
Annals of Operations Research (2021) 296:615–637
https://doi.org/10.1007/s10479-019-03490-x

S . I . : MOPGP 2017

On a bi-criteria flow shop scheduling problem under
constraints of blocking and sequence dependent setup time

Said Aqil1 · Karam Allali1

Published online: 30 November 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
In this paper, we propose a bi-criteria optimization model for a flow shop scheduling problem
with permutation, blocking and sequence dependent setup time. Indeed, these constraints are
the most encountered in the industrial field, which demands high command flexibility. The
objective is the minimization of two criteria, in our case the makespan and the total tardiness
combined in a single objective function with a weighting coefficient for each criterion. To
solve this problem, we propose a mixed integer linear programming method and a set of
different metaheuristics. The suggested metaheuristics are; the genetic algorithm, the iterated
greedy metaheuristic and the iterative local search algorithm. This last algorithm is proposed
in two ways of exploration of the neighborhood. To verify the effectiveness of our resolution
algorithms, a set of instances with n jobs and m machines is randomly generated from small
instances to relatively large size ones. The analysis of the suggested simulationmodel allowed
us to note that the iterative local search algorithm gives good results compared to the iterative
greedy algorithm. Moreover, it was found that the weighting parameter plays an essential
role in the problem decision making. However, it was established that it is difficult to find a
good solution that minimizes both criteria at once, a suitable compromise will be necessary
to be adopted using the weighting coefficient.

Keywords Flow shop · Sequence-dependent setup time · Blocking · Bi-criteria
optimization · Mixed integer linear programming · Metaheuristic

1 Introduction

The blocking flow shop scheduling problem (BFSP) under constraint sequence-dependent
setup time (SDST) is one of the most attractive problems in industrial optimization. The
constraint of the blocking is often imposed when the stock is of null capacity between the
machines. On the other hand, the setup time is important to be considered, for the execution

B Said Aqil
s_aqil@hotmail.fr

Karam Allali
allali@hotmail.com

1 Laboratory Mathematics and Applications, University Hassan II of Casablanca, FST, P.O. Box 146,
Mohammedia, Morocco

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-019-03490-x&domain=pdf
http://orcid.org/0000-0002-0011-824X
http://orcid.org/0000-0002-9463-4295

616 Annals of Operations Research (2021) 296:615–637

of a new job, when the machine requires a time of adjustment or cleaning etc. These two con-
straints are of great industrial importance that can influence the scheduling plan and therefore
the proper decision-making. Hence, recent works on the study of single or multi-objective
(MO) scheduling problems under one or both of these constraints have been fullfilled. For
instance, Nouri and Ladhari (2018) presented a resolution approach using the non sorting
genetic algorithm (NSGA) for solving a multi-objective BFSP. Also, we note that in Takano
and Nagano (2017), we find a mixed integer linear programming (MILP) formulation and
branch and bound (BB) procedures to minimize the makespan for solving BFSP problem
under SDST constrainst. The consideration of the two both constraints of the blocking and
SDST are recently studied. Indeed, the work Riahi et al. (2018) described an algorithm based
on the variable neighborhood descent (VND) to minimize the mono-criterion makespan for
the problem SDST/BFSP. Also, in Shao et al. (2018) the water wave optimization algorithm
is used to solve the SDST/BFSP problem byminimizing the same criterion. All these last two
recent works study the SDST/BFSP scheduling problem by optimizing only one criterion.

In our paper, we continue the investigation in SDST/BFSP scheduling problems by con-
sidering a MO optimization issue. The objective will be the minimization of two criteria,
the makespan and the total tardiness of the jobs formulated by an objective function with a
weighting coefficient for each criterion. We propose a MILP and four algorithms; the genetic
algorithm (GA), the iterative greedy (IG) algorithm and the iterative local search (ILS) algo-
rithm with two versions. The model represents therefore a bi-criteria optimization problem
for a permutation flow shop scheduling problem (PFSP). This contribution is addressed to
solve the MO scheduling problem with n jobs and m machines under both constraints of
blocking and setup time. Indeed, these constraints are often encountered in several indus-
trial processes, such as the food industry, the pharmaceutical industry and the petrochemical
industry, etc. The review of the literature inMiyata and Nagano (2019) describes the different
cases of BFSP scheduling problems. The MO optimization is becoming more and more a
preference for current industrial case studies. In this perspective, MO optimization becomes
a priority for most managers to solve among others the PFSP problem. We also recall that
a review of multi-criteria optimization literature for the PFSP problem is described in (Sun
et al. 2011; Yenisey and Yagmahan 2014). The work Xu et al. (2017) presents a MO opti-
mization model for the SDST/PFSP problem minimizing the makespan and total weighted
tardiness. Several resolution approaches are proposed to solve such problem, we distinguish
three types of fundamental approaches of resolution, the exact methods, the heuristics and
the metaheuristics.

Indeed, the exact methods representing the first class of resolutions attract the attention
of researchers for its applied mathematical aspect. These models are intended to optimize
one or more criteria defined by one or more objective functions. Yu and Seif (2016) provides
MILP and a lower bound based on GA for solving a PFSP problem in order to minimize
total tardiness and maintenance cost. A mathematical formulation by MILP for PFSP is
described in Ta et al. (2018) to minimize the total tardiness. Also, Ronconi and Birgin (2012)
presented several MILP models according to different PFSP configuration to minimize the
total tardiness and precocity. Moreover, M’Hallah (2014) described a MILP model for the
PFSP problem to minimize the same criterion. In (Trabelsi et al. 2012), different types of
blocking are studied giving a mathematical model in the form of MILP. Besides, in (Moslehi
and Khorasanian 2013) a MILP mathematical formulation and a resolution by the method
of BB are proposed to solve BFSP in order to minimize the total completion time. Ronconi
(2005) proposed two LB and BB algorithm for the resolution of the BFSP problem to mini-
mize the makespan criterion. Likewise, Tellache and Boudhar (2018), Meziani et al. (2019)

123

Annals of Operations Research (2021) 296:615–637 617

presented a complexity study of the PFSP for two machines minimizing the makespan and
also developing a set of LB resolution algorithms.

The second class of resolution approach is described by the heuristics based on the pri-
ority rules. We note in particular that the algorithm proposed in (Nawaz et al. 1983), is also
designated in the scheduling literature by the algorithm (NEH). Later, several extented ver-
sions are derived for the PFSP multiple machines. In the work (Pan and Wang 2012), a set
of heuristics based on the NEH algorithm is applied to solve the BFSP in order to minimize
the makespan. As well as, in (Ribas and Companys 2015), several heuristics are proposed
to solve the BFSP aiming to minimize the total flow time. We also note that in (Rossi et al.
2017) a constructive heuristics are described to minimize the total flow time for PFSP. In
the recent work (Takano and Nagano 2019), a set of heuristics are also presented in order to
solve SDST/BFSP problem.

The third class for PFSP resolution is based on metaheuristics whose objective is usually
to improve the initial solutions already obtained by heuristics. Therefore these metaheuris-
tics have a fundamental interest for solving problems with a larger size, especially when the
two previous methods are limited. These metaheuristics are applied to solve PFSP schedul-
ing problems under various constraints and optimizing various objectives. Applications are
also extended for various case of these problems such as distributed permutation flow shop
scheduling problem (DPFSP) as well as no wait permutation flowshop scheduling problem
(NWPFSP).Ruiz et al. (2019) proposed IGalgorithmminimizing themakespan forDPFSP,Li
et al. (2018) proposed the same algorithm for solving SDST/NWPFSP with learning and for-
getting effects to minimize the total flow time. Shoaardebili and Fattahi (2015) suggested
algorithms based simulated annealing (SA) and NSGA algorithm for MO-PFSP in order to
simultaneously minimize the total weighted flow time and the weighted sum of the earliness
and tardiness under machine availability constraint. Li and Li (2015) used the ILS algorithm
for MO-PFSP to minimize the makespan and the total flow time, as well as Li and Ma (2017)
used the discreet artificial bee colony algorithm (ABC) for MO-SDST/PFSP to minimize
the same goals. Jiang and Wang (2019) proposed the evolutionary decomposition algorithm
(EDA) to minimize the makespan and the consumption energy for MO-SDST/PFSP. In the
work Zhang et al. (2019), a hybrid version of the sameEDAalgorithm is used for solvingMO-
PFSP problem by minimizing the makespan and the maximum tardiness. Liu et al. (2017)
developed the GA algorithm to minimize the energy consumption and tardiness penalty for
MO-SDST/PFSP. Rifai et al. (2016) presented an adaptive large neighborhood search algo-
rithm for solving the distributed and re-entrant PFSP to optimize the makespan, total cost
and average tardiness. The whale optimization algorithm is used to solve the PFSP problem
whose goal is to minimize the makespan (Abdel-Basset et al. 2018). Recently, Newton et al.
(2019) used a new version of ILS algorithm to solve the SDST/BFSPwith various constraints
of blocking to minimize the makespan. In this present paper, we continue the investigations
in SDST/BFSP problems by incorporating to the objective functional two criteria that are
makespan and total tardiness. We develop a new approach solving problem based on a two-
criteria optimization model. Our contribution is therefore to propose a MILP and a set of
metaheuristics based on local research for a MO SDST/BFSP problem. To solve this kind of
problem, we will develop a new implementation of the ILS algorithm. Indeed, we propose
two versions of ILS with a vast exploitation of the neighborhood of the current solution.
In the first version ILS1, a set of solution is generated by the procedure of insertion and
total shift of the elements of the solution to be explored. In the second version ILS2, a set of
neighboring solutions is tested using the procedure of total permutation of the elements of the
current sequence. These two versions are compared with two other algorithms, in our case IG
and GA. In addition, we propose a set of initialization heuristics based on the priority rules

123

618 Annals of Operations Research (2021) 296:615–637

incorporated in our metaheuristics. In our resolution approach, we find that ILS algorithm in
its second version gives the best results.

