties are also explored in terms of systemic risk
assessment. Empirical experiments on the time-varying global banking network show the
effectiveness of the presented systemic risk measure and provide insights on how systemic
risk has changed over the last years, also in the light of the recent financial crisis and the
subsequent more stringent regulation for globally systemically important banks.
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1 Introduction

The recent financial distress and its spread over the world economic realities have pointed
the attention of practitioners and academics to the conceptualization and the management
of systemic risk. Indeed, even if the starting point of the crisis is well localized in time and
space—2008 in the US, with the failure of Lehman Brothers—the effects of this negative
event have been and are still pervasive quite everywhere.

The concept of systemic risk can be defined in a number of different ways, also on the
basis of the identification of the context under investigation (see e.g. De Bandt and Hartmann
2000; Haldane and May 2011; Rochet and Tirole 1996). Under a very general point of view,
systemic risk is the possibility that a negative occurrence at a local level might generate a
collapse at a global level. The premise for the introduction of systemic risk is the definition
of a system, which is nothing but a unified structure composed of distinct interconnected
entities.

One of the most intuitive ways for modelling a systemic risk framework by is through
complex networks (for a recent survey about networks and systemic risk, we can refer to
Caccioli et al. 2018 or Neveu 2018). In fact, a network is a system composed of units—the
so-called nodes—along with their interconnections—arcs or edges. Thus, systemic risk is
the possibility that an exogenous shock in one of the nodes triggers the collapse of the entire
network.

Therefore, it is not properly unexpected that several studies deal with systemic risk prob-
lems in the framework of complex networks (see e.g. Battiston andMartinez-Jaramillo 2018;
Cont and Minca 2016; Di Gangi et al. 2018; Helfgott 2018; Hübsch and Walther 2017; Torri
et al. 2018; Zhu et al. 2018).

The basis of systemic risk lies in theway inwhich shocks propagate among the nodes of the
network. Such a propagation is clearly strongly dependent on the position and the density of
the edges, i.e. on the topological structure of the graph associated with the network. Indeed,
as intuition suggests, the presence of a large number of interconnections leads to a more
probable diffusion of the local shocks, hence yielding a high level of systemic risk. In this
respect, it is worth mentioning Battiston et al. (2012), Billio et al. (2012) and Markose et al.
(2012).

In the context of the relationship between interconnectedness and systemic risk, a relevant
role is playedby the concept of community.With the termcommunitywe refer to a set of nodes
whose mutual links are of particular strength (Fortunato 2010; Girvan and Newman 2002).
Thus, the assessment of the community structure of a network lets understand how powerful
the mutual interconnections among the nodes are, hence providing useful insights on the
systemic risk. This argument suggests that the measurement of the entity of the communities
strength might represent a crucial step for the exploration of systemic risk. In this respect,
the clustering coefficient of a network is of peculiar relevance.

The clustering coefficient of a given node is a relative measure of the triangles including
the considered node as a vertex with respect to the hypothetical ones. Triangles are the easiest
geometric visualizations of the communities, since they offer the image of a non-exclusive
interaction among different agents. Such a measure has been developed in all the cases of
weighted, unweighted, directed and undirected networks (see e.g.Barrat et al. 2004;Clemente
and Grassi 2018; Fagiolo 2007; Onnela et al. 2005; Wasserman and Faust 1994; Watts and
Strogatz 1998). The extension of this community measure to the overall network is obtained
by simply taking the average of all the clustering coefficients of the nodes.
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In line with Bongini et al. (2018), Minoiu and Reyes (2013) and Tabak et al. (2014),
this paper deals with the systemic risk assessment through the analysis of the clustering
coefficient of a network. We move from a way to formalize a concept of community more
general and informative than the standard clustering coefficient. In fact, communities might
be appreciated not only at the level of adjacent nodes, but also by considering nodes which are
at the periphery of the network. In so doing, we are adding a stratification of the communities
at different levels, in order to capture the presence of community effects at different distances
from the considered nodes.

To this aim, we employ the high order clustering coefficient, recently introduced by Cer-
queti et al. (2018). Furthermore, we adapt it to the systemic risk context in order to assess how
each node is embedded in the entire system. In this way, we are providing specific indices
that capture how a network is clustered at different levels. Additionally, a global systemic risk
index is defined with the purpose of catching both the community structure around the node
and the level of mutual interconnections of nodes that are at a specific geodesic distance. In
other words, it indicates the presence of high (or low) clustered areas, revealing parts of the
network where the risk diffusion could spread easily. Furthermore, being this index defined
as a weighted average of high order clustering coefficients measured at different levels, we
are able to modulate the effects of both adjacent and peripheral nodes through the weights
distribution. Indeed, we can take into major consideration either the interactions of a node
with its neighbours or the community structures generated by nodes at a wide distance from
the considered one.

Our theoretical proposal is validated over the paradigmatic example of Global Interbank
Network, which is particularly suitable for our purpose. Indeed, the network structure of
national interbankmarkets has been studied, at the global level, using theBankof International
Settlements (BIS) data set. Systemic risk is mainly related to the interbank context and the
considered empirical data allow to provide meaningful insights also to this type of literature
(see, for instance, Bongini et al. 2018; Garratt et al. 2011; Giudici and Spelta 2016; Giudici
et al. 2017; McGuire and Tarashev 2006; Minoiu and Reyes 2013).

