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Abstract
In planning for a large-scale disaster, potential relief centers to accommodate evacu-
ees need to be identified. The quantities of emergency commodities are prepared and 
stocked at relief centers in advance for possible disasters. In the event of a disaster, due 
to the different disaster severities and uncertain environment, some relief centers inevi-
tably have surplus commodities, whereas some relief centers are still unmet. To use any 
surplus commodities effectively, a multi-commodity rebalancing process is necessary to 
rebalance the commodities among relief centers. However, various uncertainties make the 
multi-commodity rebalancing process extremely challenging, including uncertain demand 
and transportation-network availability. By recognizing those practical uncertainties, a bi-
level stochastic mixed-integer nonlinear programming model is proposed to formulate this 
multi-commodity rebalancing problem. The upper-level objective is to minimize the total 
dissatisfaction level, which is measured by the expected total weighted unsatisfied demand, 
and the lower-level objective is to minimize the expected total transportation time. Finally, 
a case study on the Great Sichuan Earthquake in China is implemented; their results show 
that the proposed model facilitates effective decision-making in the practice of multi-com-
modity rebalancing.

Keywords Humanitarian logistics · Multi-commodity rebalancing · Bi-level stochastic 
programming · Uncertainty

1 Introduction

Whether natural or man-made, large-scale disasters such as earthquakes, floods, typhoons, 
and nuclear leaks occurred frequently in the last decade (Guha-Sapir et  al. 2012; Ronke 
2018), affecting a large number of people significantly and damaging a large number of 
assets severely (Gao et al. 2019; Besiou and Van Wassenhove 2019). In the event of such a 
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disaster, rapid and effective disaster responses are required initially. Specifically, a number 
of relief centers to accommodate evacuees should be determined and a variety of critical 
commodities such as water, food, and medicine for supporting basic life should be distrib-
uted to those relief centers and stocked in advance. However, the deployment of an initial 
unsuitable stock of emergency commodities in the affected areas may lead to redundancy, 
the overconsumption of logistical resources, and even congestion in the system (Caunhye 
et al. 2012; Sheu and Pan 2015; Gao 2019).

In the event of a large-scale disaster, due to the unpredictable demand, some relief cent-
ers may have surplus commodities, whereas some relief centers are still lacking in com-
modities (Gao and Lee 2018a). To make full use of any surplus commodities effectively, 
those stored commodities need to be rebalanced among those relief centers. Besides, the 
commodities can be rebalanced and distributed quickly within the disaster area to reduce 
human sufferings. Although many research efforts have been dedicated to the commodity 
distribution in humanitarian logistics (Goldschmidt and Kumar 2017; Sabouhi et al. 2018; 
Cao et  al. 2018; Dubey et  al. 2019), none of them have addressed the multi-commodity 
rebalancing process, which is summarized as:

The multi-commodity rebalancing process in disaster response is to rebalance the com-
modities from the oversupplied nodes to unmet nodes over the transportation network to 
satisfy the potential demand at all nodes (relief centers).

In preparation for a possible disaster, various potential relief centers are identified and 
stocked with commodities in predetermined quantities (Goldschmidt and Kumar 2017; Ni 
et  al. 2018; Balcik et  al. 2019; Arnette and Zobel 2019). Besides, many studies (Wang 
et al. 2014; Rennemo et al. 2014; Rath et al. 2016; Nagurney et al. 2016; Zhou et al. 2017) 
have been dedicated to humanitarian logistics after disasters. However, none of the previ-
ous studies have addressed the multi-commodity rebalancing process right after disasters. 
Therefore, after the initial multi-commodity distribution, it is necessary to plan an appro-
priate and efficient multi-commodity rebalancing process to rebalance commodities among 
relief centers right after a large-scale disaster.

Due to the uncertain environment, demand is estimated and considered as uncertainty at 
relief centers. Another uncertain element is the transportation-network availability, due to 
factors such as (1) disaster damage, (2) debris removal, and (3) ongoing threats (e.g., rising 
floods and earthquake aftershocks) (Rath et al. 2016). Besides, for each commodity type, 
some relief centers are considered as demand nodes while some others are considered as 
supply nodes. Note that, some relief centers can be demand nodes and supply nodes at the 
same time because the multiple commodity types are involved. The aforementioned uncer-
tainties and relief centers with mixed demand and supply make it difficult to rebalance 
the commodities among relief centers over the transportation network. Furthermore, the 
fair distribution of commodities is quite important in disaster response. Clark and Culkin 
(2013) summarized humanitarianism that comprises humanity, impartiality, and neutrality, 
based on the previous work (Tomasini and Van Wassenhove 2004; Van Wassenhove 2006). 
And many studies focused on this topic and addressed the significance of the fair distribu-
tion of emergency commodities (Huang et al. 2012; Rennemo et al. 2014; Starr and Van 
Wassenhove 2014; Huang et al. 2015; Yu et al. 2018; Gao and Lee 2018b; Li et al. 2019). 
Fair commodity distribution needs to be taken into account while distributing emergency 
commodities. In addition, many studies (Nagurney et al. 2015; Rath et al. 2016; Yilmaz 
and Kabak 2016; Tavana et al. 2018; Sabouhi et al. 2018) have emphasized the importance 
of minimizing the time in the relief operations. Hence, in this study, the multi-commodity 
rebalancing process should be able to address both fairness and timeliness since the goal is 
to deliver the commodities as quickly as possible to reduce the sufferings from evacuees.
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Against this backdrop of uncertainties, this study focuses on developing a bi-level sto-
chastic optimization model to plan an appropriate multi-commodity rebalancing process 
with uncertain elements. A bi-level stochastic mixed-integer nonlinear programming 
(SMINP) model is proposed that captures uncertainties in demand and transportation-
network availability. The tasks are to identify the demand and supply relief centers and 
determine the incoming and outgoing shipments for each commodity type at relief centers 
first, and then the commodity flows and vehicle numbers of different types that transport 
mixed commodities are determined. To solve the proposed model, we proposed a lineariza-
tion method to reformulate the proposed SMINP model so that it can be solved in CPLEX. 
Finally, their results show that the proposed model has the benefit to facilitate effective 
decision-making regarding the multi-commodity rebalancing in disaster response.

The remainder of this paper is organized as follows. In Sect. 2, the previous relevant 
studies in commodity distribution, rebalancing (also referred to as redistribution), and sto-
chastic optimization models are reviewed, highlighting the novelty and contribution of this 
study. Section  3 describes the problem of interest in multi-commodity rebalancing with 
uncertainties and analyses three categories of relief centers. A bi-level SMINP model is 
proposed to formulate this problem in Sect.  4 and the solution method is developed in 
Sect. 5. In Sect. 6, a case study is conducted, including the result discussion and sensitive 
analysis on several key parameters. Finally, Sect. 7 concludes this study and outlines the 
possible directions for future work.

2  Literature review

As human suffering due to disasters increases, so does research into humanitarian logistics. 
The commodity distribution problem in disaster response has been extensively studied by 
many researchers. Here, some previous work is reviewed on the disaster management by 
discussing several studies of commodity distribution problems that consider various uncer-
tainties and fairness commodity distribution, stochastic optimization models for commod-
ity distribution. The research gap is discussed and then the novelty and contribution of this 
study are summarized.

2.1  Uncertainty and fairness in humanitarian logistics

To better reflect the realities of post-disaster relief efforts, various uncertainties in humani-
tarian logistics are widely considered to make the model close to reality. Jia et al. (2007) 
proposed a stochastic programming (SP) model to determine the facility locations of med-
ical suppliers in response to a large-scale emergency disaster under the uncertainties of 
medical demand and supply. Sheu (2010) presented a dynamic relief demand management 
model under the considerations of disorder and uncertain relief demand information from 
affected areas. Rawls and Turnquist (2012) constructed a dynamic allocation model to opti-
mize pre-event planning to meet short-term demand (the first 72 h after the disaster) for 
emergency supplies under the demand uncertainty. Murali et al. (2012) formulated a maxi-
mal covering location problem by applying (1) a loss function to obtain the distance-sensi-
tive demand and (2) chance-constraints to handle the demand uncertainty. Rennemo et al. 
(2014) presented a three-stage stochastic mixed-integer programming model in disaster 
response where the available vehicles for transportation, the state of infrastructure, and the 
demand were considered as uncertainties. Haghi et al. (2017) developed a multi-objective 
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programming model to determine distribution centers and health centers that were used to 
distribute commodities and transfer the casualties to health centers, under the uncertainties 
of demand, supply, and cost. Moreno et al. (2018) proposed a multi-trip location-transpor-
tation model to determine the facility location, transportation, and fleet-sizing decisions, 
regarding uncertainties of demand, supply, and road availability.