Our paper is organized in the following way. In Sect. 2, we present a description of
the model retained for SDST/BFSP bi-objectives. Followed in Sect. 3 by a description of
the proposed resolution algorithms. A comparative study is presented in Sect. 4. Section 5
concludes our contribution.

2 Problem statement

2.1 Description of themodel SDST/BFSP

The flow shop scheduling problem with permutation, under sequence-dependent setup time
and blocking jobs in the machine queue constraints is designated by SDST/BFSP. The com-
plex nature of this problemwith the presence of such constraints, pushes businessmanagers to
look for mathematical models of simulation for resolution. Indeed, this problem is character-
ized by a set of jobs J = {J1, J2, . . . , Jn}whose sequence is launched in a cycle of production
constituted by a set of serially implanted machines M = {M1, M2, . . . , Mm} forming the
processes of jobs production. A job J j admits a processing time p jl on the machine l, the due
time d j , this latter represents the delay time fixed by the customer for each job; any job deliv-
ered beyond this date is considered late. The setup time of the job Jk on the machine l which
has just processed the job J j is denoted by s jkl , when a job is not preceded by any job on the
machine l, the setup time is noted s j jl . This constraint is referred in the scheduling problem
literature as the sequence dependent setup time (SDST). Another constraint is present in our
study, it deals with the blocking of a J j during its treatment on all concerned machines,
knowing that it will be blocked in its machine until the next machine will be available. The
departure date of the job J j on the machine l is designated by Djl . This date represents also
the start date of processing on the next machine l + 1. A sequence π = (π1, . . . , πn) of jobs
is processed in the set of machines in the same order, the retained assumptions are those of
the classic case of the PFSP problems. Knowing that a machine processes only one job at a
given time, the interruption is not allowed, a job J j has more than one successor and a single
predecessor, all the jobs and all the machines are available at the initial moment. Blocking
jobs onmachines and their setup times will be considered in the used model of this study. The
objective is the minimization of two criteria in this case the makesapn and the total tardiness.

We propose a model formed by a combination of two criteria in a single objective function
with a weighting coefficient for each criterion. It is worthy to notice that the adopted notation
for the scheduling problem is usually represented by the threefieldsα|β|γ , where thefirst field
α designates the type of problem, the second oneβ stands for the different constraints imposed
to the scheduling problem and the third field γ represents the nature of the objective function.
In our study, the scheduling problemwill be noted by Fm|prmu, SDST , blocking|μCmax+
(1 − μ)

∑n
j=1 Tj , such that the parameter μ ∈ [0, 1] allows to attribute weight to each

criterion. Another virtual machine is added at the beginning to all the machines. Similarly, a
noted virtual jobπ0 is inserted at the beginning of the sequence, whose processing time on the
all machine is zero and the setup timeswith the other jobs in eachmachine is equal to the setup
times s j jl of the job J j when it is not preceded by any job. Here, we give a set of equations
to determine the parameters needed for the departure date of each job on each machine.

sπ0π j l = sπ jπ j l , l = 1, . . . ,m, j = 1, . . . , n (1)

Dπ0l = 0, l = 1, . . . ,m (2)

123

Annals of Operations Research (2021) 296:615–637 619

Dπ j0 = Dπ(j−1)1 + sπ(j−1)π j1, j = 1, . . . , n (3)

Dπ j l = max{Dπ(j−1)(l+1) + sπ(j−1)π j (l+1), Dπ j (l−1) + pπ j l}
j = 1, . . . , n, l = 1, . . . ,m − 1 (4)

Dπ j m = Dπ j (m−1) + pπ j m, j = 1, . . . , n (5)

The first Eq. (1) makes it possible to identify the characteristics of the virtual job π0 by
assigning it the duration of dedicated setup times. The other Eqs. (2)–(5) allow to determine
the departure dates of each job on each machine including the added virtual machine at the
beginning of the scheduling. Our scheduling model consists of combining two criteria into a
single objective function to minimize. The first goal is to minimize the makespan, knowing
that the end date of a job on the last machine m is equal to its departure date on this machine
in this case Dπ j m , the makespan will be expressed by:

Cmax = max{Dπ j m}, j = 1, . . . , n (6)

The second considered objective in this study is to minimize the total tardiness of all jobs.
For that, we calculate the tardiness of each job by Tπ j = max(0, Dπ j m − dπ j), the total
tardiness will be expressed by:

T T =
n∑

j=1

Tπ j , j = 1, . . . , n (7)

The main objective functional is therefore written in the form of a combination of these
two criteria, the first is the makespan (Cmax) and the second is the total tardiness (T T)

min f = μCmax + (1 − μ)T T (8)

Thus, we give a set of equations allowing the determination of the necessary parameters
to evaluate the values of the two criteria fixed for the bi-objective function. Our goal is then
to determine an optimal sequence that minimizes the objective function as much as possible
across all permutations Π during the exploration of the entire neighborhood such as

f (π∗) ≤ f (π), π ∈ Π (9)

2.2 Numerical illustration

In order to highlight the proposed model, we present an illustrative example which consider
an instance consisting of three jobs and three machines forming our workshop. We represent
the processing times of the jobs on the machines by the matrix [p jl] and the inter-job setup
times in the different machines by the matrix [s jk1], [s jk2] and [s jk3]. The due dates will be
expressed for each job such that d1 = 17, d2 = 14, d3 = 10.

[p jl] =
⎡

⎣
1 3 3
1 4 2
3 3 4

⎤

⎦ , [s jk1] =
⎡

⎣
1 1 2
4 3 1
2 4 1

⎤

⎦ , [s jk2] =
⎡

⎣
2 3 2
2 2 3
2 3 3

⎤

⎦ , [s jk3] =
⎡

⎣
1 2 2
2 2 1
1 2 2

⎤

⎦

We want to schedule the sequence π = (3 2 1), the first step is to determine the setup
times of the virtual job π0 on the different machines, knowing that this job will precede all the
other jobs in the built sequence, according to Eq. (1), knowing that π1 = 3, π2 = 2, π3 = 1
, we can write: sπ0π11 = 1, sπ0π21 = 3, sπ0π31 = 1, sπ0π12 = 3, sπ0π22 = 2, sπ0π32 =
2, sπ0π13 = 2, sπ0π23 = 2, sπ0π33 = 1. We note that Eq. (2) allows the initialization of
computation parameters, so we can write: Dπ01 = 0, Dπ02 = 0, Dπ03 = 0.

123

620 Annals of Operations Research (2021) 296:615–637

Fig. 1 Gantt chart of three jobs on three machines

With the other Eqs. (3)–(5), we give in detail the departure date of each job of all the
machines of our sequence by the following expressions: Dπ10 = Dπ01+ sπ0π11 = 0+1 = 1,
Dπ11 = max{Dπ02 + sπ0π12, Dπ10 + pπ11} = max{0+3, 1+3} = 4, Dπ12 = max{Dπ03 +
sπ0π13, Dπ11 + pπ12} = max{0 + 2, 4 + 3} = 7, Dπ13 = Dπ12 + pπ13 = 7 + 4 = 11;
Dπ20 = Dπ11 + sπ1π21 = 4+4 = 8, Dπ21 = max{Dπ12 + sπ1π22, Dπ20 + pπ21} = max{7+
3, 8 + 1} = 10, Dπ22 = max{Dπ13 + sπ1π23, Dπ21 + pπ22} = max{11 + 2, 10 + 4} = 14,
Dπ23 = Dπ22 + pπ23 = 14 + 2 = 16; Dπ30 = Dπ21 + sπ2π31 = 10 + 4 = 14, Dπ31 =
max{Dπ22 + sπ2π32, Dπ30 + pπ31} = max{14 + 2, 14 + 1} = 16, Dπ32 = max{Dπ23 +
sπ2π33, Dπ31 + pπ32} = max{16 + 2, 16 + 3} = 19, Dπ33 = Dπ32 + pπ33 = 19 + 3 = 22.