We study the time-varying behaviour of the community structure of the global banking
network over the sample period that goes from the first quarter of 2005 to the end of 2017.
Data naturally induce a core-periphery network and then we focus on the behaviour of core
countries, i.e. countries whose banking systems report data to the BIS. In particular, to
disentangle the role of core countries that host global systemically important banks (GSIBs),
as defined in the list provided by the Financial Stability Board since November 2001, we will
separately analyse the behaviour of countries in which at least a GSIB is present. In other
words, we start by measuring the community structures at different levels on the basis of the
full global banking network’s topology over each quarter of the year. Then, we compute high
order clustering coefficients at a global level by focusing on two different subsets: the set of
countries in which at least a GSIB is present and the set containing other core countries. In
this way, we provide two alternative systemic risk indices that allow to assess the state of
risk and to describe the pattern over time for both groups.

We observe that, in the entire period, countries, where a GSIB is present, show a clustering
coefficient higher than other core countries, confirming the important systemic role of the
banks headquartered in these countries. Our analysis confirms evidence of a reduction of
global banking connectedness as an effect of the cutback in cross-border lending, triggered
by the subprime crisis and the subsequent sovereign debt crisis in the Euro area. Furthermore,
results suggest a different pattern since 2011 between the two clusters.Onone hand, other core
countries show a tendency to diversify relationships as the average number of transactions
increases and the average volume remains quite stable. On the other hand, lending countries,
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where a GSIB is present, are cutting their exposures in terms of numbers and volumes. We
interpret it as an effect of the “systemic risk score” introduced by the Basel Committee on
Banking Supervision at the end of 2011 and the effectiveness of GSIBs regulation in inducing
these banks to contain their systemic nature.

Furthermore, by providing a separate analysis between coefficients that consider only
either in-flows or out-flows, we describe the different behaviour of countries in terms of
risk-driver or risk-taker. It is worth mentioning how other core countries are more affected as
risk taker. As regard to the “out” coefficient we observe a greater value for countries where a
GSIB is present in the period 2009–2011. It is also noticeable the reduction of GSIB systemic
impact over the last years.

To sum up, the novelties of the present study are the following: first, we construct a
new systemic risk measure by using the concept of stratified communities. In so doing, we
include in the systemic risk assessment also core-periphery effects in the analysis of shocks
propagation; second, we allow the tuning of the systemic riskmeasure on specific levels of the
communities, in order to give credit to the action of peculiar parts of the considered network
in assessing systemic risk. In this, we are basically introducing a family of systemic risk
measures with a wide set of meanings and interpretations; third, we provide a deep analysis
of the Global Interbanking System and infer aspects of the related systemic risk which seem
to remain unexplored in the standard frameworks.

The rest of the paper is structured as follows. Preliminaries and notations are reported in
Sect. 2. We summarize general notation in Sect. 2.1, while in Sect. 2.2 it is described the
definition of the high order clustering coefficient introduced in Cerqueti et al. (2018), which
is the basis of the systemic risk measure defined below. In Sect. 3, we provide a new indicator
of systemic risk based on an extended version of the clustering coefficient. Some remarks on
the systemic risk measure are in Sect. 3.1. Bymeans of a small example, Sect. 3.2 stresses the
potential of our proposal with respect to the classical weighted clustering coefficient defined
in the literature. In Sect. 4, we provide a deep analysis of the interbank system. Conclusions
follow. An “Appendix” contains the definition of the clustering coefficients in the directed
case, for the convenience of the reader.

2 Preliminaries and notation

We here present the mathematical definitions supporting the structure of the paper, for the
convenience of the reader.

2.1 General notation

We denote by G = (V , E) a graph, being V the set of N vertices and E the set of m arcs (or
edges), which are unordered pairs of vertices. Vertices i and j are said to be adjacent when
(i, j) ∈ E . The degree di of i is the number of the edges incident upon i . A path connecting
vertices i and j is a sequence of distinct vertices and edges between i and j . If there exists a
path between i and j , then i and j are said to be connected. The graph G is connected if all
pairs of vertices of G are connected.

The distance d (i, j) is the length of any shortest path connecting i and j . Such a shortest
path is said to be a geodesic between i and j . All the geodesics between i and j have, of
course, the same length d (i, j) = l. We define the set Gi j (l) as the one collecting all the
geodesics connecting the vertices i and j ; the generic element of Gi j (l) is g(l) = gi j (l), and
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it represents the generic geodesic connecting i and j whose length is l. Clearly, if such a
geodesic exists, it is not unique in general. Thus, when Gi j (l) is not empty, its cardinality is
not necessarily equal to one, for each i, j ∈ V and length l > 0.

By conventional agreement, we assume that d (i, j) = ∞when i and j are not connected.
The diameter of G, denoted by diam(G), is an integer given by the length of any longest
path of G, and can be properly defined once G is a connected graph.

For a connected graph, we define the set:

Ni (l) = { j ∈ V |d(i, j) = l},

with l = 1, . . . , diam(G), and use the notation |Ni (l)| = di (l) to represent its cardinality.
If any edge (i, j) ∈ E is associated with a positive real number wi j , then both the edges

and the graph are weighted. Once we set that wi j = 0 if and only if (i, j) /∈ E , then we
can describe completely the edges of the graph through the real N -square matrix W with
entries wi j , which is the weighted adjacency matrix. In particular, if wi j = 1 for all edges
(i, j) ∈ E , then W is simply the adjacency matrix A and the graph is unweighted. We will
collapse this case into the more general weighted one.