Many recent studies have emphasized that a suitable model for post-disaster humanitar-
ian logistics should address fairness (also referred to as equity) (Rodríguez-Espíndola et al. 
2018; Starr and Van Wassenhove 2014) and human suffering (Holguín-Veras et al. 2013), 
even though through a proxy measure, instead of focusing only on the monetary objective 
of commercial logistics. And many studies focused on this topic and addressed the sig-
nificance of the fair distribution of emergency commodities (Huang et al. 2012, 2015; Yu 
et al. 2018; Li et al. 2019). Generally, fairness is measured as the penalty cost of unsatisfied 
demand at demand points (Lin et al. 2011; Rezaei-Malek and Tavakkoli-Moghaddam 2014; 
Bai 2016). Wang and Sun (2018) only used the unmet proportion of required resources to 
quantify fairness, whereas Rivera-Royero et al. (2016) measured the fairness and human 
suffering level by considering the proportion of unmet demand with priority score at each 
demand point. Hu et al. (2016) measured the utility satisfaction rate of all relief resources 
as fairness. Form the above literature, many previous studies care about the unsatisfied 
demand in humanitarian logistics without considering weighted values at demand points. 
However, minimization of weighted unsatisfied demand is more appropriate to measure 
the fairness because suffering needs be alleviated wherever it is found, and the most urgent 
need to be given priority without discrimination (Clark and Culkin 2013). In addition, min-
imization of transportation time is generally considered in the relief operations (Nagurney 
et al. 2015; Rath et al. 2016; Yilmaz and Kabak 2016; Tavana et al. 2018; Sabouhi et al. 
2018). Hence, in this study, fairness and timeliness are considered as the objectives that we 
need to optimize.

2.2  Stochastic programming

In humanitarian logistics, various uncertainties make it more difficult to obtain optimal 
solutions. In previous studies, SP is one of the most popular modeling approaches to sup-
port the decision-making process in disaster operations under uncertainty (Falasca and 
Zobel 2011; Grass and Fischer 2016; Mahootchi and Golmohammadi 2018). In the last 
decade, various stochastic optimization models for commodity distribution have been 
developed in disaster response. Mete and Zabinsky (2010) presented a stochastic optimi-
zation approach to tackle the commodity storage and distribution problem under a wide 
variety of uncertain disaster types and magnitudes. Noyan (2012) considered a risk-averse 
two-stage SP model to determine the facility locations and the inventory levels at facilities 
subject to uncertain demand and disaster-network damage. Hong et al. (2015) introduced a 
risk-averse stochastic modeling approach to solve the problem of designing a pre-disaster 
relief network while considering uncertain demand and transportation capacities. Noyan 
et  al. (2015) developed a two-stage SP model that applied a hybrid allocation policy to 
achieve high levels of accessibility and equity simultaneously while considering demand 
and transportation-network uncertainties. Bai (2016) proposed a two-stage SP model for 
an emergency supply allocation problem to minimize the expected proportion of unmet 
demand, the response time of emergency reliefs, and the total cost of the whole process, 
where the expected proportion of unmet demand was represented as fairness. Gao and 
Lee (2018a) proposed a stochastic mixed-integer programming model to facilitate the 
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multi-commodity redistribution problem under uncertain demand, supply, and transpor-
tation-network availability. Elci and Noyan (2018) developed a chance-constrained mean-
risk SP model for a humanitarian relief network design problem under uncertain demand 
and transportation-network availability. Paul and Zhang (2019) proposed a two-stage SP 
model to prepare the recourse actions for a hurricane disaster. The locations of distribution 
points, medical supply levels, and transportation capacity were determined in the first stage 
and the transportation decisions were determined in the second stage. The various previous 
studies illustrate that the SP model is the most appropriate approach to solve the humani-
tarian logistics problem under uncertainty.

2.3  Bi‑level optimization

In humanitarian logistics, many real situations involve two levels of decision-making. 
Therefore, a bi-level optimization model enables to deal with decentralized and hierar-
chical two levels of decisions, where the decision variables in the subset are not under 
the control of the leader optimizer (also referred to as upper level) but is controlled by a 
follower (also referred to as lower level) who optimizes its own objective function with 
respect to the parameters set by the leader (Alizadeh et al. 2013). Once the leader chooses 
the value of its variables, the follower reacts by selecting the values of its own variables to 
optimize its objective function (Chen and Chen 2013; Safaei et al. 2018). Therefore, there 
are two kinds of variables in the bi-level optimization model, namely (1) upper-level deci-
sion variables and (2) lower-level decision variables. Mathematically, a bi-level program-
ming model proposed by Bracken and McGill (1973) is generally expressed as

where F(x, y) and f (x, y) are the upper-level and lower-level objective functions, 
respectively.

For the humanitarian logistics problems with several objectives, the bi-level pro-
gramming approach is a recently emerging way to separate the objectives into different 
levels and solve the problem hierarchically. After an extensive literature review, it is 
found that very few works modeling real-life situations as bi-level programming prob-
lems in the area of humanitarian logistics. Regarding the catastrophes caused by large-
scale natural disasters, a few articles have been found. Kongsomsaksakul et al. (2005) 
formulated a bi-level programming model to determine the optimal shelter locations in 
the upper level and traveler behavior in the flood evacuation process in the lower level. 
Camacho-Vallejo et  al. (2015) developed a bi-level programming model to optimize 

(1)(L)min
x∈X

F(x, y),

(2)
s.t.

G(x, y) ≤ 0,

(3)(F)min
y∈Y

f (x, y),

(4)
s.t.

g(x, y) ≤ 0,

(5)x, y ≥ 0.
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decisions related to the distribution of international aid after a catastrophic disaster; 
the upper-level objective was to minimize the total response time for delivering the 
aid and the lower-level objective was to minimize the cost. Gutjahr and Dzubur (2016) 
developed a bi-objective bi-level optimization model for the determination of relief 
distribution-center locations in humanitarian logistics, where the upper-level goal was 
to minimize total opening cost and total uncovered demand at distribution centers and 
the lower-level goal was to minimize the determination of the user equilibrium. Chen 
et al. (2017) proposed a bi-level programming model with two objectives; the upper-
level objective was to minimize the weighted distribution time to deliver all relief 
materials and the lower-level objective was to maximize the minimum fulfillment rate 
at all affected sites required for every kind of relief material. Safaei et al. (2018) pro-
posed a robust bi-level optimization model for a supply-distribution relief network 
under uncertain demand and supply. The upper-level objective minimized the total 
relief supply chain costs and the lower-level objective minimized the total supply risk 
over all suppliers. However, none of them analysed the situation of a multi-commodity 
rebalancing with multiple objectives in the disaster response. As a consequence, fair-
ness is considered as the upper-level objective. And following the upper-level objec-
tive of fairness, lower-level objective cares about timeliness.

2.4  Summary

As discussed above, although many research efforts have been dedicated to the the 
pre-positioning network design and inventory strategy (Hong et  al. 2015; Moham-
madi et al. 2016; Ni et al. 2018; Arnette and Zobel 2019; Erbeyoğlu and Bilge 2020) 
and commodity distribution (Rath et al. 2016; Wang et al. 2014; Rennemo et al. 2014; 
Nagurney et al. 2016; Zhou et al. 2017) in humanitarian logistics, none of them have 
addressed the multi-commodity rebalancing process. However, multi-commodity rebal-
ancing for disaster response is also an important issue in humanitarian logistics. Vari-
ous uncertain elements make the multi-commodity rebalancing extremely challenging. 
Neither strategic approaches nor quantitative models to handle this multi-commodity 
rebalancing process with uncertain elements have been studied in the previous studies. 
Given these difficulties and different from previous studies, there is a critical need to 
fill this research gap by developing a bi-level stochastic optimization model to facili-
tate this multi-commodity rebalancing process with two objectives under uncertainty.

Different from the previous study (Gao and Lee 2018a), this study focuses on the 
multi-commodity rebalancing problem and combines various key decisions, includ-
ing the identification of demand and supply relief centers, quantities of total incom-
ing and outgoing shipments at relief centers, commodity flows between relief centers, 
and numbers of vehicles of different types transporting mixed commodities between 
relief centers, with uncertain demand and transportation-network availability. Under 
the uncertain elements, a bi-level SMINP model through a scenario-based approach is 
proposed for the multi-commodity rebalancing problem with the objectives of fairness 
and timeliness. In the upper level, the prior goal is to maximize fairness by minimizing 
the total dissatisfaction level to rebalance the commodities for all relief centers. In the 
lower level, the goal is to minimize the expected total transportation time of vehicles 
to achieve the fast delivery of commodities.
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3  Problem description

In this section, the problem of multi-commodity rebalancing is described in a given trans-
portation network after a disaster. The characteristics of this multi-commodity rebalancing 
problem are described in Sects. 3.1–3.3.