We can deduce the end dates of the three jobs on the last machine, knowing that Dπ13 =
11, Dπ23 = 16, Dπ33 = 22 as well as the value of the makespan Cmax = 22. For the
tardiness of the jobs during the scheduling, it is calculated taking into account the due date
imposed for each job, calculating the tardiness of each job, knowing that, T3 = 1, T2 =
2, T1 = 5, the total tardiness is T T = 1+ 2+ 5 = 8, with a value of μ = 0.5 our objective
function is written so f = 0.5 × 22 + 0.5 × 8 = 15. The Gantt chart illustrated in Fig. 1
represents the result of the scheduling in the three machines of the studied example with the
blocking and setup dependent time constraints.

3 Resolutionmethods

We propose two approaches of resolutions for the SDST/BFSP bi-objective scheduling prob-
lem. The first is based on a mathematical formulation by aMILP, the second is constituted by
a set of heuristics and metaheuristics. For the MILP an objective function is given by a com-
bination of the two criteria and a set of constraints must be satisfied. The second approach is
composed of IG, GA and ILS with two versions, intended to solve the problems of relatively
large sizes, all the metaheuristics will be initialized by a set of heuristics based on the NEH
algorithm.

3.1 Mixed integer linear programmingmodel

We propose here a mathematical formulation in MILP of our bi-objective problem. We give
a set of parameters and variables necessary for our model.

123

Annals of Operations Research (2021) 296:615–637 621

zkq =
{
1, if job k is at the q-th position in the sequence

0, otherwise

Cql : the completion time of the q-th position job at machine l.
Dql : the departure date of the q-th position job at machine l.

x jkq =

⎧
⎪⎨

⎪⎩

1, if the job j precedes the job k which is at the q-th position

in the sequence

0, otherwise

Cmax : Makespan
Tq : Tardiness of q-th position job

Minmize f = μCmax + (1 − μ)

n∑

q=1

Tq (10)

Subject to

n∑

k=1

zkq = 1, q = 1, . . . , n (11)

n∑

q=1

zkq = 1, k = 1, . . . , n (12)

n∑

j=1

n∑

k=1

x jk1 = 0 (13)

n∑

j=1

n∑

k=1

x jkq = 1, q = 2, . . . , n (14)

x jkq ≥ zkq + z j(q−1) − 1, j = 1, . . . , n, k = 1, . . . , n, q = 2, . . . , n, (k �= j)

(15)

C1l =
n∑

k=1

skkl × zk1, l = 1, . . . ,m (16)

Cql = D(q−1)l +
n∑

j=1

n∑

k=1

s jkl × x jkq , q = 2, . . . , n, l = 1, . . . ,m (17)

Dql ≥ Cq(l+1), q = 1, . . . , n, l = 1, . . . ,m − 1 (18)

Dq1 ≥ Cq1 +
n∑

j=1

p j1 × z jq , q = 1, . . . , n (19)

Dql ≥ Cq(l−1) +
n∑

k=1

pkl × zkq , q = 1, . . . , n, l = 2, . . . ,m (20)

Tq ≥ Dqm −
n∑

k=1

zkq × dk, k = 1, . . . , n (21)

Cmax ≥ Dnm (22)

Tq ≥ 0, q = 1, . . . , n (23)

123

622 Annals of Operations Research (2021) 296:615–637

Cql , Dql ≥ 0, q = 1, . . . , n, l = 1, . . . ,m (24)

zkq ∈ {0, 1}, x jkq ∈ {0, 1}, j = 1, . . . , n, k = 1, . . . , n, q = 1, . . . , n (25)

Equation (10) expresses the two-criteria objective function the makespan and the total
tardiness, each having a weighting coefficient. The constraints (11) and (12) make it possible
to express that each job occupies a single position and each position is occupied by a single job
in the sequence. Constraint (13) expresses that no job precedes the job of the first position
in the sequence. The constraint (14) guarantees that only one job will be assigned to the
position q in the sequence with a single predecessor except that of the first position. In the
constraint (15), for each job k occupying the position q in the sequence is sequenced after
the job j occupying the position q−1 except for that of the first position. The constraint (16)
relates to the first job of the sequence where its completion time of setup depends essentially
on setup time skkl on the machine l. The constraint (17) makes it possible to calculate the
completion time of setup of the jobs in the other machines. In addition this is expressed by
the summation of the job departure date of the (q − 1) position and the setup time with the
successor job. The constraints of (18)–(20) make it possible to calculate the departures date
of the jobs in the machines by considering the constraint of the blocking. The constraint (18)
is applied for all the jobs in the first machine, the constraint (19) is applied for all the jobs in
the other machines except the last, the constraint (20) guarantees that the departure date of
the jobs of the machine l is greater than or equal to the starting date of the machine (l − 1)
plus its processing time at the machine l. The constraint (21) expresses that the tardiness of a
job is greater than or equal to the difference of the departure date in the last machine and the
imposed date due. The constraint (22) expresses that the makespan is greater than or equal
to the departure date of the last job in the last machine. The constraints (23) and (24) make
it possible to define the domain of variation of the parameters of the model.

3.2 Initialization heuristics

Themost important phase in solvingmetaheuristic optimization problem is the determination
of the initial solution. Indeed for our bi-objective minimization problem of SDST/BFSP, we
have chosen six rules to build the initial solutions. We propose an adaptation of the NEH
algorithm to improve the initial solutions by starting with the sequence obtained by each rule.
Here, we give the characteristics of six rules by detailing the properties of each rule.

R1 : The first rule is based on Johnson’s algorithm (Johnson 1954), it consists in forming
two virtual machines M (1) and M (2), dividing the number of machines into two sub
assemblies whose respective number of machines is m1 and m − m1, knowing that
m1 = �m/2�, where �·� denotes the floor function; the processing times on the two
machines are calculated by the following expressions

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

p(1)
j =

m1∑

l=1

(p jl + s j jl) processing time in M (1)

p(2)
j =

m∑

l=m1+1

(p jl + s j jl) processing time in M (2)

(26)

To form the sequence of Johnson, one will determine the subsetsU = {J j , p(1)
j < p(2)

j }
and V = {J j, p(1)

j ≥ p(2)
j }, then will classify the jobs of U in increasing order of p(1)

123

Annals of Operations Research (2021) 296:615–637 623

on M (1) and the jobs of V in decreasing order of p(2) on M (2). The Johnson sequence is
formed by the concatenation of ordered sub sequences UV .
R2 : The second rule is based on the notion of the longest processing time of job on all
machines in flow shop, also called (LPT) by calculating the following expression

ζ
(1)
j =

m∑

l=1

(p jl + s j jl), j = 1, . . . , n (27)

An initial sequence will be determined and the jobs ranked in descending order of ζ
(1)
j .

R3 : The third rule is based on the rule inspired by the model described in Rajendran and
Ziegler (1997) that we adopt for our problem by calculating the following expression

ζ
(2)
j =

m∑

l=1

(m − l + 1)(p jl + s j jl), j = 1, . . . , n (28)

An initial sequence is obtained by classifying the jobs in descending order of ζ
(2)
j .

R4 : The fourth rule is to determine the following expression

ζ
(3)
j =

(
2

m − 1

)

×
m∑

l=1

(m − l)(p jl + s j jl) +
m∑

l=1

(p jl + s j jl)

j = 1, . . . , n

(29)

It is inspired by the model treated in (Tasgetiren et al. 2017), it also consists in also
arranging the jobs in descending order of ζ

(3)
j , to get the sequence for this rule.

R5 : The fifth rule is based on the due date, it consists in classifying the jobs in ascending
order of their due date d j .
R6 : The sixth rule and the last one consists in determining the expected advance by
calculating for each job the following expression

ζ
(4)
j = max(0, d j −

m∑

l=1

(p jl + s j jl)), j = 1, . . . , n (30)

An initial sequence will be obtained by classifying the jobs in ascending order of ζ
(4)
j .

For the six rules mentioned above, we used the processing times, the setup times, the due
dates as well as the number of jobs and the number of machines characterizing our problem.
The improvement of these initial solutions is ensured by a adaptive heuristic based on the
constructive algorithm NEH which we write NEH_Ri , relating respectively to the rules Ri ,
i = 1, . . . , 6. Our heuristic will be described by the Algorithm 1.

The principle of this heuristic is based on two phases, the first phase consists in
breaking down the sequence π into two sub-sequences π = [π(1) π(2)], with π(1) =
(π

(1)
1 , π

(1)
2 , . . . , π

(1)
m) and π(2) = (π

(2)
m+1, π

(2)
m+2, . . . , π

(2)
n) under the hypothesis m < n that

we consider satisfied for all our simulated instances. The second phase consists of extracting
each job π

(2)
k from the sub-sequence π(2) and reinserting it into the different positions of

the constructed sub-sequence π = [π(1) π
(2)
k] and retaining the best sequence among all the

sequences generated by insertion. This process will be repeated until all jobs are completed.
This principle of decomposition and insertion will be repeated until satisfying a stop criterion
defined as a limit iteration number (N_limite). This limit number will be determined accord-
ing to the size of the studied instance. We choose N_limite = 30 for small and medium size
instances and N_limite = 50 for relatively large size instances.