The strength of vertex i is the sum of the weights of the arcs incident upon i . We denote
it by si . Clearly, si = di in the unweighted case.

A weighted network is a graph with its weighted adjacency matrix.
The weight of a geodesic g(l) between i and j is given by the sum of the weights of its

edges, and will be denoted by wi j (l, g) hereafter. From this concept, we introduce the lth
order strength of the node i as

si (l) =
∑

j∈Ni (l)

wi j (l),

with wi j (l) = ming(l)∈Gi j (l){wi j (l, g)}.
When a direction is assigned to the edges of a graph G, then we obtain a directed graph

D = (V , E), and G represents the underlying graph of D. The directed edges of D are said
arcs.

A directed path from i to j is a path whose arcs have the same direction, which is the one
going out from i and going in j . The existence of a directed path from i to j implies that j is
reachable from i . Such a directed path is said to be an out-path of i . In an intuitive way, one

can say that the geodesic distance
−→
d (i, j) from i to j is the length of a geodesic out-path (or

out-geodesic) connecting i and j , and it is set to
−→
d (i, j) = ∞ when such an out-geodesic

does not exist.
By reverting the argument above, one has that the out-path of i can be defined as an in-path

of j , and we denote by
←−
d (i, j) the length of any geodesic in-path (or in-geodesic), with the

usual agreement that
←−
d (i, j) = ∞ when such an in-path does not exist.

The directed graph D is said to be strongly connected when all the pairs of two vertices are
mutually reachable. D is said to be weakly connected if the underlying graphG is connected.

By replacing d with
−→
d and

←−
d , one can rewrite the definitions of Ni (l), di (l), Gi j (l),

g(l) = gi j (l), wi j , wi j (l, g), si (l), wi j (l) by
−→
N i (l),

−→
d i (l),

−→G i j (l),
−→g (l) = −→g i j (l),

−→w i j ,−→w i j (l, g),
−→s i (l),

−→w i j (l) and
←−
N i (l),

←−
d i (l),

←−G i j (l),
←−g (l) = ←−g i j (l),

←−w i j ,
←−w i j (l, g),←−s i (l),

←−w i j (l), respectively.

123



1170 Annals of Operations Research (2021) 299:1165–1187

2.2 The high order clustering coefficient

We now report the definition of the high order clustering coefficient introduced in Cerqueti
et al. (2018), which is the basis of the systemic risk measure defined below.

In case of a weighted, undirected and connected graph G, we initially define a matrix
P(l) = [pi j (l)]i, j∈V for l = 1, . . . , diam(G), whose entries are

pi j (l) =
{

wi j (l)
si (l)

if j ∈ Ni (l) and Ni (l) �= ∅,

0 otherwise.
(1)

If l = 0, we define P(l) = I, where I is the identity matrix.
The local clustering coefficient of order l is c(l) = [ci (l)]i∈V , obtained as

c(l) = P(l)c (2)

where c = [ci ]i∈V is the vector whose element ci is the weighted local clustering coefficient
of the node i (see Barrat et al. 2004).

If the graph is directed, weighted and weakly connected, matrix P(l) in (1) becomes P̄(l)
with entries:

p̄i j (l) =
{

w̄i j (l)
s̄i (l)

if j ∈ N̄i (l) and N̄i (l) �= ∅,

0 otherwise,
(3)

where:

(a) N̄i (l) = −→
N i (l), w̄i, j (l) = −→w i j (l) and s̄i (l) = −→s i (l) in case only out-paths of node i

are taken into account, and P̄(l) = −→
P (l);

(b) N̄i (l) = ←−
N i (l), w̄i, j (l) = ←−w i j (l) and s̄i (l) = ←−s i (l), considering only in-paths of i , and

P̄(l) = ←−
P (l);

(c) N̄i (l) = Ni (l), w̄i, j (l) = wi j (l) and s̄i (l) = si (l) when all directions are considered,
and P̄(l) = P(l).

In all the previous cases, we assume P̄(0) = I.
The local clustering coefficient of order l in (2) can be defined, respectively, for cases (a),

(b) and (c), as follows:

cin(l) = ←−
P (l)cin . (4)

cout (l) = −→
P (l)cout . (5)

call(l) = P(l)call . (6)

where cin = [cini ]i∈V and cout = [couti ]i∈V are vectors with entries cini and couti , respectively,
that represent the in and out weighted local clustering coefficients of node i , while call is
the vector of local clustering coefficient for the graph D. We report the definition of such
clustering coefficients in the “Appendix”, for the convenience, and they have been introduced
in Clemente and Grassi (2018).

3 Systemic risk measure

We here propose a new indicator of systemic risk based on an extended version of the
clustering coefficient described in the previous section and which seems to be particularly
effective for our purpose.
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If the case of an undirected graph, we introduce the vector h = [h(l)]l=0,...,diam(G) such
that

h(l) = 1

N

∑

i∈V
ci (l). (7)

Observe that h(l) provides a feedback on how the nodes of the network are clustered
together at a specific level l, being the mean of the clustering coefficients of order l. Then,
the vector h collects the measures of all clusters. As a consequence, the distribution of its
elements could give insights on the systemic risk of the network at each level l, as we will
better explain in the next subsection.

This suggests, as a quite natural further step, to use the elements of h to define a new
measure of systemic risk. We define the index h�, based on the h’s, by taking their weighted
mean as follows:

h� =
diam(G)∑

l=0

xlh(l), (8)

where xl ∈ [0, 1] such that ∑diam(G)
l=0 xl = 1.