3.1  Network structure and facilities

In this context, a large-scale disaster is supposed to strike a wide area where a number of 
relief centers have been pre-identified for accommodating evacuees and various commod-
ity types have been prepared to satisfy their great needs. Besides, a transportation network 
that comprises a number of roads connecting the relief centers is considered. However, 
once the disaster hits, the stored commodities are used to provide basic life support for 
evacuees. Inevitably, some relief centers have surplus commodities whereas others have 
not enough. To reduce the human sufferings and make full use of any surplus commodities 
effectively, it is necessary to plan an appropriate and efficient multi-commodity rebalanc-
ing process to rebalance the commodities among relief centers.

3.2  Uncertainties in demand and transportation network

The complex and dynamic nature of a large-scale disaster creates a highly uncertain envi-
ronment for many reasons, such as the uneven distribution of damage, different popula-
tions, and evacuees with different needs at relief centers. It is difficult to determine how 
much of a particular commodity a relief center requires in the future, which makes the 
demand uncertain. In addition to the uncertainty of demand, the transportation-network 
availability is usually uncertain during a large-scale disaster relief effort, because the road 
recovery measures cannot be predicted precisely. The uncertain demand and transporta-
tion-network availability increase the complexity of multi-commodity rebalancing over the 
transportation network.

To account for these uncertain elements, the demand is divided into several independent 
scenarios. The uncertain demand is represented as a number of discrete stochastic quan-
tities that constitute distinct scenarios. Here a specific realization of possible demand is 
considered as a scenario. For each commodity type, there is a set of scenarios � . For a 
particular scenario � ∈ � , there is a probability of occurrence π (�) such that π (�) ≥ 0 and 
∑

�∈� π(�) = 1 . Similarly, several transportation-network availabilities with probabilities 
are also considered.

To better illustrate the problem, commodity-type c is considered, for which the initial 
stock level is Sc and the demand quantity is D�

c
 in scenario � . The relief centers are classified 

into three categories: namely (1) complete supply relief centers with surpluses, (2) com-
plete demand relief centers with shortages and (3) potential demand or supply relief cent-
ers, based on their stock levels and uncertain demand. If Sc > max

{

D1
c
,D2

c
,… ,D𝜉

c
,…

}

 , 
this relief center is deemed a complete supply relief center with a surplus. If 
Sc < min

{

D1
c
,D2

c
,… ,D𝜉

c
,…

}

 , this relief center is deemed a complete demand relief center 
with a shortage. If Sc ≥ min

{

D1
c
,D2

c
,… ,D�

c
,…

}

 and Sc ≤ max
{

D1
c
,D2

c
,… ,D�

c
,…

}

 , then 
this relief center is deemed a potential demand or supply relief center. For a potential 
demand or supply relief center, this relief center needs to be identified as a supply relief 
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center or a demand relief center in this study. Considering the stock level of commodity-
type c and the demand in scenario � at this relief center, the surplus and shortage need to be 
calculated, which are denoted as X�

c
 and Y�

c
 and represented in the following two equations.

After the surplus and shortage of the commodity are identified at relief centers, the relief 
center with a surplus is deemed an origin point and the one lacking in the commodity is 
deemed a destination point. Accordingly, any surplus at origin points needs to be redeliv-
ered to the destination points. This multi-commodity rebalancing from origin to destina-
tion points is implemented simultaneously. To better illustrate the problem, a network of six 
relief centers with two commodity types (c1 and c2) is depicted in Fig. 1. Note that a relief 
center can be an origin and destination point simultaneously as different commodities are 
involved. This is totally different from previous models in the multi-commodity distribution 
problems. As shown in Fig. 1, there are three possible relief-center categories, namely (1) a 
supply relief center with surpluses of both commodity types (relief center 2), (2) a demand 
relief center with shortages of both commodity types (relief center 5), (3) a demand and 
supply relief center with a surplus of one commodity type and a shortage of the other com-
modity type (relief centers 1, 3, 4 and 6). It is assumed that vehicles of different types are 
used to deliver mixed commodities between any pair of relief centers. Then, the main task is 

(6)

X𝜉

c
=

{

Sc − D𝜉
c

if Sc > max
{

D1
c
,D2

c
,… ,D𝜉

c
,…

}

max
{

Sc − D𝜉
c
, 0
}

if min
{

D1
c
,D2

c
,… ,D𝜉

c
,…

}

≤ Sc ≤ max
{

D1
c
,D2

c
,… ,D𝜉

c
,…

}

(7)

Y𝜉

c
=

{

D𝜉
c
− Sc if Sc < min

{

D1
c
,D2

c
,… ,D𝜉

c
,…

}

max
{

D𝜉
c
− Sc, 0

}

if min
{

D1
c
,D2

c
,… ,D𝜉

c
,…

}

≤ Sc ≤ max
{

D1
c
,D2

c
,… ,D𝜉

c
,…

}

2

Commodity c1

Commodity c2

Flow of commodity c1

Flow of commodity c2

Surplus quantity

Shortage quantity
0Relief center

1

3

6

5

4

Fig. 1  A transportation network of six relief centers in multi-commodity rebalancing
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to rebalance the commodities among those relief centers by using vehicles of different types. 
Usually, for any relief centers with surpluses, they try to reduce their stock level by as lit-
tle as possible because they may face a great demand in the near future. In contrast, for any 
relief centers with shortages, they hope to receive commodities as much as possible to meet 
their current highly pressing demand and procure more for possibly need in the future.

3.3  Presumptions

Before the bi-level SMINP model for multi-commodity rebalancing is formulated, several 
certain assumptions are stated in advance. The relief-center locations are known. Each of 
the relief centers is a separate unit and the weighted values of relief centers are given. 
There are multiple vehicle types with different capacities and speeds. Each vehicle type is 
allowed to transport mixed commodities between relief centers. Each commodity type is 
allowed to be cut into portions during the transportation process.

4  Bi‑level stochastic optimization model

4.1  Notations

The parameters and decision variables are collected and presented here for the proposed 
mathematical model:

Sets:

S  Set of complete supply relief centers, indexed by s ∈ S

D  Set of complete demand relief centers, indexed by d ∈ D

R  Set of potential demand or supply relief centers, indexed by r, t ∈ R & r ≠ t

C  Set of commodity types, indexed by c ∈ C

Z  Set of vehicle types, indexed by z ∈ Z

�  Set of scenarios of demand, indexed by � ∈ �

�   Set of scenarios of transportation-network availability, indexed by � ∈ �

Deterministic parameters:

Scs  Stock level of commodity-type c at relief center s
Scd  Stock level of commodity-type c at relief center d
Scr  Stock level of commodity-type c at relief center r
Nz  Available number of vehicle-type z
Wc  Weight of commodity-type c
Vc  Volume of commodity-type c
CWz  Weight capacity of vehicle-type z
CVz  Volume capacity of vehicle-type z
Ecs  Weighted value of relief centers s for commodity-type c
Ecd  Weighted value of relief centers d for commodity-type c
Ecr  Weighted value of relief centers r for commodity-type c
Bsd  Distance between relief centers s and d
Bsr  Distance between relief centers s and r
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Brd  Distance between relief centers r and d
Brt  Distance between relief centers r and t
SPz  Travel speed of vehicle-type z
LTz  Loading/unloading time of vehicle-type z

Stochastic parameters:

D�
cs

  Demand of commodity-type c at relief center s in scenario �
D

�

cd
  Demand of commodity-type c at relief center d in scenario �

D�
cr

  Demand of commodity-type c at relief center r in scenario �
p�  Probability of occurrence in scenario �
A
�

sd
  Availability of road between relief centers s and d in scenario �

A�
sr

  Availability of road between relief centers s and r in scenario �
A
�

rd
  Availability of road between relief centers r and d in scenario �

A
�

rt  Availability of road between relief centers r and t in scenario �
p�  Probability of occurrence in scenario �

Decision variables:

oc
s
  Quantity of outgoing commodity-type c at relief center s

ic
d
  Quantity of incoming commodity-type c at relief center d

pc
r
  Quantity of outgoing commodity-type c at relief center r

qc
r
  Quantity of incoming commodity-type c at relief center r

w
c�

sd
  Flow of commodity-type c from relief centers s to d in scenario �

wc�
sr

  Flow of commodity-type c from relief centers s to r in scenario �
w
c�

rd
  Flow of commodity-type c from relief centers r to d in scenario �

w
c�
rt   Flow of commodity-type c from relief centers r to t in scenario �

m
�z

sd
  Number of vehicle-type z used to deliver mixed commodities from relief centers s to 

d in scenario �
m�z

sr
  Number of vehicle-type z used to deliver mixed commodities from relief centers s to 

r in scenario �
m

�z

rd
  Number of vehicle-type z used to deliver mixed commodities from relief centers r to 

d in scenario �
m

�z
rt   Number of vehicle-type z used to deliver mixed commodities from relief centers r to 

t in scenario �

4.2  Objective functions

In this study, the goal is to achieve fairness in multi-commodity rebalancing at relief centers 
and timely delivery of commodities between relief centers, where the goal of fairness is prior 
to the timely delivery. Here, a bi-level stochastic optimization model is proposed for the multi-
commodity rebalancing problem. The upper-level goal is to achieve fairness in multi-commodity 
rebalancing by minimizing the total dissatisfaction level at relief centers; the lower-level goal 
is to minimize the expected total transportation time of vehicles of different types that deliver 
mixed commodities. The upper-level objective with a higher priority focuses on fairness so that 
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the relief center with the greatest need would receive the most attention. To measure the fairness, 
the dissatisfaction level is defined, which is the expected total weighted unsatisfied demand. The 
weighted value is used to prioritize the most urgent demand at each relief center. Each relief 
center has different weighted values for different commodity types. For commodity-type c , the 
weighted unsatisfied demand at those three groups of relief centers is represented as follows.