123

624 Annals of Operations Research (2021) 296:615–637

Algorithm 1 NEH_Ri algorithm.

Input:πbest ← π = {π1, . . . , πn} obtained by the rule Ri
i ter = 1
while {i ter < N_limite} do

Extract randomly m jobs and divide the π into two sub-sequences π = [π(1) π(2)]
for k = 1 to n − m do

Extract a job π
(2)
k from the sub-sequence π(2) choose the best πNEH sequence from all obtained

sub-sequences by evaluation its objective function value
if f (πNEH) < f (πbest) then

πbest ← πNEH
end if

end for
i ter = i ter + 1

end while
Output: πbest

For the bi-objective optimization, we note that for the choice of the right solution among
all the solutions obtained by the two criteria, will be based on the combination of the two
objectives in one that is written in the form of the Eq. (8). We note that in this model the
coefficient μ ∈ [0, 1] is the weighting factor of the criterion chosen by the decision maker
when establishing the scheduling strategy. It will be considered variable to give flexibility to
the production manager at the level of each batch launched in the production cycle.

3.3 Iterative local search

The first algorithm proposed for solving our problem is the iterative local search algorithm for
the bi-objective minimization of the SDST/BFSP. This type of algorithm has been adopted
for the resolution of several types of scheduling problems, in particular for PFSP in (Dong
et al. 2009, 2013; Xu et al. 2017). The principle of this algorithm is simple, it consists of
defining a solution in the neighborhood of the current solution and comparing the objective
function value with the current best value of this function. The principle is repeated until it
satisfies a stop condition. In our approach, we consider a method which consists in the first
phase of defining the set of neighboring solutions Γ (i), i ∈ {1, 2}. Where Γ (i) denotes the
set of solutions generated in the perturbation procedure (Proced_pert), by total insertion
(i = 1) or total permutation (i = 2), respectively. In the second phase, we choose among
the generated solutions the best one, then comparing it with the best current solution. The
process will be repeated until the imposed stop will be satisfied.

The description of the steps of this algorithm is described in the Algorithm 2.We consider
two types of neighborhoods, the first one is based on the total insertion and the shift on the
left and on the right, the second type of neighborhood is based on the total permutation of a
job with all the other jobs without repetitions. In the last phase of the algorithm, we highlight
the model simulated annealing to better explore the set of solutions. We distinguish in this
algorithm two procedures for generating the set of neighborhoods called Proced_pert . This
procedure generates the neighborhood by involving the total exploration of the neighborhood
of the current solution with two different ways ILS1 and ILS2:

We consider two types of neighborhoods, the first one is based on the total insertion
and the shift on the left and on the right, the second type of neighborhood is based on the
total permutation of a job with all the other jobs without repetitions. In the last phase of the
algorithm, we highlight the model simulated annealing to better explore the set of solutions.

123

Annals of Operations Research (2021) 296:615–637 625

Algorithm 2 Iterative local search.

Input: π = {π1, . . . , πn} the initial sequence
π∗ ←− π .

while {the stopping criterion is not satisfied} do
Generate a sequence set Γ (i) by Proced_pert(π∗)

f (π∗
p) = min

πp∈Γ (i)
{ f (πp)}

if f (π∗
p) < f (π∗) then

π∗ ← π∗
p

f (π∗) ← f (π∗
p)

else
if rand() ≤ exp(−(f (π∗

p) − f (π∗))/T) then
π∗ ← π∗

p
end if

end if
end while

Output: π∗, f (π∗)

f(π∗) = 246

π∗ = (4 3 1 2)

Γ (1) f

245
240
244
237
256
238
265
235
256

(3 4 1 2)
(3 1 4 2)
(3 1 2 4)
(4 1 3 2)
(4 1 2 3)
(4 3 2 1)
(4 2 3 1)
(2 4 3 1)
(1 4 3 2)

f(π∗
p) = 235

π∗
p = (2 4 3 1)

f(π∗
p) < f(π∗)

π∗ = (2 4 3 1)

Fig. 2 An example illustrating the total insertion procedure Proced_pert

Wedistinguish in this algorithm twoprocedures for generating the set of neighborhoods called
Proced_pert . This procedure generates the neighborhood by involving the total exploration
of the neighborhood of the current solution with two different ways ILS1 and ILS2:

– Procedure Proced_pert for ILS1: The total insertion disruption procedure is used in the
first version of the iterative local search algorithm designated by ILS1.
Figure 2 showsan implementation example of the total insertionprocedure Proced_pert ,
here we give an example of 4 jobs, starting from a current best sequence π∗ = (4 3 1 2)
which f (π∗) = 246, knowing that we generating the entire neighborhood by total inser-
tion, we obtain the best sequence π∗

p = (2 4 3 1) which f (π∗
p) = 235, we compare the

objective function value of this sequence with the objective function value of the best
current sequence. Finally, we get our new best sequence π∗ = (2 4 3 1). We note that
for a sequence of n jobs, we will have (n − 1)2 neighboring solutions representing the
cardinal of Γ (1).

– Procedure Proced_pert for ILS2: The total permutation perturbation procedure is used
in the second version of the iterative local search algorithm noted ILS2. In this proce-
dure, the total number of permutations without repetition between the different jobs is
generated to obtain the set of neighboring solutions noted Γ (2).

123

626 Annals of Operations Research (2021) 296:615–637

f(π∗) = 246

π∗ = (4 3 1 2)

Γ (2) f

245
230
247
237
256
238

(3 4 1 2)
(1 3 4 2)
(2 3 1 4)
(4 1 3 2)
(4 2 1 3)
(4 3 2 1)

f(π∗
p) = 230

π∗
p = (1 3 4 2)

f(π∗
p) < f(π∗)

π∗ = (1 3 4 2)

Fig. 3 An example illustrating the total permutation procedure Proced_pert

Figure 3 shows an implementation example of the total permutation procedure
Proced_pert , here we give an example of 4 jobs, starting from the same best sequence
π∗ = (4 3 1 2) which f (π∗) = 244 as before and by generating the whole of the total
permutation neighborhood, we obtain the best sequence π∗

p = (1 3 4 2), knowing that
f (π∗

p) = 230. We compare the objective function value of this sequence with the best
objective function value of the current sequence, that we find is lower. We obtain our
new best sequence π∗ = (1 3 4 2) during the exploration of this neighborhood. Finally,
we note that for a sequence of n jobs, we will have n×(n−1)

2 neighboring solutions rep-
resenting the cardinal of Γ (2).

In this model, the acceptance criterion of the simulated annealing with the parameter T is
also integrated, which depends on the nature and the characteristics of the problem. We give
an expression inspired by the model in (Ruiz and Stützle 2007) expressed for several types
of flow shop scheduling problems; this expression is given by the following relation

T = λ ×
∑n

j=1
∑m

l=1(p jl + s j jl)

10 × m × n
(31)

We use the parameters of the problem, especially the processing times, the setup times,
the number of jobs and the number of machines. In addition, for a right calibration of our
algorithm, the coefficient λ is been varied adequately from 0.5 to 0.9.

3.4 Iterative greedy algorithm

The second proposed algorithm in our approach of resolution is the iterative greedy algorithm
(Ying 2008; Pan and Ruiz 2014; Fernandez-Viagas et al. 2018), which we apply with its tra-
ditional version. The principle of this algorithm is based on two main phases, the exploration
phase of the current neighborhood solution and the local search phase. The exploration phase
of the current neighborhood solution is constructed of two sub-phases, the destruction and
the construction of the neighboring solution. In the sub-phase of destruction a subset of job
is extracted, in the second sub-phase each job of the extracted set is inserted in the different
positions of the partial built solution, and we retain the best solution among all the generated
solutions. In the local search phase, we use the same model presented in the local search
iterative algorithm for setting the temperature parameter of the simulated annealing model.
This metaheuristic is one of the most used in several scheduling problems. We apply it to
solve our bi-objective problem whose parameters are adopted for our case study. We present

123

Annals of Operations Research (2021) 296:615–637 627

in the Algorithm 3 the detailed steps of determination of the solution obtained by the iterative
greedy algorithm.

Algorithm 3 Iterated greedy algorithm with local search.