Notice that by means of h� we are providing a specific systemic risk index that considers
how each node is embedded in the network. In particular, the measure takes into account
either the whole community structure around each node as well as the level of mutual inter-
connection of the nodes at a geodesic distance l ≥ 1. The presence of xl allows to introduce
some flexibility in the computation of h�. Some remarks about possible distribution of xl
are reported in Sect. 3.1. Moreover, the effect of different weights xl will be tested in the
numerical section.

Also, observe that proposing this measure we are in line with the scientific debate on how
clustering coefficient of a network might be viewed as a measure of systemic risk (see e.g.
Minoiu and Reyes 2013; Tabak et al. 2014).

Analogously to formula (7), in the case of directed graph D, we can define hin =
[hin(l)]l=0,...,diam(G),hout = [hout (l)]l=0,...,diam(G) andhall = [hall(l)]l=0,...,diam(G) where

hin(l) = 1

N

∑

i∈V
cini (l), hout (l) = 1

N

∑

i∈V
couti (l), hall(l) = 1

N

∑

i∈V
calli (l), (9)

and, in this case, the global clustering coefficients are:

hin,� =
diam(G)∑

l=0

xlh
in(l), hout,� =

diam(G)∑

l=0

xlh
out (l), hall,� =

diam(G)∑

l=0

xlh
all(l).

(10)

According to the literature which states that a high value of clustering coefficient is asso-
ciated to a high level of systemic risk, we assume that the highest the value of h�’s in (8) and
(10), the highest the systemic risk of the network.

3.1 Some remarks on the systemic risk measure

Notice that the coefficient xl in (8) and (10) represents the “weight” to be assigned to h(l) in
the analysis of the entire community structure related to the nodes of the network. As already
pointed out, h(l) brings information on the community structure at level l. In this respect, the
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selection of a specific distribution for the x’s leads to different ways to include the periphery
of the graph in the systemic risk measurement.

A high concentration at a specific level l could indicate a particular attention to a more
clustered area, revealing the intuition of the policy maker to focus on a part of the network
where the risk diffusion could spread easily. For instance, if the mass of the weights x’s is
concentrated over the small values of l, then the considered systemic risk measure will take
intomajor consideration the community structures close to the nodes of the graph.Differently,
the case of concentration of the x’s over large values of l is associated to a systemic risk more
sensitive to communities far from the nodes.

The corner case xl = 1 reduces the vectors h’s to the clustering coefficients of order l. In
this particular situation, systemic risk measures h�’s take into consideration communities at
geodesic distance l from the nodes. This analysis might be relevant for the assessment of the
stratified community structure of the network. Indeed, a complete analysis of the corner cases
xl = 1 with l = 0, 1, . . . , diam(G) allows to characterize the vulnerability of the network
and its ability of absorbing shocks by assessing the presence of core-periphery communities.
Notice that the very special case of xl = 1 for l = 0 is the standard conceptualization of the
clustering coefficient.

Moreover, the distinction between directed and undirected graphs leads to remarkable
differences in the definition of the systemic risk measure of the network. When dealing with
undirected graph, strong communities are associated with high values of the weights between
the unordered couples of nodes forming an edge [see formula (2)], and this property is clearly
included in the definition of the systemic risk measure, defined through formula (8). In the
directed case, weights should be intended with a direction and the couples of nodes become
ordered. Thus, a node can be associated to a strong community in terms of in-paths and a
weak one when considering the out-paths [see (4) and (5)]. Such a characteristic of the nodes
represents the basis of a concept of “directed” systemic risk measure [see hin,� and hout,� in
(10)], and this contributes to the understanding of the vulnerability of the network. Indeed, a
shock occurring at a node i ∈ V with a high level of houti is expected to be rapidly propagated
to the other nodes of the network, while a high value of hini is associated with a probable
infection of node i when the shock comes from outside it.

3.2 Simulated example

To show the effectiveness of the proposed high order clustering coefficients in capturing
how a network is clustered at different levels—hence leading to a powerful definition of a
systemic risk measure, as presented in the previous section—we provide a simple weighted
and directed graph D of 12 nodes (see Fig. 1). This allows to easily stress the potential of the
index h(l) in respect to the classical weighted clustering coefficient defined in the literature.

We recall that the clustering coefficient should reflect the combined effect of the weights
and the presence of triangles. Notice that, we focus on a directed graph since the vector of
high order clustering coefficients c(l) of the underlying graph G can be obtained by simply
rescaling the coefficients of D (see Cerqueti et al. 2018 for details).

Since the graph is directed, we can refer to different kind of geodesics (depending on
whether the direction of the arcs is considered or not). We first compute the vector call of
coefficients as provided in Clemente and Grassi (2018). We remind that each coefficient calli
includes all kind of triangles which a node belongs to.