4.2.1  Weighted unsatisfied demand at complete supply relief centers

At complete supply relief center s , given the commodity-type c , weighted value Ecs , stock 
level Scs , and demand D�

cs
 in scenario � , the outgoing shipment oc

s
 needs to be determined. 

If  D𝜉
cs
>
(

Scs − oc
s

)

 , the demand relief center will suffer a shortage (unsatisfied demand). By 
contrast, if D�

cs
≤
(

Scs − oc
s

)

 , the delivery is satisfactory. The weighted unsatisfied demand 
S
(

Scs,D
�
cs
, oc

s
, �
)

 at complete supply relief center s in scenario � is defined as

4.2.2  Weighted unsatisfied demand at complete demand relief centers

At complete supply relief center d , given the commodity-type c , weighted value Ecd , stock level Scd , 
and demand D�

cd
 in scenario � , the incoming shipment ic

d
 needs to be determined. If  D𝜉

cd
>
(

Scd + ic
d

)

 , 
the demand relief center will suffer a shortage (unsatisfied demand). By contrast, if D�

cd
≤
(

Scd + ic
d

)

 , 
the delivery is satisfactory. The weighted unsatisfied demand D

(

Scd,D
�

cd
, ic
d
, �
)

 at complete demand 
relief center d in scenario � is defined as

4.2.3  Weighted unsatisfied demand at potential demand or supply relief centers

At potential demand or supply relief center r , given the commodity-type c , weighted value Ecr , 
stock level Scr , and demand D�

cr
 in scenario � , both an outgoing shipment pc

r
 and an incom-

ing shipment qc
r
 need to be determined. Note that at least one of them (i.e., pc

r
 and qc

r
 ) is 0. If 

D𝜉
cr
>
(

Scr − pc
r
+ qc

r

)

 , the demand relief center will suffer a shortage (unsatisfied demand). By 
contrast, if D�

cr
≤
(

Scr − pc
r
+ qc

r

)

 , the delivery is satisfactory. The weighted unsatisfied demand 
R
(

Scr,D
�
cr
, pc

r
, qc

r
, �
)

 at potential demand or supply relief center r in scenario � is defined as

It is assumed that a set of possible quantities of demand at relief centers are given with prob-
abilities. Then, the dissatisfaction level �1 represented by the expected total weighted unsatis-
fied demand includes the weighted unsatisfied demand of �

[

S
(

Scs,D
�
cs
, oc

s
, �
)]

 at complete sup-
ply relief center s , �

[

D

(

Scd,D
�

cd
, ic
d
, �
)]

 at complete demand relief center d , and 
�
[

R
(

Scr,D
�
cr
, pc

r
, qc

r
, �
)]

 at potential demand or supply relief center r . Then, the dissatisfaction 
level �1 at all relief centers over all possible scenarios for all commodity types is given as

(8)S
(

Scs,D
�

cs
, oc

s
, �
)

= Ecs ⋅max
{

D�

cs
−
(

Scs − oc
s

)

, 0
}

(9)D

(

Scd,D
�

cd
, ic
d
, �
)

= Ecd ⋅max
{

D
�

cd
−
(

Scd + ic
d

)

, 0
}

(10)R
(

Scr,D
�

cr
, pc

r
, qc

r
, �
)

= Ecr ⋅max
{

D�

cr
−
(

Scr − pc
r
+ qc

r

)

, 0
}

(11)

�1 =
∑

c∈C

∑

s∈S

�
[

S
(

Scs,D
�

cs
, oc

s
, �
)]

+
∑

c∈C

∑

d∈D

�

[

D

(

Scd,D
�

cd
, ic
d
, �
)]

+
∑

c∈C

∑

r∈R

�
[

R
(

Scr,D
�

cr
, pc

r
, qc

r
, �
)]
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To minimize �1 , the unsatisfied demand at relief centers can be reduced by sharing com-
modities with demand relief centers that have larger weighted values and avoiding exces-
sive shipments from supply relief centers with larger weighted values. The upper-level 
objective is to achieve maximum fairness in multi-commodity rebalancing by minimizing 
the dissatisfaction level �1.

4.2.4  Transportation time

After the upper-level decision variables of incoming and outgoing shipments at relief cent-
ers are determined and therefore the potential demand or supply relief centers are also 
identified, the expected total transportation time needs to be minimized in the lower level. 
The transportation time T

(

m
�z

sd
, �
)

 on road connecting relief centers s and d with distance 
Bsd in scenario � is formulated as

Similarly, the transportation time T
(

n�z
sr
, �
)

 on road connecting relief centers s and r with 
distance Bsr , the transportation time T

(

n
�z

rd
, �
)

 on road connecting relief centers r and d 

with distance Brd , and the transportation time T
(

n
�z
rt , �

)

 on road connecting relief centers r 
and t with distance Brt in scenario � are formulated as

The lower-level expected total transportation time �2 can be represented as the sum of 
�

[

T

(

m
�z

sd
, �
)]

 , �
[

T
(

m�z
sr
, �
)]

 , �
[

T

(

m
�z

rd
, �
)]

, and �
[

T

(

m
�z
rt , �

)]

 over all possible scenarios.

4.3  Model formulation

Under the previous considerations, the bi-level SMINP model is proposed through a sce-
nario-based approach. The upper-level objective is to minimize the dissatisfaction level in 
the multi-commodity rebalancing process. The lower-level objective is to minimize the 
expected total transportation time. The bi-level SMINP model can be formulated as follows

(12)T

(

m
�z

sd
, �
)

=
∑

z∈Z

m
�z

sd
⋅

(

LTv +
Bsd

SPz ⋅ r
�

sd

)

(13)T
(

m�z
sr
, �
)

=
∑

z∈Z

m�z
sr
⋅

(

LTz +
Bsr

SPz ⋅ r
�
sr

)

(14)T

(

m
�z

rd
, �
)

=
∑

z∈Z

m
�z

rd
⋅

(

LTz +
Brd

SPz ⋅ r
�

rd

)

(15)T

(

m
�z
rt , �

)

=
∑

z∈Z

m
�z
rt ⋅

(

LTz +
Brt

SPz ⋅ r
�

rt

)

(16)

�2 =
∑

s∈S

∑

d∈D

�

[

T

(

m
�z

sd
, �
)]

+
∑

s∈S

∑

r∈R

�
[

T
(

m�z
sr
, �
)]

+
∑

r∈R

∑

d∈D

�

[

T

(

m
�z

rd
, �
)]

+
∑

r∈R

∑

t∈R

�

[

T

(

m
�z
rt , �

)]
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(17)

Min�1 =
∑

c∈C

⟨

∑

s∈S

∑

�∈�

Ecs ⋅ p� ⋅max
{

D�

cs
−
(

Scs − oc
s

)

, 0
}

+
∑

d∈D

∑

�∈�

Ecd ⋅ p� ⋅max
{

D
�

cd
−
(

Scd + ic
d

)

, 0
}

+
∑

r∈R

∑

�∈�

Ecr ⋅ p� ⋅max
{

D�

cr
−
(

Scr − pc
r
+ qc

r

)