Input: A sequence π obtained by an initialization heuristic
π∗ ← π

while {unsatis f ied stopping cri terion} do
% Destruction phase%
π ′ ← π

for h = 1 to d do
Extract a random job πh from the sequence π ′ and add the job πh to a subset Ω

end for
% Construction phase%
for h = 1 to d do

Extract the job π ′
h from the subset Ω

Test the job on the different positions in the current sequence π ′ and choose the best position giving
the smallest objective functional value

end for
% local search phase%
Choose π ′′ from the neighborhood of Nk (π

′)
if f (π ′′) < f (π) then

π ← π ′′
if f (π) < f (π∗) then

π∗ ← π

end if
else

if random ≤ exp{−(f (π ′′) − f (π))/T } then
π ← π ′′

end if
end if

end while
Output: π∗

The implementation of this metaheuristic requires two basic settings parameters, the
parameter T and the parameter d . For the parameter T , we consider the same adopted model
for the iterative local search algorithm which allows a good exploration of the neighbor-
hood of the current solution. For the parameter d , which represents the number of jobs to
be extracted in the destruction phase. We propose a simulation study by varying the number
of jobs to be extracted in the destruction sub-phase by considering d = m for small and
medium instances whose number of jobs n ∈ {20, 30, . . . , 90} and the number of machines
m ∈ {5, 10}, while for large size instances, we consider n ∈ {100, 150, . . . , 400} and the
number of machines m ∈ {10, 20}, we assume that d ∈ {10, 20, . . . , 50}.
In this case, for the chosen neighborhood system, we propose three types of neighborhoods

– The N1(π) random neighborhood permutation: A randomly chosen job swapping posi-
tion with another randomly selected job in the current sequence to obtain a new job
sequence.

– The N2(π) neighborhood by block inversion: A block of job is chosen in the current
sequence and all the jobs of this block invert their positions to obtain the new sequence

– The N3(π) shift neighborhood with insertion: A job is selected at random from position
p is inserted into a q position drawn randomly in the current sequence, all jobs p and q
will be shifted to the left if p < q or right otherwise.

123

628 Annals of Operations Research (2021) 296:615–637

Fig. 4 Crossover and mutation example

One of the fundamental steps for metaheuristics is the initialization phase, a good starting
solution that saves a lot of time in finding the right solution. Our approach first allows us to
find an initial sequence using one of the proposed rules, then the second phase is to apply the
NEH algorithm which will give the initial solution for our two metaheuristics of resolution
which we compare in terms of quality of the founded solution and the speed of convergence
to the good optimal solution.

3.5 Genetic algorithm

The metaheuristics based on the genetic algorithm is among the most implemented meta-
heuristics for scheduling optimization problems. Several versions are applied for mono
objective or multi-objective optimization. The Algorithm 4 gives a description of the dif-
ferent stages of the genetic algorithm evolution.

Algorithm 4 Genetic algorithm.
Generate initial population P using the initialization heuristics
Evaluate the individuals of P to determine the best solution: πbest
while {unsatis f ied stopping cri terion} do

Randomly select two parents P1, P2 from the population
Generate two children C1, C2 by the crossing procedure
Apply the mutation procedure to C1 and C2
Evaluate the set of generated individuals
Update the population P and deduce πbest

end while

The main phases of this metaheuristics are, selection, crossing and mutation. In this algo-
rithm we simulate the behavior of evolution of the genetic code in the human body to arrive
at the proper code to each individual. In the Fig. 4, from an initial population, in the selection
phase two parents P1, P2 are selected according to a previously defined procedure, subse-
quently in the crossing phase two children C1, C2 will be generated and each will take part of
the code of both parents form its own genetic code. In the mutation phase, a procedure based
on local search insertion methods is applied to new individuals. At the end an evaluation of
all the individuals is carried out by the objective function and an update of the population is
carried out, the process is repeated until satisfying the stopping criterion.

123

Annals of Operations Research (2021) 296:615–637 629

4 Effectiveness of resolution algorithms

4.1 Simulation instances

The most important step in the simulation study by computer tools is the comparative study
between different solving approaches. We highlight in our approach a set of heuristics and
metaheuristics for the resolution of the bi-objective SDST/BFSP scheduling problem. For
this we study, a set of instances that we have classified into two size families, the family of
small/medium size and the family of the large one. The classification is based on the number
of jobs and the number of machines for each family. For small and medium instances that we
consider, the number of machinesm ∈ {2, . . . , 10} and the number of jobs n ∈ {10, . . . , 90};
the processing times p jl are defined in [1, 49] and the setup times s jkl are defined in [1, 10].
For the family of the large size, the number of machines ism ∈ {10, . . . , 20} and the number
of jobs n ∈ {100, 150, . . . , 400}; we consider that the processing times p jl belong to [50, 99]
and the setup times s jk1 belong to [10, 20]. We note that the setup times are much lower than
the processing times by not exceeding 25%, which actually reflects industrial cases. The due
dates for the two families of instances are expressed as function of p jl and s jkl defined by
the expression

d j = δ ×
[

m∑

l=1

(p jl + s j jl)(1 + rand())

]

, j = 1, . . . , n (32)

where δ depends on the studied instance family, such that δ ∈ {2, . . . , 5}. The studied
cases cover the maximum of industrial flow shop production types ranging from small size
instances to larger ones. A comparative study between the different resolution heuristics
and metaheuristics makes it possible to conclude the right approach that we can apply for
our problem. This study concerns the two families of instances by varying the necessary
parameters for each resolution algorithm. To evaluate their efficiency,we calculate the relative
percentage increase (RPI) by the following formula

RP I =
(

f − fmin

fmin

)

× 100 (33)

This type of analysis requires the evaluation of several instances, to be able to express a
good judgment on the effectiveness of the resolution methods. A good calibration to measure
the desired performances is necessary, one carries out a set of tests and for each test one
retains the average of 10 instances for each test problem. A statistical study is essential tool
in this kind of study to validate the correct approach of resolution among all the proposed
approaches.

4.2 Comparative study betweenmetaheuristics andMILP

We made a comparative study between the four metaheuristics improved by the NEH algo-
rithmwith the exact solution obtained by theMILP.The study is carried out for small instances
by varying the weighting parameterμ for the two criteria of the objective function. We tested
four instances, with eleven cases for each problem depending on the value of μ, with total
of 44 problems. In the Table 1, we give the results of the simulation of the study in terms of
the objective function value.

We can see that the ILS2 algorithm records the best result with a success rate of 90.9%
compared to the other three algorithms. In addition, the ILS algorithmwith these two versions

123

630 Annals of Operations Research (2021) 296:615–637

Table 1 Objective function value of small instances

n × m μ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10 × 3

MILP 221.3 236.5 252.3 267.5 283.6 298.5 314.4 329.5 342.3 351.8 356.8

ILS1 238.4 240.5 260.5 280.3 300.4 315.6 323.4 340.2 352.2 360.3 380.4

ILS2 233.5 240.5 252.8 267.5 300.5 298.5 320.5 329.5 342.3 358.8 370.4

IG 238.5 255.2 260.4 290.5 308.5 308.5 328.7 351.2 347.8 362.5 385.5

GA 238.7 255.6 260.5 295.3 308.5 317.5 323.4 336.6 347.8 367.5 380.3

10 × 5

MILP 256.2 278.2 297.4 316.6 335.8 355.6 374.5 393.3 411.6 429.3 443.9

ILS1 268.7 292.5 312.6 320.4 342.2 365.8 380.7 402.2 422.6 438.5 460.5

ILS2 260.4 287.4 312.6 316.6 340.4 360.4 380.5 407.4 418.4 436.2 458.2

IG 280.4 290.3 325.2 324.8 352.2 370.5 390.8 412.2 422.6 442.8 470.7

GA 280.3 290.8 333.4 322.6 348.8 365.7 390.5 208.2 422.6 448.2 466.5

15 × 3

MILP 128.2 190.3 268.6 291.9 327.2 355.5 415.6 452.9 468.4 512.2 552.3

ILS1 147.6 206.4 270.3 295.7 331.8 360.3 422.3 467.7 482.3 520.4 560.2

ILS2 138.3 208.5 268.6 295.7 329.5 358.2 420.5 465.2 480.2 516.8 556.4

IG 145.4 215.5 282.1 299.2 335.2 360.3 435.5 477.2 485.6 520.4 570.1

GA 151.5 217.2 288.3 299.2 335.2 360.3 436.2 480.3 490.3 520.4 570.8

15 × 5

MILP 280.8 342.5 348.6 400.5 406.6 448.5 471.8 498.7 547.8 553.4 576.8

ILS1 284.3 350.3 362.8 410.4 413.3 456.6 480.2 510.7 560.3 560.6 588.9

ILS2 282.5 346.5 353.4 408.8 412.8 454.2 476.8 508.3 556.7 564.2 580.4

IG 290.8 356.4 358.5 412.3 422.2 460.2 482.4 510.4 561.5 568.3 592.5

GA 288.7 344.5 358.6 416.2 422.2 458.6 480.2 512.5 570.8 572.4 597.3

dominates the other two algorithms. We note that the exact solution has been implemented
under the software LINGO 17.3 and that the result is given for the average five instance
tested. We limit ourselves to representing the results of a set of small instances including
n ∈ {10, 15} and m ∈ {3, 5}. We note that the simulation algorithms are implemented using
the Matlab 2014a language and realized on PC with the Intel (R) Core (TM) i3 CPU, M350,
2.27GHz, 2.26 GHz and a 6 GB RAM.