We then evaluate clustering coefficients of order l by means of formula (6). Values are
reported in Table 1.
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Fig. 1 The simple weighted and directed graph D. Edges’ opacity is proportional to weights

Table 1 Clustering coefficients
and systemic risk indicators of
order l for the graph D when all
paths are considered (neglecting
directions)

Node call (0) call (1) call (2) call (3)

1 0.028 0.204 0.5 0

2 0.5 0.421 0.232 0.5

3 0.5 0.421 0.232 0.5

4 0.5 0.421 0.232 0.5

5 0.5 0.421 0.232 0.5

6 0.5 0.421 0.232 0.5

7 0.5 0.421 0.232 0.5

8 0 0.028 0.458 0.5

9 0.5 0.144 0.396 0

10 0.167 0.482 0.261 0

11 0.5 0.333 0.300 0.387

12 0.5 0.333 0.300 0.387

hall (l) 0.391 0.338 0.300 0.356

Table 2 Values of the global
systemic risk measure hall,� for
different weights’ distribution

xl hall,�

Decreasing weights 0.360

Uniform weights 0.346

Increasing weights 0.340
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First, some remarks on the values of high order coefficients should be done. Looking at
the clustering call(0), the node 1 has the lowest positive value (0.028), being part of triangles
with low weights. This seems to suggest that node 1 is not remarkable in the context of
communities. However, this value does not reflect the fact that the node 1 is adjacent to nodes
with maximum clustering. In other words, the interconnection with high clustered nodes is
softened by the presence of lowweights. In addition, from node 1we reach nodes 11 and 12 in
two steps, having clustering equal to 0.5. The coefficients of order 1 and 2 [call1 (1) = 0.204,
call1 (2) = 0.5] are increasing, showing that a higher order of clustering is able to capture the
intensity of the communities around the node at distances greater than 1.

Node 10 has the second lowest value [call10 (0) = 0.167], but the value of call10 (1) is almost
three times. This suggests that the node forms communities with adjacent nodes with max-
imum clustering. It is worth noting the case of the node 8. This node does not contribute
to form triangles, then its clustering coefficient is equal to zero. However, it has only one
adjacent node and its direct connection with node 1 implies that the coefficient at level 1
completely absorbs the clustering value of the node 1. Also, clustering coefficients of order
2 and 3 are extremely high, due to connections to high clustered nodes through geodesics
of length 2 and 3. These aspects allow to interpret the position of this node in a completely
different perspective, especially in spreading risk.

The value of hall,∗ synthesizes the overall community structure of the network, thus
providing a measure of the systemic risk associated with it. The choice of weights xl can
modulate the intensity of the measure h(l) in formula (10), giving to this global network
indicator a high degree of flexibility.

Here three possible scenarios for the weights x’s are considered:

• Decreasing weights xl = (l+1)−1
∑diam(G)

l=0 (l+1)−1
= (l+1)−1

HG
where HG is the harmonic number

of order diam(G) + 1.
• Uniform weights xl = 1

diam(G)+1

• Increasing weights xl = (l+1)∑diam(G)
l=0 (l+1)

= 2(l+1)
(diam(G)+1)(diam(G)+2)

For instance, assuming that weights xl are decreasing, we are reducing the impact of h(l)
with respect to the whole system when the distance l increases.

In this example, values of h(l) state, on average, the presence of a strong community
structure around the single node, as well as mutual interconnections at the maximal geodesic
distance. As a consequence, both the closest and peripheral nodes have, on average, a similar
influence on the node. In this regard, the distribution of weights is not very informative in
this case. Indeed, different weights lead to very close values of hall,� (see Table 2).

Moving to the analysis of the directed case, we can separately investigate patterns of in
or out-clustering by using formulae (4) and (5).

Values are reported in Table 3. According to in-clustering, the vector cin(0) considers
in-triangles which a node belongs to. Referring to the first order, only two nodes (11 and 12)
are reachable from a node with a positive in-clustering coefficient (i.e. the node 10). Notice
that cin12(1) is one half of c

in
11(1) because the node is also reachable from 11.

Respect to the out-clustering, the node 8 is of interest; indeed, although its clustering
coefficient is equal to zero, this node has positive coefficients of order 1 and 2, due to its
connections via out-paths to nodes involved in out-triangles.

From the evaluation of the in- and out-patterns, a different behaviour in terms of systemic
risk emerges, reflected by measures hin,� and hout,�. The graph has a structure that seems
more sensitive in receiving than spreading risk, and this characteristic is persistent also with
different weights distributions (Table 4). In particular, the community structure at level 0
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Table 3 Clustering coefficients and systemic risk indicators of order l for the graph D considering either
in-paths or out-paths

Node cin(0) cin(1) cin(2) cin(3) cout (0) cout (1) cout (2) cout (3)

1 0 0 0 0 0.071 0.063 0 0

2 0 0 0 0 0 0 0 0

3 0.50 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

5 0.50 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

7 0.50 0 0 0 0 0 0 0

8 0 0 0 0 0 0.071 0.063 0

9 0 0 0 0 0 0.500 0 0

10 0.50 0 0 0 0.500 0 0 0

11 0 0.50 0 0 0 0 0 0

12 0.50 0.25 0 0 0 0 0 0

Average 0.208 0.063 0 0 0.048 0.053 0.005 0

Table 4 Values of the global
systemic risk measure hin,� and
hall,� for different weights’
distribution

xl hin,� hout,�

Decreasing weights 0.115 0.036

Uniform weights 0.068 0.026

Increasing weights 0.035 0.015

favours the receiving of the risk [captured by the highest hin(0)]. There is the presence of
few nodes that spread risk also to peripheral nodes.

4 Numerical analysis

As in Bongini et al. (2018), Giudici and Spelta (2016) and Minoiu and Reyes (2013) we
designed a global banking network using the Bank for International Settlements (BIS) con-
solidated statistics, which measure bank exposures to different countries. These statistics
capture worldwide-consolidated claims of internationally active banks headquartered in BIS
reporting countries. In particular, we consider international claims by a reporting country
toward banks in counterparty countries. In this way, we focus on the lending activity of inter-
national banks. Here, nodes are countries and weighted arcs represent positive cross-border
exposures.