, 0
}

⟩

(18)
s.t.
∑

s∈S

oc
s
+
∑

r∈R

pc
r
=

∑

d∈D

ic
d
+
∑

r∈R

qc
r

∀ c ∈ C

(19)
min

{

D1
cs
,D2

cs
,… ,D�

cs
,…

}

≤ Scs − oc
s
≤ max

{

D1
cs
,D2

cs
,… ,D�

cs
,…

}

∀ s ∈ S, c ∈ C

(20)
min

{

D1
cd
,D2

cd
,… ,D

�

cd
,…

}

≤ Scd + ic
d
≤ max

{

D1
cd
,D2

cd
,… ,D

�

cd
,…

}

∀ d ∈ D, c ∈ C

(21)
min

{

D1
cr
,D2

cr
,… ,D�

cr
,…

}

≤ Scd − pc
r
+ qc

r
≤ max

{

D1
cr
,D2

cr
,… ,D�

cr
,…

}

∀ r ∈ R, c ∈ C

(22)oc
s
and ic

d
are positive integer variables ∀ s ∈ S, d ∈ D, c ∈ C

(23)pc
r
⋅ qc

r
= 0 ∀ r ∈ R, c ∈ C

(24)pc
r
and qc

r
are nonnegative integer variables ∀ r ∈ R, c ∈ C

(25)

argMin�2 =
∑

�∈�

[

∑

s∈S

∑

d∈D

∑

z∈Z

m
�z

sd
⋅

(

LTz +
Bsd

SPz ⋅ r
�

sd

)

+
∑

s∈S

∑

r∈R

∑

z∈Z

m�z
sr
⋅

(

LTz +
Bsr

SPz ⋅ r
�
sr

)

+
∑

r∈R

∑

d∈D

∑

z∈Z

m
�z

rd
⋅

(

LTz +
Brd

SPz ⋅ r
�

rd

)

+
∑

r∈R

∑

t∈R

∑

z∈Z

m
�z
rt ⋅

(

LTz +
Brt

SPz ⋅ r
�

rt

)]

(26)
s.t.
∑

d∈D

w
c�

sd
+
∑

r∈R

wc�
sr

≤ oc
s

∀ s ∈ S, c ∈ C, � ∈ �

(27)
∑

s∈S

w
c�

sd
+
∑

r∈R

w
c�

rd
≥ ic

d
∀ d ∈ D, c ∈ C, � ∈ �

(28)
∑

d∈D

w
c�

rd
+
∑

t∈R

w
c�
rt ≤ pc

r
∀ r ∈ R, c ∈ C, � ∈ �

(29)
∑

s∈S

w
c�
st +

∑

r∈R

w
c�
rt ≥ qc

r
∀ t ∈ R, c ∈ C, � ∈ �
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where Eq. (17) is the upper-level objective function which aims to minimize the dissatis-
faction level for all commodity types at all relief centers. Constraint (18) guarantees the 
rebalancing balance between incoming and outgoing shipments for each commodity type. 
Constraints (19)–(22) define the decision variables. Constraints (23) and (24) guarantee 
that either outgoing or incoming shipment could happen. Equation (25) is the lower-level 
objective function that aims to minimize the expected total transportation time, which 
makes this problem a bi-level programming model. The optimal solution of the lower-level 
problem is defined by the Constraints (26)–(41). Constraint (26) ensures that the total out-
going shipment does not exceed the quantity of the commodity that needs to be delivered 
at relief center s . Constraint (27) ensures that the total incoming shipment is either greater 
than or equal to the quantity of the commodity that needs to be received at relief center d . 

(30)
∑

s∈S

∑

d∈D

w
c�

sd
+
∑

s∈S

∑

r∈R

wc�
sr

=
∑

d∈D

∑

s∈S

w
c�

sd
+
∑

r∈R

∑

s∈S

wc�
sr

∀ c ∈ C, � ∈ �

(31)
∑

c∈C

w
c�

sd
⋅Wc ≤

∑

z∈Z

m
�z

sd
⋅ CWz ∀ s ∈ S, d ∈ D, � ∈ �

(32)
∑

c∈C

w
c�

sd
⋅ Vc ≤

∑

z∈Z

m
�z

sd
⋅ CVz ∀ s ∈ S, d ∈ D, � ∈ �

(33)
∑

c∈C

wc�
sr
⋅Wc ≤

∑

z∈Z

m�z
sr
⋅ CWz ∀ s ∈ S, r ∈ R, � ∈ �

(34)
∑

c∈C

wc�
sr
⋅ Vc ≤

∑

z∈Z

m�z
sr
⋅ CVz ∀ s ∈ S, r ∈ R, � ∈ �

(35)
∑

c∈C

w
c�

rd
⋅Wc ≤

∑

z∈Z

m
�z

rd
⋅ CWz ∀ r ∈ R, d ∈ D, � ∈ �

(36)
∑

c∈C

w
c�

rd
⋅ Vc ≤

∑

z∈Z

m
�z

rd
⋅ CVz ∀ r ∈ R, d ∈ D, � ∈ �

(37)
∑

c∈C

w
c�
rt ⋅W

c ≤
∑

z∈Z

m
�z
rt ⋅ CW

z ∀ r, t ∈ R, � ∈ �

(38)
∑

c∈C

w
c�
rt ⋅ V

c ≤
∑

z∈Z

m
�z
rt ⋅ CV

z ∀ r, t ∈ R, � ∈ �

(39)
∑

s∈S

∑

d∈D

m
�z

sd
+
∑

s∈S

∑

r∈R

m�z
sr
+
∑

r∈R

∑

d∈D

m
�z

rd
+
∑

r∈R

∑

t∈R

m
�z
rt ≤ Nz ∀ z ∈ Z, � ∈ �

(40)
w
c�

sd
,wc�

sr
,w

c�

rd
, and w

c�
rt are nonnegative variables ∀ s ∈ S, d ∈ D, r, t ∈ R, � ∈ �

(41)
m

�z

sd
,m�z

sr
,m

�z

rd
, and m

�z
rt are nonnegative integer variables ∀ s ∈ S, d ∈ D, r, t ∈ R, � ∈ �
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Constraint (28) ensures that the total outgoing shipment does not exceed the quantity of 
the commodity that needs to be delivered at relief center r . Constraint (29) ensures that the 
total incoming shipment is either greater than or equal to the quantity of the commodity 
that needs to be received at relief center t . Constraint (30) guarantees the transportation 
balance of incoming and outgoing shipments for each commodity type. Constraints (31) 
and (32) ensure that the assigned vehicles can deliver mixed commodities between relief 
centers s and d by satisfying both weight and volume capacities. Constraints (33) and (34) 
ensure that the assigned vehicles can deliver mixed commodities between relief centers s 
and r by satisfying both weight and volume capacities. Constraints (35) and (36) ensure 
that the assigned vehicles can deliver mixed commodities between relief centers r and d 
by satisfying both weight and volume capacities. Constraints (37) and (38) ensure that the 
assigned vehicles can deliver mixed commodities between relief centers r and t by satisfy-
ing both weight and volume capacities. Constraint (39) ensures that the total number of 
used vehicles does not exceed the total available quantity. Constraints (40) and (41) define 
the decision variables.

5  Solution method

In this section, the previous bi-level SMINP model is reformulated so that it can be solved by 
using the IBM CPLEX Optimizer. In this study, because the upper-level objective has a higher 
priority than the lower-level objective, the upper-level problem needs to be solved under the 
Constraints (18)–(24) and (26)–(41). Then, the upper-level decision variables of oc

s
 , ic

d
 , pc

r
 , and 

qc
r
 are fixed, then the lower-level problem becomes a multi-commodity transportation problem 

using different vehicle types. It is obvious that the previous bi-level SMINP model is nonlin-
ear, due to the MAX function in the upper-level objective function (17) and Constraint (23). 
In the case of finite scenarios, it is necessary to reformulate the upper-level objective function 
and linearize the Constraint (23) by introducing a big positive number M and five auxiliary 
binary variables (i.e.,��

cs
,��

cd
 , ℊ�

cr
 , �cr , and �cr ) into the model, which are presented as

(42)�𝜉

cs
=

{

1 if D𝜉
cs
>
(

Scs − oc
s

)

0 otherwise
∀ s ∈ S, c ∈ C, 𝜉 ∈ 𝛯

(43)�
𝜉

cd
=

{

1 if D
𝜉

cd
>
(

Scd + ic
d

)

0 otherwise
∀ d ∈ D, c ∈ C, 𝜉 ∈ 𝛯

(44)ℊ𝜉

cr
=

{

1 if D𝜉
cr
>
(

Scr − pc
r
+ qc

r

)

0 otherwise
∀ r ∈ R, c ∈ C, 𝜉 ∈ 𝛯

(45)�cr =

{

1 if pc
r
> 0

0 otherwise
∀ r ∈ R, c ∈ C

(46)�cr =

{

1 if qc
r
> 0

0 otherwise
∀ r ∈ R, c ∈ C
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To realize the functions of the above binary variables, the previous bi-level SMINP 
model is reformulated, in which the corresponding constraints of binary variables are also 
formulated, which is represented as the following model �.

s.t.
Constraints (18)–(22), and (24)

s.t.
Constraints (26)–(41)
where the Eq.  (47) is the upper-level objective function. Constraints (48) and (49) 

ensure that the unsatisfied demand at relief center s is the larger of 
[

D�
cs
−
(

Scs − oc
s

)]

 and 
zero. Constraints (50) and (51) ensure that the unsatisfied demand at relief center d is 
the larger of 