4.3 Comparison of heuristics

We present here the second analysis concerning the comparative study between the different
heuristics based on the NEH algorithm and on the rules mentioned in the initialization phase.
This study shows the difference recorded between the different rules in order to verify the
findings retained in the carried out analysis by the metaheuristics. The analysis will be done
by calculating the RP I term according to the variation of the weighting criteria coefficient
μ, while fixing the number of jobs and the number of machines for each studied problem.
We present in Fig. 5 the results of the statistical study represented by the ANOVA diagram
concerning the instance 30 × 10 .We consider 10 replications for each instance by varying

123

Annals of Operations Research (2021) 296:615–637 631

2

3

4

5

6

R
PI

NEH R2 NEH R3 NEH R4 NEH R5 NEH R6

µ = 0.2

NEH R1

1

2

3

4

5

6

R
PI

NEH R1

µ = 0.3

NEH R2 NEH R3 NEH R4 NEH R5 NEH R6

1

2

3

4

5

6

R
PI

µ = 0.7

NEH R1 NEH R2 NEH R3 NEH R4 NEH R5 NEH R6

2

3

4

5

R
PI

µ = 0.8

NEH R1 NEH R2 NEH R3 NEH R4 NEH R5 NEH R6

Fig. 5 Box plot of RPI variation for all used heuristics and for μ = 0.2 (top left), μ = 0.3 (top right), μ = 0.7
(bottom left) and for μ = 0.8 (bottom right)

the coefficient such that μ ∈ {0.2, 0.3, 0.7, 0.8}, the analysis will be made on median value
of RPI.

From the four box diagrams of ANOVA, we find that for the case ofμ = 0.2, the heuristic
NEH_R6 gives the best RPI value of 2.25% followed by the heuristic NEH_R4 with a value
of 3.11%; while the highest value of RPI is 4.77% recorded for NEH_R1. In the case of
μ = 0.3 the heuristic NEH_R6 gives the best of RPI 2.53% followed by NEH_R5 with a
value of RPI 3.25%, while the largest value is recorded by NEH_R2. For the two previous
cases when privileging the criterion of the total tardiness the heuristic NEH_R6 gives good
results compared to other heuristics.

In the case ofμ = 0.7 the heuristic NEH_R4 gives the best RPI value of 2.05% followed
by the heuristic NEH_R1 with a value of 2.12%; while the highest value of RPI is 3.15%
recorded for NEH_R5. In the case of μ = 0.8 the heuristic NEH_R4 gives the best of RPI
2.95% followed byNEH_R1 with a value of RPI 3.25%,while the largest value is recorded by
NEH_R6 with a value of 4.05%. For the last two treated cases, when privileging the criterion
of makespan, the heuristic NEH_R4 give the good results compared to other heuristics.

4.4 Comparison of the suggestedmetaheuristics

The third analysis concerns the convergence of the proposed metaheuristics in terms of the
quality of the solution and the search computation time. A determining factor in the notion
of convergence is the CPU running time. We consider the time limit τ = ρ × n × m in
seconds where n and m respectively denote the number of jobs and the number of machines
characterizing the size of the problem. The coefficient ρ is a correction coefficient that

123

632 Annals of Operations Research (2021) 296:615–637

Table 2 Values of the calibration
parameter ρ for different
instances

n ∈ {10, . . . , 90} n ∈ {100, . . . , 400}
m = 5 m = 10 m = 10 m = 20

ρ = 0.3 ρ = 0.5 ρ = 1.2 ρ = 1.5

makes it possible to calibrate the implemented algorithm for the resolution of our problem.
We consider in the Table 2, the appropriate values of ρ corresponding to the size of the studied
problem.

We note that these conditions on ρ make it possible to limit the computation time by
supposing that the search for good solutions beyond this time becomes heavy and that our
algorithms converge towards their good solutions when this time is reached.

To verify the effectiveness of the resolution metaheuristics, we propose a comparative
study between the four algorithms of resolutions. The simulation concerns the two problem
types according to the size of each category. The algorithms are tested by respecting a
convergence time limit according to the size of the instance. We give the results of the value
of RP I for an average of ten instances for each type of problem. In the Table 3, we represent
the results of the relatively medium instances, we consider that n ∈ {20, 30, . . . , 60} and
m ∈ {5, 10}. From the results, we can see that the algorithm ILS2 is the best algorithm by
the four implemented, it records a success rate of 87.5%.

In the same way, we continue our analysis and our interpretation of the results con-
cerning relatively large instances. For this category of problems, we study the case of
n ∈ {100, 200, . . . , 400} and m ∈ {10, 20}. We note that this type of instance is often
the subject of production batches in flow shop workshops. Such a study is very useful for
giving manufacturing managers a best decision-making tool in the efficient management of
their machines. The results stored in Table 4 also show the dominance of the ILS2 algorithm
with a success rate of 88.63%.

The speed of convergence of the algorithms towards their good solutions is of fundamental
utility in the analysis of the efficiency of the metaheuristiues. In Fig. 6, we represent the
evolution of the objective function value for the four algorithms IG, ILS1, ILS2, and GA as
function of the CPU time. In this illustration, we simulate the analysis of the instance 50×10
considered as a relatively medium instance. The plot of the convergence curves is given for a
calculation time limit τ = 250 s and μ ∈ {0.2, 0.3, 0.7, 0.8}. We choose the four values of μ

in such a way as to favor one of the two criteria, ie the total tardiness with μ ∈ {0.2, 0.3} or
the makespan Cmax with μ ∈ {0.7, 0.8}. We note that the ILS2 algorithm converges quickly
towards its good solution and remains more efficient compared to other algorithms in the
four studied cases.

We note that the plots of the objective function value are given for the four weighting
coefficient values corresponding to the two criteria. We limit ourselves to these cases of
simulations that we consider largely sufficient to concertize the comparative study of the
convergence of the algorithms.

In this analysis, we also highlight the comparison of the approaches proposed in
the single-criteria case. Indeed, when μ = 0 the problem studied will be equiva-
lent to Fm |prmu, SDST , blocking| ∑n

j=1 Tj , in case μ = 1 problem is equivalent to
Fm |prmu, SDST , blocking|Cmax . We notice that the for small instances, the optimal solu-
tion given by theMILP for the T T minimization case does not imply a good solution forCmax

and vice versa. Similarly, when simulating the relatively large and medium sized instances,
this property remains valid. We have recorded the clear dominance of the ILS2 algorithm in
the two extreme cases of single-criteria optimization. Despite the intrinsic link between the