We model each quarter of the year over the sample period (from the first quarter of
2005 to the end of 2017) through a single network, each one referred to links between
banks of approximately 200 countries.1 Figure 2 depicts the network at four different time
periods. Density is equal to 0.046 at the fourth quarter of 2005, then the network is sparse.
It is noticeable that networks become slowly denser over time (in terms of the number of

1 The number of countries varies according to different time-periods. Indeed, few isolated nodes are present
at specific times.
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Fig. 2 Cross-border global banking networks as on the end of 2005, 2009, 2013 and 2017. Red arrows represent
arcs. Arcs opacity is proportional to weights (i.e., intensity of the exposures). (Color figure online)

transactions): density is indeed equal to 0.055 at the end of the time-period (4Q-2017). The
number of arcs moves from 1540 to 2513 over the sample period, while the number of
countries remains stable. The majority of countries is separated by at most two steps. Only
very few countries are reachable with three steps.

As also shown in Fig. 2, data are designed so that the resulting networks are characterized
by core-periphery structures.2 The core group consists of countries whose banking systems
report data to the BIS in the analysed time-period, whereas other countries belong to the
periphery group. According to the BIS data, periphery countries are analysed only as bor-
rowers because for their banking systems only information on inflows is available. Thus,
the selection of the core is strictly dependent on the data structure provided by the BIS.
Table 5 shows the list of 24 core countries which reported to the BIS data about incoming
and outgoing exposures of international financial claims.

2 In network theory, a core-periphery structure identifies a well-designed networkmodel such that some nodes
are densely connected, whereas others are sparsely connected, in a peripheral position (see Borgatti and Everett
2000).
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Table 5 List of core countries
and countries where at least one
GSIB has its headquarters

Australia (AU) Core

Austria (AT) Core

Belgium (BE) Core GSI

Canada (CA) Core

Chile (CL) Core

China (CN) GSI

China Taipei (TW) Core

Finland (FI) Core

France (FR) Core GSI

Germany (DE) Core GSI

Greece (GR) Core

India (IN) Core

Ireland (IE) Core

Italy (IT) Core GSI

Japan (JP) Core GSI

Netherlands (NL) Core GSI

Norway (NO) Core

Portugal (PT) Core

Singapore (SG) Core

Spain (ES) Core GSI

Sweden (SE) Core GSI

Switzerland (CH) Core GSI

Turkey (TR) Core

United Kingdom (GB) Core GSI

United States (US) Core GSI

A specific analysis will regard also a subset of the core countries that host global systemi-
cally important banks (GSIBs).3 Since November 2011, the Financial Stability Board (FSB)
releases the list of GSIBs each year, based on the Basel Committee on Banking Supervision
(BCBS) score of systemic risk (see Basel Committee on Banking Supervision 2017, 2018).
These banks are asked to hold more capital (on top of Basel 3) and are subject to regulations
that are more stringent. In particular, we will define GSI Countries, those countries in which
at least a GSIB is present (see Table 5 for a list of GSIB countries).

In order to understand the role of GSIB, we will separate countries in three different
clusters. In particular, we focus on GSI countries and other core countries (i.e. core countries
that are not classified as GSI). A third residual group considers periphery countries. Figure 3
gives an idea of the role of different countries in the network at two different time periods.
It is remarkable that specific core countries become more integrated in the dense part of the
network by increasing, in particular, their out-flows.

According to this classification, we are able to compute global indicators based on a
specific subset of countries. Initially,we compute classical local clustering coefficients calli (0)
for theweighted and directed network (seeClemente andGrassi 2018) andwe aggregate these

3 See the FSB website for the updated list of GSIBS banks (http://www.fsb.org/2017/11/fsb-publishes-2017-
g-sib-list/) and the BCBSwebsite formore information on how to assess systemically important banks (https://
www.bis.org/bcbs/gsib/).

123

http://www.fsb.org/2017/11/fsb-publishes-2017-g-sib-list/
http://www.fsb.org/2017/11/fsb-publishes-2017-g-sib-list/
https://www.bis.org/bcbs/gsib/
https://www.bis.org/bcbs/gsib/


1178 Annals of Operations Research (2021) 299:1165–1187

Fig. 3 Cross-border global banking networks as on the end of 2005 and 2017 with the evidence of GSI, other
core and periphery countries

local coefficients separately for GSI and other core countries. Hence, we obtain two different
estimates of hall(0) according to two different subsets of nodes.

In the entire period, GSI countries show a clustering coefficient higher than other core
countries, confirming the important systemic role of the banks headquartered in these coun-
tries (see Fig. 4). Furthermore, results suggest a different pattern between the two clusters
of countries. In particular, GSI countries show a fall in clustering, starting from year-end
2008. This reduction is in line with the general reduction of clustering for the full network
in 2009–2010, provided in Minoiu and Reyes (2013) and ascribed to the perturbation in
financial markets triggered by the Lehman failure.

It is interesting to notice that financial communities tend to weaken after the year 2011 for
GSI countries. This phenomenon is also more intense starting from 2013, the year when the
BCBS revised its methodology to assess GSIBs and the higher loss absorbency requirement,
to better comply with the purpose of reducing the extent of failure of these banks.