[

D
�

cd
−
(

Scd + ic
d

)

]

 and zero. Constraints (52) and (53) ensure that the unsat-

(47)

� ∶

Min�1 =
∑

c∈C

{

∑

s∈S

∑

�∈�

Ecs ⋅ p� ⋅
[

D�
cs
−
(

Scs − oc
s

)]

⋅ 𝒶�
cs
+

∑

d∈D

∑

�∈�

Ecd ⋅ p� ⋅
[

D
�

cd
−
(

Scd + ic
d

)

]

⋅ 𝒷
�

cd

+
∑

r∈R

∑

�∈�

Ecr ⋅ p� ⋅
[

D�
cr
−
(

Scr − pc
r
+ qc

r

)]

⋅ ℊ�
cr

}

(48)D�

cs
−
(

Scs − oc
s

)

≥ M ⋅
(

𝒶�

cs
− 1

)

∀ s ∈ S, c ∈ C, � ∈ �

(49)D�

cs
−
(

Scs − oc
s

)

≤ M ⋅ 𝒶�

cs
∀ s ∈ S, c ∈ C, � ∈ �

(50)D
�

cd
−
(

Scd + ic
d

)

≥ M ⋅
(

𝒷
�

cd
− 1

)

∀ d ∈ D, c ∈ C, � ∈ �

(51)D
�

cd
−
(

Scd + ic
d

)

≤ M ⋅ 𝒷
�

cd
∀ d ∈ D, c ∈ C, � ∈ �

(52)D�

cr
−
(

Scr − pc
r
+ qc

r

)

≥ M ⋅
(

ℊ�

cr
− 1

)

∀ r ∈ R, c ∈ C, � ∈ �

(53)D�

cr
−
(

Scr − pc
r
+ qc

r

)

≤ M ⋅ ℊ�

cr
∀ r ∈ R, c ∈ C, � ∈ �

(54)�cr + �cr ≤ 1 ∀ r ∈ R, c ∈ C

(55)pc
r
≤ 𝒻cr ⋅M ∀ r ∈ R, c ∈ C

(56)qc
r
≤ 𝓀cr ⋅M ∀ r ∈ R, c ∈ C

argMin�2 =
∑

�∈�

[

∑

s∈S

∑

d∈D

∑

z∈Z

m
�z

sd
⋅

(

LTz +
Bsd

SPz ⋅ r
�

sd

)

+
∑

s∈S

∑

r∈R

∑

z∈Z

m�z
sr
⋅

(

LTz +
Bsr

SPz ⋅ r
�
sr

)

+
∑

r∈R

∑

d∈D

∑

z∈Z

m
�z

rd
⋅

(

LTz +
Brd

SPz ⋅ r
�

rd

)

+
∑

r∈R

∑

t∈R

∑

z∈Z

m
�z
rt ⋅

(

LTz +
Brt

SPz ⋅ r
�

rt

)]
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isfied demand at relief center r is the larger of 
[

D�
cr
−
(

Scr − pc
r
+ qc

r

)]

 and zero. Con-
straint (54) guarantees that either outgoing or incoming shipment could happen. Con-
straints (55) and (56) restrict the quantities of incoming and outgoing shipments, 
respectively.

However, after the auxiliary binary variables are applied and the upper-level deci-
sion variables are obtained, the lower-level problem is still difficult for the IBM CPLEX 
Optimizer to solve in a limited time because the delivery of mixed commodities by using 
different vehicle types is complicated to handle. The upper-bound objective function � ∗

2
 

can be used as the lower-level objective function before obtaining the optimal solution 
to the original lower-level problem. The idea is that each vehicle type carries only one 
commodity type, and the objective is to minimize the upper bound of the expected total 
transportation time using four temporary variables that are shown as follows.

n
c�z

sd
  Number of vehicle-type z used to deliver commodity-type c from relief centers s to d 

in scenario �
nc�z
sr

  Number of vehicle-type z used to deliver commodity-type c from relief centers s to r 
in scenario �

n
c�z

rd
  Number of vehicle-type z used to deliver commodity-type c from relief centers r to d 

in scenario �
n
c�z
rt   Number of vehicle-type z used to deliver commodity-type c from relief centers r to t 

in scenario �

Then, the previous bi-level SMINP model can be reformulated as the following 
model �.

s.t.
Constraints (18)–(22), (24), and (48)–(56)

s.t.
Constraints (26)–(30), and (40)

� ∶

Min�1 =
∑

c∈C

{

∑

s∈S

∑

�∈�

Ecs ⋅ p� ⋅
[

D�
cs
−
(

Scs − oc
s

)]

⋅ 𝒶�
cs
+

∑

d∈D

∑

�∈�

Ecd ⋅ p� ⋅
[

D
�

cd
−
(

Scd + ic
d

)

]

⋅ 𝒷
�

cd

+
∑

r∈R

∑

�∈�

Ecr ⋅ p� ⋅
[

D�
cr
−
(

Scr − pc
r
+ qc

r

)]

⋅ ℊ�
cr

}

(57)

arg Min�∗
2
=

∑

�∈�

[

∑

s∈S

∑

d∈D

∑

c∈C

∑

z∈Z

n
c�z

sd
⋅

(

LTz +
Bsd

SPz ⋅ r
�

sd

)

+
∑

s∈S

∑

r∈R

∑
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where Eq.  (57) is the lower-level objective function, which minimizes the upper bound 
of total expected transportation time of vehicles, and each vehicle type carries only one 
commodity type. Constraints (58)–(61) guarantee that the number of assigned vehicles can 
deliver commodity-type c from relief centers s to d , from relief centers s to r , from relief 
centers r to d , and from relief centers r to t , respectively. Constraint (62) restricts the total 
number of available vehicles. Constraint (63) defines the nonnegative integer variables.

Then, the lower-level decision variables (i.e., wc�∗

sd
 , wc�∗

sr
 , wc�∗

rd
 , and wc�∗

rt  ) are obtained in 
model � . However, in practice, each vehicle type is permitted to deliver mixed commodities. 
Thus, the number of assigned vehicles between any two relief centers can be reduced because 
each vehicle type is allowed to deliver mixed commodities. The lower-level model can be 
rewritten as the following model �.

s.t.
Constraints (18)–(22), (24), and (48)–(56)
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Constraints (26)–(30), (39), and (41)
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where Constraint (64) is the upper bound constraint. Constraints (65)–(68) restrict that 
assigned vehicle fleets are able to deliver the mixed commodities from relief centers s to 
d , from relief centers s to r , from relief centers r to d , and from relief centers r to t , respec-
tively. Besides the description of the solution method, we also summarize the proposed 
method in the flowchart of Fig. 2.

6  Case study

6.1  Test instance

To illustrate the validity and effectiveness of the proposed method, a case study of the Great 
Sichuan Earthquake measured 8.0 on the Richter scale that occurred in 2008 in China is 
studied in this section. With the disaster-related information (e.g., relief-center locations, 
demand at relief centers, and routes), the proposed bi-level SMINP model and lineariza-
tion  method are employed to identify demand and supply relief centers and determine 
the total incoming and outgoing shipments at relief centers, commodity flows between 
relief centers, and numbers of vehicles of different types transporting mixed commodities 
between relief centers. This study considers 11 disaster areas (relief centers), 2 commodity 
types (i.e., water and food), and 3 vehicle types (i.e., small, medium, and large vehicles). 
Since the data are not yet released from the government, the partial data (e.g., demand and 
stock levels) are randomly generated and applied to test the model and approach, which 
will not lead to essentially different results.

In the impact area of the earthquake, for each commodity type, the relief centers are 
divided into three categories, namely complete supply relief centers, complete demand 
relief centers, and potential demand or supply relief centers. The possible quantities of 
demand and stock levels at relief centers are randomly selected from the specific intervals 
and presented in Table 1. Here, we consider five possible quantities (scenarios) of demand 
at each relief center. In the multi-commodity rebalancing process, those two commodity 
types need to be rebalanced simultaneously. The characteristics of commodities and vehi-
cles are reported in Table 2. And each vehicle type is allowed to deliver mixed commodi-
ties under both weight and volume capacities.

During the multi-commodity rebalancing process, the state of the transportation net-
work needs to be determined. In this study, the topology of the transportation network 
developed by Wang et al. (2014) is applied, where the first 11 nodes (disaster areas) are 
deemed relief centers after the earthquake. There are three relief-center categories, namely 
(1) complete demand relief centers (i.e., 1, 2, 3, and 5), (2) complete supply relief centers 
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(i.e., 4, 9, and 11), (3) potential demand or supply relief centers (i.e., 6, 7, 8, and 10). The 
details about the transportation network with available links and distance are exhibited in 
Table 3. In the transportation process, there are three possible transportation-network avail-
abilities that are 0.5, 0.8, and 1.0 with the corresponding probabilities of 0.5, 0.3, and 0.2, 
respectively.