123

Annals of Operations Research (2021) 296:615–637 633

Table 3 RPI value of relatively medium instances. Best values are in bold

n × m μ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

20 × 5

ILS1 3.52 4.61 2.73 2.81 3.23 5.64 3.41 3.72 4.23 2.54 3.52

ILS2 2.23 3.55 2.11 3.22 2.83 4.53 3.57 2.52 2.82 2.16 3.74

IG 4.51 4.23 3.43 4.23 3.53 6.24 3.67 4.28 4.83 3.52 3.82

GA 5.23 3.54 5.38 4.57 4.25 4.57 3.42 5.63 3.73 4.17 3.82

20 × 10

ILS1 1.38 3.52 2.94 4.31 2.17 3.23 5.27 4.22 3.87 5.25 1.52

ILS2 0.92 3.23 3.14 4.25 1.92 3.12 5.14 3.97 3.33 5.14 1.38

IG 3.23 4.87 4.22 5.25 3.88 4.34 4.26 5.37 4.85 5.83 2.36

GA 4.25 3.34 4.26 5.23 3.87 4.23 5.86 4.65 3.84 5.47 2.42

30 × 5

ILS1 3.58 3.27 4.54 4.34 3.23 1.25 2.37 2.45 3.67 4.25 3.68

ILS2 3.25 3.17 4.25 4.24 3.13 0.82 2.27 2.15 3.35 4.48 3.56

IG 4.27 4.56 5.28 3.84 4.23 2.53 3.58 4.22 4.15 5.23 4.72

GA 3.82 4.25 5.14 3.87 4.25 3.83 3.25 4.56 5.35 5.84 4.26

30 × 10

ILS1 1.83 2.25 1.82 2.77 1.54 2.81 2.23 2.94 2.85 2.25 2.35

ILS2 0.82 1.54 1.35 1.36 2.84 2.12 1.34 2.23 1.43 2.76 1.34

IG 1.14 2.15 1.64 2.45 1.96 2.26 1.53 2.35 1.67 2.86 1.56

GA 1.53 2.54 3.25 1.86 2.78 3.25 2.64 2.82 2.27 2.64 2.15

40 × 5

ILS1 4.25 4.83 5.24 6.23 5.34 4.26 5.37 4.86 5.83 4.82 4.35

ILS2 4.12 4.35 5.46 5.34 5.76 5.82 4.45 4.61 5.22 4.35 3.84

IG 5.23 5.84 4.83 5.83 6.24 6.39 6.16 5.82 6.33 5.75 5.28

GA 5.35 5.83 6.27 5.55 6.24 6.23 5.85 5.78 5.29 5.74 5.32

40 × 10

ILS1 3.26 3.69 4.93 3.85 3.774 3.62 3.25 3.64 3.42 3.87 4.23

ILS2 2.95 3.84 4.26 3.58 3.29 3.83 3.13 3.32 3.85 4.24 3.65

IG 4.23 4.35 4.46 3.94 3.82 3.55 3.82 4.27 4.25 4.56 3.84

GA 4.13 4.53 4.15 3.84 4.86 3.92 4.25 4.46 4.61 4.88 5.23

50 × 10

ILS1 1.12 1.53 2.14 1.35 1.76 1.48 1.86 2.27 1.69 1.83 1.14

ILS2 0.72 1.14 1.53 0.83 1.28 0.95 1.47 2.86 1.84 1.98 2.23

IG 1.53 2.36 2.23 2.55 2.63 2.24 2.34 1.85 2.26 2.57 1.68

GA 2.23 2.86 3.27 2.85 3.11 3.24 3.59 2.57 3.23 2.55 2.53

60 × 10

ILS1 0.85 1.14 0.92 1.42 0.67 1.23 1.35 1.72 0.93 1.14 0.85

ILS2 0.65 0.84 0.67 1.23 0.53 1.12 1. 25 1.24 0.86 0.83 0.76

IG 1.53 2.15 1.34 1.72 1.85 1.97 1.25 1.46 1.83 1.35 2.17

GA 2.23 2.12 1.86 1.65 2.24 1.86 2.27 1.83 1.74 2.27 1.57

123

634 Annals of Operations Research (2021) 296:615–637

Table 4 RPI value of relatively large instances. Best values are in bold

n × m μ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

100 × 10

ILS1 2.25 2.66 3.75 3.82 4.27 3.34 3.29 2.48 2.26 2.82 2.16

ILS2 1.65 2.84 3.46 3.12 3.25 2.23 4.52 2.93 1.83 3.17 1.96

IG 3.52 5.22 2.45 3.16 4.25 5.28 4.46 3.28 3.74 4.22 4.16

GA 4.36 4.25 3.86 5.24 3.98 5.42 2.94 5.67 4.38 3.15 3.87

100 × 20

ILS1 1.37 1.45 1.16 2.18 1.82 1.65 1.78 1.53 1.45 2.27 1.66

ILS2 0.82 0.94 0.93 0.53 0.97 0.52 0.99 0.82 0.97 1.25 0.85

IG 2.35 1.16 0.96 1.36 0.92 1.87 0.93 1.63 1.47 1.25 1.18

GA 1.36 1.25 1.34 1.46 0.92 0.85 1.42 0.98 1.44 1.36 1.15

200 × 10

ILS1 0.12 0.56 0.24 0.35 0.58 0.77 0.38 0.44 0.85 0.93 0.52

ILS2 0.08 0.25 0.46 0.82 0.08 0.52 0.27 0.53 0.46 0.58 0.83

IG 0.85 1.12 0.95 0.76 1.28 0.83 0.75 0.85 1.13 0.96 1.12

GA 0.93 0.87 0.95 1.34 1.23 1.14 0.93 1.56 0.83 0.96 1.17

200 × 20

ILS1 1.25 1.32 1.66 1.63 1.48 1.19 1.25 1.76 1.23 1.35 1.24

ILS2 0.96 0.85 1.13 0.56 1.28 1.32 0.65 0.87 1.12 0.85 0.94

IG 2.16 2.25 2.38 2.14 1.36 2.59 1.92 2.23 1.83 2.56 1.96

GA 2.14 2.26 2.49 2.14 2.85 2.73 2.68 1.52 1.83 1.76 1.55

300 × 10

ILS1 0.56 0.68 0.75 0.56 0.82 0.75 0.58 0.38 0.15 0.76 0.56

ILS2 0.06 0.07 0.35 0.12 0.26 0.37 0.33 0.28 0.08 0.34 0.28

IG 0.85 0.92 0.86 0.52 0.73 0.66 0.84 0.98 0.76 0.82 0.83

GA 0.94 0.85 0.87 0.93 0.57 0.72 0.85 0.52 0.78 0.72 0.56

300 × 20

ILS1 0.75 0.08 0.25 0.56 0.15 0.52 0.86 0.38 0.25 0.62 0.53

ILS2 0.05 0.08 0.16 0.23 0.24 0.07 0.57 0.38 0.17 0.52 0.38

IG 0.94 0.95 0.72 0.55 0.75 0.58 0.56 0.09 0.35 0.76 0.58

GA 0.82 0.93 1.16 0.65 0.78 0.82 0.95 0.75 0.82 0.83 0.93

400 × 10

ILS1 1.14 1.25 0.92 0.87 0.52 1.34 0.35 0.56 0.72 0.83 0.98

ILS2 0.93 0.85 0.76 0.42 0.25 0.83 0.92 0.52 0.44 0.77 0.65

IG 1.23 1.35 1.46 1.58 1.25 1.34 1.26 1.47 1.58 0.92 1.96

GA 1.56 1.62 1.72 1.85 1.86 1.74 1.63 1.95 1.76 1.28 1.42

400 × 20

ILS1 0.93 0.56 0.72 0.45 0.35 0.67 0.87 0.38 0.41 0.83 0.92

ILS2 0.25 0.07 0.55 0.33 0.75 0.43 0.83 0.54 0.36 0.96 0.75

IG 1.1 1.35 0.89 1.17 1.15 0.95 1.14 1.12 0.98 1.11 0.85

GA 1.23 1.32 1.18 1.15 1.25 1.16 1.26 1.24 1.32 1.35 0.96

123

Annals of Operations Research (2021) 296:615–637 635

0 50 100 150 200 250

500

1000

1500

2000

CPU

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

IG
ILS1

ILS2

GA

0 50 100 150 200 250
500

1000

1500

2000

2500

CPU

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

IG
ILS1

ILS2

GA

0 50 100 150 200 250

1600

1800

2000

2200

2400

2600

CPU

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

IG
ILS1

ILS2

GA

0 50 100 150 200 250
1800

2000

2200

2400

2600

2800

CPU

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

IG
ILS1

ILS2

GA

Fig. 6 Objective function value CPU time for μ = 0.2 (top left), μ = 0.3 (top right), μ = 0.7 (bottom left)
and μ = 0.8 (bottom right)

two criteria in their expressions, a good T T solution does not imply a good Cmax solution
and vice versa. In final observation, we find it is difficult to find a solution that minimizes
both criteria at once, a compromise is necessary to favor one of the two criteria using the
weighting coefficient. In this vision, the production managers can consider the weighted
multi-criteria optimization factor as a powerful tool to find a good compromise to their
customers requirements.

5 Conclusion

In this paper, we have presented a mixed integer linear programming method and a set of
metaheuristics to solve flow shop scheduling problem with permutation under constraints of
blocking and sequence dependent setup time. The suggested problem consists in minimizing
an objective functional by a combination of the two criteria: the makespan and the total
tardiness each having a weighting coefficient. A comparative study between the various
resolution methods is carried out on a set of instances covering small, average and relatively
big size instances. To this end,we have varied the number of jobs and the number ofmachines;
also the weighting parameter of our problem has been changed adequately in order to favor
one criterion over another. We found in our simulation that the best initial solutions are given
by heuristics based on NEH procedure. At the algorithm performance level, we found that
the iterative local search algorithm in its second version gives better results compared to the
other three algorithms in terms of the quality of the solution and the speed of convergence.
Finally, it was established that the value of the objective function is strongly affected by

123

636 Annals of Operations Research (2021) 296:615–637

varying the bi-criteria weighting parameter. In addition, we conclude that it is difficult to find
a good solution that minimizes both criteria at the same time. Hence, a compromise will be
necessary to favor one of the two optimization criteria using the weighting coefficient. In this
paper, we have studied a bi-criteria optimization scheduling problem. It well be interesting
to extend the work to three or more criteria in the objective function. Also, adding another
constraint like the unavailability of the machines remains of a potential interest.

References

Abdel-Basset,M.,Manogaran,G., El-Shahat, D.,&Mirjalili, S. (2018).A hybridwhale optimization algorithm
based on local search strategy for the permutation flow shop scheduling problem. Future Generation
Computer Systems, 85, 129–145.

Dong, X., Chen, P., Huang, H., & Nowak, M. (2013). A multi-restart iterated local search algorithm for the
permutation flow shop problem minimizing total flow time. Computers & Operations Research, 40(2),
627–632.