This behaviour is partially explained by the pattern of out-degree and out-strength reported
in Fig. 5. There is a tendency in the network, particularlywith other core countries, to diversify
relationships as the average number of transactions increases and the average volume remains
quite stable. The same pattern is not observed for GSI countries. In particular, considering the
volume of transactions, evidence suggests that GSI countries are cutting their exposures to
almost all partners. This behaviour provides an evidence of the effectiveness of the regulation,
dampening the GSIB systemic impact.

In order to test the behaviour of clustering coefficients of order l, we compute call(1) by
means of formula (6). In order to obtain two values of the synthetic indicator, one for GSI
subset and one for other core countries subset, we average local coefficients of order 1 of
countries belonging to the same subset. Results are reported in Fig. 6.

We examine, in this way, the systemic risk at different observation scales. While classical
clustering coefficient calli takes into account how the node i forms communities in the context
of the overall system, calli (1) measures how much the neighbours of node i form triangles
and communities. Patterns of Fig. 6 show that GSI countries are also connected to well-
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Fig. 4 Global clustering
Coefficients hall (0) computed by
averaging local coefficients
calli (0) at two different levels
considering either only GSI
countries or only other core
countries respectively

Fig. 5 Out-degree and out-strength for GSI and other core countries
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Fig. 6 Global clustering
coefficients of order 1 hall (1)
computed by averaging local
coefficients calli (1) at two
different levels considering either
only GSI countries or only other
core countries respectively

Fig. 7 On the left side, figure shows global clustering coefficients of order 2 hall (2) computed by averaging
local coefficients calli (2) at two different levels considering either only GSI countries or only other core
countries respectively. On the right side, figure displays the percentage of geodesic of length 1 with respect to
the total for each cluster (GSI and other core countries)

established communities confirming the central role of these countries in term of systemic
risk.

It is worth mentioning that GSI countries, against the reduction of average number and
volume of transactions, maintain a high-level of communities, captured by hall(1), due to
their relations with neighbours that belong to many triangles. This effect is partially induced
by the contraction of lending activity towards periphery countries, leading to an increase of
clustering coefficient of order 1.

On the left side, Fig. 7 depicts global clustering coefficients of order 2 (hall(2)) computed
for the two subsets of countries. A similar pattern between GSI and other core countries
is observed, specially over the last period. This behaviour can be partially explained by
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observing the ratio of geodesics of length 1 to the total number of geodesics for each cluster
of countries (Fig. 7, right side). Indeed, as already seen in Fig. 5, the average number of
borrowers for the two subsets of lenders behaves in an opposite manner since 2008–2009.
On one hand, GSI countries reduced the average number of transactions, on the other hand,
other core countries increase it. At the end of the period, very close out-degrees are observed
for both subsets, so that the percentage of nodes at distance 1 becomes very similar and
clustering coefficient of order 2 is obviously affected by this fact. Additionally, the similarity
of the 2-order clustering coefficients displays that both subsets are connected in two steps to
comparable communities.

Figure 8 shows the high order clustering hall,∗ computed by considering different choices
of weights, for both subsets of countries. Specifically, we test here the same distributions of
weights described in Sect. 3.2, reporting the results in Fig. 8. A different weights’ concen-
tration produces distinct patterns, in terms of comparison between GSI and other countries.
Focusing, for instance, on a decreasing distribution, it is confirmed the prominent role of
GSI countries in spreading and receiving risk to (and from) their neighbours. On the con-
trary, assigning more weight to the relationships between nodes at higher distance, other core
countries tend to have a pattern in line with GSI countries. Hence, we provide here a different
view of systemic risk: unless GSI countries surely play a key role in spreading and receiving
risk, by looking beyond the adjacent nodes, we deduce that also banks of other core countries
can significantly contribute to risk diffusion. Furthermore, independently from the weights’
distribution, in all cases, we have that the behaviour of both subsets tends to be aligned over
the last years.

The numerical analysis has been also extended by considering in a separate way only
either in-paths or out-paths. In this way, we catch only the effect of community structures
in spreading or receiving risk. To this aim, we report in Fig. 9 values of hin(0) and hout (0)
for both subsets of countries. It is worth mentioning the different pattern between other core
and GSI countries. The former ones tend to have higher connections of the in-type to their
neighbours. GSI countries have instead, on average, a higher role in spreading risk towards
their adjacent nodes. In particular, it is noticeable the specific pattern hout (0) forGSI countries
since the end of 2011. Indeed, the structure of financial communities of out-type tends to
weaken, with a significant decrease from 2013, probably due to the reaction of banks in these
countries to the systemic risk regulation.

As regard to level 1, we have a very different picture of the network (see Fig. 10). GSI
countries tend to show a higher level of connections of the in-type with strong community
structures. On other hand, GSI countries spread, on average, risk toward countries that have
lower out-clustering coefficients hout (0). So it is interesting to note that, in this case, there
is only a low further propagation of risk. On other hand, we observe an increasing pattern
of hout (1) for core countries over time showing that banks of these countries are more and
more connected to banks of risk-giver countries.