Fig. 2  Flowchart of the solution method

Table 1  Demand and stock level at relief centers

S D R Probability

Stock level [200, 300] –
Weighted value [20, 80] –
Demand Scenario 1 [100, 120] [300, 320] [200, 220] 0.1

Scenario 2 [120, 140] [320, 340] [220, 240] 0.2
Scenario 3 [140, 160] [340, 360] [240, 260] 0.4
Scenario 4 [160, 180] [360, 380] [260, 280] 0.2
Scenario 5 [180, 200] [380, 400] [280, 400] 0.1
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Given the parameter values, the proposed models � , � , and � in Sect.  5 are imple-
mented in the IBM ILOG CPLEX Optimization Studio (Version: 12.6). The maximum 
computation time for model � is 10 min. All the experiments are run on a computer with 
an Intel(R) Core(TM) i7-7700 CPU@3.6 GHz and 8 GB memory under the Windows 10 
Pro system.

6.2  Computational results

The main results for the bi-level SMINP model are provided in this section. The results of 
the leader problem associated with two commodity types are shown in Fig. 3, involving 
the stock levels of commodities at 11 relief centers from left to right. Besides, the optimal 
upper-level decision variables of incoming and outgoing quantities of commodities at relief 
centers are also provided. As shown in Fig.  3, the incoming and outgoing quantities of 
commodities are closely related to the demand and stock levels at relief centers. Generally, 
for the complete demand relief centers, a demand relief center with a larger weighted value 
and less stock level receives more commodity to meet its high-pressure need, in the event 
that this demand relief center receives an inadequate delivery. For instance, in Fig. 3a the 
5th relief center with weighted value 76 can receive more water than can the relief center 

Table 2  Characteristics of commodities and vehicles

Characteristics Water Food Small vehicle Medium 
vehicle

Large vehicle

Weight 3.0 1.5 – – –
Volume 2.0 3.0 – – –
Weight capacity – – 20 30 40
Volume capacity – – 25 45 60
Travel speed – – 60 50 40
Loading/unloading time – – 1.0 1.5 2.5
Available number – – 30 30 30

Table 3  Distance between relief 
centers in the transportation 
network

Relief 
center 
ID

1 2 3 4 5 6 7 8 9 10 11

1 0 – – 128 39 78 – 250 117 – –
2 – 0 66 – – 85 48 – 55 – 36
3 – – 0 – 89 151 37 131 – 48 85
4 – – – 0 251 – 136 116 – 155 –
5 – – – – 0 76 126 211 41 131 –
6 – – – – – 0 – – 35 – –
7 – – – – – – 0 – – 48 –
8 – – – – – – – 0 – 120 –
9 – – – – – – – – 0 – –
10 – – – – – – – – – 0 –
11 – – – – – – – – – – 0
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3 with weighted value 32 in the event that the former demand center receives an inad-
equate delivery. For the complete supply relief centers, a supply relief center with a larger 
weighted value and less stock level should deliver less commodity in the event of this sup-
ply relief center sharing an excessive quantity of the commodity of water to the demand 
relief centers. Figure 3b shows that the 11th relief center with weighted value 55 should 
maintain a higher food inventory level than the 4th relief center with weighted value 31. 
For the potential demand or supply relief centers, the relief centers with larger weighted 
values and smaller stock levels are usually identified as demand relief centers, whereas 
relief centers with smaller weighted values and higher stock levels are usually identified 
as supply relief centers. For example, in Fig. 3a, the 5th relief center is deemed a demand 
relief center and the 8th relief center is deemed a supply relief center.

Having obtained the optimal upper-level decisions of incoming and outgoing quanti-
ties of commodities at relief centers, the optimal set of lower-level decisions can be con-
structed. The previous optimal multi-commodity rebalancing strategy is input into the 
models � and � , the commodity flows between relief centers are presented in Table  4 
without showing zero commodity-flow route. It is obvious that the commodity-flow routes 
are almost the same in models � and � . However, the commodity flows are different in 
three scenarios, which indicates that the transportation-network availability also affects the 

Fig. 3  Multi-commodity rebalancing strategy at 11 relief centers
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commodity flows between relief centers. The above results indicate that the model � is 
acceptable to guide the multi-commodity rebalancing process.

The total required vehicles of different types are also obtained and reported in Table 5 
for the models � , � , and � . It is obvious that the total required vehicles of different types 
are also different in three scenarios because the different transportation-network availabili-
ties affect the commodity flows and the number of vehicles between relief centers. As the 
vehicles have weight and volume capacities, it is better to satisfy both of them with the con-
sideration of vehicle speed. In general, more medium vehicles are used because the lower-
level objective emphasizes the significance of transportation time and medium vehicles can 
provide relatively quick delivery. Furthermore, compared with the model � , Table 5 also 
reveals that a smaller number of vehicles are used by applying the model � because the uti-
lization of vehicles is improved by allowing them to carry mixed commodities.

6.3  Sensitivity analysis

To analyze how relief-center weighted value affects the incoming and outgoing quantities 
of water at relief centers, three relief centers are tested, including a complete demand relief 
center (3rd) with weighted value 32, a complete supply relief center (9th) with weighted 
value 74, and a potential demand or supply relief center (10th) with weighted value 74. 
In Fig. 4, both the incoming and outgoing quantities of water change at those three relief 
centers as the weighted value goes from 20 to 80. As the relief-center weighted value 
grows [Fig. 4a], the complete demand relief center receives more water because a larger 
unmet relief center generally expects more water. By contrast, the complete supply relief 
center delivers less water as the weighted value increases [Fig. 4b] in case that this relief 
center faces an increased demand in the future. As shown in Fig. 4c, initially, this poten-
tial demand or supply relief center is identified as a supply relief center. However, with 
the increase of weighted value, this potential demand or supply relief center is deemed a 
demand relief center, to reduce the unmet risk at a relief center with a higher weighted 
value.

The relief-center weighted value also has a great influence on the total shipment 
between demand and supply relief centers. In Fig. 5, with the increase of the weighted 
value at demand relief center 3, a growing total quantity of shipment (water) between 
demand and supply relief centers is required because the demand relief centers domi-
nate the water rebalancing process and expect more incoming shipments. By contrast, 
as the increase of weighted value at supply relief center 9, there is a decreasing total 
quantity of shipment (water) between demand and supply relief centers because the sup-
ply relief centers dominate the water rebalancing process and expect less outgoing ship-
ments. Compared with the demand relief center 3, the increase of weighted value at 
potential demand or supply relief center 10 only reduces the total quantity of shipment 
marginally.

To investigate the effect of different stock levels at relief centers, the incoming and 
outgoing quantities of food are tested at three relief centers (i.e., relief centers 3, 10, and 
11) from three groups, respectively. In Fig. 6, both the incoming and outgoing quanti-
ties of food change at those three relief centers when the stock level goes from 200 to 
300. As the stock level grows [Fig. 6a], it is easy to observe that the complete demand 
relief center 3 receives less food due to its high stock level. By contrast, the complete 
supply relief center 11 delivers more food to other demand relief centers as the sur-
plus quantity of food increases [Fig. 6b]. As shown in Fig. 6c, initially, this potential 
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demand or supply relief center 10 is identified as a demand relief center. However, with 
the increase of stock level, this potential demand or supply relief center is deemed a 
supply relief center.

To investigate the effect of different stock levels on the total quantity of shipment 
between demand and supply relief centers, three relief centers are evaluated under 
different stock levels, as shown in Fig.  7. Obviously, Fig.  7 shows similar decreasing 
trends in the total quantities of shipments at relief centers 3 and 10 because more food is 

Table 4  Commodity flows between relief centers in models O and �

Route � � = 1 � = 2 � = 3

Model Water flow Food flow Water flow Food flow Water flow Food flow

4-1 � 131 95 121 95 122 95
� 140 95 140 95 140 95

4-5 � 8 43 18 43 16 47
� 0 47 0 47 0 47

4-10 � 11 4 11 4 12 0
� 10 0 10 0 10 0

6-1 � 22 0 32 0 31 0
� 13 0 13 0 13 0

6-2 � 0 0 0 0 0 0
� 9 0 9 0 9 0

6-5 � 40 0 30 0 31 0
� 40 0 40 0 40 0

7-2 � 0 48 0 48 0 45
� 0 44 0 44 0 44

7-3 � 30 0 30 0 42 3
� 42 0 42 0 42 0

7-10 � 12 0 12 0 0 0
� 13 4 0 4 0 4

8-3 � 42 36 42 36 30 33
� 32 36 32 36 32 36

8-5 � 3 43 3 43 4 42
� 0 43 0 43 0 43

8-10 � 0 0 0 0 11 4
� 0 0 13 0 13 0

9-2 � 11 34 11 34 11 37
� 0 38 0 38 0 38

9-5 � 82 47 82 47 82 44
� 93 43 93 43 93 43

9-6 � 0 30 0 30 0 30
� 0 30 0 30 0 30

11-2 � 16 57 16 57 16 57
� 18 57 18 57 18 57

11-3 � 53 0 53 0 53 0
� 51 0 51 0 51 0
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stocked to meet their own demand at complete demand and potential demand or supply 
relief centers. On the contrary, at the complete supply relief center 11, the total quantity 
of shipment increases as the stock level grows, because more surplus food needs to be 
rebalanced and sent out. Thus, we clearly obtain the relationship between the total quan-
tity of shipment and stock levels at different relief centers.