Dong, X., Huang, H., & Chen, P. (2009). An iterated local search algorithm for the permutation flowshop
problem with total flowtime criterion. Computers & Operations Research, 36(5), 1664–1669.

Fernandez-Viagas, V., Valente, J. M., & Framinan, J. M. (2018). Iterated-greedy-based algorithms with beam
search initialization for the permutation flowshop to minimise total tardiness. Expert Systems with Appli-
cations, 94, 58–69.

Jiang, E., & Wang, L. (2019). An improved multi-objective evolutionary algorithm based on decomposition
for energy-efficient permutation flow shop scheduling problem with sequence-dependent setup time.
International Journal of Production Research, 57(6), 1756–1771.

Johnson, S. M. (1954). Optimal two-and three-stage production schedules with setup times included. Naval
Research Logistics Quarterly, 1(1), 61–68.

Li, X., & Li, M. (2015). Multiobjective local search algorithm-based decomposition for multiobjective permu-
tation flow shop scheduling problem. IEEE Transactions on Engineering Management, 62(4), 544–557.

Li, X., &Ma, S. (2017). Multiobjective discrete artificial bee colony algorithm for multiobjective permutation
flow shop scheduling problem with sequence dependent setup times. IEEE Transactions on Engineering
Management, 64(2), 149–165.

Li, X., Yang, Z., Ruiz, R., Chen, T., & Sui, S. (2018). An iterated greedy heuristic for no-wait flow shops with
sequence dependent setup times, learning and forgetting effects. Information Sciences, 453, 408–425.

Liu, G. S., Zhou, Y., & Yang, H. D. (2017). Minimizing energy consumption and tardiness penalty for fuzzy
flow shop scheduling with state-dependent setup time. Journal of Cleaner Production, 147, 470–484.

Meziani, N., Oulamara, A., & Boudhar, M. (2019). Two-machine flowshop scheduling problem with coupled-
operations. Annals of Operations Research, 275(2), 511–530.

Miyata, H. H., & Nagano, M. S. (2019). The blocking flow shop scheduling problem: a comprehensive and
conceptual review. Expert Systems with Applications, 137, 130–156.

Moslehi, G., & Khorasanian, D. (2013). Optimizing blocking flow shop scheduling problem with total com-
pletion time criterion. Computers & Operations Research, 40(7), 1874–1883.

M’Hallah, R. (2014). Minimizing total earliness and tardiness on a permutation flow shop using vns and mip.
Computers & Industrial Engineering, 75, 142–156.

Nawaz, M., Enscore, E. E, Jr., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop
sequencing problem. Omega, 11(1), 91–95.

Newton, M. H., Riahi, V., Su, K., & Sattar, A. (2019). Scheduling blocking flowshops with setup times via
constraint guided and accelerated local search. Computers & Operations Research, 109, 64–76.

Nouri, N., & Ladhari, T. (2018). Evolutionary multiobjective optimization for the multi-machine flow shop
scheduling problem under blocking. Annals of Operations Research, 267(1–2), 413–430.

Pan, Q. K., & Ruiz, R. (2014). An effective iterated greedy algorithm for the mixed no-idle permutation
flowshop scheduling problem. Omega, 44, 41–50.

Pan, Q. K., & Wang, L. (2012). Effective heuristics for the blocking flowshop scheduling problem with
makespan minimization. Omega, 40(2), 218–229.

Rajendran, C., & Ziegler, H. (1997). An efficient heuristic for scheduling in a flowshop to minimize total
weighted flowtime of jobs. European Journal of Operational Research, 103(1), 129–138.

Riahi V, Newton MH, Su K, Sattar A (2018) Local search for flowshops with setup times and blocking
constraints. In Twenty-eighth international conference on automated planning and scheduling

123

Annals of Operations Research (2021) 296:615–637 637

Ribas, I., &Companys, R. (2015). Efficient heuristic algorithms for the blocking flow shop scheduling problem
with total flow time minimization. Computers & Industrial Engineering, 87, 30–39.

Rifai, A. P., Nguyen, H. T., & Dawal, S. Z. M. (2016). Multi-objective adaptive large neighborhood search for
distributed reentrant permutation flow shop scheduling. Applied Soft Computing, 40, 42–57.

Ronconi, D. P. (2005). A branch-and-bound algorithm to minimize the makespan in a flowshop with blocking.
Annals of Operations Research, 138(1), 53–65.

Ronconi DP, Birgin EG (2012) Mixed-integer programming models for flowshop scheduling problems min-
imizing the total earliness and tardiness. In R. Z. Rios-Mercado & Y. A. Ríos-Solís (Eds.), Just-in-time
systems, Springer Optimization and its Applications (Vol. 60, pp. 91–105). New York, NY: Springer.

Rossi, F. L., Nagano, M. S., & Sagawa, J. K. (2017). An effective constructive heuristic for permutation
flow shop scheduling problem with total flow time criterion. The International Journal of Advanced
Manufacturing Technology, 90(1–4), 93–107.

Ruiz, R., Pan, Q. K., & Naderi, B. (2019). Iterated greedy methods for the distributed permutation flowshop
scheduling problem. Omega, 83, 213–222.

Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the permutation flowshop
scheduling problem. European Journal of Operational Research, 177(3), 2033–2049.

Shao, Z., Pi, D., & Shao, W. (2018). A novel discrete water wave optimization algorithm for blocking flow-
shop scheduling problem with sequence-dependent setup times. Swarm and Evolutionary Computation,
40, 53–75.

Shoaardebili, N., & Fattahi, P. (2015). Multi-objective meta-heuristics to solve three-stage assembly flow shop
scheduling problemwith machine availability constraints. International Journal of Production Research,
53(3), 944–968.

Sun, Y., Zhang, C., Gao, L., & Wang, X. (2011). Multi-objective optimization algorithms for flow shop
scheduling problem: a review and prospects. The International Journal of Advanced Manufacturing
Technology, 55(5–8), 723–739.

Ta, Q. C., Billaut, J. C., & Bouquard, J. L. (2018). Matheuristic algorithms for minimizing total tardiness in
the m-machine flow-shop scheduling problem. Journal of Intelligent Manufacturing, 29(3), 617–628.

Takano,M. I.,&Nagano,M.S. (2017).Abranch-and-boundmethod tominimize themakespan in apermutation
flow shop with blocking and setup times. Cogent Engineering, 4(1), 1389638.

Takano, M., & Nagano, M. (2019). Evaluating the performance of constructive heuristics for the blocking
flow shop scheduling problem with setup times. International Journal of Industrial Engineering Com-
putations, 10(1), 37–50.

Tasgetiren, M. F., Kizilay, D., Pan, Q. K., & Suganthan, P. N. (2017). Iterated greedy algorithms for the
blocking flowshop scheduling problem with makespan criterion. Computers & Operations Research, 77,
111–126.

Tellache, N. E. H., & Boudhar, M. (2018). Flow shop scheduling problem with conflict graphs. Annals of
Operations Research, 261(1–2), 339–363.

Trabelsi, W., Sauvey, C., & Sauer, N. (2012). Heuristics and metaheuristics for mixed blocking constraints
flowshop scheduling problems. Computers & Operations Research, 39(11), 2520–2527.

Xu, J., Wu, C. C., Yin, Y., & Lin, W. C. (2017). An iterated local search for the multi-objective permutation
flowshop scheduling problem with sequence-dependent setup times. Applied Soft Computing, 52, 39–47.

Yenisey,M.M.,&Yagmahan,B. (2014).Multi-objective permutationflowshop scheduling problem:Literature
review, classification and current trends. Omega, 45, 119–135.

Ying, K. C. (2008). Solving non-permutation flowshop scheduling problems by an effective iterated greedy
heuristic. The International Journal of Advanced Manufacturing Technology, 38(3–4), 348.

Yu, A. J., & Seif, J. (2016). Minimizing tardiness and maintenance costs in flow shop scheduling by a lower-
bound-based ga. Computers & Industrial Engineering, 97, 26–40.

Zhang, W., Wang, Y., Yang, Y., & Gen, M. (2019). Hybrid multiobjective evolutionary algorithm based on
differential evolution for flow shop scheduling problems. Computers & Industrial Engineering, 130,
661–670.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	On a bi-criteria flow shop scheduling problem under constraints of blocking and sequence dependent setup time
	Abstract
	1 Introduction
	2 Problem statement
	2.1 Description of the model SDST/BFSP
	2.2 Numerical illustration

	3 Resolution methods
	3.1 Mixed integer linear programming model
	3.2 Initialization heuristics
	3.3 Iterative local search
	3.4 Iterative greedy algorithm
	3.5 Genetic algorithm

	4 Effectiveness of resolution algorithms
	4.1 Simulation instances
	4.2 Comparative study between metaheuristics and MILP
	4.3 Comparison of heuristics
	4.4 Comparison of the suggested metaheuristics

	5 Conclusion
	References