Values of hin(2) and hout (2) have been reported in Fig. 11. In these networks, themaximal
length of in-geodesics is equal to 2. However, we have a very low proportion of countries (see
Fig. 12, left side) that are reachable in two steps via an in-path.4 So, differences observed
for the hin(2) clustering between the two subsets are mainly motivated by the behaviour
of specific countries. On average, other core countries, when act as borrowers, are more
connected, via in-paths of length 2, to strong community structure. Concerning the out-
clustering of level 2, all core countries show very low connections. Although, over time, the

4 The ratio of in-geodesics of length 1 to the total number of in-geodesics is equal to 96% for GSI countries
and around 90% for other core countries.
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Fig. 8 Figure reports the high order clustering coefficient for different choices of weights, where hall,∗ is
computed by averaging local coefficients for the two subsets of countries

percentages of out-distances of length 2 is reducing for GSI countries and increasing for other
core countries, all countries are, on average, mostly connected at distance 2 with peripheral
countries characterized by low risk.

Now, we focus on the systemic risk measures hin,� and hout,� regarding in and out-flows
respectively (see Fig. 13). As stressed in Tabak et al. (2014), a higher clustering coefficient
of the in-type may reflect higher systemic risk because failure of the borrowing node in an
“in” triangle can trigger simultaneous non-repayments to the lending nodes, and this can
make them unable to honour their own obligations. We show that both the in-clustering
and the hin,� assess the high state of stress in the network. It is worth mentioning how
other core countries are more affected as risk taker than GSI countries. This effect is more
evident when weights are more concentrated on adjacent nodes because of the high level
of interaction of these countries as borrowers. It is instead more noticeable the effect of
weights’ distribution on GSI countries. We have indeed that values of hin,� for this subset
are decreasing approximatively from 0.87 to 0.7 when increasing weights are chosen. These
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Fig. 9 In and out clustering coefficients hin(0) and hout (0). Both coefficients are computed by averaging
local coefficients considering either only GSI countries or only other core countries respectively

Fig. 10 In and out clustering coefficients of order 1, hin(1) and hout (1). Both coefficients are computed by
averaging local coefficients considering either only GSI countries or only other core countries respectively

countries are less affected, when they act as borrowers, by the effect of countries that are at
higher distances. Differently focusing on hout,�, we observe a greater value for GSI countries
in the period 2009–2011. It is also confirmed the reduction of GSIB systemic impact over
the last years, mainly characterized by the reduction of the exposure of GSI countries.

5 Conclusions

Systemic risk in finance is a concept not easy to be formalized through a quantitative measure
and a huge and fast growing literature is interested in this issue. A quite natural approach is
based on the use of complex networks.
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Fig. 11 In and Out Clustering of order 2, hin(2) and hout (2). Both coefficients are computed by averaging
local coefficients considering either only GSI countries or only other core countries respectively

Fig. 12 Percentages of directed (in and out respectively) geodesic of length 1 with respect to the total for each
cluster (GSI and other core countries)

In a financial system, the interconnectedness among entities plays a fundamental role in
situations of distress. Moving from this fact, we exploit the concept of community, usually
relevant in understanding the relationship between interconnectedness and systemic risk.
In particular, we consider a generalization of the concept of clustering coefficient in order
to catch both the presence of clustered areas around a node and/or high levels of mutual
interconnections at different distances from the node itself. We provide a new systemic risk
measure computed as the weighted average of high order clustering coefficients at different
levels. On one hand, this proposal leads to a synthetic indicator able to assess the general
state of stress of the financial system. On the other hand, the distribution of weights allows
to introduce a degree of flexibility, in order to modulate the effects of both adjacent nodes
and peripheral nodes.
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Fig. 13 In and out high order clustering coefficients h�,in and h�,out . Coefficients are computed for both
subsets of countries and with different weights

An empirical application to time-varying global banking network is developed. Results
show the effectiveness of these measures in reflecting how systemic risk has changed over the
last years, also in the light of the recent financial crisis. Furthermore, we emphasize a different
behaviour between countries where a GSIB is headquartered and other core countries, more
noticeable since 2013. This effect, that could be interpreted as a reaction to the specific
regulation inducing banks to contain their “systemic” nature, is in line with the recent report
by the Committee on the Global Financial System (2018) that shows that GSIBs become
more selective and have also repositioned themselves toward less complex activities, as a
response to the regulatory reforms process that is under way.
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Appendix

We here report the definition of the clustering coefficients in the directed case (see Clemente
and Grassi 2018 for details).

The overall clustering coefficient for weighted and directed network is defined as:

calli =
1
2 [(W + WT )(A + AT )2]i i

si (di − 1) − 2s↔
i

where s↔
i is the strength related to bilateral arcs between the node i and its adjacent nodes,

defined as:

s↔
i =

∑

j �=i

ai j a ji
(wi j + w j i )

2
.

The numerator of the overall coefficient takes into account all directed triangles that a node i
actually forms with its neighbours, weighted with the average weight of the links connecting
i to its adjacent nodes. Then, it is divided by all possible (appropriately weighted) directed
triangles that i could form. Observe that 2s↔

i represents the number of “false” triangles,
being formed by i and by a pair of directed arcs pointing to the same node, e.g., i → j and
j → i . Indeed, being the network directed, i can form up to two triangles with each pair
of adjacent nodes, including two “false” potential triangles for each bilateral link. To this
reason, 2s↔

i does not contribute to the number of possible directed triangles and has to be
removed by the denominator. Notice that, if the network is undirected, call = c.

Accordingly to the previous definition, in and out weighted local clustering coefficients
of node i are defined, respectively, as:

cini =
1
2 [WT (A + AT )A]i i

←−s i

(←−
d i − 1

)

and

couti =
1
2 [W(A + AT )AT ]i i

−→s i

(−→
d i − 1

) .
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