In addition to the relief-center weighted value and stock level, the probability of pos-
sible demand in each scenario also has a great influence on the multi-commodity rebal-
ancing strategy. To validate the reliability of the proposed model and method, the solu-
tion performances are compared for three different demand shapes (i.e., shapes I, II, and 
III, as presented in Table 6) with different probability distributions.

The results of incoming and outgoing shipments at relief centers are presented in 
Table 7. As shown in Table 7, the proposed method determines the optimal incoming 
and outgoing quantities of commodities and successfully identifies the demand and sup-
ply relief centers. Specifically, relief centers 6 and 10 are deemed demand relief centers 
and relief centers 7 and 8 are deemed supply relief centers for the commodity of water, 
whereas relief centers 6, 7, and 8 are deemed demand relief centers and only relief 
center 10 is deemed a supply relief center for the commodity of food. And obviously, 
in multi-commodity rebalancing, relief centers 8 and 10 are demand and supply relief 
centers at the same time. According to the identification of relief centers with incoming 
and outgoing shipments, the next step is to use different vehicles to transport the mixed 
commodities among relief centers.

In order to validate the effectiveness and demonstrate the application of the proposed 
method, it is tested in terms of the solution performances based on the above three different 
demand shapes. The vehicle numbers of different types and Gaps in a required CPU time 
(600 s) are reported in Table 8. As illustrated in Table 8, both the models � and � outper-
form the model � , because the vehicles of different types are allowed to deliver mixed 
commodities in the models � and � . Interestingly, even though the small vehicle has the 
highest speed, the small weight and volume capacities limit the relatively quick delivery of 
mixed commodities between relief centers. By contrast, the medium vehicle can provide 
relatively quick delivery to reduce the total transportation time due to its higher weight and 
volume capacities. The lower-level objective-function values are presented in Fig. 8. In all 
demand shapes, even though the model � has the smallest lower-level objective function 
value, it has low effectiveness because the computational time is too long. And the model 

Table 5  Total required vehicles 
of different types in models O , 
U , and F

� Model Small vehicle Medium 
vehicle

Large vehicle

� = 1 � 22 30 20
� 30 30 24
� 29 29 19

� = 2 � 13 29 25
� 24 30 24
� 23 29 22

� = 3 � 24 30 19
� 24 30 24
� 27 29 20
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Fig. 4  Quantities of incoming and outgoing water given different weighted values at relief centers
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� obtains the optimal solution within a reasonable computational time without losing a big 
generosity.

7  Conclusions and future research

This study focused on the multi-commodity rebalancing problem that differs from previ-
ous studies and combines key decisions in the disaster response under uncertain demand 
and transportation-network availability. The strategic decisions of the model involve (1) 
incoming and outgoing shipments at relief centers; (2) identification of demand and supply 
relief centers; (3) commodity flows between relief centers; and (4) vehicle numbers of dif-
ferent types transporting mixed commodities between relief centers. To support those stra-
tegic decisions, a bi-level SMINP model using a scenario-based approach was proposed for 
the multi-commodity rebalancing problem with the objectives of fairness and timeliness. 
Two objectives were considered in the proposed model, namely (1) the upper-level objec-
tive is to maximize the fairness by minimizing the total dissatisfaction level (i.e., expected 
total weighted unsatisfied demand) at relief centers and (2) the lower-level objective is to 
minimize the expected total transportation time. In addition, a big positive number and five 
auxiliary binary variables were introduced to linearize the model so that the model could 
be solved in the CPLEX solver. Finally, a case study was conducted with result discussion 
and sensitivity analysis of several key parameters to illustrate the applicability and effec-
tiveness of the proposed model.

Form the case study, we can obtain several managerial insights from the theory and 
practice in response to a disaster. First, an appropriate multi-commodity rebalancing strat-
egy is determined, which is beneficial for the managers to decide the quantities of incom-
ing and outgoing shipments at relief centers. Second, it is obvious that the upper-level deci-
sion variables are quite sensitive to the weighted values and stock levels at relief centers. 
From the sensitivity analysis, the area with high potential disaster severity needs more stor-
age of the commodities to avoid the incoming shipments at relief centers. Third, we found 

Fig. 5  Total quantity of shipment (water) given different weighted values at relief centers
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Fig. 6  Quantities of incoming and outgoing food given different stock levels at relief centers
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that the medium vehicle can provide relatively quick delivery. As a consequence, more 
medium vehicles should be prepared in advance in the case of a large-scale natural disaster. 
However, there is a limitation that it is quite hard to find the lower-level optimal solution 
when the size of the problem is large.

Although this study addresses the notable gap between the previous studies and the cur-
rent research in a real disaster situation, some directions are still meaningful to be extended 
in future studies. For example, this study has addressed a multi-commodity rebalancing 
process without considering traffic congestions. However, it is interesting to take the traf-
fic congestions into account in the multi-commodity rebalancing. Another future consid-
eration is to develop a more reliable multi-commodity rebalancing by considering a multi-
period process in disaster response. An efficient algorithm also needs to be identified to 
address the computational issue for large-scale cases. Moreover, it is also an interesting 
research direction to consider various risks (i.e., facility and road disruption) so that a more 
reliable multi-commodity rebalancing process can be built.

Fig. 7  Total quantity of shipment given different stock levels at relief centers

Table 6  Three demand shapes 
with the probability distribution

Shape No. � = 1 � = 2 � = 3 � = 4 � = 5

I 0.40 0.20 0.20 0.10 0.10
II 0.25 0.25 0.25 0.25 0.25
III 0.10 0.10 0.20 0.20 0.40
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Table 7  Quantities of incoming and outgoing commodities given three different demand shapes

Shipment Shape I Shape II Shape III

C Relief-
center ID

ic
d

oc
s

qc
r

pc
r

ic
d

oc
s

qc
r

pc
r

ic
d

oc
s

qc
r

pc
r

Water 1 95 – – – 109 – – – 109 – – –
2 129 – – – 106 – – – 106 – – –
3 46 – – – 20 – – – 20 – – –
4 – 142 – – – 158 – – – 159 – –
5 133 – – – 164 – – – 164 – – –
6 – – 30 0 – – 30 0 – – 61 0
7 – – 0 48 – – 0 48 – – 0 78
8 – – 0 79 – – 0 94 – – 0 94
9 – 111 – – – 97 – – – 97 – –

10 – – 4 0 – – 25 0 – – 25 0
11 – 57 – – – 57 – – – 57 – –

Food 1 153 – – – 153 – – – 170 – – –
2 27 – – – 27 – – – 27 – – –
3 125 – – – 125 – – – 125 – – –
4 – 150 – – – 150 – – – 150 – –
5 104 – – – 133 – – – 133 – – –
6 – – 0 34 – – 0 62 – – 0 62
7 – – 0 42 – – 0 42 – – 0 42
8 – – 0 45 – – 0 45 – – 0 45
9 – 89 – – – 93 – – – 115 – –

10 – – 23 0 – – 23 0 – – 28 0
11 – 72 – – – 69 – – – 69 – –

Table 8  Results under three different demand shapes

SV small vehicle, MV median vehicle, LV large vehicle

Shape no. Model O U F

� Gaps (%) (SV, MV, LV) (SV, MV, LV) (SV, MV, LV)

I �1 0.49 (29, 23, 20) (30, 29, 20) (25, 28, 19)
�2 (20, 30, 19) (30, 30, 19) (21, 30, 19)
�3 (26, 30, 16) (30, 30, 19) (29, 30, 15)

II �1 0.42 (22, 28, 22) (30, 30, 22) (21, 29, 23)
�2 (11, 30, 26) (30, 30, 22) (23, 29, 22)
�3 (30, 30, 17) (30, 30, 22) (29, 29, 19)

III �1 0.36 (15, 29, 28) (30, 29, 26) (28, 29, 23)
�2 (19, 29, 26) (26, 29, 28) (24, 29, 25)
�3 (23, 29, 24) (30, 29, 26) (24, 29, 25)
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